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Epidemic dynamics in finite size scale-free networks
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Many real networks present a bounded scale-free behavior with a connectivity cutoff due to physical
constraints or a finite network size. We study epidemic dynamics in bounded scale-free networks with soft and
hard connectivity cutoffs. The finite size effects introduced by the cutoff induce an epidemic threshold that
approaches zero at increasing sizes. The induced epidemic threshold is very small even at a relatively small
cutoff, showing that the neglection of connectivity fluctuations in bounded scale-free networks leads to a strong
overestimation of the epidemic threshold. We provide the expression for the infection prevalence and discuss
its finite size corrections. The present paper shows that the highly heterogeneous nature of scale-free networks
does not allow the use of homogeneous approximations even for systems of a relatively small number of nodes.
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In the past years it has been recognized that a large num- As customarily encountered in nonequilibrium statistical
ber of physical, biological, and social networks exhibit com-systemd 18], it has also been pointed out that in finite sys-
plex topological propertie$1,2]. In particular many real tems an epidemic threshold is induced by finite size effects
world networks show the small-world phenomenon, relateq14]. Real systems are actually made up by a finite number
to a very small average path length between nd@S].  of indjviduals, which is far from the thermodynamic limit.
More strikingly, in some cases this property is associated 0 ghjs finite population introduces a maximum connectivity
scale-free connectivity distributio_ri?(k)ka*Z*V, with O k., depending onN, which has the effect of restoring a
<y<1, wherek is the number of links connected to a node j,, 14 i the connectivity fluctuations, inducing in this way

[4]: This scale-free hature is as_sociated to a large heteroggh effective nonzero threshold. More generally, we can con-
neity in the connectivity properties of the system. Since the !

o TR o sider a class of bounded scale-f(@&SF networks, in which
second moment of the connectivity distributiok?®) is di- he connectivity distribution has the formP(k
verging when increasing the network size, the connectivit Y (k)

; : . ~k~277f(k/k;), where the functionf(x) decreases very
fluctuations in scale-fre€SF) networks do not have an in- . ¢/ o
trinsic bound and diverge in the infinite system size limit. "aPidly forx>1[19]. The cutoffk. can be due to the finite

Scale-free properties have been observed in many real sy§Z€ of the network or to the presence of constraints limiting
tems such as the Interngs—7] and the World Wide Web ~ the addition of new links in an otherwise infinite netw¢ig.
[4,8], food webs, protein, and neural networl&. A very In this paper we present an analytical study of the SIS
important example of scale free networks is also found in thénodel in BSF networks with a generic connectivity exponent
web of human sexual contacf40]. This is a particularly ¥ (0<y=1), focusing on the effects introduced by a finite
relevant case since the unambiguous definition of contactgutoff k.. We analyze the case of a hard cutdifx) = 6(1
(links) is often missing in the analysis of social networks. —X), where §(x) is the Heaviside step function, as it hap-
Since the Internet and the web of human sexual contactgens in growing networks with a finite number of elements.
appear to be scale-free, the study of epidemics and disea¥¥ée consider as well a soft exponential cutoffx) =exp
dynamics on SF networks is a relevant theoretical issue if—X), as often found in systems where physical constraints
the spreading of computer viruses and sexually transmittablare at play. We derive the behavior of the epidemic threshold
diseases. In heterogeneous networks, it is well known thaas a function ok; and the network sizBl, and find that even
the epidemic threshold decreases with the standard deviatidar relatively small networks the induced epidemic threshold
of the connectivity distributiorj11,12, and this feature is is much smaller than the epidemic threshold found in homo-
amplified in SF networks, which have diverging connectivity geneous systems. This confirms that the SF nature cannot be
fluctuations in the limit of infinite network size. Indeed, it neglected in the practical estimates of epidemic and immu-
was first noted in Ref[13] that, in infinite SF networks, nization thresholds in real networks. We also provide the
epidemic processes do not possess an epidemic threshatdplicit analytic form for the epidemic prevalen@ensity of
below which diseases cannot produce a major epidemic outnfected individualsin BSF networks. The results presented
break or the inset of an endemic state. The absence of drere can be readily extended to the SIR case.
intrinsic epidemic threshold has been found in both the In order to estimate the effect &f in epidemics on BSF
susceptible-infected-susceptib(&IS) model [13] and the networks we will investigate the standard SIS mo[R].
susceptible-infected-remové8IR) model[14,15 in infinite ~ This model relies on a coarse-grained description of indi-
SF networks. The immunization policies are as well veryviduals in the population. Namely, each node of the graph
much affected by the SF nature of the connectivity distriburepresents an individual and each link is a connection along
tion [16,17). which the infection can spread. Each susceptiblealthy
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node is infected with rate if it is connected to one or more for an increasing network size or connectivity cutoff. In or-
infected nodes. Infected nodes are cured and again becorder to calculate the precise effects of a firkite we consider
susceptible with raté, defining an effective spreading rate two different cases of connectivity cutoff. At first instance,
A=v/ S (without lack of generality, we sef=1). The SIS we consider aoftexponential cutoff witrcharacteristiccon-
model does not take into account the possibility of individu-nectivity k. . This case corresponds to those real networks in
al's removal due to death or acquired immunizafia@], and  which external factors set up an upper limit to the connec-
individuals run stochastically through the cycle susceptibldivity [1]. The network can have an infinite number of ele-
— infected— susceptible. This model is generally used toments but the power-law connectivity distribution decays ex-
study infections leading to endemic states with a stationarponentially for large values d€. In order to perform explicit
average density of infected individuals. In order to take intocalculations we use a continuous approximation that substi-
account the heterogeneity of SF networks, we have to relatutes the connectivity by a real varialidén the rangd m,»),

the homogeneity assumption used in regular networks, andherem is the minimum connectivity of the network. The
consider the relative density,(t) of infected nodes with connectivity probability distribution in this case B(k)

given connectivityk, i.e., the probability that a node with  =Ak ™2~ Yexp(—k/k.), whereA is a normalization factor. The
links is infected[13]. The dynamical mean-field equations effective nonzero epidemic threshold(k.) induced by the
can thus be written as exponential cut-off is given by
dpk(t) ® 1
g~ POANKI=p(D]O(p(1). (o k™=~ 7 exp(—k/k;)dk
m
Ae(Ke)=— : )
The first term in Eq(1) considers infected nodes becoming f k™7 exp( — k/k.)dk
healthy with unit rate. The second term represents the aver- m

age density of newly generated infected nodes that is propor-

tional to the infection spreading rate and the probability ~Which, after integration, yields

that a node withk links is healthy[1—p,(t)] and gets the

infection via a connected node. The rate of this last event is No(kg) =k I'(—y,m/ke)
given by the probability® (p(t)) that any given link points cre e T(1—=y,miky)’
to an infected node, which has the expresgibt)

(6)

whereI'(x,y) is the incomplete gamma functid21]. For
largek. we can perform a Taylor expansion and retain only

®(P(t))=<k>71; KP(K)p(t). (2 the leading term, obtaining for any<Oy<1,
By solving Egs. (1) and (2) in the stationary state No(ko)= (ke /m)7~t @)
[dpy(t)/dt=0] we obtain the self-consistency equatidrs] S myl(1—y) ¢ '

. A The limit y—1 in Eq. (6) corresponds to a logarithmic di-
0 =(k) ; KP(K) 757 ko () vergence, yielding at leading ordeg(k.)=[m In(k./m)] .
In all cases we have that the epidemic threshold vanishes
where® is now a function of\ alone. The self-consistency When increasing the characteristic cutoff. For lakge the
equation(3) allows a solution with®+0 andp,#0 only if ~ average connectivity is virtually fixed and given Kk)

the condition\ (k2)/(k)=1 is fulfilled [16], defining the epi- = (y+1)m/y, for any y>0. It is interesting, thus, to com-
demic threshold pare the intrinsic epidemic threshold obtained in homoge-
neous networks with negligible fluctuations and the nonzero
(k) effective threshold of BSF networks. The intrinsic epidemic

(4)  threshold of homogeneous networks with constant node con-
nectivity (k) is given byA"'=(k)~? [13,20. If we compare

In other words, if the value ok is above the threshold, ~ BSF and hoTogeneous networks with the same average con-

=)\, the infection spreads and becomes endemic. Below if?€Ctivity (k)=(y+1)m/y we obtain that the ratio between

A<\, the infection dies out exponentially fast. This result N epidemic thresholds is given by

implies that in infinite SF networks with connectivity expo-

nent 0< y<1, for which(k?)—<, we havex ,=0. This fact Ae(ke) _ (v+1) (k. /m)?~ )
implies in turn that for any positive value af the infection )\E‘ YT'(1—7) ¢ '

can pervade the system with a finite prevalence, in a suffi-

ciently large networK13]. While this result is valid for infi-  This clearly shows that even in the case of a connectivity
nite SF networks{k?) assumes a finite value in BSF net- cutoff the effective epidemic threshold in BSF networks is
works, defining an effective nonzero threshold due to finitemuch smaller than the intrinsic threshold obtained in regular
size effects as usually encountered in nonequilibrium phaseetworks. In Fig. 1 we plot the ratio obtained by using the
transitions[18]. This epidemic threshold, however, is not an full expression forx.(k.), Eq. (6). It is striking to observe
intrinsic quantity as in homogeneous systems and it vanishethat, even with relatively small cutoffsk{(~10°—1C), for
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) ) ) ) ] FIG. 2. Ratio between the effective epidemic threshold in BSF
FIG. 1. Ratio between the effective epidemic threshold in BSFnetworks with finite sizeN and the intrinsic epidemic threshold of

networks with a soft exponential cutok; and the intrinsic epi-  homogeneous networks with the same average connectivity, for di-
demic threshold of homogeneous networks with the same averaggrent values ofy.

connectivity, for different values o§.

y=~0.5 the effective epidemic threshold of BSF networks is
smaller by a factor close to 1/10 than the intrinsic threshold
obtained on homogeneous networks.

As a second kind of finite size effect, we consider the
presence of dard cutoff k,. Since SF networks are often This expression is valid for any<0y<1, while fory=1 we
dynamically growing networks, this case represents a nefebtain at the leading order the logarithmic behaw@(N)
work that has grown up to a finite number of nodésThe  =2[mIn(N)] . Also, in this case we have that the effective
maximum connectivityk, of any node is related to the net- epidemic threshold is approaching zero for increasing net-
work age, measured as the number of nddgsy the scaling  work sizes, and it is worth comparing its magnitude with the
relation[19] corresponding intrinsic threshold in homogeneous networks

Y(L+ ) with identical average connectivity. In Fig. 2 we report the
ke=mN ' ©  ratio A(N)/\H for different sizes of the SF network. It is
wherem is the minimum connectivity of the network striking to notice that fory=0.5, small networks witi
X =10" exhibit a finite size induced epidemic threshold that is

In this case the network does not possess any node wit : R
- L close to be one order of magnitude smaller than the intrinsic
connectivityk larger thark., and we can think in terms of a . .
epidemic threshold of a homogeneous network.

hard cutoff. Using again the continuokspproximation, the | d find th | behavi h |
normalized connectivity distribution has now the form n order to find the prevalence behavior we have to solve
Eq. (3) in the continuous approximation,

1-y
~ T NO—DI(y+1)
Nc(N) 5 N . (13

P(k)= MK—Z—VHU( —k) (10)
1= (kg /m) LY ¢ AOk

®=<k>—1f kP(k) =—————dk, (14)
. - . o m 1+\0Ok

where 6(x) is the Heaviside step function. The finite size

induced epidemic threshold(k;) is given by the expres-

sion and use the value d® to compute the density of infected
ke sitesp as
k~ 1 vdk
m
Aelko) == ——. (1D S o= [P0 2% ac s
fmkdk p_kpk()=m()l+—)\®k’ (19
Evaluating the above expression we obtain at leading order
in ke/m, whereP (k) is given by Eq(10). In the absence of any cutoff
(ke—00) and in the thermodynamic limitN— o) the preva-
1-y . lence scales asp~AY("" if 0<y<1, and asp
Ne(ke)= ym (ke/m)7™=. (12) ~exp(=1/m\) if y=1 [13]. Accordingly with the absence

of the epidemic threshold, the prevalence is null only if the
In this case the hard cutoiff. can be expressed as a function spreading rate i&=0. In the case of a hard cutoff we can
of the network sizeN by using the scaling relation E49)  integrate Eq(14), neglecting terms of ordek{/m)~ " in the
and we can obtain the effective epidemic threshold as P (k) distribution, to obtain
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Ne(N), given by Eqg.(13). As can be seen from Ed17),
however, the prevalence is depressed by a fastor(” 1)
from the corresponding value for a homogeneous network.
The above calculations can be repeated along similar lines in
the case of asoft exponential cutoff, obtaining similar
results.

It is worth remarking that similar results hold as well for

k=Y

1+)\®kdk

kC
O=ym”"\0 f
m

=F(1,57,1+7y,—[A®Om]™ 1)
_(kclm)i}/F(lv’yvl—i_ 71_[)\®kc]71)1

where F is the Gauss hypergeometric functipl]. For a

fixed k one can expand both hypergeometric functions Onthe SIR model. Despite this model confers permanent immu-

the right hand side in the previous equation, keeping thQity and does not _aIIow for a sta_tionary state, the epidemic
most relevant terms if® and considering aftérwards the threshold over which an epidemic outbreak occurs has the

limit of large k.. The final solution for® is then given, at
leading order in K./m), by

!

1—y(ke\ 1t
~ ozl el 09

ym {m

By evaluating the integral in Eq15) and keeping the lead-
ing term in® andk. we finally obtain the infection preva-
(y+1)(2-y)

ym \m
Inserting the scaling relation E¢Q) between the maximum
connectivityk. and the network sizbl we are led to the final
expression

p~N"YOTIIN -\ (N)]. (17)

same analytic form\.=(k)/(k?) [15]. Thus, the present re-
sults for the effect of finite size and the induced epidemic
threshold can be readily exported to the SIR case. The cal-
culation of the epidemic prevalence is different due to the
different evolution equations, but recovers the same onset of
an induced mean-field transition at the effective threshold
Ne(N).

In conclusion, we have shown that the SF networks weak-
ness to epidemic agents is also present in finite size net-
works. Using the homogeneity assumption in the case of SF
networks will lead to a serious overestimate of the epidemic
threshold even for relatively small networks.
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