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Inertial effects in anomalous dielectric relaxation
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The inertia corrected Debye model of rotational Brownian motion of polar molecules is generalized to
fractional dynamicganomalous diffusionin the context of the fractional Klein-Kramers equation. The fractal
generalization of the Gross-Sack solution for the complex dielectric susceptiility for an assembly of
fixed axis rotators is given. The high-frequency behaviok(@$) is controlled by the inertia of a dipole as in
normal diffusion, so that the Gordon sum rule for dipolar absorption is satisfied ensuring a return to optical
transparency at very high frequencies.
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Relaxation functions for fractal random walks are funda-be solved using the generalized integration theof&mof
mental in the kinetics of complex systems such as liquid-aplace transformation yielding the exact complex dielectric
crystals, amorphous semiconductors and polymers, glasgisceptibility in continued fraction form as in the normal
forming liquids, etc.[1]. Relaxation in these systems may Brownian motion[6,7]. The method may also be obviously
deviate considerably from the exponentiBlebye pattern. €xtended to all problems where solutions of the Klein-
An important task in dielectric relaxation of complex sys- Kramers or more generalj12,15 the Fokker-Planck equa-
tems is to extend2,3] the Debye theory of relaxation of tion, may be expressed as recurrence relations involving or-
polar molecules to fractional dynamics, so that empirical dedinary or matrix continued fractiorfd1,15.
cay functions, e.g., the stretched exponential of Williams and We illustrate by considering the simplest microscopic
Watts[4], may be justified in terms of fractal random walks. model of dielectric relaxation, namely: an assembly of non-

A marked deficiency5—-10] of the Debye theory is that it interacting rigid dipoles of moment each rotating about a
cannot describe the dielectric relaxation process at shoftxed axis through its cent¢6,7]. (An assembly of fixed-axis
times [of the order of the characteristic decay time of therotators qualitatively reproduces the principal features of di-
dipole angular velocity correlation functio®/CF)] or at  €lectric relaxation of dipolar molecules in space while allow-
high frequencie$HF) (in the far-infrared regionas like the ing considerable mathematical simplification of the problem
Einstein theory of the translational Brownian motigii] it [6,7]. A dipole has moment of inertiaand is specified by the
is based on the Smoluchowski equation. That approximat@ngular coordinatep so that it constitutes a system of 1
equation describing the evolution of the probability density(rotationa) degree of freedom. The FKKE for the PDF
function (PDF of the orientations of the dipoles in configu- W(¢, ¢,t) in the space ¢, ¢) is identical to that of the one-
ration spac¢12] is only valid when dipole inertial effects are dimensional translational Brownian motion of a partié]
negligible as it assumes instantaneous equilibrium of the arhowever, rotational quantitiggingle ¢, moment of inertid,
gular velocities. Thus the Debye theory predicifénite inte-  etc) replace translational onépositionx, massm, etc) so
gral absorption that

The incorporation of such inertial effects in the Debye
theory, ensuring a return to optical transparency at HF, was dW dW . dW uEsing W I
first achieved by Rocard13] and a completely rigorous = ————— —=oD¢ “LesW, (1)

treatment was given by Gro$6] and SacK7]. They used dt ot ¢ ! a¢

the Klein-Kramers equation applied to rotational BrownianWhere

motion, describing the evolution of the PDF in

configuration-angular velocity space. Hence they obtained J KT 92W
exact expressions for the complex susceptibility of noninter-  pl=«| _\w= DI *98| — (sW)+ B _)
acting rigid dipoles as infinite continued fractions. The ad I 92

simple relaxation equation of Rocafd3] then appears for
small inertial effects, i.e., where the ratio of the characteristidgs the fractional Fokker-Planck operatkg is the Boltzmann
relaxation time of the AVCFr, to the (Debye relaxation constant, T is the temperaturef=¢/I, { is the viscous
time 7 of the dipole relaxation function is small. damping coefficient of a dipoled=7'"¢, « is the anoma-
Recently Barkai and Silbej14] have proposed a gener- lous exponent characterizing the fractal time process,and
alization of the Klein-Kramers equation for the inertia cor-is the intertrapping time scale identified with the Debye re-
rected translational Brownian motion to fractional dynamics.laxation time {/kgT (at ambient temperatures, is of the
Here we demonstrate how a similar fractional Klein-Kramersorder 10 *'sec for molecular liquids and solutionsThus
equation(FKKE) for the anomalous rotational diffusion may the fractional dynamics emerges from the competition of
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Brownian motion events of average duratiomterrupted by

trapping events whose duration is broadly distribJted In L{ODtlaf(t)}z{
writing Eqg. (1) we assume that weakuniform electric field

E applied along the initial line is suddenly switched off at
time t=0 so that linear response thed0] may be used to
describe the ensuing response. In the absendg &fq. (1) . w
describes anomalous diffusion; the value=1 corresponds f(s)zL{f(t)}zf e S (t)dt,
to normal diffusion [14]. The operator ODtl’“ 0

=(dldt) oDy “ in Eq. (1) is defined in terms of the convo- e have from Eq(5),

lution (the Riemann-Liouville fractional integral definitipn

st (s)-Dy “f(1)]=o  (0<a<1),
st f(s) (1=sa<?2),

where

[1]! [ZTS+ nfy'Z(Ts)l*a]'él’n(S)_i_i,yr[z(n_i_l),.él’nJrl(s)
1 [tW(e,t")dt +T1p-1(5)]1=C1n(0). ®)
oDy “W(¢,t)= T(a) Jo (t—t)I @ @ Here y'=1/y={\20kgT is the inertial effects parameter.

Noting the initial condition, Eq(4), all thec,,(0) in Eq.(6)

will vanish with the exceptiom=0. Furthermore Eq(6) is

an example of how using the Laplace integration theorem
Wé'above, all recurrence relations associated with the Brownian
motion may be generalized to fractional dynamics. The nor-
malized complex susceptibilityy(w)=x'(w)—ix"(w) is
pgiven by linear response theory @]

so that the fractional derivative is a type of memory function
[1,5] or stosszahlansatzcollision integral for the Boltz-
mann equation underlying the Fokker-Planck equation.
remark that a slowly-decaying power-law kernel in the
Riemann-Liouville operato(2) is typical of memory effects
in complex systems. In this context we remark that the o

erator \D{~“ in Eq. (1) does not act onp(aW/a¢) and ()= x(w) - Tdio)
—uEl"tsing(dWld¢) (i.e., the Liouville or conservative X Yo ¢ C140)

term9 in the convective derivativéV so that the conven- Jian 2 . .
tional form of the Boltzmann equation with Fokker-Planck WhereX (0)=p"N/(2ksT) andN is the number Qf dipoles
per unit volume.[We remark thafC, o(s) also yields the

e 17a .
stosgzahlansgtas_ modified by,D; IS pr.eserved. I.f the Laplace transform of the characteristic function of the con-
fractional derivative acts on the convective term, i.e., thefiguration space PDF

i(:nc;%?ter\i/r?;[lvezr }:iar;[)of rEgl;{otfhtin r;(i)r}pht);iswatl) berht::\iwrc?r.e., ‘. Equation(6), which is a three term algebraic recurrence
€ integral absorptio € dielectric absorption Coel o446 for theC, (), can be solved in terms of continued

ficient occurs as in the Debye theory of dielectric rel"’D(at'onfractions[ll] then yielding the generalization of the familiar

@)

[5]. : > gener: .
We may seek a solution of E¢L) as in normal diffusion rGe:gith)iCz;?gl[ﬁﬂ for a fixed axis rotator to fractional
as[5,1]] ) Y,
X(@)
. 252 ; . P o
W(op,¢,t)=e" "¢ pE nEO Con(DEPPH(nd), (3) L B(iwr)
“. = 5 ,
B(iowr)7+ 58
where n=I/2kgT and theH,(x) are the Hermite polyno- 1+B(iw7)7+
mials[16]. The linearized initiakat t=0) PDF is 24B(iwn)+
3+. .
: 1 22 ME
~ -7 JR— (8)
W( ¢, ,0) mne 1+ KaT COS¢ |. (4)

whereo=2—a andB=2v' %(iw7)2(®~ Y. Equation(8), in

Straightforward manipulatiof,10,1] of the recurrence re- turn, can be expressed in terms of the confluent hypergeo-

lations of theH , [16] leads by orthogonality, to a differential metric (Kummey function M(a,b,2) [16}, viz.,
recurrence relation for the coefficierts ,(t), which may be R (iTw)” _
written [11] for the only case of interedisince the linear X(w)=1— WM(LH B[1+(iTw)?],B). (9)
response is considergdchamely,p=1, viz.,
Equation(9) can readily be derived by comparing E®)
d i with the continued fraction
acl,n(t) + E[Z(n‘*‘ 1)Cipra(t)+Cqp-a(t)]

M(a,b,z) B 1
(at+1)z
On using the integration theorem of Laplace transformation b=z+ b+1—z+---
as generalized to fractal calcul[®], viz., (10
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FIG. 1. Dielectric loss spectry”(w) for y'=10 and various
values ofa@: «=0.25(curves 1 and 1), «=0.5(2,2"), =1 (3,
3’), anda=1.5(4,4"). Solid lines(1, 2, 3, and 4 Eq.(9); crosses
a', 2, 3, and 4), Eq. (12); filled circles, Eq.(14).

with a=1, z=B, andb=1+B[1+ (i7w)?] and by noting
that M(0b—1,z)=1 [16]. The continued fractiori10) can
be obtained from the known recurrence relati®6]

b(l1-b+z)M(a,b,z)—azM(a+1b+1z)+b(b—1)
XM(a—1b—1z)=0.

We remark that M(1,1+b,z)=bz e?y(b,z), where
y(b,z):fée“tb‘ldt is the incomplete gamma function
[16].

For 0=1, Eq. (9) can be reduced to Sack’s resliq.
(3.190 of Ref.[7]]. In the high damping limit ¢'>1), Eq.
(9) can be simplified yielding the generalizati4] to frac-
tional dynamics of the Rocar®,13] equation, namely,

o 1
X ) = T o 2wy )2

(11)

On neglecting inertial effectsy( —«), Eq. (9) becomes

X(w)=1[1+(io1)7], (12

i.e., the result previously proposed from empirical consider-

ations[4]. Foro=1, Eq.(12) reduces to the Debye equation.
Dielectric loss spectrg”(w) versus logywn), for vari-
ous values otr andy’ are shown in Figs. 1-3. It is apparent
that the spectral parametdihe characteristic frequency, the
half-width, the shapestrongly depend on both (which per-
tains to the velocity spagendy’. Moreover the HF behav-
ior of ¥"(w) is entirely determinedby the inertia of system.
It is apparent just as in Brownian dynamics that inertial ef-
fects produce a much more rapid fall off §/(w) at HF.

Thus the Gordon sum rule for the dipole integral absorption

of one-dimensional rotatof$], viz.,

fmwx"(w)de (7Nu?)/(4l), (13
0

log, 7" (@)]
¥
N

log, [nw]

FIG. 2. Dielectric loss spectri’(w) for «=0.5 (enhanced dif-
fusion) and various values of': y'=10" (curves 1 and 1), 7’
=10° (2,2"), y' =10 (3,3'), y'=10 (4,4"), and y'=1 (5,5).
Solid lines(1, 2, 3, 4, and § Eq. (9); crosseq1’, 2’, 3’, 4, and
5"), Eq.(12); filled circles, Eq.(14).

is satisfied. It is significant that the right-hand side of Eg.
(13) is determined by molecular parameters only and does
not depend on temperature. Such behavior is quite unlike
that resulting from the hypothesis that the fractional deriva-
tive acts on the convective term leading alw¥g] to infi-

nite integral absorption as in the Debyexcluding inertial
effecty and Van Vleck-Weisskopf kinetic mode$,7,18.
Moreover, it is apparent from Figs. 1 and 3 assuming that Eq.
(1) also describes subdiffusion in configuration spdhat is,
o<1 or 2>a>1), then Eq.(9) also provides a physically
acceptable description of the loss spectrum. Here, in the high
damping limit (y'>1), the low-frequency part ok"(w)

may be approximated by the modified Debye ELp). For
a<1 corresponding to->1 (enhanced diffusion in configu-
ration spacg the low-frequency behavior ¢f' () is similar
(see Figs. 1 and)3o that of the dielectric losgrr(w) in the

free rotation limit ¢=0), which is given by[6,7]

Xrr(®)= \/;nwe_ 7o, (14
0
1 1
— 1 /M/:;
3
=
-2 7
/ 5:5': y=1 1
-3 ; b3
-4 -2 0 2
log, [nw]

FIG. 3. The same as in Fig. 2 far= 1.5 (subdiffusior).
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The HF dielectric absorption in the far-infrared region is 1.0
proportional to the spectrum df¢(0)¢(t))o and can be " =2l T
used to determine that AVCF experimentdlB]. In order to T 2-a=10
calculate the equilibrium AVCR ¢(0)4(1))o in the frac- . ezl
tional dynamics, one can simply adapt the result of Barkai & 5
and Silbey{14] for the translational VCEx(0)x(t) ), replac- \‘3 1
ing translational quantities by rotational ones. We have < \\\
-% 2 T
. . kgT '}”2 t\« 2 00 \
<¢(0)¢>(t)>o:|_Ea 57 ) (19 v
’ \\/
3
whereE ,(z) is the Mittag-Leffler functior{1] defined by
0 2 4 6 8 10
% N t/t
E = —_—. 16
o(2) ,120 I'(1+an) (16 FIG. 4. The normalized angular velocity correlation function

($(0) (1)) /(H?(0)), for y'2=2 anda=0.5 (curve 1, a=1.0
Equation(15) represents the generalization of the AVCF of (curve 2, anda=1.5 (curve 3.

the Ornstein-Uhlenbeckl4,19 (inertia corrected Einstein

theory of the Brownian motion to fractional dynamics. The expect, however_, that th_e qualitativ_e behavior of th? dielec-
tric response will be similar at higher concentrations of

long time tail due to the asymptoti¢x 7) t~ like depen- dipoles.

dencef1] of the(¢(0)h(t))o is apparent, as is the stretched ¢ conclude, we have demonstrated, how existing Brown-
exponential behavior at short timeg¢<(7). For a>1, jan motion solutiong6,7] for dielectric relaxation may be
(#(0) (1)) exhibits oscillationgsee Fig. 4 consistent with  generalized to fractional dynamics using continued fractions
the large excess absorption occurring at HF. [11]. The result is of particular interest in dielectric relax-
In evaluating the dielectric response, we have igngred ation as it demonstrates how the unphysical HF divergence
quantum effects(ii) dipole-dipole interactions, angii) the  Of the absorption coefficient due to the neglect of inertia may
influence of the internal field5]. The condition(i) means be removed i_n fractior)al relaxation as in inertia corrected
that our results are applicable when the inequatityyl <1 ~ Debye relaxatiorisee Figs. 1-8 The methods we have out-
(# is the Planck constanis fulfilled [6]. The above inequal- lined are also of interest when extended to other relaxation
ity breaks down in liquids only for the lightest polar mol- Models such as the itinerant oscillaf@o], which attempt to
ecules such as HCI. The conditigit) reflects the fact that Ncorporate both resonance and relaxation behavior in a
dipole-dipole correlations are neglected in the FKEE @, single model with the purpose of_sumultaneously_explammg
which is only valid in the zero order of the small parameterthe Debye(low-frequency and far infrared absorption spec-

u?Ny/kT<1; the last inequality is satisfied at room tem- tra of complex dipole systems.

peratures and for dipole momentsl0™*® CGS units up to a The support of this work by the Enterprise Ireland Re-
concentration of 18 cm™3. This condition, as well asii) search Collaboration Fund 2001, USAF, EOARCOontract
(i.e., the macroscopic, or Maxwell, field is equal to the ap-No. F61773-01-WE407and the Russian Foundation for Ba-
plied electric field is satisfied in dilute dipolar systems, e.g., sic Research(Project No. 01-02-16050is gratefully ac-
solutions of polar molecules in nonpolar solvents. One maknowledged.
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