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We introduce a simple growth model which exhibits a first-order pinning-depin(® transition in
disordered media. In our model, a first-order PD transition is triggered by the local inertiaFfp#qeLv_,
wherep denotes a constant between 0 andLlis the system size, and is the average velocity in a local
region of the growing interface. h<<p., our model shows a continuous PD transition. Howevep3p.,
our model shows a first-order PD transition. We measure the critical exponents characterizing the dynamical
behavior of our model and explain how a first-order PD transition can occprip.. Besides the PD
transitions, our model exhibits another phase transition from a fluctuating to a nonfluctuating interface with a
constant velocity.
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Driven interfaces through disordered medDM) have  DIDM, which can exhibit a history dependent depinning be-
been a popular research topic for the last decade. Many stuttavior. The main difference between our model and the
ies about the DIDM have been done because they relate }MP model is that the origin of history dependent depinning
various physical systems such as interface growth in poroug different. In the MMP model, history dependent depinning
media [1,2], charge density waves under external fieldsoriginates from the global velocity of the growing interface,
[3-5], fluid imbibition in paper[6], driven flux motion in  pyt in our model, it does from an average velocity in a local

type-II superconductolls’,8], etc. One of the interesting phe- region of the growing interface. The effective driving force

nomena occurring in the DIDM is the existence of a contlnu—in our model can be expressed By- va—' whereo denotes

ous depinning transition from a pinned to a depinned staten average velocity in a local redion of the arowing inter-
according to the change of the external driving force. Man)f'i 9 Y 9 9 9

theoretical works about the DIDM have been focused orfaCce: WhereL is system size ang is a constant between 0
introducing stochastic models and continuum equation&"d 1. Our model shows two kinds of depinning transitions.
showing a continuous depinning transition, and obtainindf P<Pc. our model shows a continuous depinning transi-
various critical exponents characterizing the continuous detion, but if p>pc, our model shows a discontinuous depin-
pinning transition. ning transition.

On the other hand, recently it has been reported via ex- Recently, Schwarz and Fisher also studied critical behav-
periment§9—-11] and theoretical studig42,13 that a driven  iors including a discontinuous depinning transition with a
interface in a system with strong disorder shows an interestmean field(an infinite range model in disordered media
ing depinning transition, a first-order depinning transition,[15]. In that paper, they raised a question: what of the critical
which is different from the continuous depinning transition behaviors persist in a finite dimensional model? Our model's
occurring in a system with weak disorder. One example igritical behaviors can be an answer to the question.
driven vortex arrays[10,11. The current-driven vortex  Our model is defined on @+ 1)-dimensional lattice with
shows interesting strongly history dependent behavior irperiodic boundary conditions. The growth rule of our model
most of the field and temperature region. The interfacqs as follows(see Fig. 1 (i) We assign a random number
driven through strong disorder exhibits a spatially inhomo-petween 0 and 1 to each lattice site, where random numbers
geneous plastic response without long-wavelength elastic reepresent impurities of the disordered media. A constant driv-
storing force, which happens in a system with weak disordeling forceF is applied to the interface. Each site on the inter-
In this case, ordinary methods used to understand the criticgce can be occupied at each time step. If a vacant site
behavior of the driven interface in a system with weak dis-occupied at time, the local velocity of the interface at that
order are known to be inadequate4,15. Recently Mar-  site is defined by, (t)=1/L. If a vacant site is not occupied,
chetti, Middleton, and PrellbergMMP) [14] succeeded in then the local velocity of the interface is defined dyt)
designing a coarse-grained moditle MMP mode) exhibit-  —_ |f all the sites on the interface are occupied at time
ing a history dependent depinning transition. The history desjmyltaneously, the global velocity of the interfacé(t)
pendent depinning transition in the MMP model is triggered:EiLUi(t), is 1. A vacant sité on the interface is occupied at

by the effective driving forc& + pV, whereF andp are the  ime ¢ if the value of the random number at that site is
external driving force and a constant between 0 and 1, re-

spectively. HereV is the velocity of the driven interface. smaller than the sum of the driving forde and pLu;(t
History dependent depinning of an interface driven—1), where wvi(t—1)=[v; 4(t=1)+vi(t—1)+v;y(t

through disordered media is an interesting phenomenon, but 1)1/3. In our model, all vacant sites on the interface, where

not much study about this phenomenon has been done. the value of the random number is smaller tiaf pLo;(t

this paper, we introduce a simple growth model for the—1), are occupied simultaneously by parallel updates. After
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? ? ? ? ? ? ? FIG. 2. Plot of the velocity of the interfacé versus the driving
forceF for different values op from 0.0(the righy to 1.0(the lefy.
051 Black (or open dots denote velocities obtained from the simulation
by changing- from 0 to 1(or from 1 to Q continuously. Black and
034 | 063 | 094 open dots split in two fop>p[ =0.549(2). Inset: the figure col-
078 0.15 lapsing whole data. The line is faf~ (F—F )%
r 0.48 0.11 _l . _ : .
ing force, F., above which the interface moves with a
constant velocity. This phenomenon is called the pinning-
061 | 032 05 | os | depinning(PD) transition. Most of PD transitions occurring
in disordered media are a continuous phase transition. In

FIG. 1. Schematic representations of the stochastic growth rule . o . .
of our model. In each figure, the numbers on top denote the effec 2S¢ of a continuous PE transition, the_velocn_y of the inter-
tive driving forces. The numbers at the interface are random num!face fOHOWSU~(Ff Fc)” close to the Cr'.tlcal .p0|nt, where
bers which represent impurities in the disordered media. In thdS called the velocity exponent. The driven interface formed
middle and bottom figures, the effective driving force is changed indY the QKPZ equation shows a continuous PD transition and

those sites, where growth of the interface occurs. After the growttihe value of the exponertt is 0.636[18].
of the interface, the avalanche process occurs to satisfy the RSOS We carried out the computer simulation of our model for
condition. system sizé. =10 000 by changing the driving foréeandp
from O to 1, respectively. The velocity versus the driving
the growth of the interface, we impose the restricted solidforce is plotted in Fig. 2.
on-solid(RSOS condition,|h;—h;.;|<1, on all sites on the It is well known that our model belongs to the QKPZ
interface. Herdy; means the height of the interface at the siteuniversality class gp=0. We found that our model shows a
i. The RSOS condition is fulfilled by an instantaneous avacontinuous PD transition gi=0 as we expected. By fitting
lanche process after parallel updating. the velocity data above the threshold de-(F—F.)?, we
Whenp is zero, the dynamics of our model can be well obtained the critical driving forcé .=0.463(2) and the ve-
described by the quenched Kardar-Parisi-Zhd<P2) locity exponent§=0.63(1) atp=0. Near the depinning
threshold, the dynamics of the growing interface shows a
nontrivial scaling behavior in global interface width,
MY voht (V24 E+ p(xch) @ WLD=(LS[h()-h(H])M2 The interface  width
at 2 T scales as
7 if t<L?
WCL.Y) LS if t>L2 @

equation[16,17),

whereh(x,t) is the height of the interface at positiecrand
time t. F is an external driving force ang is a quenched
noise with(#n(x,h))=0 and{»n(x,h) »(x’,h’))=2D 89 (x o
—x")8(h—h"). Hered’ denotes substrate dimension. Here, h denotes the mean height. and z are called the
Generally the motion of the interface driven through dis-roughness and the dynamic exponent. The roughness expo-
ordered media by an external driving force is determined byhent can also be obtained from the height-height correlation
the interplay between the resistance force induced by th&unction C(x)={(h;,—h;)?)¥2~x¢, which should be mea-
impurities in the disordered media and the driving force. Thesured after the growing interface reaches a steady [st@ie

interface is pinned if the driving forcE is smaller than the At the depinning thresholdér.=0.463(2) in case op=0,
resistance force. If the driving force is larger than the resiswe measured the height-height correlation function after the

tance force, however, the driven interface moves with a confluctuating interface reached a steady state. The obtained
stant velocity. Therefore, there exists a threshold of the drivioughness exponent i§=0.631). We also obtained the
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1@ ' - ' ' transition untilp approachep.. However, wherp>p., the
value of the interface velocity jumps abruptly from O to non-
zero as soon ak becomes nonzero. Hence, the depinning
V=1 transition is interestingly a first-order transition. One can see
0.5 ¢ ] easily why the first-order transition occurs in our model. It is
0<V<l because the local inertia fordg is always larger than the
[ critical resistance forc&, if F>0 andp>p.. In order to
check whether the transition is really a first-order depinning
ol V=0 0 e e-e--e e transition, we measured the velocity of the growing interface
T by decreasing the driving force from 1 continuously until the
Pc velocity of the interface becomes zefsee the open dots in
Fig. 2. In the growth rule of our model, the decrease of the
. . . . interface height is not allowed. Therefore, the velocity of the
0 0.2 0.4 0.6 0.8 1 interface is zero if the effective driving force is smaller than
p the resistance forc€.(0). Thevelocity of the interface is
always zero for the external driving forég <0) regardless
FIG. 3. Plot of the driving force® versusp. Each black dot of the value ofp if we measure the velocity by increasing the
denotes the critical force for a depinning transition for a gipen driving force from a certain negative value to 0. It is because
Each open dot denotes the critical force for a transition from athe effective driving force is the same as the external driving
fluctuating to a nonfluctuating interface with=1 for a givenp. force. However, if we measure the velocity of the interface
The dotted line indicates that a first-order transition occurs acrosby decreasing the driving force from 1 to a certain negative
the line. value, the velocity has a nonzero constant value even at
=0 for p>p, because of the inertia effect. In our model, the
growth exponentB(={/z)=0.631), by measuring the glo-  effective driving force is determined by the former growth of
bal interface width. The obtained roughness and growth exthe interface as well as the external driving force. Therefore,
ponents are in good agreement with the value, 0.633, belongven whenF <0, the effective driving force can be larger
ing to the QKPZ universality clad48]. than F(0), i.e., the value of the velocity is nonzero. We
Our model shows a continuous PD transition uptils  found that the velocity of the interface splits in tpero
changed from O tqo.[=0.549(2) (see Fig. 2 We found  (plack do} and constantopen dot in Fig. 2] at F=0 for
the critical driving forceF¢(p) for p=0.1, 0.2, 0.3, 0.4, 0.5, p>p_, but any split behavior of the velocity does not occur
and 0.549. After that, we measured the velocity, growth, andor p<p.. Therefore, we believe that the depinning transi-
roughness exponents at the depinning transition point. Weon is a first-order transition. Moreover, the transition is a
found that the critical driving force ; decreases linearly @ history dependent one. We also found that the value of the
Increases, velocity exponent is alway®=0.63(1) by collapsing all
data for p=0.0,0.2...,1.0, where we used the data ob-
Fc(p)=0.463-0.843. &) tained by decreasing from 1 to — 0.4 continuouslysee the

We derived Eq(3) from the simulation datésee Fig. 3. inset O.f Fig. 2. .
An interesting fact in Eq(3) is thatF(p)=0 atp,=0.549. Besides PD transitions, our model shows another phase
In our model, the effective driving force iBy=F +F, transition from a fluctuating interface with<Ov<1 to a
) e 1

- L = nonfluctuating interface witvV=1 (see Fig. 3. This transi-
where the local inertia force is given Uﬁ—_vai(_t—_l_) tion occurs when the effective driving force becomes larger
=pL(vi_1tvi+tv;+1)/3. Herev;(t—1) is 1L if the sitei is

X . : . than 1. We can calculate exactly the value of the critical
occupied at timé—1, otherwisev;(t—1) is 0. If we denote y

. . . g driving force, which invokes this transition. \f is 1, theno;
fche maximum resistance forcg hindering the growth of thqs 1L for each sitei on the interface. Therefore, one can
interface byF,, the value ofF, is the same for alp as that '

" easily find that the interface grows witi=1 if F=1—p,
of F.(p=0)=0.4632). If p>0, the critical force~.(p) for . _ —(1_ _ " ;
the depinning of the interface can be written as he Fer=F+F=(1-p)+p=1 atthe critical point. From

the simulations, we find the same reggiee Fig. 3 We also
measured the roughness exponent by changifigm p. to
1 at the depinning transition point. We found that the value
— . of the roughness exponent decreases from 0.63 to about 0.5

wherev(t—1)=(vi_1+vi+vi.1)/3 if F, takes place ah o 14oniv as soon asbecomes larger tham, . This behavior
site i Hence, the crljcal forcé (p) decreases linearly gs can be explained well from the dynamical behavior of the
increases becaudev has a constant value at the critical QKPZ equation. In the limiE>F ., the dynamical behavior
point regardless of the value pf We know that the value of  of the QKPZ equation is well known to be the same as that
Lv from the simulation is about 0.843 for al of the thermal KPZ equation witli= 1/2:

We found that the values of the critical exponents such as
roughness, growth, and velocity exponent do not depend on
the value ofp until p approacheg [ =0.549(2) from 0. We Ih(x,t)
also found that our model shows a continuous depinning ot

Fo(p)=F,—pLo, (4)

N
=vV2h+ E(Vh)z—i— n(x,t), (5)
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@ 0 - - from the effective driving force. The growth area, where
6000 6000 growth occurs each time, spreads over the whole interface
continuously as time goes on because of the RSOS condi-
oo LT tion. Then the number of sites, which have the inertia force,
4000 4000 0 2000 4000 6000 8000 10000 . .
® &) also spreads over the whole interface continuously. The mor-
= = - - - . - . .
ST TS phology of the interface is very rough until the inertia effect
PP Ve . .
2000 2000k 7 o N A spreads over the whole interface. But the interface starts to
VTN TN b her after the sites with the inertia f d
WHENN ’//'\ ecome smoother after the sites with the inertia force sprea
VNS ey over the whole interface. In our model, the RSOS condition
%0 2000 4000 6000 8000 10000 %0 2000 4000 6000 8000 10000 makes the region in the valley of the interface grow faster

X X

than that in the top of the interface. In the long-time limit,
FIG. 4. Plots ofh(x) versusx for p=0.4(a) andp=0.7 (b). In  the interface reaches a steady state. After that, the growth

the figures, black dots denote the sites which have the local inertiprocess of the interface is the same as that of the QKPZ

force. Some black dots ife) scattered randomly on the interface, equation with a large driving force.

but many black dots spread almost on the whole interfac@)in In conclusion, we have introduced a simple growth model

The interface becomes smoother as time goes dh)irThe figure  for a driven interface in disordered media, showing a first-

in the inset shows the interface which reaches a steady sta@®@. In order PD transition. The first-order depinning transition in

and (b), the lines are drawn for the same time intervals. The inter- . . . . _
' . ) our model is triggered by the local inertia forég=pLuv.
face grows faster irfb) than in(a). 99 y e=pLo

Our model shows a continuous PD transitiop+ p.,. How-
o & ever, our model shows a first-order PD transitiop¥ p..
where (7(x,1))=0 and (5(x,t)n(x",t'))=2D5% (X  The first-order PD transition is history dependent. We mea-
—X')4(t—t’). Our model withp>p. shows the same dy- gyred the critical exponents characterizing the PD transitions.
namical behavior as that of the QKPZ equation With'F.  \we found that the value of the velocity exponent is the same
at the critical pointF(p). as §=0.63(1) for all values ofp between 0 and 1. The
Although the values of the critical exponents of our mOdelroughness exponent {5=0.63(1) forp<p. but the value of
for p>p, can be well explained by the QKPZ equation, the ; hecomes about 0.5 fgr=p,. We explained how the first-
growth process of the interface in the early time limit at thegrger PD can occur in our model. In addition to the PD
critical point is very different from that of the QKPZ equa- transitions, our model shows another phase transition from a
tion (see Fig. 4. In the QKPZ equation, the growth of the fi,ctyating to a nonfluctuating interface with=1. We ex-

interface takes place simultaneously almost in all regions oRjained how this transition occurs in our model.
the interface, even in the early time limit. Our model also

shows the same behavior wher<p., but it shows a very

different growth behavior in the early time limit whem This work is supported in part by the Korean Science and
=p.. Whenp=p,, initial growth occur only in a few sites Engineering Foundatio’lKOSEF, Korean Research Foun-
on the interface. However, the former growth induces furthedation Grant No. KRF-2001-015-DP0121, and also in part
growth of the interface whep>p. because of the feedback by the Ministry of Education through the BK21 project.
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