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Employing highly efficient algorithms for simulating invasion percolati®®) with trapping, we obtain
precise estimates for the fractal dimensions of the sample-spanning cluster, the backbone, and the minimal path
in a variety of two-dimensional lattices. The results indicate that these quantities are nonuniversal and vary
with the coordination numbeZ of the lattices. In particular, while the fractal dimensibp of the sample-
spanning cluster in lattices with lo& has the generally accepted value of about 1.82, it crosses over to the
value of random percolatioR;=1.896, ifZ is large enough. Since optimal paths in strongly disordered media
and minimum spanning trees on random graphs are related to IP, the implication is that these problems do not
also possess universal scaling properties.
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Multiphase flow phenomena in porous media are relevanthese larger capillaries or bonds that it is most difficult to
to many problems of great scientific and industrial impor-displace the defender. Imbibition is therefore sée IP,
tance, including extraction of oil, gas, and geothermal energwhereas drainage in which the invader has most difficulty
from underground reservoirs, food and soil sciences, powderith the smallest constrictions istzondIP.
technology, and materials scienff]. Invasion percolation Important differences arigdd,8—11] in the structure of the
(IP), a model introduced2] for describing the evolution of invading fluid paths, depending on whether one considers
the interface between an invading and a defending fluid in d&NTIP or TIP. The scaling properties of NTIP are believed to
porous medium, has provided deep insight into such phebe consistent with those of random percolati&®). On the
nomena. In addition, IP is relevant to a host of other prob-other hand, up until now it has been assumed that the scaling
lems, including characterization of optimal paths and domairproperties of TIP in two dimension&D) are universal and
walls in strongly disordered medj&,4], minimum spanning independent of the lattice type, and distinct from those of RP.
trees[5], and even simulation of the Ising model at the criti- The purpose of this paper is to report the results of extensive
cal temperaturg6]. Moreover, IP is one of the simplest simulation of TIP in 2D in a variety of lattices which indicate
parameter-free models which exhibits self-organized criticalthat, contrary to the common belief, the scaling properties of
ity [7], another subject of current interest. this model are all nonuniversal and lattice dependent. Since

Two main variants of IP have been studied so far. In nonthe scaling properties of IP are related to those of optimal
trapping IP(NTIP) the defending fluid is compressible and paths in random media and the geometry of minimum span-
the invading fluid can potentially enter any region on thening trees on random graphs, the universality of the scaling
interface which is occupied by the defending fluid. In theproperties of these phenomena, which has been claimed in
second and more common case, the trappin@lIP) which  the pas{3-5], is also questioned.
is the subject of this paper, the defending fluid is incompress- Since the differences between values of various scaling
ible and is trapped if a portion of it is surrounded by theexponents of TIP and RP appear to be small, it is critical to
invading fluid. In addition to the compressibility, one must be able to simulate very large lattices in order to establish the
also take into account the ability of the fluids to wet theuniversality classes of TIP models. We have recently devel-
internal surface of the mediufi]. In imbibition a wetting oped[11] a highly efficient algorithm for simulating TIP in
fluid is drawn spontaneously into a porous medium, whilewhich the simulation time grows &[N In(N)], whereN is
during drainage a nonwetting fluid is pushed into the porghe number of sites in the lattice, which enables us to simu-
space. We model the porous medium as a network of pordate very large lattices for measuring the scaling properties of
or sites connected by throats or bonds which have smalleFIP models with very high accuracy. Briefly, in this algo-
radii than the pores. In IP, the potential displacement eventgthm one looks for the trapped regions by searching the
are ranked according to the capillary pressure threshold thateighbors of each newly invaded site. If trapping is possible,
must be exceeded before that event takes place. During inthen several simultaneous breadth first “forest-fire” searches
bibition, the invading fluid is drawn first into the smallest are used to update the cluster labeling as neceq&dry
constrictions, for which the capillary pressure is large andwhich restricts the changes to the most local region possible.
negative, and it goes last into the widest pores. Displacemer@ince during an invasion each site can be invaded or trapped
events are therefore ranked in terms of the largest openingt most once, this part of the algorithm scale<Og8!). The
that the invading fluid must travel through, since it is from search is done for cluster volumes rather than perimeters and
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TABLE |. Values of the three fractal dimensions on various 2D lattices. All the results were obtained with
L X L lattices, unless specified otherwise. Numbers in parentheses indicate the estimated error in the last digit.

D¢ Dbb Dmin
Site NTIP 1.89501) 1.64328) 1.13074)
Site TIP
Hexagonal 1.83(b) 1.21(2) 1.2186)
Square 1.82@) 1.222) 1.2141)
Triangular 1.89) 1.6162) 1.1327)
Triangular L Xx2L) 1.8922) 1.6172) 1.137%3)
Star 1.8961) 1.6422) 1.1363)
Star LX2L) 1.8952) 1.6424) 1.1333)
Bond TIP
Hexagonal 1.83(b) 1.2186)
Square 1.82(B) 1.2142)
Triangular 1.82®) 1.21%1)
Star 1.89%7) 1.221(3)

incorporates local checking to minimize cluster searchingthe depth-first search: If there are multiple branches from a
and is thus equally effective in 3D. single site, the site labeled as the closest to the inlet face is
We also store the sitgbondg on the fluid-fluid interface always the first to be explorediii) The depth-first search

in a list, sorted according to the capillary pressure thresholderminates when one of two conditions are satisfi@égThe
needed to invade them. This list is implemented via a balsearch contacts the backbone again at a different site from
anced binary search tree, so that insertion and deletion opvhere it started, in which case the sites in the visited-sites list
erations on the list can be performed in logime, wheren  are flagged as backbone sites, (8) it retreats back to its
is the list size. Site¢bonds that are designated trapped using starting site, at which point there will be no sites left in the
the above described procedures are removed from the invaisited-sites list(iv) The algorithm continues at step).
sion list. Each site is added and removed from the interface We carried out extensive simulations using the hexagonal,
list at most once, limiting the cost of this part of the algo- square, triangular, and star lattices, thus spanning a range of
rithm to O[Nlog(n)]. Thus the execution time faN sites  coordination humberZ ranging fromzZ=3 for the hexago-
(bonds is dominated(for large N) by list manipulation and nal lattice toZ= 8 for the star lattice, which is constructed by
scalesat mostas O[ N In(N)]. adding diagonal bonds to the square lattice. We simulated
We have also used a different optimized algorithirh] to  both site and bond TIP usingX L lattices with reflecting
identify the minimal path length, the sites comprising bothboundary conditions on the edges. In the case of the triangu-
the elastic backbongl2], i.e., the set of the sites that lie on lar and star lattices, we also uskc 2L lattices and mea-
the union of all the shortest paths between two widely sepasured the cluster properties within the centraf L region
rated points, and the usual transport backbone, so that thgee below: Lattice sizes ranging fronh =16 to L=8192
backbone search and computations do not affect the overallere used. The number of realizations varied between 5
execution time of the algorithm. Although numerous algo-x 10° for L= 16 to 3000 forL = 8192, representing the most
rithms have been proposed in the ppE2,13, as we have extensive TIP simulations that we are aware of.
discussed elsewhefél], our algorithm appears to be more  Consider, for example, the fractal dimensiby of the
efficient than the previous methods. Briefly, the algorithmsample-spanning cluster. If we define a local fractal dimen-
consists of four stepgi) Using a breadth-first search algo- sions D¢(M)=dInM/dInL (where M is the mass of the
rithm, we label each site in the cluster with its “cluster dis- clustej, then according to finite-size scalindFSS
tance” from the inlet face, and then use this information top,(M) converges to its asymptotiflarge M) value as
burn backwards from the outlet face and identify the elastidD;— D(M)|~M ~¢, wherea is a correction-to-scaling ex-
backbone. We also construct the “branch points list"—a listponent. Combining the definition dd;(M) with the FSS

of all the cluster sites that are adjacent to the elastic backequation yields a differential equation which has an analyti-
bone but are not part of it. The branch points list should be:al solution[11]:

ordered with the sites closest to the inlet face listed fiist.

The search stops if the branch points list is empty. Otherwise,

a depth-first search from the last site in the branch points list c1+DiM*=c,L "1, 1)

is performed, flagging all the sites that are visited. During the

search, unexplored branch points are added to the branabherec; andc, are two constants. We thus fit the data to Eq.
points list, while another list tracks the sites that have beeil) to estimate bothD; and « simultaneously. Equations
flagged as visited. We then carry out an optimization duringsimilar to Eq.(1) are also used for estimatiri),,, and D,
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(and the correspondings), the fractal dimensions of the 0.45
backbone and the minimal paths, respectively. *
Table | presents the results for both site and bond TIP in
the four lattices that we used. The estimated values ;o 044 | .
the hexagonal and square lattices in both site and bond TIF .
are completely consistent with each other and with the gen-
erally accepted valu¢ll], D;=1.825+0.004, obtained in
the square lattice. For bond TIP the estimaledin the tri-
angular lattice is also consistent with this value. However, .
for site TIP, the value oD in the triangular lattice jumps to ®e
about 1.8960.002, just outsid® ;=91/48=1.8958 for RP. 04 ®e
To obtain a more accurate estimate, we useL triangu-
lar lattices and collected statistics in the middlg L part in
order to eliminate boundary effects. We obtainé€x 0.38 . .
=1.892+0.002, which is again slightly outside the value for 10 100 . 1000 10000
RP. Although this estimate is extremely accurate, we canno a)
completely rule out the possibility that with even larger lat-
tices one would obtain a value @; which is completely 0.80] - - .
consistent with that of RP. However, in the case of the star A
lattice, both site and bond TIP have a valuelf that is orsl
completely consistent with RP. Lo T
The same trends are seen in the value of the backbon i -
fractal dimensiorD,;,, namely, in the low-coordinated lat- s oror B %
tices Dy, takes on the value that we recently reporféd] _ < < ]
for the square lattice, but as the coordination number of the 0.651 o Q §
lattice increases, so also ddeg,. The estimate for the star [ ]
lattice is completely consistent with that of RRef.[11] and 0.60L " . T
Grassbergef13]), Dy,,=1.6432+-0.0008. However, our re- 1.605 1610 1615 1620 1625
sults for the triangular lattice consistently exhibit small but ) "
systematic and significant deviations from that of RP; see
Table I. To show the quality of the data, we present them in  FiG. 1. (a) The behavior of the masd of the backbone in the
Fig. 1, where we use®,,=1.617, and the confidence el- triangular lattice in site TIP versus its linear size where Dy,
lipses[14] for the estimated exponents. Clea/L®7is  ~1.617.(b) Confidence ellipses for the finite-size scaling exponent
converging to a constant value, while the confidence ellipse& and the fractal dimensioB,,,. The solid(dashedl curve shows
provide error estimates that are so small that rule out ang8% (90%) confidence level.
significantly largeD,,. The behavior oD, which is con-
sistent with that oD, might be indicative of one of the two
scenarios(1) There is in fact adistinct intermediate case
between the low-and high-coordinated lattices representedote that bond TIP has been claimgg}4] to be in the uni-
by the triangular lattice. The distinct value By, in the \ergajity of optimal paths in the limit of strong disordé,
triangular lattice, as well as its estimat®g,, discussed be- 514 a45°such it is expected to be different from site TIP. All
low, strongly support this scenari¢2) Alternatively, there the results together leave very little, if any, doubt that the

may be only two distinct sets of fractal dimensions, one eac : ; ; -
for the low- and high-coordinated lattices, which are sepal—gcallng properties of TIP in 2D are lattice dependent, and

rated by a critical coordination number=&Z.<8. If so, the hence nonuniversal. They also indicate that, contrary to com-

convergence of the results for the triangular lattice to thosemggetr)ﬁggf’ site and bond TIP have quite different scaling

of RP should be very slow; one must use much larger latticeB" : . . .
in order to obtain the true asymptotic values. Although our_ 1r@PPing IP is a dynamical process. It is already known
results do not provide any significant support for this scel19] that diffusion-limited aggregation, another dynamical
nario, we cannot completely rule out this possibility. process, is also characterized by a lattice dependent fractal
Finally, the results foDy,, for site TIP are completely Q|men5|on_. One may then ask whether such nonunlvergallty
consistent with the other two sets of results, namely, in lowdS @ generic feature of some dynamical processes, and if so,
coordinated lattices, the value Bf,;, are consistent with the What distinguishes those with universal properties from the
previous estimatgl1] reported for the square lattice, at the Ones with nonuniversal properties. In addition, since the scal-
highest coordination number, it crosses over to that of REng properties of IP are related to those of optimal paths in
(Grassbergef13]), Dy,j,=1.1307-0.0004, with the value strongly disordered med(&,4] and minimum spanning trees
for the triangular lattice being in between the two caseson random graphf5], contrary to the common belief, these
However, with bond TIP, all the estimates bBf,;, are con-  problems must also have nonuniversal properties. It is pos-
sistent with the previous value for the square latfité]. sible that all of these phenomena have universal scaling
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