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Correlation-dimension and autocorrelation fluctuations in epileptic seizure dynamics
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We focus on an anomalous scaling region in correlation integral@C(e)# analysis of electrocorticogram in
epilepsy patients. We find that epileptic seizures typically are accompanied by wide fluctuations in the slope of
this scaling region. An explanation, based on analyzing the interplay between the autocorrelation andC(e), is
provided for these fluctuations. This anomalous slope appears to be a sensitive measure for tracking~but not
predicting! seizures.
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An outstanding problem in biomedical sciences is to
vise techniques to understand and, more importantly, to
dict in advance of clinical onset, epileptic seizures that aff
about 1% of the population in industrialized countries. E
leptic seizures are characterized electrographically by sud
simultaneous changes in power spectral density and
creases in wave rhythmicity. These changes in brain activ
whether local or global, can be monitored via electrodes
the scalp ~electroencephalogram, EEG!, or intracranially
~electrocorticogram, ECoG!. These recordings provide
window, perhaps the only practically accessible window
present, through which the dynamics of epilepsy can be
vestigated. Analysis of EEG/ECoG has thus become the
ject of renewed interest in this field.

An approach that is gaining increasing attention is
application to this problem of techniques from nonlinear d
namics and chaos, originally developed for the study of l
dimensional, nonlinear, deterministic systems@1–11#. Pre-
liminary results suggest that EEG/ECoG signals during
seizure state can be described by low-dimensional dynam
systems@1–3#. If this were true, there would be hope th
detection or even prevention of epileptic seizures is wit
reach, because prediction@12# and control @13# of low-
dimensional chaotic systems are achievable. However, r
amination of these early claims indicates a lack of lo
dimensional dynamical structure in the EEG/ECoG@14,15#.
Despite this finding, measures that are useful for charac
izing low-dimensional chaotic systems, such as the corr
tion dimension and the Lyapunov exponents, have been
continue to be used to study the EEG/ECoG sign
@4,5,7,8,11#, resulting in various claims that epileptic se
zures can be predicted up to several minutes or hours be
their clinical manifestations@4,7,8,11#. In this paper, we
make a reasonable assumption that EEG/ECoG has a sig
cant stochastic component~with infinite dimensionality in
both the seizure and nonseizure states!, which should pre-
clude detection of a dimension drop at seizure onset. In l
of this, our position is that at the present, it is uncert
whether techniques based on nonlinear dynamics would
form better than conventional Fourier-based methods suc
the autocorrelation function, which is the inverse Four
transform of the energy spectral density by the Wien
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Khintchine theorem@16#. Prediction of seizures based o
EEG/ECoG signals thus remains an open problem.

In this paper, we focus on the correlation integral@C(e)#,
a measure originally proposed by Grassberger and Proca
@17#, which has become one of the most popular nonlin
dynamics based tools in the analysis of EEG/ECoG data
previous study@8# has demonstrated that decreases inC(e)
are predictive of seizure onset. The driving force behind
large number of studies on dimension analysis of EEG/EC
@1–3,7,8# is that epileptic seizures are regarded as emerg
states with reduced dimensionality compared to nonepile
activity. This concept finds support in the observations@18#
that neuronal hypersynchrony underlies seizures, a phen
enon during which the number of independent variables
quired to describe the system is smaller than at other tim
Thus, measures that detect reduced dimensionality of E
ECoG may allow for the prediction of seizures. Howev
recent results have suggested that these decreases i
C(e) merely may reflect sudden increases in signal am
tude@19#, which by themselves are nonspecific indicators
seizure onsets that can be more easily tracked through o
available approaches. Our main result is thatC(e) has sei-
zure discriminating ~but not predictive! power in an
amplitude-normalized signal, and that this information
contained in the scaling ofC(e) with an intrinsic length
scale (e). Specifically, during seizure, the slope of a line
scaling region is observed to undergo relatively large fl
tuations compared to the preseizure and postseizure st
We focus on these fluctuations and give an argument for t
dynamical origin based on monitoring the correspond
temporal variation in the autocorrelation of the data. W
mention that there are existing works on comparing lin
and nonlinear data-analysis techniques applied to EEG
nals@20#. The unique feature of our work is the identificatio
and analysis of the anomalous scaling region in the corr
tion integral from ECoG signals.

We begin by briefly reviewing the basic concepts in d
mension analysis of nonlinear time series. Given a signal,
use the standard technique of delay-coordinate embed
@21# to reconstruct, with appropriate choice of the delay tim
@22#, an m-dimensional phase space. An often computed
mension in nonlinear time series analysis is the correla
©2002 The American Physical Society21-1



n
b

c-
e

ts

e

hig
n
.
r

on

at

a
it
no
ta

ti
n

g-

lid

a

t on
t on

a-
f
ith
er
he
ns I

e
pre-

a-
pe
nd
in

er-
of
via

red

d
on-
s of

of

a
ies

r the

n

LAI, OSORIO, HARRISON, AND FREI PHYSICAL REVIEW E65 031921
dimensionD2. Grassberger and Procaccia show@17# thatD2
can be evaluated using the correlation integralC(e);eD2,
whereC(e) is the probability that a pair of points, chose
randomly in the reconstructed phase space, is separated
distance less thane. Let x(t) represent the reconstructed ve
tor time series of lengthN. The correlation integral can b
approximated by the following correlation sum:CN(m,e)
5@2/N(N21)#( j 51

N ( i 5 j 11
N Q(e2uxi2xj u), where Q(•) is

the Heaviside function given by:Q(x)51 for x>0 and 0
otherwise, anduxi2xj u stands for the distance between poin
xi and xj . For N large, we haveCN(m,e)'C(e). The cor-
relation dimensionD2 is usually estimated by examining th
slope of the linear portion of the plot of lnCN(m,e) versus
ln e for a series of increasing values ofm. For m,D2, the
dimension of the reconstructed phase space is not
enough to resolve the structure of the dynamical state a
hence, the slope approximates the embedding dimension
m increases, the resolution of the dynamical state in the
constructed phase space improves. For a low-dimensi
dynamical system, the slope in the plot of lnCN(m,e) versus
ln e increases withm until it reaches a plateau; its value
the plateau is then taken as the estimate ofD2 @17,23#. For
stochastic dynamics, the slope increases withm, never reach-
ing a plateau.

Theiler points out@22# that for a finite, autocorrelated dat
set, the plot ofC(m,e) on a logarithmic scale can exhib
approximately linear regions with distinct slopes that do
increase withm. Assuming that we have a window of da
$xj% j 51

N , the autocorrelation of the data,a, is computed
through the following average:a5(1/M )(k51

M (ak)
1/k,

where we use M56 in our computation andak

5^xjxj 1k&/^xj
2&. Theiler considers a Gaussian stochas

time series consisting ofN data points with autocorrelatio
0,a<1 and argues that ifN is large enough, or ifa is small
enough~near zero!, then the effect of autocorrelation is ne
ligible. However, ifN is not sufficiently large~as in the case
of ECoG analysis where a temporally moving window is s
through the time series! and/or if a is not close to zero, the
effect of autocorrelation becomes noticeable, leading to
anomalous scaling region in the plot ofC(m,e). The slope of

FIG. 1. Illustration of the anomalous scaling region in a typic
plot of the correlation integral from a segment of ECoG time ser
The commonly used base of the logarithm is 2.
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the plot in the anomalous scaling region is not dependen
the embedding dimension, and as such it does not reflec
the stochastic nature of the underlying process.

For instance, we show, in Fig. 1, a typical plot on a log
rithmic scale ofC(m,e) obtained from a preictal segment o
an ECoG time series. We notice three distinct regions w
approximately linear scaling: regions I and II with a high
slope than that of a third region in-between them. In t
cases that we have studied, the slopes extracted in regio
and II are close to that of the embedding dimensionm, indi-
cating that in these scales ofe, the ECoG time series ar
stochastic. The region of smallest slope reflects an ap
ciable amount of autocorrelation in the data: it is the anom
lous scaling region. As we will show, the value of the slo
in this region remains relatively constant in the preictal a
postictal phases, but typically exhibits large fluctuations
the ictal phase.

Our data have been collected from patients who und
went evaluation for epilepsy surgery at the University
Kansas Comprehensive Epilepsy Center, and is recorded
depth electrodes~Ad-Tech!, implanted stereotaxically into
each amygdalo-hippocampal region. Signals are filte
~0.5–70 Hz!, amplified, and digitized~240 Hz; 10 bits pre-
cision! using a commercially available device~Nicolet,
Madison, WI!. All recordings have been deemed of goo
technical quality and suitable for analysis. Each data set c
tains a number of seizures, captured over several day
continuous recording~mean duration of 100 h!. Given a
single ECoG time series, we utilize a moving window

l
.

FIG. 2. ~a! Original ECoG time series containing a seizure,~b!
time-dependent value of the anomalous slope averaged ove
embedding dimensions in the range 10<m<20, ~c! time-dependent
autocorrelation in each 2 s window of the ECoG segment shown i
~a!.
1-2
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20~s!. Nearby windows are overlapped with a time sepa
tion of 2~s!. Thus, if the first window spans the time interv
@0,20#~s!, then the second window is in@2,22#~s!, and so on.
We then compute the amplitude-normalized correlation in

FIG. 3. Form515, and eight time windows in the preictal~a!,
ictal ~b!, and postictal~c! phases, log2 C(m,e) versus log2 e on a
logarithmic scale.
03192
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gral as a function of time~chosen to be the right-hand side
the window!. The computation is performed for embeddin
dimension in the range 5<m<25. The computation of
C(m,e) is made efficient by assigning a number of bins
the counter, each corresponding to a specific distance ra
The delay time is chosen to bet51/12(s), which is a frac-
tion of a typical oscillating period of the ECoG time serie

A typical ECoG time series containing a seizure is sho
in Fig. 2~a!. Our main result is represented by Fig. 2~b!,
which shows the time evolution of the anomalous slope
eraged over a range of values of the embedding dimen
(10<m<20). Figure 2~c! shows the autocorrelation for th
same segment of ECoG. Some representative plots of
correlation integralC(m,e) are shown in Figs. 3~a!–3~c! for
the preictal, ictal, and postictal phases, respectively. We
serve the following:~1! in almost all analyzed data window
~whether preictal, ictal, or postictal!, an anomalous scaling
region exists, which allows for the mean slope to be e
mated,~2! in both the preictal and postictal phases, the pl
in the anomalous scaling regime at different times tend to
parallel to each other, indicating that the slopes rem
roughly constant~but with small fluctuations!, with the plots
in the preictal phase being steeper than the postictal ph
and ~3! in the ictal phase, there is an apparent lack of
approximately ‘‘constant’’ slope in the anomalous scaling
gime @as illustrated by the lack of parallelism in the lines
Fig. 3~b!#, indicating that the value of the anomalous slo
tends to fluctuate significantly. These behaviors can be
derstood through examination of the interplay between
autocorrelation of the ECoG time series and the correla
integral. It has been known@22# that, for a Gaussian random
process, the ‘‘flatness’’ of the plot of log2 C(m,e) versus
log2 e in the anomalous scaling regime depends on the va
of the autocorrelationa. In particular, a closer-to-unity auto
correlation tends to generate smaller slopes in the anoma
scaling regime, than when the autocorrelation is farther aw
from 1. We have observed the following from numeric
experiments:~1! in the preictal phase, the autocorrelation
relatively low, thereby generating relatively large values
the anomalous slope@about 2.8, as in Fig. 2~b!#; ~2! in the
postictal phase, the values ofa are closer to 1, as compare

FIG. 4. A 65 s segment of data in the preictal phase:~a! the
original ECoG time series and~b! the surrogate time series.
1-3
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with those in the preictal phase, leading to a drop in the m
value of the anomalous slope; and~3! in the ictal phase, the
autocorrelation varies widely in the range betweena0 and 1
(a0,1), hence the significant fluctuations@24# in the slope
of the plot of the correlation integral in the anomalous sc
ing regime. While the specific interplay betweena and
anomalous slopeSA varies interindividually, all analyzed se
zures~16 from four patients! have been characterized by si
nificant fluctuations in the anomalous slope@25#.

To be more confident that the anomalous scaling regio
due to autocorrelations in the time series, we compute
correlation integrals for surrogate data derived from
ECoG time series. Figures 4, 5, and 6 show a segmen
EcoG data of 65 s~a! and the corresponding surrogate o
~b! for preictal, ictal, and postictal phases, respectively. T
surrogate data are obtained via the standard procedure@26#,
i.e., by Fourier transforming the data, randomizing t
phases of the Fourier components, and then performing
verse Fourier transform. Figures 7~a!–7~c! show the correla-
tion integrals for eight windows of 20 s from the surroga
date in the preictal, ictal, and postictal phases, respectiv
where the parameters arem515 andt51/12 s. The exis-

FIG. 5. A 65 s segment of data in the ictal phase:~a! the original
ECoG time series and~b! the surrogate time series.

FIG. 6. A 65 s segment of data in the postictal phase:~a! the
original ECoG time series and~b! the surrogate time series.
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tence of the anomalous scaling region in the correlation
tegral from the surrogate date is evident. Due to the rand
izing effect in the surrogate procedure, the fluctuations in
slope of the linear fit between log2 C(m,e) and log2 e in the
anomalous scaling region are much smaller than those f
the original data, which is apparent particularly for the ic
phase.

FIG. 7. For surrogate data,m515, and eight time windows in
the preictal~a!, ictal ~b!, and postictal~c! phases, the plots of the
correlation integral on a logarithmic scale. The existence of
anomalous scaling region is evident.
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Our detailed and systematic analysis of the scaling wite
of the correlation integral, a concept from nonlinear dyna
ics that has been applied most commonly in the area of E
ECoG analysis, further suggests that the underlying dyna
cal process contains a significant stochastic compon
Though epileptic seizures are characterized by fluctuation
the value of the anomalous slope, the fluctuations corresp
.A
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to those of the autocorrelation, a more computationally e
cient measure for seizure tracking. Thus, it is questiona
whether any correlation integral based techniques can
more effective at predicting seizures than traditional sig
processing methods. This is apparently in sharp contras
the recent claims that such techniques are powerful for p
diction of seizures@7,8#.
ro-

.

S.

s.

cal
of

ue to

ion
hile

en-
or
to
to-

s in
ch
res,

able
ela-
e

D.

rth,
nd

k

@1# A. Babloyantz and A. Destexhe, Proc. Natl. Acad. Sci. U.S
83, 3513~1986!.

@2# A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P.
Rapp, Phys. Rev. A38, 3017~1988!; P. E. Rapp, T. R. Bashore
J. Martinerie, A. M. Albano, and A. I. Mees, Brain Topogr.2,
99 ~1989!; P. E. Rappet al., J. Neurosci.14, 4731~1994!.

@3# G. Mayer-Kress and S. P. Layne, Ann. N.Y. Acad. Sci.504, 62
~1987!.

@4# L. D. Iasemidis, J. C. Sackellares, H. P. Zaveri, and W.
Williams, Brain Topogr2, 187 ~1990!; L. D. Iasemidis, J. C.
Sackellares, R. L. Gilmore, and S. N. Roper, Epilepsia39, 207
~1998!.

@5# D. Lerner, Physica D97, 563 ~1996!.
@6# M. L. V. Quyen, J. Martinerie, C. Adam, and F. J. Varela, Ph

Rev. E56, 3401~1997!.
@7# K. Lehnertz and C. E. Elger, Phys. Rev. Lett.80, 5019~1998!;

C. E. Elger and K. Lehnertz, Eur. J. Neurosci.10, 786 ~1998!.
@8# J. Martinerie, C. Adam, M. L. V. Quyen, M. Baulac, S. Clem

enceau, B. Renault, and F. J. Varela, Nat. Med.4, 1173~1998!.
@9# S. J. Schiff, Nat. Med.4, 1117~1998!.

@10# I. Osorio, M. G. Frei, and S. B. Wilkinson, Epilepsia39, 615
~1998!.

@11# L. M. Hively, V. A . Protopopescu, and P. C. Gailey, Chaos10,
864 ~2000!.

@12# J. D. Farmer and J. J. Sidorowich, Phys. Rev. Lett.59, 845
~1987!; M. Casdagli, Physica D35, 335 ~1989!; G. Sugihara
and R. M. May, Nature~London! 344, 734~1990!; T. Sauer, in
Time Series Prediction: Forecasting the Future and Und
standing the Past, edited by A. S. Weigend and N. A. Gersh
enfeld ~Addison-Wesley, Reading, MA, 1993!.

@13# E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett.64, 1196
~1990!. For a recent review, see: S. Boccaletti, C. Grebo
Y.-C. Lai, H. Mancini, and D. Maza, Phys. Rep.329, 103
~2000!.

@14# J. Theiler, Phys. Lett. A196, 335 ~1995!; J. Theiler and P. E.
Rapp, Electroencephalogr. Clin. Neurophysiol.98, 213~1996!.

@15# G. W. Frank, T. Lookman, M. A. H. Nerenbery, C. Essex,
Lemieux, and W. Blume, Physica D46, 427 ~1990!; D. K.
Ivanov, H. A. Posch, and C. Stumpf, Chaos6, 243 ~1996!; J.
Jeong, M. S. Kim, and S. Y. Kim, Phys. Rev. E60, 831~1999!.

@16# J. G. Proakis and D. G. Manolakis,Digital Signal Processing
.

.

.

.

-

i,

.

Principles, Algorithms, and Applications~Prentice Hall, Upper
Saddle River, NJ, 1996!.

@17# P. Grassberger and I. Procaccia, Physica D9, 189 ~1983!.
@18# K. Lehnertz and C. E. Elger, Electroencephalogr. Clin. Neu

physiol.95, 108 ~1995!.
@19# I. Osorio, M. A. F. Harrison, Y.-C. Lai, and M. G. Frei, J. Clin

Neurophysiol.18, 269 ~2001!.
@20# For example, D. Kugiumtzis, and P. G. Larsson, inChaos in

Brain, edited by K. Lehnertzet al. ~World Scientific, Sin-
gapore, 2000!, pp. 329–332; S. Kitoh, M. Kimura, T. Mori, K.
Takezawa, and S. Endo, Physica D141, 171 ~2000!.

@21# F. Takens, inDynamical Systems and Turbulence,Lecture
Notes in Mathematics Vol. 898 edited by D. Rand and L.
Young, ~Springer-Verlag, Berlin, 1981!, p. 366.

@22# J. Theiler, Phys. Rev. A34, 2427~1986!.
@23# M. Ding, C. Grebogi, E. Ott, T. Sauer, and J. A. Yorke, Phy

Rev. Lett.70, 3872~1993!.
@24# Increase of fluctuations close to critical points is a classi

signature of nonequilibrium phase transitions. In the case
epileptic seizures, evidence so far suggests that they are d
synchronization between neurons@27#. From this standpoint,
the onset of a seizure is in fact a transition to synchronizat
of the underlying neural network in a generalized sense. W
such a synchronous state typically possesses a lower dim
sionality and can indeed be detected by tools from linear
nonlinear analysis, as we argue in this paper, it is difficult
predictsuch a transition in advance, due to the apparently s
chastic nature of ECoG signals.

@25# Fluctuations in the autocorrelation correspond to change
the time-frequency distributions of the signal. Variations su
as these changes typically are used to visually score seizu
thus the anomalous slope detects signal variations identifi
through alternate means in contrast to claims that the corr
tion integral detects visually ‘‘hidden’’ information about th
signal.

@26# J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J.
Farmer, Physica D58, 77 ~1992!.

@27# See, for example, R. Larter, B. Speelman, and R. M. Wo
Chaos9, 795~1999!. This paper presents a comprehensive a
biophysically detailedmodel of the underlying neural networ
for epileptic seizures.
1-5


