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Equivalence of stationary state ensembles
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We show that the contact process in an ensemble with conserved total particle number, as simulated recently
by Toméand de Oliveira@Phys. Rev. Lett.86, 5463~2001!#, is equivalent to the ordinary contact process, in
agreement with what the authors assumed and believed. Similar conserved ensembles and equivalence proofs
are easily constructed for other models.
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A statistical mechanical ensemble is a probability dis
bution on a set of microstates. For systems in thermo
namic equilibrium the ensemble is knowna priori. The
equivalence of the standard equilibrium ensembles~microca-
nonical, canonical, etc.! is a well-known fact. In Monte Carlo
simulations, an easy way to generate a given ensemble
impose detailed balancing on the transition rates between
microstates. A system of statistical physics may be defi
more generally, and more implicitly, not by ana priori given
ensemble but by the transition rates between the microst
The stationary~i.e., time independent! solution of the result-
ing stochastic equation of motion then constitutes an
semble which, unlike the standard equilibrium ensemb
cannot usually be expressed in explicit analytical form. Su
stationary ensembles@1# arise, e.g., in reaction-diffusion-typ
systems, of which one example is the object of study he

We consider the contact process~CP! introduced by Har-
ris @2#, which takes place on an infinite regular lattice, ea
of whose sites may be empty or occupied by a particle. T
transition rates are such that particles~i! are created on an
empty site at a ratennn/z, wherennn is the number of occu-
pied nearest neighbors of that site andz the lattice coordina-
tion number; and~ii ! annihilate spontaneously and indepe
dently at a ratek.

The contact process is of interest because its statio
ensemble exhibits a phase transition between an active
~particles present! and an absorbing state~empty lattice! for a
certain critical valuek5kc of the annihilation rate@3#. Monte
Carlo simulations of the active state on finite lattices and
k close tokc suffer from the complication that in any lon
enough run there will inevitably occur a fluctuation th
pushes the system irreversibly into the absorbing state. V
ous procedures have been proposed for dealing with
‘‘accidental death,’’ which occurs similarly in other mod
systems with transitions to absorbing states. Very recen
Toméand de Oliveira@4# had recourse to an elegant metho
used earlier in a different context by Ziff and Brosilow@5#,
and which circumvents the accidental death problem a
gether. See Bro¨ker and Grassberger@8# for work similar in
spirit to Ref.@4#. Toméand de Oliveira replace the ordinar
contact process~CP! by a version with strictly conserve
particle numberN. In this conserved contact process~CCP!,
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particles~i! are created at the same rate as in the CP; but~ii !
every creation is accompanied by the simultaneous annih
tion of another particle picked at random on the lattice. It
our purpose here to show that the conserved ensemble~CCP!
is equivalent to the nonconserved ensemble~CP!. This
equivalence was assumed and believed to be true by the
thors @4#, who nevertheless feel the need to invoke their
sults as an additional argument. The proof is simple a
similar to the conserved ensemble method itself, can ea
be adapted to other problems.

Let j denote a lattice site and letnj be its occupation
number (nj50 or 1!. It will be convenient to work with
‘‘spins’’ sj52nj21, so thatsj561. The symbols[$sj%
then represents the set of occupation numbers. We asso
@6# with each s a basis vectorus& and with the time-
dependent probability distributionP(s,t) the state vector

uP& t5(
s

P~s,t !us&. ~1!

The master equation forP(s,t) is then equivalent to the evo
lution equation

duP& t

dt
5WuP& t ~2!

for the state vector, in which the ‘‘master operator’’W is the
infinitesimal generator of the transitions.sj561 may be
considered as the eigenvalues of a Pauli spin matrixs j

z .
Sinces j

x reversessj , one may expressW in terms of thes j
x

ands j
z @7#. For the standard CP with annihilation ratek, this

yields W5W CP with

W CP5Wcre1kWann, ~3!

Wcre5(
j

(
d

8 ~s j
x21!

12s j
z

2

11s j 1d
z

2
, ~4!

Wann5(
j

~s j
x21!

11s j
z

2
, ~5!

where j 1d is a neighbor site ofj and(d8 denotes 1/z times
the sum on all neighboring sites. For the CCP with exactlyN
particles, one findsW5W CCP with
©2002 The American Physical Society03-1
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W CCP5
1

N (
j

(
d

8 (
i

~s j
xs i

x21!
12s j

z

2

11s j 1d
z

2

11s i
z

2
,

~6!

~in which the termi 5 j is identically zero!. The question is
now to demonstrate the equivalence, in a sense to be ap
priately defined, ofW CP andW CCP. Our proof proceeds by
two steps. The first one is to rewrite expression~6! for the
operatorW CCP by means of the substitution

s j
xs i

x215~s j
x21!1~s i

x21!1~s j
x21!~s i

x21!. ~7!

Using that in the conserved ensembleN5( i(11s i
z)/2, we

find

W CCP5Wcre1Wannk1WR. ~8!

Here,k5N10/N in which

N105(
j

(
d

8
12s j

z

2

11s j 1d
z

2
~9!

is the operator for the total number of pairs of neighbor
sites of which one is occupied and the other empty; and
‘‘remainder’’ WR is given by

WR5
1

N (
j

(
d

8 (
i

~s j
x21!~s i

x21!

3
12s j

z

2

11s j 1d
z

2

11s i
z

2
. ~10!

We remark that whereasWcre andWann are themselves mas
ter operators~i.e., correspond to master equations!, the re-
mainderWR is not; the reason is that although it conserv
the total probability, it does not conserve the positivity of
initial probability distribution.

The second step of the proof is to consider the time e
lution of the ensemble average of an arbitrary producf
[s l 1

z s l 2

z . . . s l r

z , knowing that all physical observables a

linear combinations of such products. Let^ f & t
CCP denote the

average off in the conserved ensemble. It may be calcula
as the scalar product

^ f & t
CCP5^Ou f uP& t , ~11!

where uP& t5exp(W CCPt)uP&0 and where the ‘‘projection
state’’^Ou is defined bŷ Ou5(s^su with the sum running on
all s irrespective of the number of particles present. Fr
Eqs.~11! and ~8!, it follows that

d^ f & t
CCP

dt
5^ fWcre& t

CCP1^ fWannk& t
CCP1^ fWR& t

CCP.

~12!

In the usual nonconserved ensemble, one has in the s
way from Eqs.~11! and ~3! that
03510
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d^ f & t
CP

dt
5^ fWcre& t

CP1k^ fWann& t
CP. ~13!

We now compare Eqs.~12! and ~13!. In the limit of an infi-
nite system~that is statistically invariant under translations!,
the operatork will have vanishingly small fluctuations
around its averagêk& t

CCP5^N 10& t
CCP/N. Hence, we may re-

placek by this average. Next, we will show that the last ter
on the right-hand side~RHS! of Eq. ~12! vanishes in the limit
of an infinitely large system. It is not sufficient for that t
invoke the factor 1/N in expression~10! for WR. Instead, we
will make the averagêfWR& t

CCPfully explicit. In order to do
so, we commute thes j

x throughf using that@s j
z ,s j

x#
1

50,

and that̂ Ous j
x5^Ou. This gives

^ fWR& t
CCP5

4

N (
p51

r

(
q51

r

(
d

8

3K f
12s l p

z

2

11s l p1d
z

2

11s l q

z

2
L

t

CCP

.

~14!

The RHS of this expression involves a sum onr 2 terms and
the summand makes no reference to the system size. Th
fore, it is now clear that in view of the prefactor 1/N, the
average~14! vanishes in the limit of infinite system size
Hence, Eq.~12! may be replaced with

d^ f & t
CCP

dt
5^ fWcre& t

CCP1^k& t
CCP^ fWann& t

CCP. ~15!

Comparison of Eqs.~13! and~15! shows that any spin aver
age evolves according to the same equations of motion
both ensembles provided we have^k& t

CCP5k, i.e.,

^N 10& t
CCP/N5k. ~16!

This equation relates the CP parameterk to a time-dependen
CCP average. It can be satisfied only if that average is t
independent, hence, equal to its stationary state value. Th
fore, the condition for Eqs.~13! and ~12! to be equivalent
becomes

^N 10&stat
CCP/N5k, ~17!

where the average is on the stationary CCP ensemble. In
stationary state of the CCP, or for fluctuations around it t
in the large-N limit affect ^N 10&stat

CCP/N negligibly, equality
~17! guarantees that the two averages^ f & t

CP and^ f & t
CCP obey

the same equations. It follows in particular that for anyf, we
have^ f &stat

CP5^ f &stat
CCP. This establishes the equivalence of t

two stationary ensembles. A notable case which on the b
of the preceding discussion is excluded from the equi
lence, is the relaxation towards equilibrium of an initial sta
in which all particles occupy random positions: In such
nonequilibrium process@1#, the average ofN10 is not con-
stant~in either ensemble! and Eq.~17! cannot be satisfied.
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The equivalence condition~17! derived here was intro
duced by Tome´ and de Oliveira„Eq. ~3! of @4#…, who exploit
it to determine the critical behavior of the contact proce
Here, we have furnished the proof~albeit a physicist’s one!
that their procedure was correct.
R
e
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The construction of conserved ensembles by simultane
execution of elementary transitions at uncorrelated lattice
cations can easily be adapted to other models of interes
statistical physics. The same is true for the equivalence p
of this paper.
sed
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