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We show that the stochastic interpretation of Tsallis’s thermostatistics given recently by Beck Rev.
Lett 87, 180601(2001)] leads naturally to a multiparameter generalization. The resulting class of distributions
is able to fit experimental results, which cannot be reproduced within Boltzmann’s or Tsallis's formalism.

DOI: 10.1103/PhysReVE.65.035106 PACS nun®er05.70.Ln, 05.40-a, 47.27+i

Nonextensive statistical mechani¢SIESM) introduced  with L(t) Gaussian white noise of unit amplitude strength
by Tsallis[1] has gained a considerable interest in severabf the noise, and friction coefficient. This is the Brownian
fields of physics because of its capability to describe a wealtiparticle problen{4]. For this case, it can be shown that the
of disparate phenomerttom anomalous diffusion, to turbu- temperature ¥ is related to the microscopic parameters
lent systems, to astrophysical systems,)etdthin a single by
formalism, generalization of the standard statistical—
mechanical one with the addition of the single free parameter B=ylo?. (3
(entropic index g. Recently it has been shown how to relate
q with the internal microscopic properties of the system un-Beck shows that Tsallis’s distribution can be recovereg if
der consideration. This has been done by Wilk and Wlodarcis characterized by & distribution withn degrees of free-
zyk [2]: they have shown that, whem=1, the NESM ca- dom[5]
nonical distribution pq(H,Bo) for the system with
HamiltonianH can be written as an average of the usual (n)n/Z

Boltzmann-Gibbs factor over the inverse temperaigye A 2 g\t nB
. fn(ﬁaﬁo)z—n(%) exﬁ(—z—ﬁo), 4
pq(H,Bo)=JO dpexp(—BH)f4(8.Bo), (o BoF(E)

wheref(8,8) is a weight function whose meaning is that Wherefq(ﬂ,lgo):fn(ﬁ,lgo) provided thatq=1+2/(n+1).

of a probability dis.tribution function_fo;G which is, there- Such a distribution arises 8 can be written as a sum of
fore, no longer a fixed parameter; instead, the macroscophormal stochastic variables,

cally visible value is just its average valyy. Fluctuations
in B are related to coherent fluctuations existing in small n
parts of the system with respect to the whole system, due to B=> X?, (5)
the existence of long range correlations. i=1

Recently BecK 3] has been able to give an interpretation
of the fluctuatingg as a function of stochastically varying with (X;)=0 and(X?)=,/n, so that(8)= 8, and (52
microscopic variables. In order to recover Tsallis's results,—<ﬁ2>=,8§(2/n). The x? distribution is a common distribu-
Beck was forced to impose some constraints ogeor,  tion, occurring in many physical problems, and is central in
equivalently, the microscopic dynamics of the system. In thighe problem of estimating parameters from dd&h
paper we show that, following Beck’s approach but relaxing Some points are worth stressing at this stage:
these constraints, we are able to derive an entire new class of (i) The macroscopic paramet@ is written in terms of
distributions, which reduce to Tsallis's distribution under other parameters more directly related to the microscopical
suitable limits. We will show that some members of this classdynamics of the system at hand, just as in B). We just
are able to reproduce experimental results that would be outnention another example: in the study of fully developed
side the reach of Tsallis’'s formalism. turbulence, whereu is a local velocity difference,

To start with, we quote the same example used in Beck’s=(e7) !, with ¢ spatially averaged energy dissipation rate
paper: let us seH=u?2 and suppose that the generalizedand 7 typical time for the energy transfer.

velocity u satisfies the Langevin equation (i) It is obvious that, if3 is a stochastic variable, for-
) tiori the microscopic quantitieg, o, ..., must also be sto-
u=—~yu+olL(t) (2 chastic variables, therefore, characterized by their own prob-

ability distribution functiong PDFs.
(iii) Relations of the kind5) impose severe constraints
*Electronic address: sattin@igi.pd.cnr.it upon the PDFs of the microscopic variables. For example, to
TElectronic address: salasnich@mi.infm.it recover Eq.(4) starting from Eq.(3) there is the trivial
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choice:y x? distributed andr? a constant; it is difficultand n+m

perhaps impossibleo devise other distributions which lead r o n\"2  (BIBy)"2 1 1

to Eq.(4). fn,m(ﬂaﬁo):ﬁ(a) n g (n+m)72 IB_!
The main idea of this paper is that & is a function of F(—)F(—) { _ = 0

some more fundamental stochastic control variables, then the 2 2 m Bo

far more logical path is the following: to guess statistical )
distributions for the microscopic quantities and, from them,WhiCh is known asF distribution in statistics. This is the

to work out the corresponding distribution f@. Since8 ain result of the work, since the statistical properties of the

may have infinite functional dependences from microscopicysiem are determined through the two-parameters canonical
variables, we can expect the PDFfto have a large range jstripution, generalization of Eql),

of analytical forms, depending on a large number of param-

eters[we expect as many of them as the number of micro- o0

scopic variables that contr@i=8(Y,Z, .. .)]. Pnm(H.Bo) = fo deexp—BH)fym(B.Bo). (8
Some simple rules, however, still allow to drastically re-

duce the class of likely distributions. First, although the PDFThe main feature of EC(?) is that the exponentia| term of

for each of the variable¥,Z, ..., may bearbitrary, the Eq. (4) has disappeared, replaced by a power-law term. One

same reasoning of Eq&}) and(5) still holds, that is, they? should expect this term to depress high-energy tails in Eq.

distribution for each variable is a very convenient choice.(8). In order to have an insight on the trends of EA), let us

For example, they? distribution can tranform into a delta consider some interesting limits. First of all, we observe that,

distribution, thus, allowing for well deterministic, nonsto- in the limit m—o,

chastic quantities in the limit— . Hence, we will suppose 2

all the stochastic variables to & distributed, possibly with (E)

different degrees of freedom. In second place, a simplicity - g\t ng

principle suggests that the most frequently occurring cases fn=(8.Bo) = —(%) exr{ B 2_ﬁ0> ©)

should be those wherg is some simple combination of a Bor<§

small number of variables. Some examples are given in the

above expressiong.g., Eq.(3)]. The simplest function of all  \\e recover they? distribution[Eq. (4)] since, in the limit of

is the sum of stochastic variablgs=Y+Z+ - ... However, jnfinite degrees of freedom, the distribution @shrinks to a

with the previous choice for the PDFs ofZ, ..., itis  delta distribution, so we are actually dealing with just one

possible to show that it is a trivial case, since it reduces to &tochastic variabley. It is completely new the limin— o

x* distribution[5]. The next nontrivial cases, thus, are thosethat is, we are computing the PDF of the variabl&)1for
involving products and ratios of one or two control variables:yich we get

Y.Z,YIZ, (YD), ....

Our aim now is to compute a few examples of PDFgof m) ™2
and to compare the results with the Tsallis’s formalism. We ( ) Bo| M2+t mg
will do the computation for the case ¢f ratio of two sto- foo (B, Bo) = (—0) e p(— —O), (10)
chastic variables3=Y/Z. This is particularly convenient BOF(T) B 28
since(i) it generalizes the example given by Bdé&q. (3)]; 2

(i) it is a particular case o8=1/(e 1), whenY and eithere ) ) o o
or 7 are constants. In order to give visual insight, we plot in Fig. 1 some ex-

The probability distribution function for the twe? inde-  @mples of these distributions. The qualitative shape is rather

pendent variable¥, Z of degreen, m respectively, is given similar. The occupation factors are computed through Eg.
by (8). We give explicit expressions for the cases corresponding

to the two limitsn—o©, m—o,

n n/2 m m/2
(W) (Z) Pn,oo(HuBo):ﬁa (118
P YY) R (2,2 = — - nf yn/2-izm2-1 1+530H}
(3]
2 2
2mByH)™4
ny mZzZ Pw,m(Hyﬁo):%Kmlz(\/zmﬁoH), (11b
xex;{ — 2_Y0> ex;{ — 2—20> . (6) 2m/2—11-*(5)

whereK is the modified Bessel function of ordew/2. The
[T is the factorial functionl'(z)=[;t* e 'dt.] We setB8  general case of arbitrary,m can be explicitly written down,
=YIZ, Bo=Yo!/Zy and regard3 andZ as independent vari- but it is not revealing since it involves complex combinations
ables; after integration ovet, we get of hypergeometric function, difficult to visualize. We plot in
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FIG. 1. Probability distributiorf, ,(8) from Eq. (7), with B, B, H
=1. Solid line,f5; dotted line,f5..; dashed linef.. 5.

FIG. 2. Generalized canonical distributiopg,, as a function of

Fig. 2 the standard Boltzmann-Gibbs factor together with thdhe scaled energyoH. Solid line, n—ce, m-— oo [this yields the

o “usual Boltzmann-Gibb$BG) case expf ,H)]; dotted line, Eq.
curves(11). In general, the new distributions are character (113 with n=1, corresponding to the Tsallis distributigwith q

ized by tails intermediate between Boltzmann’s and Tsalhsszz); dashed line, Eq(11b with m=1: dotted-dashed linen

statistics. We can obtain the probability distributiBp ,(u) —2 m=1
for the generalized velocity once an explicit form foH ' '
=H(u) is given. By assuming the usual forrh=u?/2, briefly mention the numerical computation of the velocity

distribution function solution of the Enskog—Boltzmann
equation for a granular g4g]; other hints come from calcu-
F( n) lations of the large-scale probability density distribution in

2 1 astrophysics[8] and from the numerical simulation of

Poa(U) =\ o

1 3 el (12)  stresses in sheared granular matefi@lsA field where sev-
F(—) [14_ _OUZ} eral well documented examples can be found is the study of
2 n turbulence in fluids. We refer in particular to papgt6—13.

The quantity we are interested in here is the PDF of the
velocity difference between two spatial points. It is found
both experimentally and numerically that this quantity shows

Kmy2([VMBolul). an expopnential tail?/ln particular, inypapkélro] th% depayrture
from a Gaussian form is interpreted within a formalism very
(13) close to ours, where the avera@¢® is done using their
equivalent off, (8,80) given by a log-normal function
Notice that the functiorK yields a typical exptcHY?) or  [see their Eqs(3.1)—(3.4)]. The paper[12], furthermore,
exp(—c'|u]) dependence. Such a law cannot be recovereghows that the tails of this PDF can smoothly vary between
within Tsallis's formalism, which predicts power-law depen- the Cauchy formwhich is a particular kind of Tsalliss dis-
dences. Therefore, we take it as a signature of this new claggbution) to a Gaussian form passing through the exponen-
of functions. It may be of interest to notice that the dependial form, by varying a few control parameters. This is strik-
dence orju| comes from the variable at the denominator ofingly reminiscent of varyingn,m parameters in our
B, while the numerator provides a dependenceiinin the ~ formalism.
genera| case, bot||m| andu? terms do appeatr. In more detail, we can quote two experimental studies
The question arises if such distributions do exist in naturefrom fusion plasma physics: in the first pajjed] a study of
We are interested in fluctuations of some quantity; for indethe density fluctuations existing in a thermonuclear fusion
pendent fluctuations, the central limit theorem predicts alevice is presented. The time behavior of the electron density
Gaussian PDF. If departures from Gaussianity are described: close to the boundary of the device was measured with
in terms of Tsallis's statistics, only PDFs with power-law high sampling frequency, thus, allowing one to compute the
asymptotics may be included. On the basis of what was tol®DF of the fluctuatiom,=n.—(n). It was found that the
before, we must look for PDFs with exponential tails. Actu-curve is highly asymmetrical, with the negative wing ap-
ally, in literature several examples are presented of quantitigsroximately Gaussian, and the positive one nearly exponen-
whose PDFs aréat least on some rangesxponential. We tial. In Fig. 3 we fit the experimental data with both Tsallis’s

18(0m+2)/4|u|m/2

Poe m(U) = m+1

o(m—2)/4_1/21
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FIG. 3. Probability distributiorP(n,) of the electronic density FIG. 4. Probability distributiorP(V) of the electrostatic poten-
fluctuationsn,. Broken line, experimental data from Rdfl4] tial fluctuationsV. Circles, experimental data from R¢L5]; solid
(only the side of positive fluctuations is sholdotted line, best fit  line, best fit with curve(13) andm=1.
using Tsallis’s distributior{12); dashed line, best fit with curv@.3)

andm=1. We think we have given in this work constructive evi-

dence of the existence of generalized nonextensive distribu-
tions. The very simple PDFs we have computed, seemingly
and our curve, showing that the former curve cannot fit theyave us the tools to describe complicated phenomena.
tail of the experimental distribution. Rather closely related, A crucial point is the choice of the microscopic variables,
we mention a second paper, dealing with a statistical analysisince one could always choose varying definitions for them
of electrostatic potential fluctuations, still in the edge of aso as to identify several different cases within the same
plasma[15]. A wavelet analysis of the data allowed there to classes of functions. Therefore, work in this direction should:
compute PDFs as function of the time scale of the fluctuall) €ither show that trivial redefinitions of variables are not
tions. A scaling law for PDFs was recovered by fitting them!Mportant for the final result, ofii) find that some sets of
with stretched exponentia(X) ~ exp(~b|X|%). The param- variables are preferred with respect to all the others.
eter « is a function of the time scale, varying between 1  We gratefully acknowledge G. Antar for providing us with
(exponential distributionand 2 (Gaussian distribution In the experimental data of Fig. 3 and E. Martines for the data

Fig. 4 the case closest to an exponential is shown. used in Fig. 4.
[1] C. Tsallis, J. Stat. Phy&2, 479(1988. [9] S.G. Bardenhagen, J.U. Brackbill, and D. Sulsky, Phys. Rev. E
[2] G. Wilk and Z. Wlodarczyk, Phys. Rev. Le4, 2770(2000. 62, 3882(2000.
[3] C. Beck, Phys. Rev. Let87, 180601(2007). [10] B. Castaing, Y. Gagne, and E.J. Hopfinger, Physic46D177
[4] N.G. van KampenStochastic Processes in Physics and Chem- (1990.
istry (North-Holland, Amsterdam, 1981 [11] A. Vincent and M. Meneguzzi, J. Fluid MecB25, 1 (1991).
[5] G. Casella and R.L. BergeGtatistical InferenceDuxbury,  [12] |.A. Min, I. Mezic, and A. Leonard, Phys. Fluid8, 1169
Pacific Grove, CA, 1990 (1996.
[6] B.P. Roe,Probability and Statistics in Experimental Physics [13] P.H. Chavanis and C. Sire, Phys. ReV6E 490 (2000).
(Springer-Verlag, New York, 1992§hap. 6. [14] G.Y. Antar, P. Devynck, X. Garbet, and S.C. Luckhardt, Phys.
[7] 3.J. Brey, D. Cubero, and M.J. Ruiz-Montero, Phys. ReY¥9E Plasmass, 1612 (2001
1256(1999. ) [15] V. Carbone, G. Regnoli, E. Martines, and V. Antoni, Phys.
[8] E. Gaztanage, P. Fosalba, and E. Elizalde, Astrophys39.

522 (2000. Plasmasr, 445 (2000.

035106-4



