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Reconstructing embedding spaces of coupled dynamical systems from multivariate data
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A method for reconstructing dimensions of subspaces for weakly coupled dynamical systems is offered. The
tool is able to extrapolate the subspace dimensions from the zero coupling limit, where the division of
dimensions as per the algorithm is exact. Implementation of the proposed technique to multivariate data
demonstrates its effectiveness in disentangling subspace dimensionalities also in the case of emergent synchro-
nized motions, for both numerical and experimental systems.
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The characterization of chaotic and irregular measu
time series with the help of nonlinear analysis tools is
subject of great scientific interest@1#. A preliminary funda-
mental task in all analysis techniques is how to reconst
correctly the strange chaotic attractors from observed sc
data. To this purpose, it has been shown that an embed
can be obtained from time-delayed coordinates of the
served variables@2#, by means of which one can reconstru
the chaotic attractor of a given dynamics, and then use it
characterization@3#, prediction@4#, measurement, modeling
or control @5# purposes. Alternative procedures have be
proposed based on the reconstruction of the main feature
the chaotic dynamics by means of the interspike inter
technique@6#, or by adaptive methods@7#. The embedding
technique of Ref.@2# depends on the suitable choice of tw
parameters, namely the embedding time and the embed
dimensions. While the former may be easily obtained as
first minimum of the mutual information function@8#, a cor-
rect determination of the system dimensionality is an ess
tial problem to be solved in order to approach correctly a
following steps of a nonlinear data analysis.

A popular method that is used for measuring the minim
embedding dimension is the so-called false nearest-neig
~FNN! method, originally introduced by Kennelet al. @9#,
and later improved and reelaborated in order to face spe
analysis tasks@10#. The method consists in marking asfalse
nearest neighborsat dimensionm those pairs of nearest
neighborm-dimensional embedded vectors whose distanc
dimensionm11 exceeds a given number of times their d
tance at dimensionm, thus accounting for possible sel
intersections of the flow due to insufficient dimensionality
the embedded space. A vanishing fraction of FNN marks
minimum dimensionality needed to properly reconstruct
chaotic flow. This technique has been later improved@10#,
also complementing this analysis with the one on the sig
surrogates@11#.

In this paper, we discuss how to extend the dimens
reconstruction problem to the case of multivariate d
analysis, that is, to the case in which an observer is prese
with a system composed byn weakly coupled nonidentica
dynamical subsystems~of dimensionsl 1 ,l 2 , . . . ,l n , respec-
1063-651X/2002/65~3!/035204~4!/$20.00 65 0352
d
a

ct
lar
ng
-

t
r

n
of
l

ing
e

n-
y

l
or

fic

at
-

e
e

al

n
a
ed

tively!, and extracts separately scalar quantitiesxi(t) out of
each subsystemi ( i 51, . . . ,n). If the observer is interested
in probing global properties of the system under study~and if
the subsystem variables are all to all coupled!, then the usual
reconstruction methods work regardless of the particu
variablexi(t) on which embedding is performed. Howeve
this gives information on the full phase-space dimensiona
There are relevant cases, such as detection of synchro
tion processes@12,13#, or detection of interdependence o
dynamics@14#, for which the determination of the dimen
sionality of each subsystem is needed. Synchronization
tures have been largely studied for both coupled cha
@12,13# and space-time chaotic@15# systems, as well as ana
lyzed and studied in experiments and natural phenom
@16#. Recently, various attempts at providing a unifying fo
malism encompassing the major synchronization featu
have been made@17#, whose applications to real data rely o
a proper determination of the subspace dimensions o
which the global dynamics should be projected to look
functional relationships.

The problem can be stated as follows. Consider havinn
weakly coupled nonidentical dynamical systems, and s
pose that an observer is able to measure separately s
quantitiesxi(t) out of each subsystemi ( i 51, . . . ,n). In
order to properly reconstruct the dimensionsl 1 ,l 2 , . . . ,l n ,
let us consider the vector

z̄[„x1~ t !,x1~ t2t1!,x1~ t22t1!, . . . ,x1@ t2~m121!t1#,

x2~ t !,x2~ t2t2!, . . . ,x2@ t2~m221!t2#, . . . ,

xn~ t !,xn~ t2tn!, . . . ,xn@ t2~mn21!tn#…, ~1!

where t i ( i 51, . . . ,n) are n different embedding times.z̄
PRm (m5( i 51,nmi) is a vector whose first
~second, third, . . . ,nth) m1 (m2 ,m3 , . . . ,mn) components
result from the embedding of thex1 (x2 ,x3 , . . . ,xn) scalar
variable with embedding timet1 (t2 ,t3 , . . . ,tn). The em-
bedding timest i can be different from each other, since d
ferent observed variablesxi(t) may show different mutua
information properties@8#.
©2002 The American Physical Society04-1
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Suppose now we start at dimensionm realized with a
choice of an initial set of subspace dimensions$mi% ~usually
one begins withmi51, i 51, . . . ,n), and to consider all
m-dimensional vectorsz̄j , j 51, . . . ,N, N being the total
number of available measurements. We associate to
vector z̄j its nearest-neighborz̄NN, j at dimensionm. Further-
more, we introducen countersNi(m) ( i 51, . . . ,n), and a
given thresholds.

For each pair of nearest neighborsz̄j ,z̄NN, j we calculate
the distanced( z̄j ,z̄NN, j ,m)5A( l 51, . . . ,m( z̄j ,l2 z̄NN, j ,l)

2. We
then pass from dimensionm to dimensionm11.

This latter operation can be performed inn different ways.
Precisely fromm[(m1 , . . . ,mi , . . . ,mn) we can pass to
any spacem11[(m1 , . . . ,mi11, . . . ,mn) ( i 51, . . . ,n).
In those spaces, we calculate the new distan
di( z̄j ,z̄NN, j ,m11). The condition di( z̄j ,z̄NN, j ,m11)
>sd( z̄j ,z̄NN, j ,m) is taken as a signature of the falseness
nearest neighbors with respect to increasing by one the
mension of thei th subspace. Consequently, the coun
Ni(m) is increased by one.

After having probed all pairs of nearest neighbors at
mensionm, the set of countersNi(m) ( i 51, . . . ,n) retains
information on how many nearest neighbors are false w
respect to increasing by one the dimension of the co
spondingi th subspace. For anyNi(m) above a preassigne
thresholdd we increase by one the dimension of the cor
sponding subspace, and we perform the whole process a
at dimensionm1p, p being the number ofNi(m) counters
that overcomed . The process is stopped when allNi(m) are
belowd at once, thus gathering simultaneous information
both the dimension of the full reconstructed phase space
the dimensionsmi of each subsystem. We emphasize th
this procedure should work well for weak coupling and
fact be exact for zero coupling, thus we think of it as
extension of the zero coupling case.

The above algorithm makes use of the two thresholds
and d. s discriminates the falseness of a pair of near
neighbors, and therefore must exceed unity. On the o
hand, a too larges value would lead to the consequence th
the conditiondi( z̄j ,z̄NN, j ,m11)>sd( z̄j ,z̄NN, j ,m) is never
satisfied. The criteria for a proper choice ofs are largely
discussed in Refs.@1,9#. In what follows, we always takes
510, which in our case represents a good compromise
tween the two discussed extrema. Furthermore, we h
checked that the dimension estimate was insensitive ts
within some reasonable range around that value.

As for d, it indicates the percentage of FNN at which t
reconstruction process is stopped. In fact, for ideal data,
should putd50 and wait for a vanishing fraction of FNN
However, in all practical cases, data are corrupted by no
or by a finite measurement resolution. A direct conseque
of the above is that the FNN countersNi(m) saturate to a
nonzero value, thus one has to estimate a minimal accep
fraction of FNN to stop the dimension reconstruction proc
by estimating the level of noise corrupting the available da

In order to demonstrate the effectiveness of the propo
method, we provide here three applications forn52. The
first application is the reconstruction of the subspaces fo
system described by
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ẋ1,252v1,2y1,22z1,21«~x2,12x1,2!,

ẏ1,25v1,2x1,210.15y1,2, ~2!

ż1,250.21z1,2~x1,2210!,

where v1,250.9760.02. System~2! is constituted by two
coupled nonidentical chaotic Ro¨ssler systems@18#.

By increasing the coupling strength«, several different
kinds of synchronized motions emerge. In particular, R
@13# identified phase, intermittent lag, lag, and eventua
almost complete synchronization@a situation where the dif-
ferencesux1(t)2x2(t)u, uy1(t)2y2(t)u, and uz1(t)2z2(t)u
are all bounded in time by a quantity much smaller than
attractor diameter#. By numerically integrating system~2!,
we take the scalar signalsx1,2(t) as two distinct measure
ments for the reconstruction task.

The second application deals with structurally nonequi
lent subsystems described by

ẋ152vy12z11«~x22x1!,

ẏ15vx110.15y1 ,

ż150.21z1~x1210!,

ẋ25w210.25x21z21«~x12x2!, ~3!

ẏ2531y2w2 ,

ż2520.5y210.05z2 ,

ẇ252x22y2 .

For v50.925, system~3! is constituted by a chaotic
Rössler oscillator@18# coupled with a hyperchaotic Ro¨ssler
oscillator @19#. As a function of«, Ref. @13# discriminates
between nonsynchronized and phase-synchronized dyn
ics. As above, we take for reconstruction the scalar sign
x1,2(t) as they come from numerical integration of syste
~2! with initial conditions x150.1,y150.2,z150.3,x25y2
50,z2515,w25220.

The third application uses scalar signalx1,2(t) as mea-
sured over an experiment, whose setup is depicted in Fig
The two circuits that were built were similar to the Ro¨ssler
system, but they each contained only one piecewise lin
element@20#. One of these circuits, which were similar b
not identical, is shown in Fig. 1. For the first~the second!
circuit, the resistorR1 was 221kV (178 kV).

A coupling circuit took the difference betweenx signals
from the two circuits and multiplied this difference by a co
pling constantc. The resulting signal,D, was fed back into
each circuit at the place indicated, so that the two circu
looked like a pair of similar Ro¨ssler oscillators coupled by
the difference ofx variables.
4-2
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Thex signals from the two circuits were digitized at a ra
of 20 000 samples per second, which was about 20 points
cycle of the Ro¨ssler oscillation. Time series of lengt
100 000–500 000 points were acquired.

FIG. 1. The experimental setup. Ro¨ssler-like circuit used to gen
erate data. For the first~the second! circuit, the resistorR1 was 221
kV (R15178 kV).

TABLE I. Detection of subspace dimensionality for system~2!.
First column indicates the coupling value, second~third! column
reports the calculation of false nearest-neighbor dimensionm @9#
over the signalx1 (x2). Fourth column indicates the dimensions
subspacesm1 and m2 as calculated by the proposed method. T
considered coupling values determine the following dynam
states:«50.02 unsynchronized evolution,«50.05 phase synchro
nization,«50.13 intermittent lag synchronization,«50.16 lag syn-
chronization~LS!, «50.50 almost complete synchronization~ACS!
@13#. Notice that, for both LS and ACS, the subspaces dimens
ality reconstruction is affected by the emergence of the corresp
ing synchronization manifolds, due to large couplings between
two subsystems.

Coupling value m(x1) m(x2) m1 ,m2

«50.02 6 6 3,3
«50.05 6 6 3,3
«50.13 6;7 6;7 ;3,3
«50.16 6 6 3,2
«50.50 6 6 3,2
03520
er

In all cases we have takent1 (t2) from the first minima
of the mutual information function calculated onx1 (x2) @8#.
Calculations of nearest-neighbor dimensions have be
with m15m251. In Table I~II,III ! we show the process o
detection of subspace dimensionality for the system~2! @the
system~3!, the experimental outputs of the system describ
in Fig. 1#. The first column indicates the coupling value
which variablesx1,2 were measured. The second and th
column report the dimensionality of the full phase space,
calculated via the application of the usual false neare
neighbor technique@9# over the signalx1 (x2). Finally, in the
fifth column, we show the results of the application of t
above-described techniques for the calculation of the s
space dimensionsm1 and m2. For the experimental data
~Table III!, m, m1, andm2 have been taken as the dimensi
at which the fraction of false nearest neighbors was sma
than 0.5% of the total number of data points, since this w
a satisfactory estimation of the level of noise corrupting
data.

At weak-coupling values, the proposed reconstruct
method is successful in disentangling the dimensions of
coupled subspaces, thus giving either information of the
mension of the reconstructed full attractor, and on the dim
sion of the two coupled subspaces onto which the dynam
should be projected to inspect for synchronization or ot
collective phenomena. For larger coupling strengths~fourth
and fifth row of Table I and fifth row of Table III!, the de-

l

-
d-
e

TABLE II. Same as in Table I, but for system~3!. First column
indicates the coupling value, second~third! column reports the cal-
culation of false nearest-neighbor dimensionm @9# over the signal
x1 (x2). Fourth column indicates the dimensions of subspacesm1

andm2 as calculated by the proposed method. The considered
pling values determine the following dynamical states:«50.008
unsynchronized evolution,«50.0012 phase synchronization@13#.

Coupling value m(x1) m(x2) m1 ,m2

«50.08 7 7 3,4
«50.012 7 7 3,4

TABLE III. Detection of subspace dimensionality for the expe
mental output of the system described in Fig. 1. First column in
cates the coupling value. Second~third! column reports the calcu
lation of false nearest-neighbor dimensionm @9# over the signalx1

(x2). Fourth column indicates the dimensions of subspacesm1 and
m2 as calculated by the proposed method. As the coupling stre
increases, the systems experience a smooth transition from no
chronized evolution to generalized synchronization.

Coupling strength
~units of 1024) m(x1) m(x2) m1 ,m2

5 6 6 3,3
5.5 7 6 3,3
6.25 7 6 3,3
7.14 7 6 3,3
8.33 7 6 2,4
4-3
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tection of subspaces dimensionality is affected by the em
ing synchronization manifolds.

In conclusion, we have introduced a multivariate da
analysis tool that is able to extrapolate the dimensions
weakly coupled subspaces from the zero coupling lim
where the division of dimensions as per the algorithm
exact. Implementation of the proposed technique dem
a
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strates its effectiveness in disentangling subspace dimens
alities also in the case of emergent synchronized motion
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