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Epidemic dynamics in finite size scale-free networks
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Many real networks present a bounded scale-free behavior with a connectivity cutoff due to physical
constraints or a finite network size. We study epidemic dynamics in bounded scale-free networks with soft and
hard connectivity cutoffs. The finite size effects introduced by the cutoff induce an epidemic threshold that
approaches zero at increasing sizes. The induced epidemic threshold is very small even at a relatively small
cutoff, showing that the neglection of connectivity fluctuations in bounded scale-free networks leads to a strong
overestimation of the epidemic threshold. We provide the expression for the infection prevalence and discuss
its finite size corrections. The present paper shows that the highly heterogeneous nature of scale-free networks
does not allow the use of homogeneous approximations even for systems of a relatively small number of nodes.

DOI: 10.1103/PhysRevE.65.035108 PACS number~s!: 89.75.2k, 87.23.Ge, 05.70.Ln
u
m

te

to

de
og
th

it
-
it
s

th

ac
.
ac
ea

ab
th
ti

ity
it

,
h
ou
f
th

r
u

al
s-
cts
ber
t.
ity
a
y

on-

ing

IS
nt

te

p-
ts.

ints
old

old
o-

ot be
u-

the

d

di-
ph

ong
In the past years it has been recognized that a large n
ber of physical, biological, and social networks exhibit co
plex topological properties@1,2#. In particular many real
world networks show the small-world phenomenon, rela
to a very small average path length between nodes@2,3#.
More strikingly, in some cases this property is associated
scale-free connectivity distribution,P(k);k222g, with 0
,g<1, wherek is the number of links connected to a no
@4#. This scale-free nature is associated to a large heter
neity in the connectivity properties of the system. Since
second moment of the connectivity distribution^k2& is di-
verging when increasing the network size, the connectiv
fluctuations in scale-free~SF! networks do not have an in
trinsic bound and diverge in the infinite system size lim
Scale-free properties have been observed in many real
tems such as the Internet@5–7# and the World Wide Web
@4,8#, food webs, protein, and neural networks@9#. A very
important example of scale free networks is also found in
web of human sexual contacts@10#. This is a particularly
relevant case since the unambiguous definition of cont
~links! is often missing in the analysis of social networks

Since the Internet and the web of human sexual cont
appear to be scale-free, the study of epidemics and dis
dynamics on SF networks is a relevant theoretical issue
the spreading of computer viruses and sexually transmitt
diseases. In heterogeneous networks, it is well known
the epidemic threshold decreases with the standard devia
of the connectivity distribution@11,12#, and this feature is
amplified in SF networks, which have diverging connectiv
fluctuations in the limit of infinite network size. Indeed,
was first noted in Ref.@13# that, in infinite SF networks
epidemic processes do not possess an epidemic thres
below which diseases cannot produce a major epidemic
break or the inset of an endemic state. The absence o
intrinsic epidemic threshold has been found in both
susceptible-infected-susceptible~SIS! model @13# and the
susceptible-infected-removed~SIR! model@14,15# in infinite
SF networks. The immunization policies are as well ve
much affected by the SF nature of the connectivity distrib
tion @16,17#.
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As customarily encountered in nonequilibrium statistic
systems@18#, it has also been pointed out that in finite sy
tems an epidemic threshold is induced by finite size effe
@14#. Real systems are actually made up by a finite num
of individuals, which is far from the thermodynamic limi
This finite population introduces a maximum connectiv
kc , depending onN, which has the effect of restoring
bound in the connectivity fluctuations, inducing in this wa
an effective nonzero threshold. More generally, we can c
sider a class of bounded scale-free~BSF! networks, in which
the connectivity distribution has the formP(k)
;k222g f (k/kc), where the functionf (x) decreases very
rapidly for x.1 @19#. The cutoffkc can be due to the finite
size of the network or to the presence of constraints limit
the addition of new links in an otherwise infinite network@1#.

In this paper we present an analytical study of the S
model in BSF networks with a generic connectivity expone
g (0,g<1), focusing on the effects introduced by a fini
cutoff kc . We analyze the case of a hard cutoff,f (x)5u(1
2x), whereu(x) is the Heaviside step function, as it ha
pens in growing networks with a finite number of elemen
We consider as well a soft exponential cutoff,f (x)5exp
(2x), as often found in systems where physical constra
are at play. We derive the behavior of the epidemic thresh
as a function ofkc and the network sizeN, and find that even
for relatively small networks the induced epidemic thresh
is much smaller than the epidemic threshold found in hom
geneous systems. This confirms that the SF nature cann
neglected in the practical estimates of epidemic and imm
nization thresholds in real networks. We also provide
explicit analytic form for the epidemic prevalence~density of
infected individuals! in BSF networks. The results presente
here can be readily extended to the SIR case.

In order to estimate the effect ofkc in epidemics on BSF
networks we will investigate the standard SIS model@20#.
This model relies on a coarse-grained description of in
viduals in the population. Namely, each node of the gra
represents an individual and each link is a connection al
which the infection can spread. Each susceptible~healthy!
©2002 The American Physical Society08-1
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node is infected with raten if it is connected to one or more
infected nodes. Infected nodes are cured and again bec
susceptible with rated, defining an effective spreading ra
l5n/d ~without lack of generality, we setd51). The SIS
model does not take into account the possibility of individ
al’s removal due to death or acquired immunization@20#, and
individuals run stochastically through the cycle suscepti
→ infected→ susceptible. This model is generally used
study infections leading to endemic states with a station
average density of infected individuals. In order to take in
account the heterogeneity of SF networks, we have to re
the homogeneity assumption used in regular networks,
consider the relative densityrk(t) of infected nodes with
given connectivityk, i.e., the probability that a node withk
links is infected@13#. The dynamical mean-field equation
can thus be written as

drk~ t !

dt
52rk~ t !1lk@12rk~ t !#Q„r~ t !…. ~1!

The first term in Eq.~1! considers infected nodes becomin
healthy with unit rate. The second term represents the a
age density of newly generated infected nodes that is pro
tional to the infection spreading ratel and the probability
that a node withk links is healthy@12rk(t)# and gets the
infection via a connected node. The rate of this last even
given by the probabilityQ„r(t)… that any given link points
to an infected node, which has the expression@13#

Q„r~ t !…5^k&21(
k

kP~k!rk~ t !. ~2!

By solving Eqs. ~1! and ~2! in the stationary state
@drk(t)/dt50# we obtain the self-consistency equation@13#

Q5^k&21(
k

kP~k!
lkQ

11lkQ
, ~3!

whereQ is now a function ofl alone. The self-consistenc
equation~3! allows a solution withQ5” 0 andrk5” 0 only if
the conditionl^k2&/^k&>1 is fulfilled @16#, defining the epi-
demic threshold

lc5
^k&

^k2&
. ~4!

In other words, if the value ofl is above the threshold,l
>lc , the infection spreads and becomes endemic. Below
l,lc , the infection dies out exponentially fast. This res
implies that in infinite SF networks with connectivity exp
nent 0,g<1, for which^k2&→`, we havelc50. This fact
implies in turn that for any positive value ofl the infection
can pervade the system with a finite prevalence, in a su
ciently large network@13#. While this result is valid for infi-
nite SF networks,̂ k2& assumes a finite value in BSF ne
works, defining an effective nonzero threshold due to fin
size effects as usually encountered in nonequilibrium ph
transitions@18#. This epidemic threshold, however, is not a
intrinsic quantity as in homogeneous systems and it vanis
03510
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for an increasing network size or connectivity cutoff. In o
der to calculate the precise effects of a finitekc , we consider
two different cases of connectivity cutoff. At first instanc
we consider asoftexponential cutoff withcharacteristiccon-
nectivity kc . This case corresponds to those real networks
which external factors set up an upper limit to the conn
tivity @1#. The network can have an infinite number of el
ments but the power-law connectivity distribution decays
ponentially for large values ofk. In order to perform explicit
calculations we use a continuous approximation that sub
tutes the connectivity by a real variablek in the range@m,`),
wherem is the minimum connectivity of the network. Th
connectivity probability distribution in this case isP(k)
5Ak222gexp(2k/kc), whereA is a normalization factor. The
effective nonzero epidemic thresholdlc(kc) induced by the
exponential cut-off is given by

lc~kc!5

E
m

`

k212g exp~2k/kc!dk

E
m

`

k2g exp~2k/kc!dk

, ~5!

which, after integration, yields

lc~kc!5kc
21 G~2g,m/kc!

G~12g,m/kc!
, ~6!

whereG(x,y) is the incomplete gamma function@21#. For
largekc we can perform a Taylor expansion and retain on
the leading term, obtaining for any 0,g,1,

lc~kc!.
1

mgG~12g!
~kc /m!g21. ~7!

The limit g→1 in Eq. ~6! corresponds to a logarithmic di
vergence, yielding at leading orderlc(kc).@m ln(kc /m)#21.
In all cases we have that the epidemic threshold vanis
when increasing the characteristic cutoff. For largekc , the
average connectivity is virtually fixed and given by^k&
5(g11)m/g, for any g.0. It is interesting, thus, to com
pare the intrinsic epidemic threshold obtained in homo
neous networks with negligible fluctuations and the nonz
effective threshold of BSF networks. The intrinsic epidem
threshold of homogeneous networks with constant node c
nectivity ^k& is given bylc

H5^k&21 @13,20#. If we compare
BSF and homogeneous networks with the same average
nectivity ^k&5(g11)m/g we obtain that the ratio betwee
the epidemic thresholds is given by

lc~kc!

lc
H

.
~g11!

g2G~12g!
~kc /m!g21. ~8!

This clearly shows that even in the case of a connectiv
cutoff the effective epidemic threshold in BSF networks
much smaller than the intrinsic threshold obtained in regu
networks. In Fig. 1 we plot the ratio obtained by using t
full expression forlc(kc), Eq. ~6!. It is striking to observe
that, even with relatively small cutoffs (kc;102–103), for
8-2
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g'0.5 the effective epidemic threshold of BSF networks
smaller by a factor close to 1/10 than the intrinsic thresh
obtained on homogeneous networks.

As a second kind of finite size effect, we consider t
presence of ahard cutoff kc . Since SF networks are ofte
dynamically growing networks, this case represents a
work that has grown up to a finite number of nodesN. The
maximum connectivitykc of any node is related to the ne
work age, measured as the number of nodesN, by the scaling
relation @19#

kc.mN1/(11g), ~9!

wherem is the minimum connectivity of the network.
In this case the network does not possess any node

connectivityk larger thankc , and we can think in terms of a
hard cutoff. Using again the continuousk approximation, the
normalized connectivity distribution has now the form

P~k!5
~11g!m11g

12~kc /m!212g
k222gu~kc2k!, ~10!

where u(x) is the Heaviside step function. The finite siz
induced epidemic thresholdlc(kc) is given by the expres
sion

lc~kc!5

E
m

kc
k212gdk

E
m

kc
k2gdk

. ~11!

Evaluating the above expression we obtain at leading o
in kc /m,

lc~kc!.
12g

gm
~kc /m!g21. ~12!

In this case the hard cutoffkc can be expressed as a functio
of the network sizeN by using the scaling relation Eq.~9!
and we can obtain the effective epidemic threshold as

FIG. 1. Ratio between the effective epidemic threshold in B
networks with a soft exponential cutoffkc and the intrinsic epi-
demic threshold of homogeneous networks with the same ave
connectivity, for different values ofg.
03510
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lc~N!.
12g

gm
N(g21)/(g11). ~13!

This expression is valid for any 0,g,1, while forg51 we
obtain at the leading order the logarithmic behaviorlc(N)
.2@m ln(N)#21. Also, in this case we have that the effectiv
epidemic threshold is approaching zero for increasing n
work sizes, and it is worth comparing its magnitude with t
corresponding intrinsic threshold in homogeneous netwo
with identical average connectivity. In Fig. 2 we report t
ratio lc(N)/lc

H for different sizes of the SF network. It i
striking to notice that forg50.5, small networks withN
.104 exhibit a finite size induced epidemic threshold that
close to be one order of magnitude smaller than the intrin
epidemic threshold of a homogeneous network.

In order to find the prevalence behavior we have to so
Eq. ~3! in the continuous approximation,

Q5^k&21E
m

`

kP~k!
lQk

11lQk
dk, ~14!

and use the value ofQ to compute the density of infecte
sitesr as

r5(
k

rkP~k![E
m

`

P~k!
lQk

11lQk
dk, ~15!

whereP(k) is given by Eq.~10!. In the absence of any cutof
(kc→`) and in the thermodynamic limit (N→`) the preva-
lence scales asr;l1/(12g) if 0 ,g,1, and as r
;exp(21/ml) if g51 @13#. Accordingly with the absence
of the epidemic threshold, the prevalence is null only if t
spreading rate isl50. In the case of a hard cutoff we ca
integrate Eq.~14!, neglecting terms of order (kc /m)2g in the
P(k) distribution, to obtain

F

ge

FIG. 2. Ratio between the effective epidemic threshold in B
networks with finite sizeN and the intrinsic epidemic threshold o
homogeneous networks with the same average connectivity, for
ferent values ofg.
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Q.gmglQE
m

kc k2g

11lQk
dk

5F~1,g,11g,2@lQm#21!

2~kc /m!2gF~1,g,11g,2@lQkc#
21!,

where F is the Gauss hypergeometric function@21#. For a
fixed kc one can expand both hypergeometric functions
the right hand side in the previous equation, keeping
most relevant terms inQ and considering afterwards th
limit of large kc . The final solution forQ is then given, at
leading order in (kc /m), by

Q.
1

ml2

22g

12g S kc

mD 21Fl2
12g

gm S kc

mD g21G . ~16!

By evaluating the integral in Eq.~15! and keeping the lead
ing term inQ andkc we finally obtain the infection preva
lence as

r.
~g11!~22g!

lg~12g! S kc

mD 21Fl2
12g

gm S kc

mD g21G .
Inserting the scaling relation Eq.~9! between the maximum
connectivitykc and the network sizeN we are led to the fina
expression

r;N21/(g11)@l2lc~N!#. ~17!

That is, the finite size of the network induces a stand
mean-field transition at the induced epidemic thresh
om

tt

v.

.

-
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lc(N), given by Eq.~13!. As can be seen from Eq.~17!,
however, the prevalence is depressed by a factorN21/(g11)

from the corresponding value for a homogeneous netwo
The above calculations can be repeated along similar line
the case of asoft exponential cutoff, obtaining simila
results.

It is worth remarking that similar results hold as well fo
the SIR model. Despite this model confers permanent imm
nity and does not allow for a stationary state, the epidem
threshold over which an epidemic outbreak occurs has
same analytic formlc5^k&/^k2& @15#. Thus, the present re
sults for the effect of finite size and the induced epidem
threshold can be readily exported to the SIR case. The
culation of the epidemic prevalence is different due to
different evolution equations, but recovers the same onse
an induced mean-field transition at the effective thresh
lc(N).

In conclusion, we have shown that the SF networks we
ness to epidemic agents is also present in finite size
works. Using the homogeneity assumption in the case of
networks will lead to a serious overestimate of the epidem
threshold even for relatively small networks.
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Proc. Natl. Acad. Sci. U.S.A.97, 11 149~2000!.

@2# S. H. Strogatz, Nature~London! 410, 268 ~2001!.
@3# D. J. Watts and S. H. Strogatz, Nature~London! 393, 440

~1998!.
@4# A.-L. Barabási and R. Albert, Science286, 509 ~1999!.
@5# M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. C

mun. Rev.29, 251 ~1999!.
@6# G. Caldarelli, R. Marchetti, and L. Pietronero, Europhys. Le

52, 386 ~2000!.
@7# R. Pastor-Satorras, A. Va´zquez, and A. Vespignani, Phys. Re

Lett. 87, 258 701~2001!.
@8# R. Albert, H. Jeong, and A.-L. Baraba´si, Nature~London! 401,

130 ~1999!.
@9# R. Albert and A.-L. Baraba´si, Rev. Mod. Phys.74, 47 ~2002!.

@10# F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y
Aberg, Nature~London! 411, 907 ~2001!.

@11# H. W. Hethcote and J. A. Yorke, Lect. Notes Biomath.56, 1
~1984!.

@12# R. M. Anderson and R. M. May,Infectious Diseases in Hu
-

.

mans~Oxford University Press, Oxford, 1992!.
@13# R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett.86,

3200 ~2001!; Phys. Rev. E63, 066 117~2001!.
@14# R. M. May and A. L. Lloyd, Phys. Rev. E64, 066 112~2001!.
@15# Y. Moreno, R. Pastor-Satorras, and A. Vespignani, e-p

cond-mat/0107267.
@16# R. Pastor-Satorras and A. Vespignani, e-pr

cond-mat/0107066.
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