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Crack propagation in thin glass plates caused by high velocity impact
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Crack propagation within thin glass plates under high shock loading is directly observed using a high speed
camera. The fractal dimension of cracks and the power-law exponents of the fragment area distributions are
investigated as a function of time. Two models of the fragmentation process are proposed: in one case the
cracks are netlike, while in the other the cracks are treelike, and the relations between fractal dimension and
power-law exponent are estimated and compared with the experimental results. It appears that at early stages
of the fragmentation process the relation is described by the latter case, while at later stages it approaches that
of the former case.
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Fragmentation of brittle solids has been investigated foland suspended by two fine threads under an ambient pressure
many decades because of its importance in various fields aff 1 atom. Cylindrical aluminum projectiles with a diameter
science and engineering. Experiments have been carried oot 15 mm and a height of 10 mm, which were accelerated by
for objects of different materials such as gl&$$ rock [2], an air-gun at Institute of Low Temperature Science, impacted
and ice[3], and for various shapdg,5]. Fragment size dis- against the upper side of the targets. Around the impact
tributions are extensively studied because they provide thgoint, two brass semicircular projectile stoppers with a radius
primary observational evidence for the nature of the breaku@f 15 mm and a thickness of 10 mm were set to prevent the
process. Experiments indicate that one of the characteristigrojectile from penetrating into the target. These stoppers are
features of fragment size distributions is that the distributiorconnected by two thin threads and hooked on the upper side
in the small size range shows a power-law form. The originof the target. The projectile initially impacts the target, and
of this power law has attracted much attention and somés motion is quickly terminated by the stoppers.

analytical approaches have been mfgle11]. Also, several Crack propagation was observed using an image con-
models have been introduced to study fragmentation numerierter camera, ULTRA NAC. Cracks could be observed by
cally [12-18. means of a shadow photograph lighting system. A xenon

One effective method to clarify the origin of the power flash lamp(flash duration longer than 1 mwas used for the
law is the direct observation of the fragmentation process. Ifight source. The camera view is almost normal to the target
some experiments, the fragmentation process has been oplane but slightly inclined to enhance the contrast of crack
served directly. Failure waves in glass bars and plates hav&ages.
been investigated using a high speed canizg Also, the Figure 2 shows a result using a square glass plate target
propagation of large radial cracks i@ ice targets has been with sides of 10100 mm and a thickness of 2 mm. The
observed and the expansion velocity of the fractured regiofmage converter camera recorded 9 successive images with a
has been measured with an apparatus consisting of an imagéaming speed of X 10> frames per secondl10 us per
converter camera and a shadow photograph lighting systefiamé and an exposure time of 800 ns. Numbers in the fig-
[20]. However, fragment size distributions were not dis-ure are the order of the images. The projectile impacted
cussed in these studies. against the center of the upper side at an impact velocity of
Here we report the results of hypervelocity impact experi-67.6 m/s. The black square on the upper side of the target is
ments using thin transparent plate targets, in which indithe projectile.
vidual cracks are directly observed without the overlap of

many cracks in the line of sight. Recently, the relation be- projectile
tween crack systems and the power-law form has been often B thread
discussed15,21]. Hence, initially, fractal dimension as a pa- w
rameter characterizing the crack systems is estimated as a
function of time. Second, fragment size distributions are in- : ‘/
vestigated as a function of time. Finally the relation between 4
fractal dimension and the power-law exponent of fragment projectile 1 Xe flash
size distributions is discussed. stopper lamp
A schematic view of the experimental system is shown in '
Fig. 1. Thin Pyrex glass plate targets were vertically installed '
high
speed
* Author to whom correspondence should be addressed. FAX: 81- eamera Glass target
3-5802-3391. Email address: kadono@eri.u-tokyo.ac.jp FIG. 1. A schematic view of the experimental system.

1063-651X/2002/663)/0351074)/$20.00 65035107-1 ©2002 The American Physical Society



RAPID COMMUNICATIONS

TOSHIHIKO KADONO AND MASAHIKO ARAKAWA PHYSICAL REVIEW E 65 035107R)

18l (@
e XRX
o ¢ @
1.4 ®
1.2
1 é t t t }
o.sl ®©
Recovered fragments
[ e T, - — -
o] o O [ 4
0.4} ¢
L ]
0.2}

0 20 40 60 80 100

FIG. 2. Consecutive images. Framing speed isu&(er frame. Time (ps)
Numbers in the figure are the order of the images. A cylindrical

projectile is shot from the top at an impact velocity of 67.6 m/s. FIG. 3. (a) Fractal dimension of the crack system as a function

of time. (b) Slopea of fragment area distributions as a function of

time.
The propagation of individual cracks could be observed.Irne

At first, some radial cracks proceeded downward from thesome “width” in the image. Therefore the estimated area of

impact point with branching. Then a few cracks generated &) fragment is smaller than the actual value. Smaller frag-

the antipodal sidélower side of the target and proceed up- ments are more strongly affected. Consequently, the cumula-

ward with branching. After that, these branching cracks coagjye number distributions obtained by the image analysis be-

lesced with each other, and lateral cracks perpendicular tgyme slightly lower in the small-size limit.

the radial cracks appeared. _ _ We fit the part indicating a power-law form in each dis-

~ The fractal dimension of cracldy was estimated in each tripytion to a straight line and obtained its slopeWe did

image using the box counting methf22]. The number of ot it the distribution in the frame 3 because the number of

boxes which are necessary to cover all crack branches Wagagments is so small that the part indicating a power-law

counted. The minimum box size corresponded to about a hathm is not clear. Figure ®) showsa againstt. The slopea

of the target thickness and the range of the box size was ovgjiso increases with time and approaches that for the recov-

one order of magnitude. In Fig.(&® the results are plotted greq fragments indicated by a broken line.

against the time. The time 0 corresponds to the frame 1. As Figure 5 showsl; againsta. Other results obtained at a

tincreasesd; increases quickly and becomes about 1.5.  gimilar impact velocity(72.3 m/$ are also shown. In this
After the shotr the fragments were recovered. In Fig. 4WQ:ase, the framing speed is relatively slow@ds us per

plot the cumulative number of the recovered fragments Wlth!rame' and hence the time evolution df and « at early

mass larger tham as indicated by a bold line. The fragment stages could not be observed. Furthermore, the fractal di-

mass is normalized by the original target mass. The distribumensjons for plaster targefs] are plotted, which are esti-
tion shows a power-law form in the small-size range. The

slope of the power-law region is 0.6M.01. 1000 ———rrrrr———rrrrr———rrr

Then the fragment area distributions in each image are E o Frame3
obtained by defining a “fragment” as a closed part sur- s
rounded by cracks. Figure 4 also shows the cumulative num- 100 e |
berN(>s) of fragments with areas larger thanwhere area ] —er—g

—

sis normalized by the original target area. It appears that the
number of fragments increases with time and that the distri-

Recovered
fragments

Cumulative Number

butions after frame 7 are close to that of the recovered frag- 10F

ments. In small fragments, the distribution of recovered frag- g

ments is slightly higher than those obtained from the images.

This is probably because the distribution of recovered frag- ) = .
ments includes some “3D fragments” which are produced 107t 1072 102 107! 10°

mainly around the impact point and whose thickness is usu-
ally less than that of the original target plate: these fragments
cannot be counted by image analysis. Also, since the target iS FIG. 4. Cumulative number of fragmeni{>s) as a function
slightly inclined to enhance the contrast, the cracks havef time. That of recovered fragments is also shown.

Normalized fragment area
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2 T whereA=In(b?p)/In b. This can be rewritten as the cumula-
: g:ass(ﬁg‘ 2 ] tive number of fragments larger thaxr2, N(>s)~s ¢
ass ] A2
1.8 LX Plaster __ ~S .
1 In the process of the box counting method the total num-
I ] bern(r,) of boxes of size , needed to cover a fractal struc-
1.6 $ ] ture of dimensiond; is given by n(r,)~r,~%". In this
ko3 1 model, for the boxes of size,, ;=r,/b, n(r,;4) is larger
1.4 | p ] by a factorpb? thann(r,,). Hence the fractal dimensica
% ] can be written ad;=In(b?p)/In b. Thus we obtairA=d; and
i . hencea=d;/2. This is shown as a bold line in Fig. 5. There
1.2 ¢ ] are no experimental results which correspond to this line.
[ ] Next we consider another case: a branching crack inter-
1T A e sects a line as shown in Fig(® (model 2. This line may be
0 02 04 06 0.8 1 a free surfacéin the case of platelike objects it is a sjd®
a part of already existing cracks. It is expected that the length
o between two adjacent intersections represents the size of a
FIG. 5. Power-law exponenis versus fractal dimensior . fragment. Hence, we obtain the cumulative number of frag-
The previous resultgs] are also shown. The bold line is obtained Ments larger tham as the cumulative number of segments
from model 1 and the thin line is from model 2. longer tharr.

First we take a line with a unit length. A crack divides the
mated from a sketch of crack patterns obtained by reconkine into b segments of length &/[in Fig. 6(b), b=3]. Let-
structing the recovered fragments, as shown in Fig) @f  ting p be the fraction of the segments which are further frag-
Ref.[5]. It appears thatl; increases withv. mentedin Fig. 6(b), p=2/3], bp segments are divided into

Here the relation betweed; and « is discussed briefly. equal subsegments of lengthi§}7 by the crack. Finally, we
We propose two simple models of the fragmentation proces®btain a collection of an infinite number of segments of vari-
First we consider a process which is analogous to theus lengths. The number of segments with a lengthr of
Sierpinski-construction$8] (model 1. In two-dimensional = (1/b)"is (pb)" 1(1—p)b. Hence the cumulative number
space we take a square with a side of unit le§ily. 6(@)].  of segments longer than,, N(>r,), becomes
As a first step, we divide the square it subsquares of
side 1b [in Fig. 6@), b=2]. At the second step we takép N(>r,)=(1—p)xb+(pb)X(1—p)Xb+---+(ph)"~*
subsquares, whergis the fraction of the subsquares which

will be further fragmented, and divide each inbd equal X(1-p)xb
sub-subsquares of side b)f [in Fig. 6a), p=3/4]. By re-
peating the procedure, we obtain a collection of an infinite ~(pb)"

number of fragments of various sizes. The number of frag-
ments with a length of ,=(1/b)" is (pb?)" }(1—p)b2. .
Hence the cumulative number of fragments larger than =
N(>r,), becomes

whereB=In(bp)/Inb.

N(>rp)=(1-p)Xb%*+(pb?*) X (1-p)Xb?+:-- In a way similar to model 1, the total numbefr ;) of
boxes of size,, ;=r,/b needed to cover the intersections is
+(pb?)" X (1-p) X b? estimated to be larger by a factpb thann(r,). Hence the
fractal dimensionD of the distribution of the intersections
~(pb?)" can be written aD=In(bp)/inb. Thus we obtainB=D.
A Since the fractal dimension of the cragkis related taD by
= di=1+D, we obtainB=d;—1 and hencex=(d;—1)/2.
This is also shown in Fig. 5.
(a) (b) For smalla the experimental data in plaster plates and in
glass plates at early stages exist near the lire (d;
HH —1)/2, though the data for plaster slightly scatter. The data
FH HH for glass at late stages deviate from the line. They exist
iaaaaa around the middle of two lines.
e Qualitatively speaking, at early stages where only a few
- treelike cracks exist, the fragmentation process is described

by model 2, while at later stages where cracks coalesce with

FIG. 6. (a) Model 1. A fragmentation process analogous to the€ach other and are not treelike but netlike, the fragmentation
Sierpinski constructions introduced in RE8)]. (b) Model 2. Frag- ~ process approaches that represented by model 1. In the case
ments caused by the intersections of a crack with a fractal dimenof plaster targets, since the stress waves attenuate quickly it
siond; with a straight line. seems that the fragmentation stops at an early stage.
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In summary, impact fragmentation experiments are carmental results. It seems that at early stages of the
ried out using thin glass plates. Crack propagation is directlfragmentation process the relation is described by the latter
observed with a high speed camera. The fractal dimensionsase while at later stages it approaches that in the former
of cracks and the power-law exponent of the fragment areaase.
distributions are investigated as a function of time. Two
models of fragmentation process are proposed: in one case The authors would like to thank D. Tomizuka, S. Nakat-
the cracks are netlike, while in the other the cracks are treesubo, and S. Nakazawa for assisting in the experiments and
like, and the relations between fractal dimension and poweN. K. Mitani, S. Sugita, and M. Higa for their helpful com-
law exponents are estimated and compared with the expenments.
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