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Single molecule statistics and the polynucleotide unzipping transition

David K. Lubensky* and David R. Nelson†

Department of Physics, Harvard University, Cambridge, Massachusetts 02138
~Received 22 August 2001; published 6 March 2002!

We present an extensive theoretical investigation of the mechanical unzipping of double-stranded DNA
under the influence of an applied force. In the limit of long polymers, there is a thermodynamicunzipping
transition at a critical force value of order 10 pN, with different critical behavior for homopolymers and for
random heteropolymers. We extend results on the disorder-averaged behavior of DNA’s with random se-
quences@D. K. Lubensky and D. R. Nelson, Phys. Rev. Lett.85, 1572 ~2000!# to the more experimentally
accessible problem of unzipping a single DNA molecule. As the applied force approaches the critical value, the
double-stranded DNA unravels in a series of discrete, sequence-dependent steps that allow it to reach succes-
sively deeper energy minima. Plots of extension versus force thus take the striking form of a series of plateaus
separated by sharp jumps. Similar qualitative features should reappear in micromanipulation experiments on
proteins and on folded RNA molecules. Despite their unusual form, the extension versus force curves for single
molecules still reveal remnants of the disorder-averaged critical behavior. Above the transition, the dynamics of
the unzipping fork is related to that of a particle diffusing in a random force field; anomalous, disorder-
dominated behavior is expected until the applied force exceeds the critical value for unzipping by roughly 5
pN.

DOI: 10.1103/PhysRevE.65.031917 PACS number~s!: 82.37.Rs, 87.14.Gg, 87.15.Aa
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I. INTRODUCTION

Over the past decade, the experimental repertoire of
physicists and structural biologists has expanded to incl
some remarkable micromanipulation techniques. Th
single molecule methods are a natural complement to m
traditional scattering and spectroscopic measurements:
though they cannot ascertain structures at atomic resolu
they do give important information about the organization
disordered or strongly fluctuating systems, and they yi
valuable estimates of the forces and energies that stabili
given structure. Moreover, micromanipulation experime
on single molecules open a window into a rich and larg
unexplored set of physical phenomena. One can now m
sure entire distributions of molecular properties, without
requirement for averaging over a macroscopic sample.
only does the wealth of resulting data allow more string
tests of ideas originally developed for macroscopic syste
it also has the potential to reveal entirely new behavior t
was not discernible in aggregate results on heterogen
populations of molecules@1–3#. In this paper, we study an
example of a system—theunzipping of double-stranded
DNA ~dsDNA!—that shows exactly such novel response
the single molecule level. Our results are also directly ap
cable to the unzipping of a single RNA hairpin, and simi
ideas can be applied to the force-induced denaturation
RNA’s with more complicated secondary structures@3# and
even to the stretching of folded proteins@4#.

In the DNA unzipping problem, the two single strands
a double-stranded DNA molecule with a randomly chos
base sequence are pulled apart under the influence of a
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stant force~Fig. 1!. In addition to providing a surprisingly
good description of protein-coding DNA@6#, the assumption
of a random sequence gives us an analytically tracta
model; its solution then allows us to gain insight into a mu
broader class of systems. DNA unzipping thus serves a
model problem to illuminate the effect of sequence variat
on a micromechanical experiment.

In a previous brief communication@5#, we showed that
the averageextension versus force curve of an ensemble
random heteropolymers is markedly different from the c
responding curve for a homopolymer. Here, we move
yond averages over many different random sequences to
amine the unzipping of asingledsDNA molecule. Interesting
qualitative lessons emerge. Whereas a homopolymer g
considerable entropy by opening in response to a cons
force, a heteropolymer unzips primarily for energetic re
sons. In fact, the unzipping process is dominated by the p
ence of deep energy minima and is only mildly perturbed
thermal fluctuations. At any given applied force, the syst
will sit in the deepest available minimum; because the lo
tion of the minimum varies discontinuously with the applie
force, the number of bases opened will show sharp jump
certain force values. Moreover, the energy landscape is
termined by the polymer’s sequence, so the force-exten
curve will be strongly sequence dependent.

A number of theorists have recently addressed aspec
dsDNA unzipping @7–15#; the mechanical properties of
single-stranded polynucleotide that can pair with itself ha
also received considerable attention@16–19#. With a few ex-
ceptions@13,19#, however, this work has been restricted
the study of homopolymers, and thus does not overlap
rectly with the results presented here.

Although our model is chosen more for its simplicity tha
for a clear correspondence to a particular experiment in
literature, several related experiments have nonetheless

in
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DAVID K. LUBENSKY AND DAVID R. NELSON PHYSICAL REVIEW E 65 031917
performed. Early studies by Lee and co-workers@20# were
followed by the ground breaking work of Essevaz-Roul
Bockelmann, and Heslot@21#, who demonstrated the feas
bility of mechanically denaturing single dsDNA molecule
and showed that many features of their results could be
derstood using equilibrium statistical mechanics. Sub
quently, similar experiments have been performed using
atomic force microscope@22,23#. In contrast to our calcula
tions, this work was done in an ensemble in which the po
tions of the two single-stranded ends are held fixed while
average force is measured. Because of subtleties assoc
with the statistical mechanics of single molecule syste
this constant extensionensemble is not equivalent in th
usual sense to ourconstant forceensemble; the connectio
between the two will be discussed in more detail in Sec.
More recently, Liphardt and co-workers have mechanica
unfolded several different short RNA molecules related t
domain of theTetrahymena thermophilaribozyme@3#. Here,
a bead tethered to a force-measuring optical trap was u
both to impose an extension and, with feedback, to mon
extension at fixed force—precisely the situation of interes
this paper. Alternatively, a constant force could be direc
applied using a magnetic bead in a constant magnetic
gradient@24#.

In the remainder of this paper, we first, in Sec. II, descr
in more detail the phase diagram of polynucleotide duple
and show how a coarse-grained model of the unzipping t
sition can be derived from more microscopic descriptions
dsDNA. This model, which will form the basis of all subs
quent calculations, is summarized in Eqs.~13! through~15!.
For the purposes of comparison, we derive in Sec. III so
results on the unzipping of homopolymeric dsDNA. Secti
IV revisits in more detail the disorder-averaged forc
extension curve examined in Ref.@5#. The bulk of our new
results on single-molecule unzipping appear in Sec. V.
show that the equilibrium extension versus force curve o
single dsDNA molecule consists of a series of long plate
followed by large jumps, and we derive a statistical desc
tion of this striking behavior. We also demonstrate that,
spite its choppy appearance, such a curve contains hid
signatures of the smooth disorder-averaged behavior. Su
quent sections consider the relationship between the co
gate constant force and constant extension ensembles~Sec.
VI ! and give a brief overview of the dynamics of unzippin
~Sec. VII!. We point out that polynucleotide unzipping pro
vides an experimental realization of the famous Sinai pr
lem of thermally activated diffusion in a quenched rando
force field@25,26#. Anomalous, quasilocalized dynamics pe
sist up to roughly 5pN above the unzipping transition.
nally, in Sec. VIII, we discuss the implications of DNA un
zipping for micromanipulation experiments on mo
complicated systems. The Appendix gives a brief descrip
of the numerical methods used to generate results discu
in the body of the paper.

II. THE MODEL

Figure 1 depicts the situation studied in this paper: One
the single strands from a double-stranded DNA molecule
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attached to a glass slide, and the other to a bead on whi
constant forceF is exerted.F could be created, for example
with magnetic tweezers, which have been used to exert c
stant piconewton-scale forces over hundreds of microns@24#.
Optical tweezers or atomic force microscopes~AFM! with
appropriate feedback can create a similar effect@3,27#. As a
result of the applied force, the DNA partially ‘‘unzips,
breakingm bonds. As long as the force-elongation curve
the liberated single-stranded DNA is known,m can be re-
lated to the distancer between the ends of the two sing
strands, which is easily measured. Our main goal is to
derstand how theequilibrium ensemble averagêm& ~where
the angle brackets indicate an average over thermal no!
depends onF and on the base sequence of the DNA stra

In certain limiting cases, the dependence ofm on F is easy
to understand. One might expect that at large enough fo
the dsDNA will unzip completely, whereas for very sma
forces at most a few bases will open. We show below t
these two regimes are separated by a sharp first-order p
transition. Below the critical forceFc , only a finite number
of bases at the end of the double strand are pulled open
the thermodynamic limit of an infinitely long DNA molecule
the pulling force thus has no effect on thefraction of open
bases, which remains very small in physiological conditio
Above Fc , the entire molecule unzips, and the fraction
open bases jumps discontinuously to one. This phase
gram is sketched in the inset to Fig. 1. AsF approachesFc
from below, the numberm of unzipped bases at the end
the molecule diverges. Because this divergence is entire
surface phenomenon, the unzipping transition can be thou
of as the one-dimensional analog of a continuous wett
transition@28#.

FIG. 1. Sketch of the DNA unzipping experiment. One of t
single strands of a dsDNA molecule with a random base sequen
attached by its end to a solid surface, and the other is pulled a
from the surface with a constant forceF. As a result, the double
strand partially denatures, separatingm base pairs (m52 in the
figure!. The distance between the ends of the two single strands
extension, is r . Inset: Schematic phase diagram in the temperatur
pulling force (T-F) plane of a dsDNA molecule in three dimen
sions. At low enoughT andF, the polymer is in the native, double
stranded phase. At the phase transition lineFc(T), the DNA
denatures and the two strands separate. Thermally inducedmelting
occurs at zero force at a temperatureTm . As indicated by the arrow,
this paper considers instead theunzippingtransition, in which the
phase transition line is crossed at nonzeroF. The reentrance at low
temperatures is predicted in Ref.@11#.
7-2
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SINGLE MOLECULE STATISTICS AND THE . . . PHYSICAL REVIEW E 65 031917
The effect of base sequence on the force-elongation c
is less straightforward. We can gain some insight into
role of a variable sequence by considering the problem
unzipping a DNA molecule where each successive bas
chosen at random, with at most short-ranged correlations
tween bases. Although the sequence of protein-coding D
is certainly not random in any strict sense, it nonethel
appears to many statistical criteria to fit this description~up
to a length scale set by the sequence’s mosaic structure! @6#.
Deviations from randomness that escape these tests pre
ably involve fairly subtle multipoint correlations. Althoug
the structure of the protein for which the DNA codes is like
to depend on such correlations, the mechanical denatura
of the DNA itself, which depends only on the cumulativ
energy cost of openingm bases, should be relatively inse
sitive to them. Simulations of the more complicated probl
of pulling on folded RNA’s have shown good agreement w
the predictions of a random model@19#. It is thus reasonable
at least as a first approximation, to take the DNA seque
being unzipped to be random and uncorrelated. In the
mainder of this section, we develop a mathematical desc
tion of the unzipping of such a DNA sequence by a const
force.

A. Semimicroscopic models

The bulk thermally drivenmelting transition of dsDNA
~see Fig. 1! can be described at varying levels of detail by
number of models, all of which are expected to give t
same universal behavior on long enough length scales.
popular choice is an Ising-like description, in which a ba
pair is taken to be in one of two discrete states—open
closed. By convention, the free energy of an unconstrai
base pair in the open state is set to zero. A melted stretc
single-stranded DNA flanked by two unmelted regions m
form a closed loop, and a loop factor accounts for the los
entropy caused by this constraint@29#. The Hamiltonian of a
semi-infinite strand can be written as a sum of~free! energies
associated with successive paired and unpaired regions:

HI5(
i

H F (
n5ci

oi21

«nG12J1 f ~ci 112oi !J . ~1!

Here base positions are indexed bynP$0,1,2, . . . %, and the
ith closed and open sections start at base numbersci andoi ,
respectively~see Fig. 2!. Each base pair gains an energy« i

FIG. 2. Definition of the variablesci and oi in the Ising-like
model@Eq. ~1!#. In this figure, three bases are open at the end of
dsDNA. Counting the first open base asn50, the location of the
first closed base is thenc153. Similarly, the next open base is a
o1510.
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from being closed; sequence-dependent stacking interac
can be included by adding an additional energy«n,n11 @30#.
For the case of a random DNA sequence, the« i are indepen-
dent random variables. The energy 2J per open section gives
the energetic cost of initiating a melted region, andf (ci 11
2oi)} ln 2(ci112oi) is the entropic penalty associated wi
forming a closed loop of length 2(ci 112oi). If there are
open bases at the end of the molecule, before the first clo
section, they are counted as the zeroth open section an
not incur any loop penalty. The model’s partition function
a sum over all possible opening and closing points,ZI
5(0<c1,o1,•••,cn,on•••

exp(2HI /kBT).
Alternatively, some models of the melting transition a

written in terms of the position of each base in thre
dimensional space@31#. In the continuum limit, the simples
such description of a dsDNA of finite lengthN has the
Hamiltonian

HC5E
0

N

dnH kBTd

4ab S dR

dnD 2

1Vn@R~n!#J , ~2!

where R(n) is the relative displacement of the two sing
strands at base pairn, d is the spatial dimension,a is the
backbone length of a chemical monomer along a sin
strand, andb is the Kuhn length of single-stranded DNA~see
Fig. 3!; the factor of 1/ab appears instead of the more usu
1/b2 @32# becausen indexes base pairs rather than Kuh
segments. We will usually be interested in the limitN→` of
a semi-infinite polymer, just as for the Ising-like model. B
convention,R(n)50 when thenth set of bases are paired
Because we will be especially interested in the distance
tween the ends of the two single strands, it is useful to de
the extension

r[R~0!. ~3!

e

FIG. 3. Definition of the variables in the continuum model@Eq.
~2!#. The distance between the ends of the two single strands~the
extension! is r , and the number of open bases ism. The bases are
indexed byn; the separation between the two single strands at
nth base pair from the end is given byR(n).
7-3
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DAVID K. LUBENSKY AND DAVID R. NELSON PHYSICAL REVIEW E 65 031917
The first term in Eq.~2! describes the entropic elasticity o
the single strands@32# and thus has the same effect as t
loop factors in the Ising-like model. The second term a
counts for the attractive interactions between the two sin
strands. Coarse-grained over a number of bases, they
described by a phenomenological potential energy term

Vn@R~n!#5@11h̃~n!#h@R~n!#. ~4!

Hereh is a short-ranged attractive potential, and the variat
with base sequence of the strength of the attrac
between strands is described byh̃(n). Standard methods
show that the continuum partition functionZC(R,N)
[*D@R8(n)#exp(2HC@R8#/kBT) obeys an imaginary time
Schrödinger equation@32#.

Either model can readily be extended to include a fo
pulling apart the double-stranded molecule. We first sh
explicitly how this can be done neglecting long-ranged int
actions~e.g., excluded volume or base-pairing interactio!
within the liberated single strands. Subsequently, we will
gue that including such effects will lead to only min
changes in our results near enough to the transition. A c
stant force acting at the end of the DNA (n50) to separate
the two single strands contributes an energy that is linea
their separation. In the case of the continuum model~2!, one
must thus add a term to the Hamiltonian of the form

HC,pull~F!52F•r5E
0

N

dnF•dR/dn. ~5!

In writing the second equality, we have neglected the eff
of the other end of the dsDNA atN5`; with a physical
polymer of finite lengthN, this approximation should be
valid as long as the number of open basesm&N, so that
R(N)'0.

Unlike the continuum model, the Ising-like model do
not keep track of the positions of the open bases. We m
thus take an alternative view of the effect of an unzipp
force. The last equality of Eq.~5! gives a hint of how to do
this. Suppose that, as in Fig. 2, the first closed section
dsDNA starts at basec1, so thatm5c1 bases are unzippe
by the force. In the discrete Ising-like model, each libera
single strand can be described as a string ofm individual
monomers. Thenth such monomer contributes a displac
ment un

a or un
b to the total end-to-end distance of the sing

strand, where the superscripts distinguish the two stra
The energy of unzipping is thus2F•r52(n50

m F•un
a

1(n50
m F•un

b . Note that there is no reason to extend the su
overn to infinity; the positions of base pairs beyond the fi
closed pair have no effect on the end-to-end distancr
[R(0). Wewould now like to trace over theu’s to obtain a
contribution to the Hamiltonian that depends only on t
number of open monomersm5c1. The precise result will
depend on the model used to describe the elastic prope
of a single-stranded monomer. For any reasonable cho
however, the traces over the differentu’s must decouple,
leading to a free energy of the form 2mg(F). Hereg(F) is
the change in free energy of a single-stranded mono
caused by applying a tensionF; by definition,g(0)50. Be-
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cause the monomers gain energy by aligning with the pull
force, g(F) decreases with increasingF. For example, the
continuum model Hamiltonian~2! is quadratic indR/dn and
thus describes a polymer that responds linearly to an a
trarily large force. Such a Gaussian model results in ag(F)
that is quadratic inF:

g~F !52
a

b

F2b2

2dkBT
~Gaussian!. ~6!

Similarly, for an inextensible freely jointed chain, one fin
@33#

g~F !52
a

b
kBT lnFkBT sinh~Fb/kBT!

Fb G ~Freely jointed!.

~7!

In these equations,a is again the backbone distance betwe
bases; the factor ofa/b is necessary becauseg(F) is defined
as the free energy per chemical monomer, not per Ku
length. More generally, if the forceFss(x) exerted by the
single-stranded polymer as a function of the extensionx per
base can be measured, then

g~F !5E
0

x(F)

Fss~x8!dx82Fx~F !52E
0

F

x~F8!dF8, ~8!

wherex(F) is the inverse function ofFss(x).
Regardless of the exact form ofg(F), the effect of an

unzipping force can be included in the Ising-like model
adding a term to the Hamiltonian~1! that gives the free en
ergy of the unzipped monomers under tension. Becausm
5c1, we haveH5HI1HI,pull with

HI,pull~F !52c1g~F !. ~9!

Sinceg(F),0, this term favors increasingc1, and thus un-
zipping the dsDNA.

B. Reduction to one degree of freedom

Semimicroscopic models such as those just discus
contain far more details than are necessary to describe
unzipping transition. Our calculations would simplify if w
could integrate out nonessential degrees of freedom to ob
a description that focuses on the number of unzipped ba
m. The full partition function of the Ising-like model is a sum
over all of the closing and opening pointsc1 ,c2 ,c3 , . . . and
o1 ,o2 ,o3 , . . . . Among these parameters, the only one th
determines the number of bases that have been unzipp
c1. Hence we focus on a constrained partition function w
c15m fixed,

ZI
0 expF2

E~m!

kBT G[ (
m5c1,o1,c2,o2,•••,cn,on,•••

3expF2
HI1HI,pull~F !

kBT G , ~10!

where the partition function
7-4
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ZI
05 (

05c1,o1,•••,cn,on•••
exp@2HI /kBT2HI,pull~F !/kBT#

with c1 constrained to be zero is included so thatE(0)50.
This expression defines the functionE(m); it can be intro-
duced in a similar manner in the continuum model, by a
ing the constraint R(m)50 to the partition function
ZC(R,N)[*D@R8(n)#exp(2HC /kBT2HC,pull /kBT) and
replacing the attractive potentialVn with a hard core repul-
sion for n,m. E(m) gives the change in free energy fro
unzipping exactlym bases under the influence of a forceF. It
can be written as the sum of the free energy 2mg(F) of the
m liberated base pairs and of the change in free energy o
dsDNA when it is shortened bym base pairs. This secon
term takes account of any fluctuations that open base p
beyond the first closed basec1 and is independent ofF. For
homopolymeric DNA, this term takes the form2mg0,
where g0,0 is the average free energy per base pair
dsDNA. Once sequence heterogeneity is present, howe
we must include sequence-dependent deviations from the
erage. If the deviation from the average on opening thenth
base ish(n), thenE(m) can be written as

E~m!5@2g~F !2g0#m1 (
n51

m

h~n!. ~11!

Consider now the statistics of the random contributionh(n),
assuming that the underlying DNA sequence is random
uncorrelated. The functionh(n) reflects this bare sequenc
@represented byh̃ in the continuum model potential~4!#
dressed by thermal fluctuations. As long as the dsDNA
well below its melting temperature, one expects thath will
be a random variable with correlations that decay on
scale of the finite correlation length of the dsDNA. If we a
only interested in long-length-scale properties, we can t
takeh to be Gaussian white noise. It is convenient to defi
a quantity

f [2g~F !2g0 ; ~12!

f is positive below the unzipping transition and negat
above it. Passing to the continuum limit, we can then wr

E~m!5 f m1E
0

m

dnh~n!, ~13!

whereh(n) is a zero-mean Gaussian random variable t
satisfies

h~n!h~n8!5Dd~n2n8!. ~14!

Here the overbar indicates a ‘‘disorder average’’ over diff
ent realizations of the random base sequence. The assoc
partition function is simply, up to an unimportant multiplica
tive constant,

Z5E
0

`

dmexpS 2
E~m!

kBT D . ~15!
03191
-

he

irs

f
er,
v-

d

is

e

s
e

t

-
ted

Equations~13! through ~15! define the basic model tha
we will study for the remainder of this paper. It is simp
enough to allow a number of exact predictions, but still c
rectly captures the coarse-grained features of unzipping
the presence of sequence heterogeneity. It is not difficul
see that our model shows a sharp unzipping transition:
F50, f 52g(0)2g052g0 is positive. As the pulling force
F is increased from 0,g(F) becomes negative, andf de-
creases but remains positive.E(m) thus grows linearly for
largem, and at most a finite number of bases near the en
the dsDNA can be unzipped. These do not contribute ap
ciably to the average free energy per base pair of a very l
molecule, which remainsg0 as at zero force. AsF increases
andg(F) becomes increasingly negative, however,f changes
sign at some critical force valueFc satisfying

2g~Fc!5g0 . ~16!

Upon expanding aboutFcwe see that to leading order,f
;Fc2F. For F.Fc , the average slopef of E(m) is nega-
tive, andE(m) tends towards negative infinity for largem. It
is thus advantageous to unzip the dsDNA completely. W
all base pairs unzipped, the average free energy per pai
comes 2g(F). The discontinuous slope atFcof the free en-
ergy per base pair as a function ofF ~see Fig. 4! indicates
that the bulk transition is first order. Surface quantities su
as ^m& will nonetheless diverge as the transition is a
proached, just as in a critical wetting transition near a c
ventional first-order phase transition@28#. The precise sur-
face behavior in this one-dimensional system will be t
subject of subsequent sections.

FIG. 4. Sketch of the bulk free energies per base pairg0 of the
zipped phase and 2g(F) of the unzipped phase as a function of th
applied forceF. These negative energies are measured relativ
the free energy of a base pair at infinite separation withF50.
While g0 is independent ofF, 2g(F) decreases with increasingF.
At a critical force valueFc , the zipped phase becomes unstab
relative to the unzipped phase, and a phase transition occurs.
equilibrium free energy per base pair as a function ofF is given by
the solid curves; the discontinuous change in slope atFcindicates a
first-order transition.
7-5
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For dsDNA in physiological conditions, one can igno
the rare fluctuational openings of base pairs in the bulk
use published base pairing energies to estimate the param
values in our model. The pairing energies typically vary b
tween roughly 1kBT and 3kBT per base@34#; one thus finds
g0;2kBT and D;1(kBT)2. A typical Kuhn length for
single-stranded DNA~ssDNA! is b;15 Å @33,35#; inserting
this value into the freely jointed chain expression forg(F)
@Eq. ~7!# gives a pulling forceF of order 10 pN at the un-
zipping transition. As we shall see, the sequence random
dominates whenu f u&D/kBT;kBT; randomness is hence im
portant whenever there is appreciable unzipping in hetero
neous polynucleotide sequences in physiological conditio

The model of Eqs.~13! through~15! is considerably more
general than the semimicroscopic models from which
derived it. For example, onceg(F) has been ascertained@e.g.
by measuring the force-extension curve of ssDNA in app
priate conditions@3,33,35# and using Eq.~8!#, it can be used
without reference to any underlying description of the
DNA. In fact, many predictions of our model are indepe
dent of its exact form. Similarly, most models of dsDNA~or
of RNA hairpins! can be used to define parametersg0 andD;
all of the relevant information about the duplex is contain
in these two numbers. We also expect that our descrip
applies even when nonlocal interactions along the ssD
backbone are allowed. All that is required is that the fr
energy of the ssDNA be proportional tom, so that a function
g(F) can be defined. For example, a polymer in a go
solvent under tension can be described as a string of b
@36#. Oncem is larger than the blob size, as must occur clo
enough to the unzipping transition, the free energy of
single strands will be proportional tom. In fact, in physi-
ological conditions and at the forces of order 10 pN requi
to unzip dsDNA, the blob size will be at most a few mon
mers, meaning that excluded volume interactions can be
glected entirely in a first approximation. Likewise, a mod
of single stranded polynucleotides with uniformly attractiv
nonrandom base pairing interactions~tending to produce
hairpins! predicts a free energy proportional to the number
bases in the strand@16#. This model agrees well with exper
mental force-extension curves for ssDNA. The same ca
lations show that the fraction of bases in the liberated sin
strands involved in intrastrand pairing interactions will
small at the unzipping transition. Sequence variation will f
ther suppress such pairing: Because not all bases can
with each other, it will generally be necessary to make
large loop in order to bring together two stretches of ba
that can pair to form a stem. This means that more w
must be done against the pulling force for the same gain
base pairing energy. Although it might still be possible fo
stem region of atypically highGC content to pair in this
way, in a truly random sequence the probability of findi
such a region decays exponentially with its length.

C. Related physical systems

Although the main focus of this paper will be the m
chanical unzipping of polynucleotide duplexes, our form
ism also applies to other experiments and physical syste
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For example, an alternative method for unzipping DNA is
force one of the single strands through a very small pore
applying an electric field@37#. If the pore is so narrow tha
double-stranded DNA cannot fit through it, and if the appli
field is strong enough, one of the single strands can enter
pore and be drawn through it, thereby unzipping the dup
~see Fig. 5!. In this case, the analog ofg(F) is the electro-
static energy gained by the single strand passing through
pore, reduced by any entropic penalty the other single str
must pay due to confinement by parts of the pore or
adjoining walls@38#. Continuum models such as Eq.~2! are
also commonly used to describe a number of other syste
in several of them, there is a natural analog to the pull
force Fc . Examples include the adsorption of a Gauss
random heteropolymer, whereFc maps directly to a force
pulling the end of the polymer away from the adsorbi
surface @39#, and a flux line in a type II superconducto
bound to a fragmented columnar defect@40#, whereFc can
be viewed as the magnetic field strength perpendicular to
defect. In addition, the HamiltonianHC1HC,pull bears a
strong resemblance to models of the wetting transition in t
dimensions in a wedge with angle close to 180°@41#.

III. STATISTICAL MECHANICS OF HOMOPOLYMER
UNZIPPING

Before tackling the more difficult problem of unzipping
double-stranded molecule with a random base sequence
describe some results for a uniform sequence@5,9#. If the
energy cost of opening each successive base pair is the s
then the deviationh(n) from the average vanishes ident
cally, andE(m)5 f m. Even if, as would be the case for a
alternating base sequence,h(n) is a nonzero periodic func
tion, we expect that on scales longer than its period,h(n)
can safely be set to zero. In this section, we show explic

FIG. 5. Schematic of dsDNA unzipping through a narrow po
@37#. The pore is assumed to be large enough that single-stran
DNA, but not double-stranded DNA, can fit through it. Under t
influence of an electric field or comparable forceF, one single
strand inserts into the channel and is gradually pulled through
the strand is drawn through the pore, it must unzip from its comp
mentary strand.
7-6
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SINGLE MOLECULE STATISTICS AND THE . . . PHYSICAL REVIEW E 65 031917
that the semimicroscopic continuum model discussed ab
@Eqs. ~2! and ~5!# gives results identical to those followin
from the simpler single degree of freedom description.

Equilibrium statistical mechanics in a linear potential
straightforward. The partition function of our minimal mod
is simply Z5*0

`dmexp(2mf/kBT)5kBT/ f , and the prob-
ability of opening exactlym bases is (f /kBT)exp(2mf/
kBT). The equilibrium moments ofm can be obtained from
derivatives of the free energyG( f )52kBT ln Z with
respect to f: ^m&5]G/] f 5kBT/ f , ^m2&2^m&2

5]2G/] f 25kBT/ f 2, and so on. Recalling thatf ;Fc2F, we
see that̂ m&exhibits a power law divergence near the unz
ping transition;

^m&;~Fc2F !21 ~homopolymer!. ~17!

The divergence of̂ m& has a simple origin: Although the
absolute minimum ofE(m) remains atm50 everywhere be-
low the transition, the system explores all configuratio
with E(m)&kBT, or equivalentlym&kBT/ f ; this of course
suggests the same scaling for^m& found in the exact calcu
lation. The homopolymer thus opens partially forF,Fc en-
tirely in order to gainentropy. We shall see in subseque
sections that a very different physical mechanism domina
in the unzipping of heteropolymers.

Connection to non-Hermitian delocalization

A different perspective on the mechanical denaturation
a homopolymer follows from viewing the energyHC
1HC,pull of the continuum model@Eqs. ~2! and ~5!# as an
imaginary time quantum mechanical action. The partit
function Z(R,N) of a strand of lengthN, subject to the con-
straint R(N)5R, satisfies the partial differential equatio
@32#

]Z

]N
5

b2

d S ¹R1
F

kBTD 2

Z2
V~R!

kBT
Z[2L~F!Z, ~18!

where the sequence-dependent functionVN(R) is replaced
by theN-independent potentialV(R) for a homopolymer. In
order to avoid a proliferation of factors ofa/b, we assume
that the backbone distancea between chemical monomers
equal to the Kuhn lengthb. WhenF50, Eq. ~18! is just an
imaginary-time Schro¨dinger equation. With the addition of
nonzero pulling forceF, the strict correspondence with con
ventional quantum mechanics is lost. Nonetheless, much
be learned by studying the evolution operatorL using the
language of quantum mechanics. This avenue as been
sued for the formally identical problem of a flux line pinne
to a defect in a type II superconductor@42#. In this section,
we show explicitly that results from this more microscop
approach can be recovered from the simplified model e
bodied in Eqs.~13! through~15!.

In analyzing Eq.~18!, it is useful to view the forceF as a
constant, imaginary vector potential. The ‘‘gauge transform
tion’’ operator

U:c~R!°exp~F•R/kBT!c~R! ~19!
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can thus be used to relate the operatorL(F) at a forceF to
the Hermitian operatorL(0):

L~F!5UL~0!U 21,

L~0!52
b2

d
¹R

2 1
V~R!

kBT
. ~20!

Under the same transformation, the eigenfunctionscn
F(R) of

L(F) are given by

cn
F~R!5Ucn

0~R!5eF•r /kBTcn
0~R!. ~21!

Equation~21! shows that exerting a nonzero forceF biases
the eigenfunctions in the direction of the force. This tran
formation is valid as long as the new eigenfunctionc0

F sat-
isfies the same boundary conditions as the untransfor
eigenfunction. If we think of an isolated polymer in a bo
whose size tends towards infinity, the appropriate bound
conditions are thatcn

F be well behaved at infinity; given the
form of U, this is equivalent to demanding that the eige
functioncn

0(R) of the Hermitian problem decay at least at
fast as exp(2FR/kBT) for largeR5uRu. When this condition
holds for thenth eigenfunction, the corresponding eigenva
ues ofL(0) andL(F) will be identical, and the eigenfunc
tions will be related according to Eq.~21!. Because, accord
ing to Eq.~18!, the contribution of each eigenvalueln to the
partition function decays as exp(2lnN), the smallest eigen-
valuel0 dominates in the limit of a very long polymer du
plex. We are interested in conditions in which the dsDNA
stable in the absence of a pulling force; in this case,L(0),
which describes the native, unpulled polymer, must have
least one bound state. The ground state eigenvaluel0,0
differs from the free energy per lengthg0 of dsDNA intro-
duced previously only by a factor ofkBT: g05kBTl0. Be-
causeV(R) is a short-ranged potential, the ground sta
wave functionc0

0(R) should decay as exp(2k0R) for large
R, with the decay rate given by

k05
1

b
Aul0ud5

1

b
Aug0ud

kBT
, ~22!

whered is the spatial dimension. When applied to the grou
state wave function, the gauge transformation of Eq.~21!
thus breaks down at a force of magnitudeFc given by

Fc

kBT
5k0⇔Fc5

kBT

b
Aug0ud

kBT
. ~23!

It is natural to regard this force as the location of t
unzipping transition. Indeed, one can show@42# that far from
the ends of a long polymer, the probability that a given ba
pair will be separated by a displacementR is P`(R)
5c0

F(R)c0
2F(R). ForF,Fc , the two gauge transformation

cancel each other, andP`(R)5@c0
0(R)#2. Thus, belowFc

paired bases in the bulk of the dsDNA always stay near e
other, and the polymer is below the unzipping transition~see
Fig. 6!. Conversely, aboveFc , where the gauge transforma
tion is no longer valid, the eigenfunctionsc0

6F are dominated
7-7
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DAVID K. LUBENSKY AND DAVID R. NELSON PHYSICAL REVIEW E 65 031917
by F and are extended. Indeed, one can demonstrate that
become plane waves asR→`. The two single strands ar
then typically widely separated~Fig. 6!, and the DNA is
above an unzipping transition given by Eq.~23!.

Upon inserting the expression forg(F) @Eq. ~6!# appro-
priate for the Gaussian single-stranded polymer into our p
vious criterion 2g(Fc)5g0, we obtain a value for the critica
unzipping forceFc identical to Eq.~23!. In fact, provided the
duplex binding potentialV(R) vanishes asR→`, c0

F(R)
will approach a nonzero constant for largeR aboveFc . One
can then read offl052b2F2/d(kBT)2 directly from Eq.
~18!; the free energy above the transition is simplykBTl0

52g(F), a natural result given that above the unzippi
transition the DNA is entirely in the single-stranded form
Within the present formalism, one can also obtain a clos
form expression forl0, and hence for the free energy p
monomer, below the unzipping transition. ForF,Fc , the
transformation~21! is valid, andl052b2k0

2(T)/d, indepen-
dent ofF. Both the entropy, given by a derivative ofkBTl0

with respect toT, and the average extension per nucleotide
the bulk, given by a derivative ofkBTl0 with respect toF,
change discontinuously atFc ~see Fig. 4!. The bulk unzip-
ping transition is thus first order, as is the case for the rela
problem of a single flux line torn away from a column
defect in a type II superconductor@42#.

BecausekBTl0 is the bulk free energy per monomer, it
derivatives tell us nothing about the diverging surface p
cursors to the unzipping transition. To study surface effe
within the quantum mechanical formalism, note that t
probability that the ends of the two single strands are se
rated by a displacementr5R(0) is given by@42#

FIG. 6. Schematic of the base separation probabilityP`(R) be-
low and above the first-order unzipping transition~the probability is
expected to depend only on the radial distanceR, not on angular
coordinates!. Below the transition,P`(R) decays quickly to zero
beyond the range of the attractive potentialV(R). Above the tran-
sition, in contrast, it approaches a constant nonzero value
R→`.
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P0~r !5c0
F~r !.expF F•r

kBT
2k0ur uG , ~24!

where the last equality is valid outside the range of the
tential V(R). Focusing, for simplicity, on the case of on
spatial dimension (d51), and replacing the vectorsR and
rby the scalarsR and r, it follows that the average distanc
^r & between the ends of the two single strands diverges

^r &5
~k02F/kBT!221~k01F/kBT!22

~k02F/kBT!211~k01F/kBT!21
;

1

Fc2F
.

~25!

Slightly more involved calculations@42# give the decay of
the end-to-end distance as the bulk value is approached

^R~n!&5^r &expS 2
n

n*
D , ~26!

where^R(n)& is the average distance between the two sin
strands at base pairn. The healing lengthn* diverges near
Fc as

n* 5
kBT2

b2~Fc
22F2!

;
1

Fc2F
. ~27!

To check these results against the single degree of f
dom model defined by Eqs.~13!–~15!, one must translate the
number of unzipped base pairsm into a distancer between
the ends of the two single strands. Whenm base pairs have
been unzipped,r is simply the end-to-end distance of
Gaussian polymer of length 2m subject to a forceF; it thus
has distribution@36#

P0~r um!5
1

A4pmb2
expH 2

@r 22mb2F/kBT#2

4mb2 J .

~28!

The probability that preciselym base pairs have been un
zipped isP(m)5( f /kBT)exp(2mf/kBT), so the full distribu-
tion of r is given by

P0~r !5E
0

`

dmP~m!P0~r um!. ~29!

Evaluating this integral leads to the prediction summariz
in Eq. ~24!. Similarly, the distributionPn(R) of R(n) for any
n can be obtained by summing over a conditional distrib
tion, assuming thatm.n bases are open, and another o
given thatm,n bases are open. The latter distribution
well approximated, except forn very nearm, by the bulk
distribution for dsDNAP`@R(n)# introduced earlier. Thus
we find that

as
7-8
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SINGLE MOLECULE STATISTICS AND THE . . . PHYSICAL REVIEW E 65 031917
Pn~R!5E
n

`

dmP~m!P0~Rum2n!1P`~R!E
0

n

dmP~m!

5expS 2
n f

kBTD P0~R!1
f

kBT F12expS 2
n f

kBTD G
3P`~R!, ~30!

whereP0(Rum2n) and P0(R) are given by Eqs.~28! and
~29!. SinceP`(R) must be symmetric with respect toR50,
its average vanishes. Upon using Eq.~30! to evaluatê R(n)&
and recalling thatf 5ug0u22g(F)5(Fc

22F2)b2/(kBT)2 for
a Gaussian chain, we recover Eqs.~26! and ~27!. Thus, the
predictions obtained by studying directly the evolution eq
tion ~18! of the partition function coincide with those ob
tained by integrating out most degrees of freedom to arriv
a simplified formulation in terms of the unzipping ener
E(m).

IV. DISORDER-AVERAGED BEHAVIOR

In contrast to the entropically driven opening of a h
mopolymer, the unzipping of a polymer with a random s
quence is driven primarily by the possibility of lowerin
E(m) by unzipping a string of base pairs that are mo
weakly paired than the average. The two transitions are
qualitatively different. To see this explicitly, consider
simple application of the Harris criterion for the importan
of disorder@43#. The typical variation per monomer due
disorder in the base-pairing energyE(m) of a liberated sec-
tion of length^m& is (D/^m&)1/2;AFc2F, where theF de-
pendence follows from the result~17! for the divergence of
^m& near the transition for a homopolymer. These ene
variations vanish more slowly asF→Fc than the average
energy differencef ;Fc2F between the two phases, indica
ing that sequence randomness dominates at the unzip
transition.

A related argument can help us to guess the correct c
cal exponent for the divergence of^m& when disorder is
present: The contribution toE(m) of the average energy dif
ference ism f, while a typical favorable contribution from
random variations about the average is of order2ADm. The
random part thus exceeds the average form&m* [D/ f 2.
When this is the case,E(m) is roughly as likely to be nega
tive as to be positive. One thus expects that a typical valu
^m& will be at least of orderm* . Near enough to the unzip
ping transition atf 50, m* is larger than the equilibrium
averagekBT/ f for a nonrandom sequence. Instead of t
1/(Fc2F) divergence in̂ m& seen for a homopolymer, on
might thus expect DNA with a random sequence to show
considerably stronger 1/(Fc2F)2 singularity. The crossove
between the two scaling regimes should occur whenD/ f 2

;kBT/ f , or when f ;D/kBT. For dsDNA, bothAD and the
average base pairing energyg0 are of orderkBT; we can
estimate f 'g8(Fc)(Fc2F)'(g0 /Fc)(Fc2F). Hence,
when f kBT/D;O(1) at the crossover, the reduced for
(Fc2F)/Fc is alsoO(1), confirming that disorder cannot b
neglected in polynucleotide unzipping even forF of order,
say, Fc/2. As we shall see in Sec. VII, disorder affects t
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This scaling argument can be extended to the case of

dom DNA sequences with long-ranged correlations~as may
be the case for noncoding DNA@6#!. If the correlations be-
tween nucleotides separated bym base pairs decay as 1/mg,
the fluctuationh(m) around the average energy to open
base pair will likewise have a correlation functio
h(m)h(m8);1/um2m8ug. For g,1, the mean-squared
value of *0

mdm8h(m8) then grows as*0
mdm8*0

mdm91/um8
2m9ug;m22g. A typical random contribution toE(m) then
increases asm12g/2; balancing this random energy again
m f suggests that̂m&;m* ; f 22/g. If we take, for example,
g5 2

3 @6#, then^m&;1/f 3, an even stronger divergence.
To verify our scaling argument for the case of a rando

uncorrelated base sequence, we begin by calculating
disorder-averaged number of bases opened^m& ~as before,
the overbar indicates an average over different random b
sequences!. Fluctuations about this average will be studied
more detail in the following section. To find̂m&, one must
first compute the average free energy2kBT ln Z; disorder-
averaged cumulants ofm can then be obtained by takin
derivatives with respect tof. Remarkably, the entire distribu
tion of Z can be found exactly by treating the random ene
h as a Langevin noise. Several variations on this proced
have appeared in other physical contexts@44#, as have related
approaches to the same formal problem@45#.

We begin by defining the partition function of a polym
of finite lengthm,

Z̃~m!5E
0

m

dm8expF2
E~m8!

kBT G . ~31!

The partition functionZ of interest to us is recovered b
taking the limit of an infinite length polymer:Z
5 limm→` Z̃(m). The derivative ofZ̃ is simply

dZ̃

dm
5e2E(m)/kBT, ~32!

with initial condition Z̃(0)50. Similarly, the derivative of
E(m) is, from Eq.~13!,

dE
dm

5 f 1h~m!, ~33!

with initial conditionE(0)50. Equations~32! and~33! make
up a system of coupled Langevin equations, analogous,
example, to those describing the Brownian motion of a m
sive particle, withE playing the role of momentum andZ̃
that of position. They can be transformed in the usual m
ner into an equivalent Fokker-Planck equation for the jo
probability distributionP(E,Z̃,m) of E and Z̃ at ‘‘time’’ m
@46#,

]P

]m
5FD

2

]2

]E 2
2 f

]

]E 2e2E/kBT
]

]Z̃
GP. ~34!
7-9
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To solve Eq.~34! in the limit of largem, we first Laplace
transform with respect toZ̃ and tom, with conjugate vari-
ablesl ands, respectively. The resulting ordinary differen
tial equation for the transformed distributionP̂(E;l,s) takes
the form

D

2

d2P̂

dE 2
2 f

dP̂

dE 2le2E/kBTP̂2sP̂52d~E!. ~35!

The change of variables

x[kBTS 8l

D D 1/2

e2E/(2kBT) ~36!

leads to an inhomogeneous Bessel equation

x2
]2P̂

]x2
1S 11

4 f kBT

D D x
] P̂

]x
2Fx21

8s~kBT!2

D GP

52
4x0kBT

D
d~x2x0!, ~37!

where x0[xuE505kBTA8l/D. Although E has been re-
placed byx, P̂ remains normalized as a function ofE. One
can easily check that the solution of Eq.~37! follows the
usual form for the Green’s function of a Sturm-Liouvil
equation,

P̂~x;l,s!5kBTH 4

D S x0

x D 2 f kBT/D

Kn~x0!I n~x!, x<x0

4

D S x0

x D 2 f kBT/D

I n~x0!Kn~x!, x>x0 ,

~38!

whereI n andKn are modified Bessel functions, and

n5kBTA8s

D
1

4 f 2

D2
. ~39!

Equation~38! represents an exact solution to our single d
gree of freedom model. We are interested primarily in
distribution of Z̃ for large m, so we would like to integrate
over all E and then take the limitm→`. The first task can
easily be accomplished on a formal level:

P̂~l,s!5E
2`

`

dEP̂~E,l;s!

5
8~kBT!2

D FKn~x0!E
0

x0dx

x S x0

x D 2 f kBT/D

I n~x!

1I n~x0!E
x0

`dx

x S x0

x D 2 f kBT/D

Kn~x!G . ~40!

BecauseE(m) grows linearly withm below the unzipping
transition for large enoughm, the contributions to the parti
tion functionZ of the parts of the dsDNA at very largem are
03191
-
e

exponentially suppressed. Hence, we expect thatZ̃ must
have a well-defined limiting distribution asm→`. This, in
turn, implies that the Laplace transformP̂(l,s) should di-
verge like 1/s ass→0, or equivalently, asn→2 f kBT/D. An
examination of Eq.~40! reveals that this is in fact the cas
Specifically,I n(x);xn for small x, so the integral from 0 to
x0 diverges whenn approaches 2f kBT/D. This singularity
dominates the largem behavior of the inverse Laplace tran
form with respect tos, allowing us to perform the inversion
analytically:

P̂~l;m→`!5
2

G~2 f kBT/D! F2l~kBT!2

D G f kBT/D

3K2 f kBT/DS kBTA8l

D D , ~41!

where we have substitutedx05kBTA8l/D. Note that the
asymptotics are completely determined by the smallx behav-
ior of P̂(x;l,s). Because smallx corresponds to largeE, this
is quite reasonable: It follows directly from Eq.~33! that the
distribution of E(m) is a Gaussian centered atm f, so only
very largeE will have any weight for largem.

To evaluate the disorder-averaged free energy, we m
invert the Laplace transformP̂(l;m→`) to obtain the dis-
tribution P(Z) of the partition function. With the aid of vari-
ous Bessel function identities, one discovers that the inte
can be evaluated analytically. The result is the distribut
over possible random sequences of the partition functionZ of
our minimal unzipping model@44#:

P~Z!5
1

G~2 f kBT/D! F2~kBT!2

D G2 f kBT/DS 1

ZD 112 f kBT/D

3expF22~kBT!2

ZD G . ~42!

The disorder-averaged free energy follows immediately
integration; with the substitutiony[2(kBT)2/(ZD), one has

2kBT ln Z5kBTH 1

G~2 f kBT/D!
E

0

`

dyy2 f kBT/D21 ln~y!e2y

1 lnF D

2~kBT!2G J . ~43!

Taking a derivative with respect tof yields the main quantity
of interest,

^m&52kBT
] ln Z

] f

5
2~kBT!2

G~2 f kBT/D!D
E

0

`

dyy2 f kBT/D21~ ln y!2e2y

2
2~kBT!2G8~2 f kBT/D!2

G~2 f kBT/D!2D
, ~44!
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SINGLE MOLECULE STATISTICS AND THE . . . PHYSICAL REVIEW E 65 031917
whereG8(z)5dG/dz. This function is plotted in Fig. 7. In
agreement with our earlier scaling argument, there is a cr
over from 1/f to 1/f 2 behavior atf of orderD/kBT. Indeed,
one can analytically extract the asymptotic smallf behavior
from Eq. ~44!. One finds that to leading order asf→0,

^m&.
D

2 f 2
;

1

~Fc2F !2
~random heteropolymer!.

~45!

Additional results follow for the higher cumulants ofm. For
example, the disorder-averaged variance ofm can be found
from the second derivative ofln Z. For smallf, ^m2&2^m&2

5kBT] ln Z2/]f2;1/f 3. The square root of this variance is
length scale that can be compared to^m&. In the nonrandom
case, both quantities are of orderkBT/ f . In contrast, once
sequence randomness is added, we have
(^m2&2^m&2)1/2;1/f 3/2, which is much smaller than̂m& for
sufficiently small f. Thermal fluctuations about̂m& in a
given random heteropolymer thus become small compare
the mean near the transition. As we shall see in the follow
section, this fact allows us to predict not just disord
averaged quantities~it might be tedious to average over a
possible sequences in a real experiment!, but also the unzip-
ping behavior of asingledsDNA molecule.

V. FORCE-DISPLACEMENT CURVE FOR A SINGLE
POLYNUCLEOTIDE DUPLEX

Figure 8 plots the average number of unzipped bases^m&
versus force near the unzipping transition for simulations
four different dsDNA molecules, with different random s
quences@47#. The corresponding energy landscapes fo
force close toFc are shown in Fig. 9. Far from being smoot
each ^m& versusf curve shows long plateaus, where^m&
remains essentially constant, separated by sudden,
jumps. The smoothly diverging precursor to the phase tr

FIG. 7. Log-log plot of Eq.~44! for ^m&as a function off
52g(F)2g0;Fc2F. For largef, the plot has slope21, but it
crosses over to slope22 at f 'D/kBT.
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sition seen in homopolymers and in the disorder average^m&
has evidently been replaced by a series of ‘‘micro-first-or
transitions.’’ The four traces, moreover, are not the sam
the unzipping of a single random dsDNA does not exhi
self-averaging, but instead shows large sequence-depen
variations. Most equilibrium systems with quenched disor
are self-averaging because the macroscopic observable
interest are the sums of contributions from many essenti
independent correlation volumes, each with their own in
pendent realization of the quenched random variables;
central limit theorem then guarantees that in the thermo
namic limit, measurements will always coincide with the d
order average. In a single molecule DNA unzipping expe
ment, in contrast, one is probing only one realization of
quenched random sequence. As Fig. 9 indicates, each
dom realization ofE(m) will be different, and the value of
^m& at a givenf can thus be expected to differ from on
polymer to the next. Furthermore, for each sequence,E(m)
varies over many tens ofkBT; one thus might expect thatm
would not fluctuate very far from the minima. Figure 8 bea
out this idea: The locationmmin of the absolute minimum of
E(m) for each value off coincides remarkably well with
^m&. BecauseE(m) is usually negative at these minima, th
dsDNA gains energy by unzipping some bases at its e
even below the bulk unzipping transition. This mechani
contrasts with the essentially entropic impetus for surfa
opening in the case of a homopolymer. We show in t
section that, near enough to the transition,^m& for a given
DNA or RNA duplex coincides withmmin with arbitrary pre-
cision and that this fact can be used to gain a quantita
understanding of the abrupt jumps seen in Fig. 8. We w
usually work in the continuum approximation, with the pro

FIG. 8. Log-log plot of the average number of bases opened^m&
~closed symbols! and the location of the absolute minimummmin of
E(m) ~open symbols! as a function of the distancef from the un-
zipping transition. Both variables are plotted for each of four in
vidual polymers, represented by four different symbol shapes, w
independently chosen random sequences@varianceD59(kBT)2# of
length N553106 bases. Note that, except whenm5O(1), ^m&
and mmin coincide very well. The energy landscapes for the fo
duplexes are plotted for a particular value off in Fig. 9.
7-11
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DAVID K. LUBENSKY AND DAVID R. NELSON PHYSICAL REVIEW E 65 031917
ability P(E,m) of finding an energyE after openingm bases
satisfying a diffusionlike equation,

]P

]m
5

D

2

]2P

]E 2
2 f

]P

]E . ~46!

This result follows directly from Eq.~33! or from integrating
the full Fokker-Planck equation~34! with respect toZ̃. At
eachm, E(m) thus has a Gaussian distribution; because
results do not depend on the tails of this distribution, th
should be equally valid for more realistic, discrete models
dsDNA.

A. Dominance of the absolute free energy minimum

We begin by arguing that, close to the transition, the
cationmmin of the absolute minimum ofE(m) is in fact the
same aŝ m&. More precisely, we wish to show that, for
random DNA sequence,

lim
f→0

^m&
mmin

51 with probability 1. ~47!

In qualitative terms, one might expect this result to ho
because the scale ofE(m) grows like the square root of th
distance from the minimum; it is thus very unlikely th
E(m) will revisit the neighborhood of its minimum value fo
m far from the location of the original minimum. Here, w
simply outline the arguments necessary to support this i
ition; closely related theorems have, however, been pro
with mathematical rigor@48#. We will proceed by first con-

FIG. 9. Plot of four different random realizations ofE(m). All
four random walks have the same varianceD59(kBT)2 and aver-
age biasf 50.0025kBT. All four also pass belowE50, suggesting
that, near the unzipping transition, dsDNA molecules with rand
sequences will usually haveenergeticreasons to partially unzip
The four energy landscapes are taken from the four polymers w
force-extension curves are shown in Fig. 8; the solid, dashed,
ted, and long-dashed curves correspond, respectively, to the cir
squares, diamonds, and triangles. In order to focus on regions w
E(m) is near zero, the landscapes form.106 are not shown.
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sidering scenarios in which Eq.~47! would not hold, then
showing that the probability of each such event vanishes
f→0. In renormalization-group language, Eq.~47! can be
read as stating that the unzipping transition for a rand
dsDNA sequence is governed by a zero-temperature fi
point; such fixed points have been found in a number
other random systems@49#.

The simplest way thatmmin and ^m& could differ is for
mmin to equal 0; sincêm& is necessarily positive, their ratio
would then be infinite. The probability thatmmin50 is the
same as the probability that the biased random walkE(m),
which starts atE(0)50, hasE(m).0 for all m.0. More
generally, the probability thatE(m).0 for all m.0 for a
random walk starting atE(0)5E0 is known in the literature
on first passage problems as the ‘‘splitting probabilit
p(E0). The splitting probability satisfies an equation invol
ing the adjoint of the diffusion operator@46#,

D

2

]2p

]E 0
2

1 f
]p

]E0
50. ~48!

The solution of this equation with boundary conditio
p(0)50 and p(`)51 is p(E0)512exp(22E0f /D). The
requirement thatp(0)50 is an artifact of the behavior of a
continuous time random walk asm→0: BecauseE(m) ex-
periences small jumps up and down on all scales, a rand
walk that starts atE(0)50 will pass below the lineE50
many times for very smallm. This behavior is not relevant to
real DNA with discrete bases, and we can regularize it
considering, instead of a random walk that starts exactly
E050, one that starts slightly above 0. For smallE0 ,
p(E0)'2E0f /D, so the splitting probability vanishes linearl
as f→0. Indeed, for anyE0 , p(E0) goes to zero linearly for
small f, as one might expect based on the well-known res
that a completely unbiased random walk in one dimens
must eventually visit the entire real line. The same line
behavior for small enough bias is seen in random walks
one-dimensional lattices@46#. We thus conclude that the
probability thatmmin50 is proportional tof and can be ne-
glected asf→0.

Now consider other possible values ofmmin . We shall see
in the following section that the distribution ofmmin for
mmin.0 is a function of the dimensionless ratiommin f 2/D.
The probability thatmmin;O(1/f b), with b5” 2, hence be-
comes negligible for smallf, and we need only conside
mmin;O(1/f 2). For the absolute minimum and the therm
averagenot to coincide in this case, there must be a loc
minimum nearly degenerate withE(mmin) a distanceO(1/f 2)
away frommmin . Note in particular that a degenerate min
mum closer tommin thanO(1/f 2) will contribute an additive
correction to^m& that is much smaller thanmmin;O(1/f 2)
for small enough f, and thus will not affect the ratio
^m&/mmin as f→0. The same holds true for thermal fluctu
tions in the well surroundingmmin .

We can rephrase the question of the existence of deg
erate minima as follows: What is the probability that, for
given positiveE ande,
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E~m!.E~mmin!1E for all m such that

um2mminu.eD/ f 2? ~49!

If this inequality is satisfied, then̂m&/mmin21 is at most of
the sum of a term of ordere and of a term of order exp
(2E/kBT); if for any choice ofE ande the probability that it
is satisfied can be made arbitrarily close to 1 forf small
enough, then Eq.~47! must hold. One can easily argue fro
dimensional analysis that this is the case: The probab
Pineq. that the inequality Eq.~49! holds is a function of the
dimensionless parametere and of the three parametersE, D,
and f, with dimensions, respectively, of energ
(energy)2/nucleotide, and energy/nucleotide. BecausePineq.
is itself dimensionless, it must depend only on dimensionl
ratios of the latter three parameters; by rescaling ener
and nucleotide numbers, one can easily conclude that
only such ratio isE f /D. Hence, Pineq.5Pineq.(e,E f /D).
Moreover, we know thatmmin is the absolute minimum of the
random walk, so it must be true thatPineq.51 whenE50.
As long asPineq.(e,E f /D) is a continuous function of its
second argument, it must then be true thatPineq.→1 as f
→0 for any fixede andE. This is sufficient to confirm tha
mmin and^m& coincide with probability 1 for smallf. If Pineq.
has a well-defined first derivative, then 12Pineq.;E f /D for
small f, a result that can be verified by a more detail
calculation.

This linear dependence has a simple interpretation: Fo
unbiased random walk, the probability to make a first ret
to the starting point afterm steps decays as 1/m3/2; this is
also approximately the case for a biased random walk
scales smaller than;D/ f 2. Upon integrating 1/m3/2 from
eD/ f 2 to some large upper bound, we see that the probab
not to return at all~and thus not to have any minima near
degenerate withmmin) differs from 1 by a number of orderf.
Our earlier observation that^m2&2^m&2; goes as 1/f 3 can
also be explained by the smallf behavior of 12Pineq. @44#:
The disorder average is dominated by the probability of
der f that ^m2&2^m&2 will be of order 1/f 4. The notion that
disorder averages of higher cumulants can be determine
rare configurations of the disorder in which there are t
widely separated minima has been explored in several o
random systems@49,50#.

B. Statistics of minima: Plateaus and jumps

Having determined that the absolute minimummmin of
E(m) and the average number^m& of bases opened coincid
near the unzipping transition, we can now use this fac
study the^m& versusf curve for asingle random sequence
Consider the effect on the energy landscapeE(m) describing
a given dsDNA molecule, with a given random sequence
tuning the biasf towards zero. Decreasingf gradually tilts
the energy landscape towards the horizontal, as illustrate
Fig. 10. The location of the absolute minimum will the
remain constant over a range off, giving rise to the observed
plateaus. As the landscape tilts, however, local minima
larger values ofm move downwards faster than those
smaller m. At certain specific values off, the energy of a
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minimum atm.mmin will move below E(mmin), and mmin

'^m& will shift from the old minimum to the new one. As
Fig. 10 shows, the two minima can be separated by a c
siderable distance, thus giving a physical explanation for
dramatic jumps seen in Fig. 8.

To develop a quantitative theory of these effects, we be
by calculating the distribution ofmmin for a given f, then
consider the conditional probability thatmmin5m2 when f
5 f 2, given that the minimum was atm1 at a biasf 1. This
conditional distribution will allow us to make predictions, fo
example, about the typical sizes of plateaus and jumps.

We first ask for the probabilityPmin(mmin ,Emin) thatE(m)
has its absolute minimum at (mmin ,Emin), or equivalently the
probability thatE(m) first reachesEmin at ‘‘time’’ mmin , mul-
tiplied by the probability thatE(m).Emin for m.mmin . The
latter is simply the splitting probabilityp introduced in the
preceding subsection. Although in the continuum approxim
tion p(E0) is singular asE0→Emin , we can regularize it in a
manner similar to that used previously. Becausep is just a
constant factor, independent ofEmin , the details of the regu-
larization are unimportant. In practice,p can be determined
by demanding thatPmin(Emin ,mmin) be correctly normalized.

More interesting is the probability of first passage toEmin .
We first define the probabilityS(E,m;Emin) that, starting
from E50 atm50, the random walk has arrived at energyE
after opening m bases, without ever having hadE(m)
,Emin . It turns out thatS satisfies the same Fokker-Planc
equation ~46! as the probabilityP(E,m) for the uncon-
strained random walk to arrive at (m,E) @46#. The con-
strained probabilityS, however, is also subject to the boun
ary condition S(Emin ,m;Emin)50. With this boundary
condition, one can solve the Fokker-Planck equation to fi

FIG. 10. Plot illustrating the physical origin of jumps in exte
sion versus force during unzipping. The two curves represent
dom walksE(m) with identical random contributionsW(m), but
different average biasesf 150.0087~upper curve! and f 250.0067
~lower curve!. As indicated by the arrows, in the upper curve, t
absolute minimummmin is atmmin'5 000, while in the lower curve,
it is at mmin'445 000. Asf is tuned fromf 1 down to f 2 , mmin and
thus ^m& jump from one minimum to the other.
7-13
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S~E,m;Emin!5
1

A2pDm
H expF2

~E2 f m!2

2Dm G2expF fE
D

2
f 2m

2D

2
~2Emin2E!2

2Dm G J . ~50!

The probability to first crossEmin after mmin steps is then
given by (D/2)]S/]EuE5Emin

, i.e., the diffusive flux of ran-

dom walkers crossingEmin for the first time. The distribution
Pmin(Emin ,mmin) differs from this function only by a normal
ization factor. Finally, we determine the probability that t
minimum occurs atmmin for any Emin by integrating from
2` to 0 with respect toEmin . The final result is

Pmin~mmin!5
f 2

pD
e2mminf 2/2DE

0

`

dw

3exp~2wmminf 2/2D!
Aw

w11
, ~51!

in agreement with the distribution obtained by le Dous
et al. using a real space renormalization group@50#. Note
from Fig. 11 thatPmin(mmin) agrees~within counting errors!
with the distribution of^m& obtained from simulations. As
claimed above,P(mmin) takes the form of a scaling functio
of mmin f 2/D. Variations inmmin'^m& between different ran-
dom sequences are thus of the same order as the av
^m&, and the system is not self-averaging.

We now turn our attention to the more interesting a
experimentally relevant question of correlations within
single ^m& versusf curve. In particular, we would like to
know the probability thatE(m) has its minimum atm2 at a
bias f 2 given that, for thesamerealizationh(m) of the ran-
dom base sequence, the minimum was atm1 at a biasf 1
. f 2. This probability will turn out to depend only on th
jump sizemjump[m22m1. The plateaus seen in Fig. 8 su
gest ad function contribution atmjump50. To determine the
strength of thisd function, consider a polymer with a fixe
base sequence giving rise to an energy landscape

W~m![E
0

m

dm8h~m8!. ~52!

If the minimum of E(m) is at m1 for bias f 1, then W(m)
1 f 1m.W(m1)1 f 1m1[E1 for all m, and henceW(m)
1 f 2m.W(m1)1 f 2m1[E2 for m,m1 and f 2, f 1. If the
minimum is to move fromm1 as the bias is tuned down t
f 2, it must move towards largerm. This is not surprising—
one can easily prove thatd^m&/d f,0.

Let P1 and P2 denote the events, respectively, that f
m.m1 , W(m)1 f 1m.E1, andW(m)1 f 2m.E2. The prob-
abilities thatP1 andP2 occur are simply the splitting prob
abilities p1} f 1 and p2} f 2. If the minimum of the random
walk falls atm1 for a biasf 1, thenP2 is true if and only if
the minimum remains atm1 at the biasf 2. In other words,
the coefficient of thed function atmjump50 in the distribu-
tion of mjump is simply the conditional probability
Prob@P2uP1#. From Bayes’ theorem@51#, we know that the
03191
l

age

probability that eventsP1 and P2 both occur for the same
random sequence is Prob@P2`P1#
5Prob@P2uP1#Prob@P1#. But if P2 occurs, thenP1 must
also occur—if the random walk never passes below its va
at m1 with the smaller biasf 2, then it can never do so with
the larger biasf 1. Thus, Prob@P2`P1#5Prob@P2#. The
conditional probability thus takes the simple form

Prob@P2uP1#5
Prob@P2#

Prob@P1#
5

p2

p1
5

f 2

f 1
, ~53!

and the probability that a plateau stretches fromf 1 down to
f 2 is just f 2 / f 1. Upon taking a derivative with respect tof 2,
we conclude that the end point of a plateau that starts
bias f start is uniformly distributed between 0 andf start.
Equivalently, the log ratiol[ ln(fstart/ f stop) of the starting
and ending biases of a plateau is distributed as exp(2l).

The distribution of plateau lengths, of course, is only p
of the description of a plot of̂m& versusf; to complete the
characterization, we must also study the distributionPjump of
jumps mjump for nonzero mjump. The full distribution of
mjump will then take the form (f 2 / f 1)d(mjump)1(1
2 f 2 / f 1)Pjump(mjump). The calculation ofPjump requires an
extension of our previous first passage approach. As bef
we are interested in the probability that the biased rand
walk W(m)1 f 2m first reaches the energyE2 at m25m1
1mjump, but subject now to the additional constraint th
(m1 ,E1) is the absolute minimum for the larger biasf 1.
Hence, we demand thatW(m)1 f 1m.E1 for all m.m1,
where W(m) is the same fixed realization of the rando

FIG. 11. Log-linear plot of the distribution over different ran
dom sequences of the average number of opened bases^m&. The
horizontal axis giveŝ m&, suitably rescaled so that random s
quences with different values off and D can be compared. The
vertical axis shows the log of the probability of seeing a particu
^m&. The squares represent binned data from numerical simulat
~described in the Appendix!, the solid curve the analytic predictio
of Eq. ~51! based on the assumption that^m&5mmin . This predic-
tion has no adjustable parameters. The scatter seen for
^m& f 2/D is the result of counting noise.
7-14



a

l-

t
ly

m
et

h

h

l

n

al
s-
e

o

r

d-

-
at
of

-

ng

f

f
nt

-
r
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energy landscape. To calculate this modified first pass
probability, note that for eachm, only one of the two condi-
tions has to be taken into account. Formjump,(E12E2)/( f 1
2 f 2), W(m)1 f 1m.E1 is the stronger constraint on the a
lowed value of E(m), while for mjump.(E12E2)/( f 1
2 f 2), W(m)1 f 2m.E2 is the stronger. We can find the firs
passage probability, subject to both constraints, by multip
ing the probability of arriving atmjump5(E12E2)/( f 12 f 2)
subject to the first constraint by the probability of going fro
there to (m2 ,E2) subject to the second. Specifically, l
S1(E,m;Emin) be the probability of arriving atE after opening
m bases, with biasf 1 and withE(m) always larger thanEmin ,
and letS2(E,m;Emin) be the corresponding probability wit
bias f 2. Both probabilities are given by Eq.~50!, with the
appropriate substitution forf. As in our calculation of the
distribution of minima, the derivative ofS is also an impor-
tant quantity, so it is useful to defineS1,28 (E,m;Emin)
[]S1,2/]E. The probability that a random walk with biasf 2
will arrive at (m,E), subject to the constraint thatW(m)
1 f 1m.E1, is related toS1 by a ‘‘Galilean’’ transformation
~with m viewed as a time andf 12 f 2 viewed as a velocity
jump!. Upon making use of the invariance of theS’s with
respect to uniform translations inE and in m, one can thus
write the probability that (m2 ,E2) is the minimum at biasf 2,
given that (m1 ,E1) is the minimum at biasf 1, as

Pjump~E2 ,m2uE1 ,m1!}E
E 2

`

dE8S1@E82E11~ f 12 f 2!

3~m81m1!,m8;0#S28~E22E8,m2

2m12m8;E22E8!, ~54!

where m8[(E12E2)/( f 12 f 2) is the value ofmjump[m2
2m1 at which the two constraints switch precedence. T
quantity S1@E82E11( f 12 f 2)m8,m8;0#, which is formally
zero, is assumed to be regularized by replacing 0 by2e, and
we have suppressed the normalization factor proportiona
p2. According to Eq.~54!, Pjump depends only on the two
biasesf 1 and f 2 and on the differencesmjump andEjump[E2
2E11( f 12 f 2)m1. The latter is the difference betwee
E(m1) andE(m2), both defined with biasf 2; the extra factor
proportional tom1 is necessary becauseE1 is defined with
bias f 1. It is straightforward to show that the condition
distributions of minima are Markovian—that is, the joint di
tribution of m2 andE2 does not depend on the location of th
absolute minimum for anyf , f 1: Suppose that one were t
ask for the distribution ofm2 andE2 subject not only to the
constraint that at biasf 1, the minimum was at (m1 ,E1), but
also that at a biasf 0, f 1, the minimum was atm0,m1 and
E0, with E11( f 02 f 1)m0,E0,E11( f 02 f 1)m1. This addi-
tional demand translates into the condition thatW(m)
1 f 0m.E0 for m.m1. This constraint, however, is weake
than the requirementW(m)1 f 1m.E1 imposed by the loca-
tion of the minimum at the biasf 1. The distribution of
(m2 ,E2) is thus independent of what happens atf 0, and the
probability of a given sequence of measurements of^m&
5mmin for successive values off can be expressed as a pro
uct of factors ofPjump.
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To find the distribution ofmjump alone, and thus ofm2,
one must integratePjump(mjump,Ejump) with respect toEjump
from 2( f 12 f 2)m2 to 0. The lower bound reflects the con
straint thatW(m2)1 f 1m2.E1; the upper bound ensures th
E2,E(m1). Figure 12 compares a numerical calculation
the full distributionPjump obtained in this way with simula-
tion results. The good agreement confirms that^m&'mmin .
The figure also shows that for largemjump, Pjump decays as
exp(2mjumpf 2

2/2D). This is the same as the largemmin behav-
ior of Pmin with f 5 f 2; for large enoughmjump, the constraint
imposed by the minimum atm1 has no effect on the distri
bution.

Additional analytic insight can be obtained by consideri
various limits. When (f 12 f 2)/ f 2@1, one finds that
Pjump(mjump,Ejump).Pmin(mjump,Ejump), where Pmin is the
distribution of the absolute minimum at a given value of
discussed above@Eq. ~51!#, evaluated withf 5 f 2. In the limit
of large f 12 f 2, the lower bound onEjump approaches2`,
and the integral ofPjump with respect toEjump introduces no
extra complications. The distribution ofmjump is thus no dif-
ferent from that of the minimummmin without any additional
constraints. After normalization, we find

Pjump~mjump!5Pmin~mjump!5
f 2

pD
exp~2mjumpf

2/2D!

3E
0

`

dw exp~2wmjumpf
2/2D!

3
Aw

w11 S f 12 f 2

f 2
@1D . ~55!

FIG. 12. Log-linear plot of the distribution of jumpsmjump for
f 2 / f 1'0.77.mjump f 2

2/D is plotted on the horizontal axis, the log o
the probability ofmjump on the vertical axis. The points represe
binned data from numerical simulations~described in the Appen-
dix!, the solid curve an analytic prediction~no adjustable param
eters! based on the assumption that^m&5mmin . The scatter seen fo
largemjumpf 2

2/D is the result of counting noise.
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Equation ~55! can be understood as follows: Whenf 2 is
much smaller thanf 1, the smaller bias allows the system
visit much more random sequence before thef m term in
E(m) makes the energy cost prohibitive. With so many mo
places where the new absolute minimum could occur,
constraint from the location of the old minimum at the larg
bias becomes unimportant, andPjump(mjump) becomes inde-
pendent ofm1. Indeed, becausem2;1/f 2

2 is typically much
larger thanm1;1/f 1

2 , m2 differs very little frommjump. The
distribution of m2 thus approachesPmin(m2). That is, the
minimum at biasf 2 is essentially chosenindependentlyfrom
the same scaling distribution as the minimum at biasf 1. With
a long enough sequence, it should in principle be feasibl
make many such independent measurements ofmmin'^m& at
different values off. Although DNA unzipping is not self-
averaging in the usual sense, the data from even a si
random sequence thus nevertheless contain remnants o
disorder averaged behavior. In particular, if lnm is plotted
versus lnf for a long enough polymer, the best-fit line shou
have slope22, as predicted by our calculation of th
disorder-averagêm& @Eq. ~45!#, albeit with considerable
scatter about the line. Figure 13 illustrates this point.

The distribution of mjump in the opposite limit (f 1
2 f 2)/ f 2!1 is the size distribution of jumps between tw
successive plateaus, one ending and the other startingf 1
' f 2. Put in different terms, it gives the distribution of di
tances between two essentially degenerate minima at a g
bias f, assuming that such minima exist. Because the
minima are already required to be at almost the same ene
Pjump is independent ofEjump in this limit. The integral over
Ejump is then elementary, and the resulting distribution tak
the form

Pjump~mjump!5
f 2

A2pD

1

Amjump

expS 2
mjumpf 2

2

2D D
3S f 12 f 2

f 2
!1D . ~56!

This expression is valid formjumpf 2
2/D& f 2 /( f 12 f 2); for

larger values ofmjump, the power law prefactor ofPjump
crosses over from 1/(mjump)

1/2 to 1/(mjump)
3/2. The tail of the

distribution thus still agrees with that ofPmin , as expected.
Knowledge ofPjump gives a detailed description of th

statistics of^m& versusf curves, under the assumption th
^m& and mmin coincide. We have already seen that this
sumption is valid with probability 1 asf→0. For any finitef,
however, there will be occasions when it does not hold.
particular, it must break down in the vicinity of jumps b
tween different plateaus. Near enough to a jump, the min
giving rise to the two plateaus will be nearly degenerate,
^m& will contain substantial contributions from both minim
Indeed, if a jump of sizemjump occurs at a biasf 1, then both
minima will be appreciably occupied if the difference b
tween their energiesu f 2 f 1umjump&kBT. The sharp disconti-
nuity in ^m& at f 1 will be replaced by a smooth transition o
width of orderkBT/mjump. We have already seen thatmjump

is typically of orderD/ f 1
2, so the width of a typical transition
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sharpens asf 1
2. In contrast, we have seen that a typical p

teau at biasf 1 extends for a distance of orderf 1. As f 1→0,
the width of the jumps thus becomes very small compare
the size of the plateaus, in agreement with our arguments
mmin /^m&→1 in this limit. The sharpening of the jumps a
f→01 is evident in Figs. 8 and 13.

Note also that if the temperature is raised at fixed fo
near the unzipping transition~i.e., a vertical instead of a hori
zontal trajectory in the inset to Fig. 1!, we havef ;TC2T.
The surface contribution to the specific heat near the tra
tion is thus T]2G/]T2;T2] ln Z/]f2;]^m&/]f, where G5
2kBT ln Z is the ‘‘surface’’ free energy of the partially un
raveled polymer duplex at fixed temperature and force
fined in Sec. III. If^m& as a function off takes the form of a
sequence of plateaus and jumps, then the derivative of^m&
with respect tof must vanish except in the vicinity of th
jumps, where it will show a sharp spike proportional to t
jump sizemjump. As f→0 and the jumps become very shar
the specific-heat spikes will approachd functions. Each jump
can thus be thought of as a ‘‘micro-first-order transition.’’

We close this section with an example of how platea
and jumps can appear in the unzipping of a biologically r
evant DNA sequence, that of phage lambda@52#. Figure 14
plots the energy landscapeE(m) of a 28-kb segment of the
lambda genome for two different biases. The energy to o
each base pair is taken from a widely used parameter
@34#, and we neglect the possibility of rare denaturati
bubbles under physiological conditions. The energy la
scape shows two pronounced minima; a third minimum v
nearm50 is barely visible. The corresponding plot of^m&
versus the distancef ;Fc2F from the transition, determined
by an exact evaluation of the partition function, appears
Fig. 15. As expected, it consists of three plateaus, co
sponding to the three minima. Thus, the qualitative ide
developed in this section apply to real sequences found

FIG. 13. Plot illustrating the recovery of the disorder-averag
scaling law ^m&.D/2f 2 in the force-extension curve of a singl
random heteropolymer. The points give^m& as a function off for a
single polymer; the solid line is the best-fit power law, with exp
nent21.9660.12.
7-16
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experimental biology as well as to the idealized rand
models explored here.

C. Application: Determination of base-pairing energies

In this section, we digress briefly from our primary foc
on polynucleotides with random sequences to discuss
the mechanical denaturation of specially designed seque
might be used to measure the strength of the base pairing
stacking interactions that stabilize polynucleotide duplex
Traditionally, these interactions have been studied by ana
ing the thermal melting curves of double-stranded DN
and RNA’s@34,58#. Most commonly, the stability of a duple
is assumed to be determined by ten phenomenological
rameters giving the combined pairing and stacking ener
of the ten possible distinct groups of two successive b
pairs. These parameters can be inferred from the mel
temperatures of a set of duplexes with appropriately cho
sequences. Although in most ways quite successful,
method has the disadvantage that it yields values of the
energy parameters only in the vicinity of the melting te
peratures of the double-stranded molecules. Because t
energy parameters are expected to depend on a varie
conditions, including salt concentration,pH, and ~for en-
tropic reasons! temperature, it would be useful to have
technique that allowed the measurement of duplex stab
in a wider range of conditions. It has already been sho
experimentally that micromechanical experiments can
used to estimate the binding energy of a particular RNA h
pin @3#. Here we extend the analysis of Ref.@3# to consider
more generally how mechanical denaturation might be u
to infer the stability of duplexes.

FIG. 14. The energy landscapeE(m) for unzipping bacterio-
phage lambda DNA at two different biases. In this figure, the b
pairs are opened in the reverse of the conventional@52# order, start-
ing with base number 48 502. Base pairing and stacking ener
are taken from @34# and are scaled bykBT, with T537 °C
5310 K. The biasesf 1 and f 2 are the locations of the two jump
marked in the force-extension curve of Fig. 15. The locations of
two minima that exchange stability at each bias are indicated
arrows. Note the difference in scales between the upper and lo
plots.
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Because it is difficult to synthesize long polynucleotid
with prescribed sequences, one would like to be able to m
sure pairing energies on relatively short~tens of nucleotides!
hairpins. Even for short hairpins, one can still define an
erage pairing energyg0, a variation about the averageh(m),
a critical unzipping forceFc satisfying Eq.~16!, and a dis-
tance f 52g(Fc)2g0 from the transition. Drawing on the
ideas developed in Secs. V A and V B, we expect that, fo
given hairpin in the constant force ensemble,^m& will re-
main close to minima ofE(m) except for jumps at certain
values off. The measurement ofg0 for a hairpin of lengthN
is most straightforward if there are only two such minima,
m50 andm5N; the unzipping transition then shows a tw
state behavior@34#. For this to be the case, the energy lan
scapeE(m) must take roughly the form shown in Fig. 16
Because of the energy barrier betweenm50 andm5N, the
unzipping fork is always localized in the vicinity of one o
these minima, with a sharp jump between the two atFc ~Fig.
17!. Fc is thus easily read off from the experimental exte
sion versus force curve, andg0 is then given by Eqs.~8! and
~16!. Just as for the standard methods based on mel
curves, the ten energy parameters can be estimated from
knowledge of g0 for enough different hairpins. One ca
straightforwardly design hairpins with two-state unzippi
behavior by joining a stretch of strongly paired bases to
less stable stretch. Thus, for example, if one strand of
hairpin has sequence 58(C)N/2(A)N/238, with opening start-
ing from the 58 end @and complementary sequenc
38(G)N/2(T)N/258], g0 for the hairpin approaches for larg

e

es

e
y
er

FIG. 15. Log-log plot of the average number of open ba
^m& versus biasf for unzipping bacteriophage lambda DNA. Th
energyE(m) is as in Fig. 14. The three plateaus correspond to
minima of E(m) at m'1, m'1500, andm'26 000; the jumps
between them occur at biasesf 1 and f 2 as indicated in the figure
Assuming freely jointed chain elasticity for ssDNA@Eq. ~7!#, with
b51.5 nm @33#, the definition off @Eq. ~12!# implies that these
biases correspond respectively to forces ofF157.90 pN andF2

58.14 pN. The middle plateau is actually subdivided into thr
smaller plateaus, separated by jumps between nearby minima. S
larly, a local minimum atm560 is the most stable for a small rang
of f between the plateaus atm51 andm'1500.
7-17
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N, the average of the energies associated with~reading along
one strand of a duplex! 58CC38 and 58AA38. Similarly,
58(CG)N/4(AT)N/438, paired with its complement, gives th
average of the energies associated with 58CG38, 58GC38,
58AT38, and 58TA38. Corrections due both to the junctio
between the two homopolymeric stretches and to the c
finement energy of the loop section of the hairpin decay
1/N; they can be eliminated by measuring hairpins with s
eral different values ofN. Mechanical denaturation in th
constant force ensemble can thus be used systematica
determine the ten standard duplex stability parameters
wide range ofpH, salt concentration, and temperature.

VI. CONSTANT EXTENSION ENSEMBLE

So far, we have considered only the constant force
semble, in which a fixed force is applied to the two sing
strands of the dsDNA, and one measures the average nu
of base pairs opened or the average separation^r & between
the ends of the two single strands. Constant extension ex
ments, in which the separationr is fixed, and the averag
force is measured, are also possible. In the classical the
dynamics of macroscopic systems, these two ensem
would be equivalent. That is, the functions^r &(F) and
^F&(r ) measured in the two ensembles would be inverse
each other. In single molecule experiments, however, su
relation is not guaranteed, and the two ensembles are in
not equivalent in DNA unzipping. For simplicity, we assum
throughout this section that the Kuhn lengthb of the single-

FIG. 16. Schematic energy landscape for a designed oligonu
otide duplex that could be used to measure base pairing and s
ing energies. The duplex is chosen to have stronger base pairs
the end from which it is opened, and weaker base pairs at the
end. The energy of openingE(m) thus first slopes upwards, the
downwards, and the only two minima occur for a completely u
zipped and completely zipped (m50) duplex. As the bias is tuned
through the unzipping transition, the two minima exchange stabi
giving rise to a sharp unzipping transiton~see Fig. 17!.
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stranded polymer is equal to the lengtha per chemical
monomer.

We begin by considering the constant extension ensem
in the absenceof sequence randomness. We neglect lon
ranged interactions within the single-stranded polymers;
causer and F will always be parallel on average, we ca
work with the ~signed! scalarsr and F. Regardless of the
elastic properties of the single-stranded DNA~freely jointed
chain, Gaussian, etc.!, one can define the statistical weig
G2m(r ) for a single-stranded chain of length 2m to have an
end-to-end distancer. The partition functionZ in the con-
stant extension ensemble can then be viewed as a weig
sum over the number of unzipped basesm with r fixed.
Given the energy costg0m of opening m bases, one has
@19,21#

Z~r !5E
0

`

dmG2m~r !exp~2g0m/kBT!. ~57!

In the limit of larger, one expects the number of unzippe
basesm to be proportional tor. It then makes sense to con
sider the free energy per baseh(x) of the liberated single
strands as a function of the extension per basex[r /2m. The
free energy per baseg(F) in the constant force ensemble
related toh(x) by the Legendre transformg(F)5h@x(F)#
2Fx, and in the thermodynamic limitr→` with r /m fixed,
we expect2kBT ln@G2m(r)#.2mh(x). It is not difficult to
show that the leading correction to this result is of ord
ln(m)/2. Hence, for larger the partition function becomes, u
to r-independent multiplicative constants,

le-
ck-
ear
ar

-

,

FIG. 17. Force extension plot for a designed oligonucleot
duplex that could be used to measure base pairing and stac
energies~see Fig. 16!. Starting from the end from which it is being
unzipped, the duplex has sequence 58(A)20(C)2038, with base pair-
ing energies taken from Ref.@34#. The sharp unzipping transition
allows an accurate measurement ofFc58.32 pN, and thus of the
energies stabilizing the duplex. Forces are calculated assuming
ssDNA is a freely jointed chain@Eq. ~7!#, with Kuhn lengthb
51.5 nm@33#.
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Z~r !.E
0

` dm

m1/2
expF2

2m

kBT
hS r

2mD2
g0m

kBT G
5Ar

2E0

` dn

n1/2
expH 2

r

kBT Fnh~1/n!2
g0n

2 G J ,

~58!

where we have introducedn52m/r 51/x in the second line.
For larger ,Z may be evaluated in the saddle point appro
mation, which gives

Z~r !.A ~n* !2p

h9~1/n* !
expF2

rh8~1/n* !

kBT GF11OS 1

r D G .
~59!

The O(1/r ) term comes from subleading correctio
to G2m(r ) that we have chosen not to calculate explicit
The location n* of the saddle point satisfiesh8(1/n* )
5(n* )@h(n* )1g0/2#, whereh8(x)[dh/dx plays the role
of a force. Indeed, upon using the Legendre transform r
tion betweenh andg, we find thath8(1/n* )5Fc . Thus, for
larger, the average force in the constant extension ensem
takes the simple form

^F&52kBT
] ln Z

]r
.Fc1OS 1

r 2D . ~60!

In the constant force ensemble, on the other hand,^r &}1/f
;1/(Fc2F), which upon inversion gives the slower a
proach toFcF5Fc1O(1/r ). Both ensembles predict tha
complete unzipping of the dsDNA occurs atF5Fc ; in fact,
in the limit r→`, the constant extension ensemble simp
demonstrates coexistence of the bulk unzipped and zip
phases, as in any first-order transition. The approach tF
5Fc as r becomes large, however, is markedly differe
Equivalence of ensembles exists only in the ‘‘thermod
namic limit’’ r→`.

Because DNA unzipping does not show self-averagi
the situation becomes even more complicated when sequ
randomness is introduced. In the constant force ensem
^m& ~and hencêr &) increases monotonically asF increases,
for any DNA sequence. In the constant extension ensem
in contrast, we expect large regions wheredE/dm, which
plays roughly the role ofg0, is smaller than average; whe
the unzipping fork enters one of these regions,^F& should
decrease. Precisely such behavior is observed in experime
and simulations on the unzipping of lambda phage D
@21#: ^F& is seen to vary randomly about an average value
r is increased. For a given random sequence, the funct
^r &(F) and ^F&(r ) thus cannot be inverses of each other.

One can still ask, however, whether the disorder avera
^r &(F) and ^F&(r ) are simply related. Once sequence h
erogeneity is present, a term proportional toW(m) @see Eq.
~52!# must be incorporated intoZ(r ). In analogy to Eqs.~58!
and ~59!, one finds
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Z~r !.E
0

` dm

m1/2
expF2

2m

kBT
hS r

2mD2
g0m

kBT
2

W~m!

kBT G
.Ar expF2

xFc

kBT
2

ArW~n* !

A2kBT
G E

2`

` dn

~n!1/2

3expF2
rk~n2n* !2

2kBT
2

ArW~n2n* !

A2kBT
G , ~61!

wherek5(1/n* )3h9(1/n* ). In passing from the first to the
second expression, we have used the scaling properties
random walk to make the substitution, valid on the level
statistical distributions,W(rn/2)5Ar /2W(n). We have also
expanded around the locationn* of the saddle point in the
nonrandomcase. Because the average terms in the expon
tial grow asr, while the coefficient ofW(n) is only propor-
tional to Ar , this expansion will still give the correc
asymptotic behavior asr→`.

Equation ~62! shows that the leading corrections
^F&(r ) can be described by the equilibrium extension o
spring ‘‘dragged’’ across a random potential@19#. One can
estimate the spring’s extension by balancing the elastic
ergy cost of extension2rk(n2n* )2/2 with the typical ran-
dom energy gainArW(n2n* );ArDun2n* u. These two
terms are of the same order whenun2n* u;(D/k2r )1/3. The
typical energy gain due to extension is thenArD(n2n* )
;(D2r /k)1/3; note that althoughn2n* is positive or nega-
tive with equal probability, the associated change in ene
must always be negative. We thus expect that the disor
averaged free energy should behave as

2kBT ln Z~r !;rF c2S D2r

k D 1/3

. ~62!

Note that the term proportional toW(n* ) averages to zero
Upon taking a derivative with respect tor, one concludes
that the disorder-averaged force in the constant exten
ensemble approachesFc for large r according to

Fc2^F&~r !;S D2

k D 1/3 1

r 2/3
. ~63!

In contrast, in the constant force ensemble,^r &;^m&
;1/(Fc2F)2, which upon inversion givesFc2F;1/̂ r &1/2.
Once again, the two ensembles agreeonly on the location of
the unzipping transition.

There is one further, more subtle relationship between
two ensembles with sequence randomness. For a given
quence, the constant force partition function can be writ
in either of two ways:

Z~F !5E
0

`

dmexpF2
W~m!1 f m

kBT G5E
2`

`

dr

3expF2
dF~r !1~Fc2F !r

kBT G , ~64!
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where dF(r )[2kBT ln@Z(r)#2Fcr. These two expression
must of course ultimately lead to the same result, and
fact has interesting consequences for the properties ofdF.
Near the unzipping transition,f 52g(F)2g0;2g8(Fc)(F
2Fc)52ug8(Fc)u(Fc2F). Up to a constant factor~and ne-
glecting exponentially suppressed contributions to the s
ond integral fromr ,0), both expressions forZ(F) can thus
be viewed as Laplace transforms with respect to the s
variable. Hence, we expect thatdF(r ) must have statistics
very similar to those ofW(m). In particular, for smallFc
2F, the integral with respect tor, like the one with respec
to m, is likely to be dominated by its absolute minimum.
order to give the correct sequence of plateaus and jum
dF(r ) should thus behave like a random walk for larger,
with (dF(r 8)2dF(r ))2.2ug8(Fc)uDur 82r u. Scaling argu-
ments due to Gerlandet al. @19# suggest that the force devia
tion dF(r )[^F(r )&2Fc5]dF/]r should have a varianc
that decays asdF(r )2;D1/3(k/r )2/3. For (dF(r 8)2dF(r ))2

to behave correctly at large scales,dF(r ) must then have a
correlation length that grows asr 2/3. One plausible explana
tion for this behavior is that, much as in the constant fo
ensemble,n locks into a single minimum ofW(n) as r is
increased over a finite interval before jumping to a new m
mum, with the size of this interval increasing asr grows
larger.

VII. DYNAMICS

So far, we have only considered static, equilibrium beh
ior. In real experimental systems, of course, dynamical
fects can play an important role. The complete description
the dynamics of the unzipping transition, allowing for th
possibility of thermally activated denaturation bubbles in
bulk dsDNA, is a challenging and still open problem. Fo
time scales come into play: the time scalestend andtbulk of
base pairing and unpairing at the end of a double-stran
region and in the bulk, the relaxation timetss(m) of the
liberated single strands, and the rotational relaxation t
t rot(m) of the still zipped dsDNA, which because of its h
lical structure develops excess twist as it is unravelled fr
one end. The latter two time scales are expected to depen
m. Coccoet al. @14# have suggested that there may be a fi
scale associated with overcoming an additional energy
rier to unzipping the first few bases of an initially blun
ended dsDNA, but such a barrier would not affect the lo
time unzipping dynamics. Although not the subject of exte
sive investigation, the opening ratetend of terminal base
pairs is thought to be between 1 and 10 msec@14,59#. Be-
cause opening a base pair in the middle of a double-stran
region requires overcomingtwo stacking interactions, instea
of one for opening at the end, we expecttbulk@tend @14,53#;
in unzipping experiments, the pulling force will further a
celerate base-pair opening at the unzipping fork. Mar
duzzoet al. @12# have argued that the relaxation time of t
ssDNA is given by the time required to move the ent
single strand a distancex for each monomer that is opened
closed. Because the forces required to denature dsDNA
fairly large, each single-stranded monomer will be und
considerable tension, with the average extensionx per mono-
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mer of order the monomer sizea. The mobility of a single
strand of lengthm is then of order 1/4pham, whereh is the
solvent viscosity, regardless of whether the strand is
scribed by the Rouse or by the Zimm model. Assuming
force F of order 10 pN, one then finds thattss(m)
;4pha2m/F;(1 nsec)m. Similarly, we can estimate the
rotational relaxation timet rotof a dsDNA molecule of length
(N2m) by finding the time for it to turn through
2p/10.5 rad~with the denominator of 10.5 arising from th
number of base pairs per helix turn in B form DNA in sol
tion @54#!. For a dsDNA strand of radius 1 nm, the torqu
exerted by the two single strands under tension is roug
2310 pN31 nm520 pN nm. Classically, the rotationa
mobility m rot of a dsDNA molecule of lengthN has been
calculated by assuming it is a straight, rigid rod, yielding t
value m rot'(231028 sec/g cm2)N @55#; this would imply
t rot;(3 nsec)(N2m). More recently, Nelson has argue
that the presence of intrinsic bends in natural dsDNA co
decrease the rotational mobility, and thus increaset rot , by
several orders of magnitude@56#.

The time dependence of the number of unzipped ba
m(t) will be determined by which of these four time scales
the slowest. The most difficult situation to analyze occurs
the system is dominated bytbulk , as can be the case for sma
enoughm andN. In this case, the dynamics of the denatu
ation bubbles in the bulk dsDNA will be slower than th
dynamics of the actual unzipping. Unlike in our equilibriu
calculations, the bubbles then cannot be integrated ou
give an effective~local! dynamics that depends only onm.
Indeed, in the limit that bases at the unzipping fork op
much faster than those in the bulk, the unzipping fork w
propagate into an almost frozen landscape of opened
closed base pairs. Strongly nonequilibrium effects, includ
a depression of the effectiveFc , could then become visible
@57#. The predicted decrease in the apparent critical force
a simple origin: The base pairs’ fluctuations between op
and closed contribute some entropy to the dsDNA’s aver
free energyg0, makingg0 more negative~and thus the ds-
DNA more stable! than it would otherwise be. On time scale
such that these fluctuations are frozen out, this entrop
lost, the dsDNA appears less stable, andFc decreases. Be
cause tss(m) grows with m, it must eventually become
slower thantbulk ; beyond this point, more conventional be
havior should reemerge.

Fortunately, in physiological conditions, opening of ba
pairs in bulk dsDNA is extremely rare. Well below the me
ing temperature, it is then reasonable to assume that all
pairs beyond the unzipping fork are closed, and to focus o
on the position of the unzipping fork. Consider first the ca
in which the slowest of the three remaining time scales
independent ofm, either becausetend is the slowest~as will
be the case form,N&103 or 104 under the assumption of
straight rod rotational mobility for dsDNA! or becauset rot is
the slowest, but withm!N so that changes inm have a
negligible effect ont rot . In this regime, the unzipping dy
namics is dominated by the diffusion of the unzipping fork
the one-dimensional energy landscapeE(m). In other words,
it is an example of the well-studied problem of a rando
walk in a random force field, sometimes known as the Si
7-20
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problem @25# ~for reviews, see@26#!. The overdamped dy
namics associated with the continuum free energy of Eq.~13!
then takes the form

dm

dt
52G

dE~m!

dm
1z~ t !52G@ f 1h~m!#1z~ t !, ~65!

where the effect of thermal fluctuations is included throu
the noise sourcez(t) with correlations

^z~ t !z~ t8!&52kBTGd~ t2t8!. ~66!

The magnitude of the phenomenological drag coefficientG is
set by the slowest time scale:

G5
1

tkBT
, ~67!

with t equal totendor t rot as appropriate. We expect that E
~65! describes the dynamics of the unzipping fork at lo
times for smallf. In the absence of sequence heterogen
@h(m)50#, it yields simple diffusion with drift above the
unzipping transition,

^m~ t !&5~Gu f u!t and ^@m~ t !2^m~ t !&#2&5~GkBT!t.

~68!

In contrast, in the presence of sequence heterogeneity
long time dynamics is determined by large energy barr
that grow withm; a number of rigorously established resu
can then be reproduced by simple physical argume
@26,50,57#. For example, whenF5Fc ~i.e., f 50), E(m)
;ADm; taking this to be a typical barrier size, one finds th
the time to go a distancem is t;t exp(ADm/kBT), suggest-
ing thatm(t) is typically of order ln2(t/t). Indeed, it is known
that in the presence of a single reflecting wall~in our case,
the end from which the semi-infinite duplex is being u
zipped!, the ratio m(t)/ ln2(t/t) approaches at-independent
limiting distribution at large times@50#. Similarly, justbelow
the unzipping transition, the unzipping fork is essentially
ways in a region where the small biasf can be ignored.
Given that mjump;^m&;D/ f 2, we expect that the typica
time to equilibrate at a biasf ~and in particular to jump from
one local minimum to a new minimum with lower energy
f is decreased! should be of ordert exp(D/fkBT), a result that
is supported, up to logarithmic factors, by renormalizat
group calculations@50#.

Justabove Fc , the dsDNA must eventually unzip com
pletely, but the propagation of the unzipping fork is aga
dramatically slowed by the presence of large energy barri
The distribution of barrier heights is known to have exp
nential tails@60#, leading to a distribution of trapping timesT
that decays as 1/Tm11, with

m52kBTu f u/D. ~69!

This same exponent appeared, for example, in Eq.~38!, and
is known more generally to control the probability of larg
excursions of a biased random walk@e.g.,E(m)# against its
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bias @61#. The time to openm base pairs is a sum ofO(m)
such trapping times, with each time chosen independen
For m,1, the median value of this sum grows asm1/m, so
one has sublinear growth with time of the sequence-avera
degree of unzipping,

^m~ t !&;tm ~m,1!. ~70!

The average extent of unzippinĝm(t)& of a given poly-
nucleotide is typically also of ordertm, but with time and
sequence-dependent fluctuations in the prefactor. For 1,m
,2, ^m(t)&;t recovers its usual behavior, but there is s
anomalous behavior in the second cumulant:^m(t)2&
2^m(t)&2 typically grows ast2/m. Conventional diffusion
with drift is recovered only for forces large enough thatm
.2, or u f u.D/kBT;O(kBT) for dsDNA in physiological
conditions. For the freely jointed chain expression~7! for
g(F), this condition translates toF2Fc*5 pN; there is
thus a substantial window where anomalous drift can be
served in a single molecule experiment. Just as for the e
librium results discussed earlier in this paper, most of
qualitative features of the unzipping dynamics for uncor
lated random sequences also apply to the unzipping of
related random sequences, albeit with different expone
@62#.

These results have interesting implications for attempt
read sequence information via experiments that monitor
velocity dm/dt of the unzipping fork for a fixed forceF
.Fc . Read naively, Eq.~65! suggests that the coarse
grained sequence fluctuations embodied inh(m) and the
thermal noisez(t) will together modulate a mean unzippin
velocity ^dm/dt&5Gu f u. This picture is certainly correct suf
ficiently far above the unzipping transition, where deep tra
in the energy landscape are rare. However, we can estim
that thermal fluctuations will obscure the sequen
dependent modulation of the mean velocity whenever

^z~ t !z~ t8!&@G2h~Gu f ut !h~Gu f ut8!, ~71!

where we have used the zeroth-order relation

m~ t !'G f t ~72!

to approximatem(t). Equations~14! and~66! then show that
thermal noise can only be neglected provided

2kBTG!
GD

u f u
, ~73!

or for

m5
2kBTu f u

D
!1. ~74!

In this regime, however, the approximation~72! breaks
down; indeed, we have seen that form,1, the dynamics is
dominated by the presence of deep traps in the energy l
scape, withm(t);tm. Efforts to extract sequence informa
7-21
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tion from dm/dt in this regime will be seriously hampere
by the slow, erratic dynamics associated with energy barr
of orderADm.

The results discussed above are valid as long as the s
est time scalet is roughly independent ofm. If m depen-
dence becomes important, large energy barriers still do
nate the dynamics, but our arguments must be modifie
account for this new feature@12#. Thus, for example, ifm
becomes large enough, the relaxation of the single stra
will set the basic scale for the dynamics. Exactly at the tr
sition, we then expectt;m exp(ADm/kBT) ~the prefactor of
m arising from the fact thattss;m); this yields exactly the
same very slow asymptotic behavior^m&; ln2(t) as before.
Likewise, the equilibration times below the transition rema
unchanged. On the other hand, forF.Fc , new behavior
emerges. The time to go a distancem is now of order
(n50

m nTn , with each of theTn chosen from the same distr
bution with tails like 1/Tn

m11 . The median of the distribution
of this new sum occurs at a time of orderm(m11)/m, suggest-
ing ^m&(t);tm/(m11). As hypothesized in Ref.@12#, the scal-
ing laws in this regime are thus related to those fortss(m)
,tend by the substitutiont°t/x. Similarly, when t rot(m)
;N2m is the slowest time scale, the logarithmic growth
or below the transition remains unchanged, while above
transition an analysis of a sum of trapping times(n50

m (N
2n)Tn suggests ^m&(t);N@12(12ktm/Nm11)1/(m11)#,
with k an undetermined constant. Thus, the fact thattss and
t rot depend onm does not change the essential physical re
that sequence randomness leads to large energy barriers
thus to a substantial slowing down of unzipping.

VIII. CONCLUSIONS

In this paper, we have given a detailed theoretical anal
of a simple micromechanical experiment: the mechanical
naturation, or unzipping, of double-stranded DNA with
random base sequence. Although of current experimenta
terest in its own right, this system can also serve as a spr
board for developing ideas with potential applications to m
cromanipulation experiments on more structura
complicated biomolecules. Several such ideas emerged
our study. On the most basic level, the constant force
constant extension ensembles were shown to give diffe
force-extension curves in single molecule experiments.
argued that unzipping in the constant force ensemble
always be described by a one-dimensional free-energy la
scapeE(m), with an average slopef 52g(F)2g0 set by the
applied forceF and F-independent fluctuations about th
average determined by the structure and sequence o
molecule being examined. The number of monomers^m&
liberated at a givenF is then simply an equilibrium averag
overm with weight exp@2E(m)/kBT#. Once sequence varia
tion is present,E(m) will in general pass below zero fo
small enoughf .0. Partial mechanical denaturation then
lows the liberated monomers to gain more free energy
aligning with the applied force than they lose by breaki
native contacts. For smallf, ^m& should be dominated by th
deepest minima inE(m).
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For the particular case of unzipping a single dsDNA m
ecule, these qualitative observations can be given more
cise meaning. The energy functionE(m) then behaves like a
biased random walk on scales beyond a few bases. When
pulling forceF is increased to a critical valueFc , the biasf
changes sign, and a phase transition occurs. Randomne
always relevant at this wettinglike transition, with the ave
age number of broken base pairs^m& diverging as 1/(Fc

2F) for homopolymer duplexes, but as 1/(Fc2F)2 in the
presence of a random sequence. Individual dsDNA m
ecules approaching the unzipping transition open in a
quence of sharp jumps, separated by long plateaus in w
^m& remains essentially constant. The jumps become sha
and sharper asf→0. For smallf, ^m& for any given polymer
must approach the absolute minimum ofE(m). The plateaus
and jumps can then be understood as arising from a sequ
of minima. A given minimum remains stable over a range
f values. As the biasf decreases, however, eventually a ne
minimum at largerm will become lower in energy; at this
point, ^m& will jump to the new minimum. Starting from this
picture, we were able to make precise predictions about
tistical features of single molecule unzipping such as the
tribution of jump sizesmjump. These showed good agreeme
with simulations. The distribution ofmjump also revealed tha
the correlation between̂m&at different valuesf 1 and f 2
, f 1 of f vanishes for smallf 2 / f 1. As a result, even though
^m& can differ significantly from^m& at any single force
value, a plot of^m& versusf for a given random sequenc
still shows the same scaling behavior as does the ave
over many sequenceŝm&. Several of these features, mo
notably the dominance of the absolute minimum, are kno
to occur more generally in random systems; indeed, an ad
interest of DNA unzipping is that it is a physical realizatio
of one of the simplest models in the statistical mechanics
dynamics of random systems@25,26,44#. Similar conclusions
should apply to experiments on the unzipping of individu
RNA hairpins @3#, although experiments on longer hairpin
would be required to provide a complete test of the theo

Although the predictions for DNA unzipping do not app
directly to micromechanical assays on systems such as
teins @4# or the complex RNA folds of naturally occurrin
ribozymes@3#, they do suggest a definite agenda for und
standing such experiments. In varying the pulling forceF in
the constant force ensemble, one is essentially searching
local minima along the denaturation pathway; each obser
plateau corresponds to a state that is metastable at zero f
but is stabilized in an appropriate range ofF values. Ifg(F)
can be determined from measurements on unfolded stra
then the energies of the original metastable states are e
inferred from the forces at which jumps occur. Related ide
have been applied with great success to the interpretatio
micromanipulation experiments on individual ‘‘lock an
key’’ bonds @63#.

This picture of plateaus and jumps could break down
instead of traversing only a single pathway, the mechan
denaturation can proceed along one of many different rou
@19#. For example, in micromanipulation experiments
folded RNA’s, it can transpire that a series of many ha
7-22
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SINGLE MOLECULE STATISTICS AND THE . . . PHYSICAL REVIEW E 65 031917
pins are under tension simultaneously, as in Fig. 18. In
constant force ensemble, if there areM long hairpins with
independently chosen random sequences, the average e
sion ^r & will be simply the sum ofM independent single
hairpin extensions. As a function off, each of these single
hairpins will go through its own sequence of plateaus a
jumps. Each time a particular hairpin has a jump,^r & will
also jump, but the typical jump size will be^r &/M instead of
^r &. Similarly, the plateaus in̂ r & will be shortened: The
probability that none of the single hairpins jump asf is de-
creased fromf 1 to f 2 is ( f 2 / f 1)M, which decays very
quickly for large M. As M increases, shorter and short
jumps and plateaus will eventually merge into a smo
curve. Indeed, one expects that asM→`, ^r &→M ^r &
1O(AM ). That is, a system of many hairpins should exhi
self-averaging. Moreover, because the limit of many hairp
is essentially a thermodynamic limit, equivalence of e
sembles must also be recovered. In fact, the force-exten
curve in the constant extension ensemble must approach
disorder-averaged curve for the constantforceensemble asM
becomes large. In physical terms, there must be a cons
tension along the entire chain of hairpins; in the limit
many hairpins, each one sees this tension rather than
extension imposed on the entire chain. Once there
enough competing hairpins, any equilibrium experiment w
give the same smooth curve. Such smoothing, with its at
dant loss of structural information, has recently been
served in simulations@19#. Both the continuous increase o
the disorder average and the plateaus and jumps of a s
hairpin can thus appear in single molecule experiments.

We note in conclusion that the ideas from the physics
one-dimensional disordered systems applied here to
chanical denaturation experiments may find applicati
elsewhere in biophysics. To cite one example, the DN
binding protein recA adheres with a binding affinity that d
pends strongly on the nucleotide sequence@64#. When ATP is
replaced by the nonhydrolyzable analog ATP-g S, allowing
the system to reach equilibrium, the position of the pointl
polymerization boundary separating domains of polymeri
recA from bare DNA can be described by a coarse-grai
model like Eqs.~13!–~15!. Similarly, the motion of a single
boundary during polymerization can be described as bia

FIG. 18. Sketch of several RNA stems being opened in para
as might occur in a micromechanical experiment on a ribozyme
other folded RNA molecule. If each stem has an independe
chosen random sequence, then in the limit of a large number of
stems, the number of unzipped bases will equal the disor
averaged valuêm&. The measured force-extension curve must th
be smooth and monotonic in any ensemble.
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diffusion in a random force field, and one might expect
appropriate parameter ranges to find strong disorder-indu
slowing of the sort discussed in Sec. VII. More generally, t
kinetics of multiple polymerization boundaries~associated
with multiple recA domains! on a single long polynucleotide
can naturally be mapped to the dynamics of kinks in a o
dimensional random field Ising model, which is known to
in the Sinai universality class@25,26#. Although the rel-
evance of such anomalous dynamics to the functioning
biological systemsin vivo remains to be established, the
effects may play a role in a number ofin vitro assays.
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APPENDIX: SIMULATION METHODOLOGY

This appendix describes the numerical method used
generate the data points in Figs. 8–13. The simulations w
performed on a simplified model of dsDNA in which allA-T
base pairs have a pairing energy«AT and allG-C base pairs
a pairing energy«GC @21#. In contrast to the convention o
Sec. II A, here we define pairing energies as the free ene
difference between the bound base pair and the two mo
mers subject to the tensionF. The average pairing energy o
the sequence is thusf. All base pairs other than them un-
zipped bases are assumed to be closed, an excellent app
mation for dsDNA in physiological conditions. We are inte
ested primarily in behavior near the unzipping transitio
where many bases have been unzipped. In this regime, m
of our predictions depend only on universal properties
random walks, so the simplifications in our model are jus
fied. Our results are always reported in terms of the para
etersf andD that can be defined with reference only to t
largem behavior ofE(m). We assume for simplicity thatA-T
andG-C pairs occur with equal probability 1/2, and we tak
the pairing energies to be«AT5 f 2AD and «GC5 f 1AD.
The disorder strengthD is usually chosen to be between
and 9, whilef varies from 1 down to a lower bound dete
mined by demanding that^m&'D/(2 f 2)<N/8. HereN is the
total number of base pairs in the dsDNA, which we usua
choose to fall between 53105 and 53106. For a given se-
quence$« i%, with each« i equal to either«AT or «GC , E(m)
takes the formE(m)5( i 51

m « i . The average and variance o
E are thenE(m)5m f andE(m)22E(m)25Dm, allowing di-
rect contact with the continuum limit described by Eqs.~13!
and ~14!. The temperaturekBT is set to one.

Our one-dimensional system is sufficiently simple tha
is possible to proceed by direct evaluation of the partit
function Z5(m50

N exp@2E(m)# and the average number o

l,
r
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g
r-
n
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unzipped baseŝm&5(m50
N m exp@2E(m)#/Z. For each ran-

dom sequence, successive values of« i are chosen at random
starting with «N . The running sumsZi[(m5 i

N exp@2E(m)
1E( i 21)# and ^m& i[(m5 i

N m exp@2E(m)1E( i 21)# are
then updated according toZi5exp(2«i)(11Zi11) and ^m& i
5exp(2«i)(i1^m&i11); once the sum is complete,^m& is nor-
malized by dividing byZ. We keep separate sums for ea
value off, and, at eachi, update each of them with the sam
random choice of«AT or «GC . In some runs, we also kep
track of the running sum of« i and of the location of the
deepest minimum encountered up to positioni.
ta

E

.

.

ev

ni

in

Sc

47

a

03191
The binned data in Figs. 11 and 12 represent the outpu
several thousand runs with independently chosen random
quences and varying values ofD and N. In Fig. 11, which
plots the distribution of̂ m&, data points for each value off
from each run were rescaled appropriately and used toge
to construct the histogram. Similarly, all pairs of points wi
f 2 / f 1'0.77 were rescaled and used in making the histogr
of mjump in Fig. 12; in order to account for the predictedd
function atmjump50, a fractionf 2 / f 1 of the total number of
data points was subtracted from the number of counts in
bin that includedmjump50.
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