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Inertial effects in anomalous dielectric relaxation
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The inertia corrected Debye model of rotational Brownian motion of polar molecules is generalized to
fractional dynamics~anomalous diffusion! in the context of the fractional Klein-Kramers equation. The fractal
generalization of the Gross-Sack solution for the complex dielectric susceptibilityx~v! for an assembly of
fixed axis rotators is given. The high-frequency behavior ofx~v! is controlled by the inertia of a dipole as in
normal diffusion, so that the Gordon sum rule for dipolar absorption is satisfied ensuring a return to optical
transparency at very high frequencies.
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Relaxation functions for fractal random walks are fund
mental in the kinetics of complex systems such as liq
crystals, amorphous semiconductors and polymers, g
forming liquids, etc.@1#. Relaxation in these systems ma
deviate considerably from the exponential~Debye! pattern.
An important task in dielectric relaxation of complex sy
tems is to extend@2,3# the Debye theory of relaxation o
polar molecules to fractional dynamics, so that empirical
cay functions, e.g., the stretched exponential of Williams a
Watts@4#, may be justified in terms of fractal random walk

A marked deficiency@5–10# of the Debye theory is that i
cannot describe the dielectric relaxation process at s
times @of the order of the characteristic decay time of t
dipole angular velocity correlation function~AVCF!# or at
high frequencies~HF! ~in the far-infrared region! as like the
Einstein theory of the translational Brownian motion@11# it
is based on the Smoluchowski equation. That approxim
equation describing the evolution of the probability dens
function ~PDF! of the orientations of the dipoles in configu
ration space@12# is only valid when dipole inertial effects ar
negligible as it assumes instantaneous equilibrium of the
gular velocities. Thus the Debye theory predictsinfinite inte-
gral absorption.

The incorporation of such inertial effects in the Deb
theory, ensuring a return to optical transparency at HF,
first achieved by Rocard@13# and a completely rigorous
treatment was given by Gross@6# and Sack@7#. They used
the Klein-Kramers equation applied to rotational Browni
motion, describing the evolution of the PDF
configuration-angular velocity space. Hence they obtai
exact expressions for the complex susceptibility of nonin
acting rigid dipoles as infinite continued fractions. T
simple relaxation equation of Rocard@13# then appears for
small inertial effects, i.e., where the ratio of the characteri
relaxation time of the AVCFtv to the ~Debye! relaxation
time t of the dipole relaxation function is small.

Recently Barkai and Silbey@14# have proposed a gene
alization of the Klein-Kramers equation for the inertia co
rected translational Brownian motion to fractional dynami
Here we demonstrate how a similar fractional Klein-Kram
equation~FKKE! for the anomalous rotational diffusion ma
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be solved using the generalized integration theorem@1# of
Laplace transformation yielding the exact complex dielec
susceptibility in continued fraction form as in the norm
Brownian motion@6,7#. The method may also be obvious
extended to all problems where solutions of the Kle
Kramers or more generally@12,15# the Fokker-Planck equa
tion, may be expressed as recurrence relations involving
dinary or matrix continued fractions@11,15#.

We illustrate by considering the simplest microscop
model of dielectric relaxation, namely: an assembly of no
interacting rigid dipoles of momentm each rotating about a
fixed axis through its center@6,7#. ~An assembly of fixed-axis
rotators qualitatively reproduces the principal features of
electric relaxation of dipolar molecules in space while allo
ing considerable mathematical simplification of the proble!
@6,7#. A dipole has moment of inertiaI and is specified by the
angular coordinatef so that it constitutes a system of
~rotational! degree of freedom. The FKKE for the PD
W(f,ḟ,t) in the space (f,ḟ) is identical to that of the one
dimensional translational Brownian motion of a particle@15#
however, rotational quantities~anglef, moment of inertiaI,
etc.! replace translational ones~position x, massm, etc.! so
that

dW

dt
5

]W

]t
1ḟ

]W

]f
2

mE sinf

I

]W

]ḟ
50Dt

12aLFPW, ~1!

where

0Dt
12aLFPW50Dt

12aqbS ]

]ḟ
~ḟW!1

kBT

I

]2W

]ḟ2 D
is the fractional Fokker-Planck operator,kB is the Boltzmann
constant,T is the temperature,b5z/I , z is the viscous
damping coefficient of a dipole,q5t12a, a is the anoma-
lous exponent characterizing the fractal time process, ant
is the intertrapping time scale identified with the Debye
laxation timez/kBT ~at ambient temperatures,t is of the
order 10211sec for molecular liquids and solutions!. Thus
the fractional dynamics emerges from the competition
©2002 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 032102
Brownian motion events of average durationt interrupted by
trapping events whose duration is broadly distributed@1#. In
writing Eq. ~1! we assume that aweakuniform electric field
E applied along the initial line is suddenly switched off
time t50 so that linear response theory@10# may be used to
describe the ensuing response. In the absence ofE, Eq. ~1!
describes anomalous diffusion; the valuea51 corresponds
to normal diffusion @14#. The operator 0Dt

12a

[(]/]t) 0Dt
2a in Eq. ~1! is defined in terms of the convo

lution ~the Riemann-Liouville fractional integral definition!
@1#,

0Dt
2aW~f,t !5

1

G~a!
E

0

t W~f,t8!dt8

~ t2t8!12a , ~2!

so that the fractional derivative is a type of memory functi
@1,5# or stosszahlansatz~collision integral! for the Boltz-
mann equation underlying the Fokker-Planck equation.
remark that a slowly-decaying power-law kernel in t
Riemann-Liouville operator~2! is typical of memory effects
in complex systems. In this context we remark that the
erator 0Dt

12a in Eq. ~1! does not act onḟ(]W/]f) and

2mEI21 sinf(]W/]ḟ) ~i.e., the Liouville or conservative
terms! in the convective derivativeẆ so that the conven
tional form of the Boltzmann equation with Fokker-Plan
stosszahlansatzas modified by0Dt

12a is preserved. If the
fractional derivative acts on the convective term, i.e.,
conservative part of Eq.~1!, then nonphysical behavior~i.e.,
infinite integral absorption! of the dielectric absorption coef
ficient occurs as in the Debye theory of dielectric relaxat
@5#.

We may seek a solution of Eq.~1! as in normal diffusion
as @5,11#

W~f,ḟ,t !5e2h2ḟ2

(
p52`

`

(
n50

`

cp,n~ t !eipfHn~hḟ!, ~3!

whereh5AI /2kBT and theHn(x) are the Hermite polyno-
mials @16#. The linearized initial~at t50! PDF is

W~f,ḟ,0!'
1

2p3/2he2h2ḟ2F11
mE

kBT
cosfG . ~4!

Straightforward manipulation@5,10,11# of the recurrence re
lations of theHn @16# leads by orthogonality, to a differentia
recurrence relation for the coefficientscp,n(t), which may be
written @11# for the only case of interest~since the linear
response is considered!, namely,p51, viz.,

d

dt
c1,n~ t !1

i

2h
@2~n11!c1,n11~ t !1c1,n21~ t !#

520Dt
12aqnbc1,n~ t !. ~5!

On using the integration theorem of Laplace transformat
as generalized to fractal calculus@1#, viz.,
03210
e

-

e

n

n

L$0Dt
12a f ~ t !%5H s12a f̃ ~s!2Dt

2a f ~ t !u t50 ~0,a,1!,

s12a f̃ ~s! ~1<a,2!,

where

f̃ ~s!5L$ f ~ t !%5E
0

`

e2stf ~ t !dt,

we have from Eq.~5!,

@2ts1ng82~ts!12a# c̃1,n~s!1 ig8@2~n11!c̃1,n11~s!

1 c̃1,n21~s!#5c1,n~0!. ~6!

Here g85t/h5zA2/IkBT is the inertial effects paramete
Noting the initial condition, Eq.~4!, all thec1,n(0) in Eq.~6!
will vanish with the exceptionn50. Furthermore Eq.~6! is
an example of how using the Laplace integration theor
above, all recurrence relations associated with the Brown
motion may be generalized to fractional dynamics. The n
malized complex susceptibilityx̂(v)5x̂8(v)2 i x̂9(v) is
given by linear response theory as@10#

x̂~v!5
x~v!

x8~0!
512 iv

c̃1,0~ iv!

c1,0~0!
, ~7!

wherex8(0)5m2N/(2kBT) andN is the number of dipoles
per unit volume.@We remark thatc̃1,0(s) also yields the
Laplace transform of the characteristic function of the co
figuration space PDF.#

Equation~6!, which is a three term algebraic recurren
relation for thec̃1,n(s), can be solved in terms of continue
fractions@11# then yielding the generalization of the familia
Gross-Sack result@6,7# for a fixed axis rotator to fractiona
relaxation, namely,

x̂~v!

512
B~ ivt!s

B~ ivt!s1
B

11B~ ivt!s1
2B

21B~ ivt!s1
3B

31¯

,

~8!

wheres522a andB52g822( ivt)2(a21). Equation~8!, in
turn, can be expressed in terms of the confluent hyperg
metric ~Kummer! function M (a,b,z) @16#, viz.,

x̂~v!512
~ i tv!s

11~ i tv!s M „1,11B@11~ i tv!s#,B…. ~9!

Equation~9! can readily be derived by comparing Eq.~8!
with the continued fraction

M ~a,b,z!

~b21!M ~a21,b21,z!
5

1

b212z1
az

b2z1
~a11!z

b112z1¯

,

~10!
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BRIEF REPORTS PHYSICAL REVIEW E 65 032102
with a51, z5B, and b511B@11( i tv)s# and by noting
that M (0,b21,z)51 @16#. The continued fraction~10! can
be obtained from the known recurrence relation@16#

b~12b1z!M ~a,b,z!2azM~a11,b11,z!1b~b21!

3M ~a21,b21,z!50.

We remark that M (1,11b,z)5bz2bezg(b,z), where
g(b,z)5*0

ze2ttb21dt is the incomplete gamma functio
@16#.

For s51, Eq. ~9! can be reduced to Sack’s result@Eq.
~3.19c! of Ref. @7##. In the high damping limit (g8@1), Eq.
~9! can be simplified yielding the generalization@3,4# to frac-
tional dynamics of the Rocard@9,13# equation, namely,

x̂~v!5
1

11~ ivt!s22~vt/g8!2 . ~11!

On neglecting inertial effects (g8→`), Eq. ~9! becomes

x̂~v!5 1/@11~ ivt!s#, ~12!

i.e., the result previously proposed from empirical consid
ations@4#. Fors51, Eq.~12! reduces to the Debye equatio

Dielectric loss spectrax̂9(v) versus log10(vh), for vari-
ous values ofa andg8 are shown in Figs. 1–3. It is appare
that the spectral parameters~the characteristic frequency, th
half-width, the shape! strongly depend on botha ~which per-
tains to the velocity space! andg8. Moreover the HF behav
ior of x̂9(v) is entirely determinedby the inertia of system
It is apparent just as in Brownian dynamics that inertial
fects produce a much more rapid fall off ofx̂9(v) at HF.
Thus the Gordon sum rule for the dipole integral absorpt
of one-dimensional rotators@5#, viz.,

E
0

`

vx9~v!dv5 ~pNm2!/~4I !, ~13!

FIG. 1. Dielectric loss spectrax̂9(v) for g8510 and various
values ofa: a50.25 ~curves 1 and 18!, a50.5 ~2,28!, a51 ~3,
38!, anda51.5 ~4,48!. Solid lines~1, 2, 3, and 4!, Eq. ~9!; crosses
~18, 28, 38, and 48!, Eq. ~12!; filled circles, Eq.~14!.
03210
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is satisfied. It is significant that the right-hand side of E
~13! is determined by molecular parameters only and d
not depend on temperature. Such behavior is quite un
that resulting from the hypothesis that the fractional deri
tive acts on the convective term leading always@17# to infi-
nite integral absorption as in the Debye~excluding inertial
effects! and Van Vleck-Weisskopf kinetic models@6,7,18#.
Moreover, it is apparent from Figs. 1 and 3 assuming that
~1! also describes subdiffusion in configuration space~that is,
s,1 or 2.a.1!, then Eq.~9! also provides a physically
acceptable description of the loss spectrum. Here, in the h
damping limit (g8@1), the low-frequency part ofx̂9(v)
may be approximated by the modified Debye Eq.~12!. For
a,1 corresponding tos.1 ~enhanced diffusion in configu
ration space!, the low-frequency behavior ofx̂9(v) is similar
~see Figs. 1 and 3! to that of the dielectric lossx̂FR9 (v) in the
free rotation limit (z50), which is given by@6,7#

x̂FR9 ~v!5Aphve2h2v2
. ~14!

FIG. 2. Dielectric loss spectrax̂9(v) for a50.5 ~enhanced dif-
fusion! and various values ofg8: g85104 ~curves 1 and 18!, g8
5103 ~2,28!, g85102 ~3,38!, g8510 ~4,48!, and g851 ~5,58!.
Solid lines~1, 2, 3, 4, and 5!, Eq. ~9!; crosses~18, 28, 38, 48, and
58!, Eq. ~12!; filled circles, Eq.~14!.

FIG. 3. The same as in Fig. 2 fora51.5 ~subdiffusion!.
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BRIEF REPORTS PHYSICAL REVIEW E 65 032102
The HF dielectric absorption in the far-infrared region
proportional to the spectrum of̂ḟ(0)ḟ(t)&0 and can be
used to determine that AVCF experimentally@5#. In order to
calculate the equilibrium AVCF̂ ḟ(0)ḟ(t)&0 in the frac-
tional dynamics, one can simply adapt the result of Bar
and Silbey@14# for the translational VCF̂ẋ(0)ẋ(t)&0 replac-
ing translational quantities by rotational ones. We have

^ḟ~0!ḟ~ t !&05
kBT

I
EaS 2

g82

2 S t

t D aD , ~15!

whereEa(z) is the Mittag-Leffler function@1# defined by

Ea~z!5 (
n50

`
zn

G~11an!
. ~16!

Equation~15! represents the generalization of the AVCF
the Ornstein-Uhlenbeck@14,19# ~inertia corrected Einstein!
theory of the Brownian motion to fractional dynamics. T
long time tail due to the asymptotic (t@t) t2a like depen-
dence@1# of the ^ḟ(0)ḟ(t)&0 is apparent, as is the stretche
exponential behavior at short times (t!t). For a.1,

^ḟ(0)ḟ(t)&0 exhibits oscillations~see Fig. 4! consistent with
the large excess absorption occurring at HF.

In evaluating the dielectric response, we have ignored~i!
quantum effects,~ii ! dipole-dipole interactions, and~iii ! the
influence of the internal field@5#. The condition~i! means
that our results are applicable when the inequalityh\/I !1
~\ is the Planck constant! is fulfilled @6#. The above inequal-
ity breaks down in liquids only for the lightest polar mo
ecules such as HCl. The condition~ii ! reflects the fact tha
dipole-dipole correlations are neglected in the FKEE Eq.~1!,
which is only valid in the zero order of the small parame
m2N0 /kT!1; the last inequality is satisfied at room tem
peratures and for dipole moments;10218 CGS units up to a
concentration of 1021 cm23. This condition, as well as~iii !
~i.e., the macroscopic, or Maxwell, field is equal to the a
plied electric field! is satisfied in dilute dipolar systems, e.g
solutions of polar molecules in nonpolar solvents. One m
-

03210
i

r

-

y

expect, however, that the qualitative behavior of the diel
tric response will be similar at higher concentrations
dipoles.

To conclude, we have demonstrated, how existing Brow
ian motion solutions@6,7# for dielectric relaxation may be
generalized to fractional dynamics using continued fractio
@11#. The result is of particular interest in dielectric rela
ation as it demonstrates how the unphysical HF diverge
of the absorption coefficient due to the neglect of inertia m
be removed in fractional relaxation as in inertia correc
Debye relaxation~see Figs. 1–3!. The methods we have out
lined are also of interest when extended to other relaxa
models such as the itinerant oscillator@20#, which attempt to
incorporate both resonance and relaxation behavior i
single model with the purpose of simultaneously explain
the Debye~low-frequency! and far infrared absorption spec
tra of complex dipole systems.
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FIG. 4. The normalized angular velocity correlation functio

^ḟ(0)ḟ(t)&0 /^ḟ2(0)&0 for g8252 anda50.5 ~curve 1!, a51.0
~curve 2!, anda51.5 ~curve 3!.
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