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Reconstructing embedding spaces of coupled dynamical systems from multivariate data
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A method for reconstructing dimensions of subspaces for weakly coupled dynamical systems is offered. The
tool is able to extrapolate the subspace dimensions from the zero coupling limit, where the division of
dimensions as per the algorithm is exact. Implementation of the proposed technique to multivariate data
demonstrates its effectiveness in disentangling subspace dimensionalities also in the case of emergent synchro-
nized motions, for both numerical and experimental systems.
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The characterization of chaotic and irregular measuredively), and extracts separately scalar quantigs$) out of
time series with the help of nonlinear analysis tools is aeach subsystem(i=1, ... n). If the observer is interested
subject of great scientific interegt]. A preliminary funda-  in probing global properties of the system under st(ahyd if
mental task in all analysis techniques is how to reconstructhe subsystem variables are all to all coup)éden the usual
correctly the strange chaotic attractors from observed scaldeconstruction methods work regardless of the particular
data. To this purpose, it has been shown that an embeddirgriablex;(t) on which embedding is performed. However,
can be obtained from time-delayed coordinates of the obthis gives information on the full phase-space dimensionality.
served variableE2], by means of which one can reconstruct There are relevant cases, such as detection of synchroniza-
the chaotic attractor of a given dynamics, and then use it fotion processe$12,13, or detection of interdependence of
characterizatio3], prediction[4], measurement, modeling, dynamics[14], for which the determination of the dimen-
or control [5] purposes. Alternative procedures have beersionality of each subsystem is needed. Synchronization fea-
proposed based on the reconstruction of the main features 8fres have been largely studied for both coupled chaotic
the chaotic dynamics by means of the interspike interval12,13 and space-time chaotjd 5] systems, as well as ana-
technique[6], or by adaptive methodg’]. The embedding lyzed and studied in experiments and natural phenomena
technique of Ref[2] depends on the suitable choice of two [16]. Recently, various attempts at providing a unifying for-
parameters, namely the embedding time and the embeddingalism encompassing the major synchronization features
dimensions. While the former may be easily obtained as th&ave been madg 7], whose applications to real data rely on
first minimum of the mutual information functidi], a cor- & proper determination of the subspace dimensions onto
rect determination of the system dimensionality is an esserwhich the global dynamics should be projected to look for
tial problem to be solved in order to approach correctly anyfunctional relationships.
following steps of a nonlinear data analysis. The problem can be stated as follows. Consider hawing

A popular method that is used for measuring the minimaweakly coupled nonidentical dynamical systems, and sup-
embedding dimension is the so-called false nearest-neighb@ose that an observer is able to measure separately scalar
(FNN) method, originally introduced by Kennet al. [9], quantitiesx;(t) out of each subsystem(i=1,... ). In
and later improved and reelaborated in order to face specifierder to properly reconstruct the dimensidnsl,, ... |,,
analysis task§10]. The method consists in marking tdse  let us consider the vector
nearest neighborsat dimensionm those pairs of nearest-

neighbom-dimensional embedded vectors whose distance at z= (X1 (t),X1(t— 71),X1(t=279), ... Xo[t—(my—1) 7],
dimensionm+ 1 exceeds a given number of times their dis-
tance at dimensiomrm, thus accounting for possible self- Xo(1) , Xo(t—175), ... Xo[t—(My—1)75], ...,
intersections of the flow due to insufficient dimensionality in
the embedded space. A vanishing fraction of FNN marks the Xn(1) Xp(t=71), - .. Xp[t—=(m,—1)7,]), (1)
minimum dimensionality needed to properly reconstruct the o
chaotic flow. This technique has been later improy&d], wherer; (i=1,...,n) aren different embedding times
also complementing this analysis with the one on the signae R" (m=X,_;,m;) is a vector whose first
surrogateg11]. (second, third. .. nth) m; (m,,ms, ... ,m,) components
In this paper, we discuss how to extend the dimensionesult from the embedding of the (x,,Xs, ... X,) scalar
reconstruction problem to the case of multivariate datavariable with embedding time; (75,73, ...,7,). The em-

analysis, that is, to the case in which an observer is presentdmbdding timesr; can be different from each other, since dif-
with a system composed hyweakly coupled nonidentical ferent observed variables(t) may show different mutual
dynamical subsystem®f dimensiond,l,, ... |,, respec- information propertie$8].
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Suppose now we start at dimensiom realized with a

' ow : ; X1 0= — ~ 21 5+ 8(Xp 1= X1 2),
choice of an initial set of subspace dimensi¢ns} (usually 127~ 1 ¥12m 2t eXon X))

one begins withm;=1, i=1,...,n), and to consider all .

mrdimensional vectorg;, j=1,... N, N being the total Y1,2= 01X 2+ 0.19/ 5, 2
number of available measurements. We associate to each

vectorz; |t§ nearest-neighbaryy ; at dw_nensmrm. Further- '21‘2:0.2+ 21 (X1~ 10),

more, we introducen counters\;(m) (i=1,...,n), and a

given thresholdy. where w; ,=0.97=0.02. System(2) is constituted by two

For each pair of nearest neighbaszyy,; we calculate

coupled nonidentical chaotic Rsler system§18].

the distancel(z; ,zun,j .M = V=1, m(Z,1— Znn,j,)°- We By increasing the coupling strength several different
then pass from dimensiaom to dimensionm+1. kinds of synchronized motions emerge. In particular, Ref.
This latter operation can be performedinlifferent ways.  [13] identified phase, intermittent lag, lag, and eventually
Precisely fromm=(m,, ..., m;, ... ,m,) we can pass t0 aimost complete synchronizatiga situation where the dif-
any spacem+ 1=(my, .. ..M+ L, - M) (=1 - ). ferences|x,(t) —xx(t)], lya(t) =ya(t)l, and |z,(t) = z,(1)]

In _those spaces, we calculate the new distancegre all bounded in time by a quantity much smaller than the
di(z,zwy,i,m+1). The condition di(zj,zyn,i.M+1)  attractor diametdr By numerically integrating syster(®),
=0d(z),zyy,,m) is taken as a signature of the falseness Oiwe take the scalar signalg At) as two distinct measure-
nearest neighbors with respect to increasing by one the dinents for the reconstruction task.

mension of theith subspace. Consequently, the counter The second application deals with structurally nonequiva-

Ni(m) is increased by one. . _lent subsystems described by
After having probed all pairs of nearest neighbors at di-
mensionm, the set of counterd/;(m) (i=1, ... n) retains

: \ . . X1 =—wY;—2Z;+e(Xo—Xy),
information on how many nearest neighbors are false with ! Yimzite(e—xy)

respect to increasing by one the dimension of the corre-

spondingith subspace. For any/(m) above a preassigned y1=wX;+0.15,,
thresholds we increase by one the dimension of the corre-
sponding subspace, and we perform the whole process again 2,=0.24 2,(x, — 10),

at dimensiorm+p, p being the number ofV;(m) counters
that overcomeS . The process is stopped when A&fl(m) are
below § at once, thus gathering simultaneous information on
both the dimension of the full reconstructed phase space and _
the dimensionan; of each subsystem. We emphasize that Yo=3+ YWy,
this procedure should work well for weak coupling and in
fact be exact for zero coupling, thus we think of it as an
extension of the zero coupling case.

The above algorithm makes use of the two threshetds )
and . o discriminates the falseness of a pair of nearest W= —X7Y2.
neighbors, and therefore must exceed unity. On the other
hand, a too larger value would lead to the consequence that For »=0.925, system(3) is constituted by a chaotic
the conditiond;(z; ,zyn j ,m+1)=0cd(z; ,zyn;,M) is never  Rossler oscillato18] coupled with a hyperchaotic Rsler
satisfied. The criteria for a proper choice efare largely oscillator [19]. As a function ofe, Ref.[13] discriminates
discussed in Refg1,9]. In what follows, we always take between nonsynchronized and phase-synchronized dynam-
=10, which in our case represents a good compromise bées. As above, we take for reconstruction the scalar signals
tween the two discussed extrema. Furthermore, we have (t) as they come from numerical integration of system
checked that the dimension estimate was insensitive- to (2) with initial conditions x;=0.1y;=0.22,=0.3X,=Y,
within some reasonable range around that value. =0,z,=15w,=—20.

As for &, it indicates the percentage of FNN at which the  The third application uses scalar signal,(t) as mea-
reconstruction process is stopped. In fact, for ideal data, ongured over an experiment, whose setup is depicted in Fig. 1.
should putd=0 and wait for a vanishing fraction of FNN. The two circuits that were built were similar to the $3ter
However, in all practical cases, data are corrupted by noisesystem, but they each contained only one piecewise linear
or by a finite measurement resolution. A direct consequencelement[20]. One of these circuits, which were similar but
of the above is that the FNN countek§(m) saturate to a not identical, is shown in Fig. 1. For the firethe second
nonzero value, thus one has to estimate a minimal acceptabddcuit, the resistoR1 was 221k() (178 k().
fraction of FNN to stop the dimension reconstruction process A coupling circuit took the difference betweensignals
by estimating the level of noise corrupting the available datafrom the two circuits and multiplied this difference by a cou-

In order to demonstrate the effectiveness of the proposepling constantc. The resulting signal), was fed back into
method, we provide here three applications foe2. The  each circuit at the place indicated, so that the two circuits
first application is the reconstruction of the subspaces for éoked like a pair of similar Resler oscillators coupled by
system described by the difference of variables.

5(2:W2+0.25(2+22+8(X1_X2)1 (3)

.22: _05y2+ 0.0522,
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TABLE Il. Same as in Table 1, but for syste(8). First column
100k 0.001u indicates the coupling value, secofttlird) column reports the cal-
Ain >—\NV'—0—|(—1 culation of false nearest-neighbor dimensiori9] over the signal
X1 (X). Fourth column indicates the dimensions of subspawges
R1 "—‘/2\"\\2‘—“ andm, as calculated by the proposed method. The considered cou-
— A—$ pling values determine the following dynamical states:0.008
unsynchronized evolutior;=0.0012 phase synchronizatiph3].

68k X
- AA—e Coupling value m(Xx4) m(X,) m;,m,

€=0.08 7 7 3,4
£=0.012 7 7 3,4

10K 0.001u
WWA

J

—w—3 In all cases we have taken (7,) from the first minima
100k 5M of the mutual information function calculated &n (x5) [8].
y Calculations of nearest-neighbor dimensions have begun
with m;=m,=1. In Table I(Il,lll ) we show the process of
detection of subspace dimensionality for the syst@j{the
system(3), the experimental outputs of the system described
in Fig. 1]. The first column indicates the coupling value at
which variablesx; , were measured. The second and third
column report the dimensionality of the full phase space, as
calculated via the application of the usual false nearest-
neighbor techniqufd] over the signak; (x,). Finally, in the
fifth column, we show the results of the application of the
above-described techniques for the calculation of the sub-
space dimensionsn; and m,. For the experimental data
FIG. 1. The experimental setup. &ber-like circuit used to gen- (Table Ill), m, m;, andm, have been taken as the dimension
erate data. For the firéthe seconyicircuit, the resistoR1 was 221  at which the fraction of false nearest neighbors was smaller
kQ (R1=178kQ). than 0.5% of the total number of data points, since this was
a satisfactory estimation of the level of noise corrupting the

Thex signals from the two circuits were digitized at a rate data.

of 20 000 samples per second, which was about 20 points per At wgak—coupllng yalu_es, the proposeq reconstructing
N I ) . method is successful in disentangling the dimensions of the
cycle of the Rasler oscillation. Time series of length

. . coupled subspaces, thus giving either information of the di-
100000-500000 points were acquired. mension of the reconstructed full attractor, and on the dimen-
sion of the two coupled subspaces onto which the dynamics
should be projected to inspect for synchronization or other
collective phenomena. For larger coupling strendfosirth
and fifth row of Table | and fifth row of Table Ii] the de-

10K

150k

100k

\/
-15V

TABLE |. Detection of subspace dimensionality for syst&n
First column indicates the coupling value, secditird) column
reports the calculation of false nearest-neighbor dimensidi®]
over the signak; (x,). Fourth column indicates the dimensions of
subspacesn; andm, as calculated by the proposed method. The TABLE Ill. Detection of subspace dimensionality for the experi-
considered coupling values determine the following dynamicalmental output of the system described in Fig. 1. First column indi-
states:e =0.02 unsynchronized evolutios,=0.05 phase synchro- cates the coupling value. Secofttird) column reports the calcu-
nization,e = 0.13 intermittent lag synchronizatioa=0.16 lag syn-  lation of false nearest-neighbor dimensior{9] over the signak;
chronization(LS), e =0.50 almost complete synchronizatiohCS) (X5). Fourth column indicates the dimensions of subspateand
[13]. Notice that, for both LS and ACS, the subspaces dimensionm, as calculated by the proposed method. As the coupling strength
ality reconstruction is affected by the emergence of the correspondncreases, the systems experience a smooth transition from no syn-
ing synchronization manifolds, due to large couplings between thehronized evolution to generalized synchronization.
two subsystems.

Coupling strength

Coupling value m(Xx4) m(X,) m;,m, (units of 1074 m(Xx4) m(X5) my,m,
£=0.02 6 6 3,3 5 6 6 3,3
£=0.05 6 6 3.3 5.5 7 6 3,3
£=0.13 6~7 6~7 ~3,3 6.25 7 6 3,3
£=0.16 6 6 3,2 7.14 7 6 3,3
£=0.50 6 6 3,2 8.33 7 6 2,4
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tection of subspaces dimensionality is affected by the emerggstrates its effectiveness in disentangling subspace dimension-
ing synchronization manifolds. alities also in the case of emergent synchronized motions.

In conclusion, we have introduced a multivariate data
analysis tool that is able to extrapolate the dimensions of The authors acknowledge F. T. Arecchi, J. Kurths, H. L.
Weak|y Coup|ed Subspaces from the zero Coup”ng |imit,ManCini, and A. Pelaez for many fruitful discussions. This
where the division of dimensions as per the algorithm iswork was partly supported by the European Contract No.
exact. Implementation of the proposed technique demonHPRN-CT-2000-00158.
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