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Equivalence of stationary state ensembles
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We show that the contact process in an ensemble with conserved total particle number, as simulated recently
by Tomeand de OliveirdPhys. Rev. Lett86, 5463(2001)], is equivalent to the ordinary contact process, in
agreement with what the authors assumed and believed. Similar conserved ensembles and equivalence proofs
are easily constructed for other models.
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A statistical mechanical ensemble is a probability distri-particles(i) are created at the same rate as in the CP{ibut
bution on a set of microstates. For systems in thermodyevery creation is accompanied by the simultaneous annihila-
namic equilibrium the ensemble is knowa priori. The  tion of another particle picked at random on the lattice. It is
equivalence of the standard equilibrium ensembieisroca-  our purpose here to show that the conserved ense(@kle)
nonical, canonical, etris a well-known fact. In Monte Carlo iS equivalent to the nonconserved ensemb®P). This
simulations, an easy way to generate a given ensemble is gfjuivalence was assumed and believed to be true by the au-
impose detailed balancing on the transition rates between tHBors[4], who nevertheless feel the need to invoke their re-
microstates. A system of statistical physics may be definegults as an additional argument. The proof is simple and,
more generally, and more implicitly, not by arpriori given  similar to the conserved ensemble method itself, can easily
ensemble but by the transition rates between the microstatelde adapted to other problems.

The stationary(i.e., time independehsolution of the result- Let j denote a lattice site and let; be its occupation

ing stochastic equation of motion then constitutes an enAumber ;=0 or 1). It will be convenient to work with
semble which, unlike the standard equilibrium ensembles;spins” s;=2n;—1, so thatsj=*1. The symbols={s;}
cannot usually be expressed in explicit analytical form. Suctihen represents the set of occupation numbers. We associate
stationary ensemblé4] arise, e.g., in reaction-diffusion-type [6] with each s a basis vector|s) and with the time-
systems, of which one example is the object of study here.dependent probability distributioR(s,t) the state vector

We consider the contact proce$3P) introduced by Har-
ris [2], which takes place on an infinite regular lattice, each
of whose sites may be empty or occupied by a particle. The |P>t:25 P(st)]s). @)
transition rates are such that particlgsare created on an
empty site at a rat@y,/z, whereny, is the number of occu-  The master equation fd?(s,t) is then equivalent to the evo-
pied nearest neighbors of that site anithe lattice coordina-  |ytion equation
tion number; andii) annihilate spontaneously and indepen-
dently at a ratek. d/P),

The contact process is of interest because its stationary at =W|P); (2
ensemble exhibits a phase transition between an active state
(particles preseiniand an absorbing statempty latticg for a for the state vector, in which the “master operatdt’ is the

certain _crltlca! valug=K; of t_he annlhllatlc_)n_ rat§3]_. Monte infinitesimal generator of the transitions;=+1 may be
Carlo simulations of the active state on finite lattices and for ’

k close tok. suffer from the complication that in any long cgn5|de)[ed as the eigenvalues of a I?auh spin maﬁﬁf
enough run there will inevitably occur a fluctuation that SINCET | FEVErses;, one may expresey in terms of theo;
pushes the system irreversibly into the absorbing state. VarB"doj [7]. FoCrPthg standard CP with annihilation ratethis
ous procedures have been proposed for dealing with thigields W=W=>"with

“accidental death,” which occurs similarly in other model cp

systems with transitions to absorbing states. Very recently, WH"=Weret KWann, ()
Tomeand de Oliveird4] had recourse to an elegant method,

used earlier in a different context by Ziff and Brosild®/, P 1—sz 1+ ajz+5

and which circumvents the accidental death problem alto- 22 (Uj_l)TT' (4)
gether. See Biker and Grassbergés] for work similar in

spirit to Ref.[4]. Tomeand de Oliveira replace the ordinary 1407

cont_act processCP) b)_/ a version with strictly conserved WannZE ( ij_l) 1y (5)
particle numbeN. In this conserved contact proce€&CP), i 2

wherej + & is a neighbor site of andX; denotes I times
*Laboratoire associeau Centre National de la Recherche the sum on all neighboring sites. For the CCP with exalstly
Scientifique—UMR 8627. particles, one find3V= WP with
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1 , 1-0f 1+0?, 51+07 d<f>tcp
WCCP:NE 2 2, (U}(O'ix_l) 2 ] 2]+ 2 X dt :<chr<=)tCP+k<fWan tCP' (13

TS
6
. We now compare Eq$12) and(13). In the limit of an infi-
(in which the termi =] is identically zerg. The question is hite system(that is statistically invariant under translatipns
now to demonstrate the equivalence, in a sense to be appréhe operatorx will have vanishingly small fluctuations
priately defined, ofV°P and WCSCP. Our proof proceeds by around its averagéx) "= (N 19 IN. Hence, we may re-
two steps. The first one is to rewrite expressiéhfor the placex by this average. Next, we will show that the last term
operatonV°“P by means of the substitution on the right-hand sidéRHS) of Eq. (12) vanishes in the limit
of an infinitely large system. It is not sufficient for that to
ojoi=1=(oc{—1)+(o{=1)+(o{=1)(of—1). (7)  invoke the factor M in expressior(10) for Wg. Instead, we
will make the averagéf W) P fully explicit. In order to do
Using that in the conserved ensemble-=;(1+07)/2, we  so, we commute the | throughf using thafo |, ] =0,

find and tha(O|a {=(O|. This gives

WECP= Were™ Wannk + Wk (8) cop 4 r ,
<fWR>t :N 2 2 E

Here, k=MN3,/N in which p=19g=1 5

z z
1_0'] 1+0—j+5

_ ' X
Nlo—; 25: 5 o 9)

1—0'§p 1+0'Z/p+5 ZI.+0'§q cep
f 2 2 2

(14)
is the operator for the total number of pairs of neighboring

sites of which one is occupied and the other empty; and th&@he RHS of this expression involves a sumrdrterms and
“remainder” Wy is given by the summand makes no reference to the system size. There-
fore, it is now clear that in view of the prefactorNL/the

1 / average(14) vanishes in the limit of infinite system size.
WR:N 2 25 El (U}(_l)(aﬁ_l) Hence, Eq(12) may be replaced with
1-0%1+0?%, 51+07 d<f>?cp
x 2 J 2 = 2 I (10) dt :<fwcr tCCP_F<K>tccp<fyvan tCCP' (15)

We remark that wheread/,, and W, are themselves mas- Comparison of Eqs(13) and (15) shows that any spin aver-

ter operatorgi.e., correspond to master equatipnthe re- g€ evolves according to the same equations of motion in
mainder/Vx is not; the reason is that although it conservesPoth ensembles provided we hajie)r“"=k, i.e.,
the total probability, it does not conserve the positivity of an cep
initial probability distribution. (N1 IN=K. (16)
The second step of the proof is to consider the time evo-

lution of the ensemble average of an arbitrary prodict | NS equation relates the CP parametén a time-dependent
—o% o% ...o% , knowing that all physical observables are _CCP average. It can be sat|sf_|ed on_ly if that average is time
) 1772 e cop independent, hence, equal to its stationary state value. There-
linear combinations of such products. Lgh ™" denote the  fore " the condition for Eqs(13) and (12) to be equivalent
average of in the conserved ensemble. It may be calculatethecomes
as the scalar product
NS IN=K, 1
(HEP=(Olf|P),, (11 Wadsa o

where the average is on the stationary CCP ensemble. In the

where |P);=exp(V°)|P), and where the “projection stationary state of the CCP, or for fluctuations around it that

state” (O is defined by O] =3 (s| with the sum running on in the largeN limit affect (NV;0)SST/N negligibly, equality

all s irrespective of the number of particles present. From(17) guarantees that the two averagé}stcp and(f)fcp obey

Egs.(11) and(8), it follows that the same equations. It follows in particular that for dnye
ccp have(f)Sh=(f)SCP. This establishes the equivalence of the
d(f)y ccp two stationary ensembles. A notable case which on the basis

g = (Ve +H(Wann) £ T+ (VR of the preceding discussion is excluded from the equiva-
(12)  lence, is the relaxation towards equilibrium of an initial state

in which all particles occupy random positions: In such a
In the usual nonconserved ensemble, one has in the samenequilibrium procesfl], the average of\V;q is not con-

way from Eqgs.(11) and(3) that stant(in either ensemb)eand Eq.(17) cannot be satisfied.
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The equivalence conditiofil7) derived here was intro- The construction of conserved ensembles by simultaneous
duced by Tomend de OliveiraEq. (3) of [4]), who exploit ~ execution of elementary transitions at uncorrelated lattice lo-
it to determine the critical behavior of the contact processcations can easily be adapted to other models of interest in
Here, we have furnished the pro@lbeit a physicist's one statistical physics. The same is true for the equivalence proof
that their procedure was correct. of this paper.
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