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Crack propagation in thin glass plates caused by high velocity impact
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Crack propagation within thin glass plates under high shock loading is directly observed using a high speed
camera. The fractal dimension of cracks and the power-law exponents of the fragment area distributions are
investigated as a function of time. Two models of the fragmentation process are proposed: in one case the
cracks are netlike, while in the other the cracks are treelike, and the relations between fractal dimension and
power-law exponent are estimated and compared with the experimental results. It appears that at early stages
of the fragmentation process the relation is described by the latter case, while at later stages it approaches that
of the former case.
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Fragmentation of brittle solids has been investigated
many decades because of its importance in various field
science and engineering. Experiments have been carried
for objects of different materials such as glass@1#, rock @2#,
and ice@3#, and for various shapes@4,5#. Fragment size dis-
tributions are extensively studied because they provide
primary observational evidence for the nature of the brea
process. Experiments indicate that one of the character
features of fragment size distributions is that the distribut
in the small size range shows a power-law form. The ori
of this power law has attracted much attention and so
analytical approaches have been made@6–11#. Also, several
models have been introduced to study fragmentation num
cally @12–18#.

One effective method to clarify the origin of the pow
law is the direct observation of the fragmentation process
some experiments, the fragmentation process has been
served directly. Failure waves in glass bars and plates h
been investigated using a high speed camera@19#. Also, the
propagation of large radial cracks in H2O ice targets has bee
observed and the expansion velocity of the fractured reg
has been measured with an apparatus consisting of an im
converter camera and a shadow photograph lighting sys
@20#. However, fragment size distributions were not d
cussed in these studies.

Here we report the results of hypervelocity impact expe
ments using thin transparent plate targets, in which in
vidual cracks are directly observed without the overlap
many cracks in the line of sight. Recently, the relation b
tween crack systems and the power-law form has been o
discussed@15,21#. Hence, initially, fractal dimension as a pa
rameter characterizing the crack systems is estimated
function of time. Second, fragment size distributions are
vestigated as a function of time. Finally the relation betwe
fractal dimension and the power-law exponent of fragm
size distributions is discussed.

A schematic view of the experimental system is shown
Fig. 1. Thin Pyrex glass plate targets were vertically instal
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and suspended by two fine threads under an ambient pres
of 1 atom. Cylindrical aluminum projectiles with a diamet
of 15 mm and a height of 10 mm, which were accelerated
an air-gun at Institute of Low Temperature Science, impac
against the upper side of the targets. Around the imp
point, two brass semicircular projectile stoppers with a rad
of 15 mm and a thickness of 10 mm were set to prevent
projectile from penetrating into the target. These stoppers
connected by two thin threads and hooked on the upper
of the target. The projectile initially impacts the target, a
its motion is quickly terminated by the stoppers.

Crack propagation was observed using an image c
verter camera, ULTRA NAC. Cracks could be observed
means of a shadow photograph lighting system. A xen
flash lamp~flash duration longer than 1 ms! was used for the
light source. The camera view is almost normal to the tar
plane but slightly inclined to enhance the contrast of cra
images.

Figure 2 shows a result using a square glass plate ta
with sides of 1003100 mm and a thickness of 2 mm. Th
image converter camera recorded 9 successive images w
framing speed of 13105 frames per second~10 ms per
frame! and an exposure time of 800 ns. Numbers in the fi
ure are the order of the images. The projectile impac
against the center of the upper side at an impact velocity
67.6 m/s. The black square on the upper side of the targ
the projectile.

1-
FIG. 1. A schematic view of the experimental system.
©2002 The American Physical Society07-1
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The propagation of individual cracks could be observ
At first, some radial cracks proceeded downward from
impact point with branching. Then a few cracks generate
the antipodal side~lower side! of the target and proceed up
ward with branching. After that, these branching cracks c
lesced with each other, and lateral cracks perpendicula
the radial cracks appeared.

The fractal dimension of cracksdf was estimated in eac
image using the box counting method@22#. The number of
boxes which are necessary to cover all crack branches
counted. The minimum box size corresponded to about a
of the target thickness and the range of the box size was
one order of magnitude. In Fig. 3~a! the results are plotted
against the timet. The time 0 corresponds to the frame 1. A
t increases,df increases quickly and becomes about 1.5.

After the shot, the fragments were recovered. In Fig. 4
plot the cumulative number of the recovered fragments w
mass larger thanm as indicated by a bold line. The fragme
mass is normalized by the original target mass. The distr
tion shows a power-law form in the small-size range. T
slope of the power-law region is 0.6060.01.

Then the fragment area distributions in each image
obtained by defining a ‘‘fragment’’ as a closed part su
rounded by cracks. Figure 4 also shows the cumulative n
berN(.s) of fragments with areas larger thans, where area
s is normalized by the original target area. It appears that
number of fragments increases with time and that the dis
butions after frame 7 are close to that of the recovered fr
ments. In small fragments, the distribution of recovered fr
ments is slightly higher than those obtained from the imag
This is probably because the distribution of recovered fr
ments includes some ‘‘3D fragments’’ which are produc
mainly around the impact point and whose thickness is u
ally less than that of the original target plate: these fragme
cannot be counted by image analysis. Also, since the targ
slightly inclined to enhance the contrast, the cracks h

FIG. 2. Consecutive images. Framing speed is 10ms per frame.
Numbers in the figure are the order of the images. A cylindri
projectile is shot from the top at an impact velocity of 67.6 m/s
03510
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some ‘‘width’’ in the image. Therefore the estimated area
a fragment is smaller than the actual value. Smaller fr
ments are more strongly affected. Consequently, the cum
tive number distributions obtained by the image analysis
come slightly lower in the small-size limit.

We fit the part indicating a power-law form in each di
tribution to a straight line and obtained its slopea. We did
not fit the distribution in the frame 3 because the number
fragments is so small that the part indicating a power-l
form is not clear. Figure 3~b! showsa againstt. The slopea
also increases with time and approaches that for the re
ered fragments indicated by a broken line.

Figure 5 showsdf againsta. Other results obtained at
similar impact velocity~72.3 m/s! are also shown. In this
case, the framing speed is relatively slower~15 ms per
frame!, and hence the time evolution ofdf and a at early
stages could not be observed. Furthermore, the fractal
mensions for plaster targets@5# are plotted, which are esti

l
FIG. 3. ~a! Fractal dimension of the crack system as a funct

of time. ~b! Slopea of fragment area distributions as a function
time.

FIG. 4. Cumulative number of fragmentsN(.s) as a function
of time. That of recovered fragments is also shown.
7-2
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mated from a sketch of crack patterns obtained by rec
structing the recovered fragments, as shown in Fig. 1~b! of
Ref. @5#. It appears thatdf increases witha.

Here the relation betweendf and a is discussed briefly.
We propose two simple models of the fragmentation proc
First we consider a process which is analogous to
Sierpinski-constructions@8# ~model 1!. In two-dimensional
space we take a square with a side of unit length@Fig. 6~a!#.
As a first step, we divide the square intob2 subsquares o
side 1/b @in Fig. 6~a!, b52#. At the second step we takeb2p
subsquares, wherep is the fraction of the subsquares whic
will be further fragmented, and divide each intob2 equal
sub-subsquares of side (1/b)2 @in Fig. 6~a!, p53/4#. By re-
peating the procedure, we obtain a collection of an infin
number of fragments of various sizes. The number of fr
ments with a length ofr n5(1/b)n is (pb2)n21(12p)b2.
Hence the cumulative number of fragments larger thanr n ,
N(.r n), becomes

N~.r n!5~12p!3b21~pb2!3~12p!3b21¯

1~pb2!n213~12p!3b2

;~pb2!n

5r n
2A ,

FIG. 5. Power-law exponentsa versus fractal dimensionsdf .
The previous results@5# are also shown. The bold line is obtaine
from model 1 and the thin line is from model 2.

FIG. 6. ~a! Model 1. A fragmentation process analogous to t
Sierpinski constructions introduced in Ref.@8#. ~b! Model 2. Frag-
ments caused by the intersections of a crack with a fractal dim
sion df with a straight line.
03510
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whereA5 ln(b2p)/ln b. This can be rewritten as the cumula
tive number of fragments larger thans5r 2, N(.s);s2a

;s2A/2.
In the process of the box counting method the total nu

bern(r n) of boxes of sizer n needed to cover a fractal struc
ture of dimensiondf is given by n(r n);r n

2d f. In this
model, for the boxes of sizer n115r n /b, n(r n11) is larger
by a factorpb2 thann(r n). Hence the fractal dimensiondf
can be written asdf5 ln(b2p)/ln b. Thus we obtainA5df and
hencea5df /2. This is shown as a bold line in Fig. 5. The
are no experimental results which correspond to this line

Next we consider another case: a branching crack in
sects a line as shown in Fig. 6~b! ~model 2!. This line may be
a free surface~in the case of platelike objects it is a side! or
a part of already existing cracks. It is expected that the len
between two adjacent intersections represents the size
fragment. Hence, we obtain the cumulative number of fr
ments larger thanr as the cumulative number of segmen
longer thanr.

First we take a line with a unit length. A crack divides th
line into b segments of length 1/b @in Fig. 6~b!, b53#. Let-
ting p be the fraction of the segments which are further fra
mented@in Fig. 6~b!, p52/3#, bp segments are divided intob
equal subsegments of length (1/b)2 by the crack. Finally, we
obtain a collection of an infinite number of segments of va
ous lengths. The number of segments with a length ofr n
5(1/b)n is (pb)n21(12p)b. Hence the cumulative numbe
of segments longer thanr n , N(.r n), becomes

N~.r n!5~12p!3b1~pb!3~12p!3b1¯1~pb!n21

3~12p!3b

;~pb!n

5r n
2B ,

whereB5 ln(bp)/ln b.
In a way similar to model 1, the total numbern(r n11) of

boxes of sizer n115r n /b needed to cover the intersections
estimated to be larger by a factorpb thann(r n). Hence the
fractal dimensionD of the distribution of the intersection
can be written asD5 ln(bp)/ln b. Thus we obtainB5D.
Since the fractal dimension of the crackdf is related toD by
df511D, we obtainB5df21 and hencea5(df21)/2.
This is also shown in Fig. 5.

For smalla the experimental data in plaster plates and
glass plates at early stages exist near the linea5(df
21)/2, though the data for plaster slightly scatter. The d
for glass at late stages deviate from the line. They e
around the middle of two lines.

Qualitatively speaking, at early stages where only a f
treelike cracks exist, the fragmentation process is descr
by model 2, while at later stages where cracks coalesce
each other and are not treelike but netlike, the fragmenta
process approaches that represented by model 1. In the
of plaster targets, since the stress waves attenuate quick
seems that the fragmentation stops at an early stage.

n-
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In summary, impact fragmentation experiments are c
ried out using thin glass plates. Crack propagation is dire
observed with a high speed camera. The fractal dimens
of cracks and the power-law exponent of the fragment a
distributions are investigated as a function of time. Tw
models of fragmentation process are proposed: in one
the cracks are netlike, while in the other the cracks are t
like, and the relations between fractal dimension and pow
law exponents are estimated and compared with the exp
o-

fth
L

i.
.

i.
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mental results. It seems that at early stages of
fragmentation process the relation is described by the la
case while at later stages it approaches that in the for
case.
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