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Single molecule statistics and the polynucleotide unzipping transition
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We present an extensive theoretical investigation of the mechanical unzipping of double-stranded DNA
under the influence of an applied force. In the limit of long polymers, there is a thermodynamifzping
transition at a critical force value of order 10 pN, with different critical behavior for homopolymers and for
random heteropolymers. We extend results on the disorder-averaged behavior of DNAs with random se-
qguencedD. K. Lubensky and D. R. Nelson, Phys. Rev. L&, 1572(2000] to the more experimentally
accessible problem of unzipping a single DNA molecule. As the applied force approaches the critical value, the
double-stranded DNA unravels in a series of discrete, sequence-dependent steps that allow it to reach succes-
sively deeper energy minima. Plots of extension versus force thus take the striking form of a series of plateaus
separated by sharp jumps. Similar qualitative features should reappear in micromanipulation experiments on
proteins and on folded RNA molecules. Despite their unusual form, the extension versus force curves for single
molecules still reveal remnants of the disorder-averaged critical behavior. Above the transition, the dynamics of
the unzipping fork is related to that of a particle diffusing in a random force field; anomalous, disorder-
dominated behavior is expected until the applied force exceeds the critical value for unzipping by roughly 5
pN.
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[. INTRODUCTION stant force(Fig. 1). In addition to providing a surprisingly
good description of protein-coding DN/&], the assumption
Over the past decade, the experimental repertoire of biosf a random sequence gives us an analytically tractable
physicists and structural biologists has expanded to includeodel; its solution then allows us to gain insight into a much
some remarkable micromanipulation techniques. Thesbroader class of systems. DNA unzipping thus serves as a
single molecule methods are a natural complement to mormodel problem to illuminate the effect of sequence variation
traditional scattering and spectroscopic measurements: Abn a micromechanical experiment.
though they cannot ascertain structures at atomic resolution, In a previous brief communicatiofs], we showed that
they do give important information about the organization ofthe averageextension versus force curve of an ensemble of
disordered or strongly fluctuating systems, and they yieldandom heteropolymers is markedly different from the cor-
valuable estimates of the forces and energies that stabilizergspondmg curve for a homopolymer. Here, we move be-
giver_l structure. Moreover, mi<_:romar_1ipulati0_n experimentsyond averages over many different random sequences to ex-
on single molecules open a window into a rich and largely; mine the unzipping of singledsDNA molecule. Interesting

unexplored set of physical phenomena. One can Now Megy ajitative lessons emerge. Whereas a homopolymer gains

fgriireenrgreentdlm%trn:?/tel?gsir?f rg\?éfcglﬂa%rr%zig'ﬁi’SWa'rt;'OIlét the onsiderable entropy by opening in response to a constant
q ging P pe. orce, a heteropolymer unzips primarily for energetic rea-

only does the wealth of resulting data allow more stringentsonS In fact. the unzipoing process is dominated by the pres-
tests of ideas originally developed for macroscopic systems ' ' ppIng p y P

it also has the potential to reveal entirely new behavior thaﬁnce of deep energy minima and is only mildly perturbed by

was not discernible in aggregate results on heterogeneoii€mal fluctuations. At any given applied force, the system
populations of moleculeEL—3]. In this paper, we study an will sit in the deepest available minimum; because the loca-

example of a system—thenzipping of double-stranded tion of the minimum varies discontinugusly with the gpplied
DNA (dsDNA)—that shows exactly such novel response onforce, the number of bases opened will show sharp jumps at
the single molecule level. Our results are also directly applicertain force values. Moreover, the energy landscape is de-
cable to the unzipping of a single RNA hairpin, and similartermined by the polymer’s sequence, so the force-extension
ideas can be applied to the force-induced denaturation ofurve will be strongly sequence dependent.
RNAs with more complicated secondary structufg$ and A number of theorists have recently addressed aspects of
even to the stretching of folded proteify. dsDNA unzipping[7-15]; the mechanical properties of a
In the DNA unzipping problem, the two single strands of single-stranded polynucleotide that can pair with itself have
a double-stranded DNA molecule with a randomly choseralso received considerable attent{[d®—19. With a few ex-
base sequence are pulled apart under the influence of a coeeptions[13,19, however, this work has been restricted to
the study of homopolymers, and thus does not overlap di-
rectly with the results presented here.
*Present Address: Bell Labs, Lucent Technologies, 700 Mountain  Although our model is chosen more for its simplicity than
Ave., Murray Hill, NJ 07974. Email address: lubensky@Ilucent.comfor a clear correspondence to a particular experiment in the
"Email address: nelson@cmt.harvard.edu literature, several related experiments have nonetheless been
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performed. Early studies by Lee and co-workg26] were ]

followed by the ground breaking work of Essevaz-Roulet, -~ ¢
Bockelmann, and Hesld21], who demonstrated the feasi- N

bility of mechanically denaturing single dsDNA molecules,

and showed that many features of their results could be un- m o )C
derstood using equilibrium statistical mechanics. Subse-

guently, similar experiments have been performed using an T A
atomic force microscopg22,23. In contrast to our calcula- Random [~
tions, this work was done in an ensemble in which the posi- Soquonee

tions of the two single-stranded ends are held fixed while an cCa
average force is measured. Because of subtleties associated

with the statistical mechanics of single molecule systems,
this constant extensiomnsemble is not equivalent in the  FIG. 1. Sketch of the DNA unzipping experiment. One of the
usual sense to owonstant forceensemble; the connection single strands of a dsDNA molecule with a random base sequence is
between the two will be discussed in more detail in Sec. Vlattached by its end to a solid surface, and the other is pulled away
More recently, Liphardt and co-workers have mechanicallyfrom the surface with a constant forée As a result, the double
unfolded several different short RNA molecules related to astrand partially denatures, separatimgbase pairs fi=2 in the
domain of theTetrahymena thermophilabozyme[3]. Here,  figure). The distance between the ends of the two single strands, or
a bead tethered to a force-measuring optical trap was usexktensionisr. Inset Schematic phase diagram in the temperature—
both to impose an extension and, with feedback, to monitopulling force (T-F) plane of a dsDNA molecule in three dimen-
extension at fixed force—precisely the situation of interest irsions. At low enough andF, the polymer is in the native, double-
this paper. Alternatively, a constant force could be directlystranded phase. At the phase transition IiRg(T), the DNA
applied using a magnetic bead in a constant magnetic fiellénatures and the two strands separate. Thermally induetithg
gradient[24]. oc_curs at zero f(_)rce a_t a temperatr_ft;g.. As mdpgted _by thg arrow,

In the remainder of this paper, we first, in Sec. I, describel"iS Paper considers instead thazippingtransition, in which the
in more detail the phase diagram of polynucleotide duplexeghase transition line is crossed at nonzErd he reentrance at low

and show how a coarse-grained model of the unzipping tranc mperatures is predicted in ReL1].

sition can be derived from more microscopic descriptions oftached to a glass slide, and the other to a bead on which a
dsDNA. This model, which will form the basis of all subse- ¢onstant forcer is exertedF could be created, for example,
quent calculations, is summarized in E¢B3) through(15).  ith magnetic tweezers, which have been used to exert con-
For the purposes of comparison, we derive in Sec. Il SOmM&ant piconewton-scale forces over hundreds of mici2ak
results_o_n th_e unzipping of_ homopqumerlc dsDNA. SeCt'O”Optical tweezers or atomic force microscop@éM) with
\ revisits in more (_jetalll the disorder-averaged force'appropriate feedback can create a similar eff827]. As a
extension curve examined in R.éE]_. The bulk qf our New regylt of the applied force, the DNA partially “unzips,”
results on single-molecule unzipping appear in Sec. V. Wyreakingm bonds. As long as the force-elongation curve of
show that the equilibrium extension versus force curve of e Jiperated single-stranded DNA is knowm, can be re-
single dsDNA molecule consists of a series of long plateaugied to the distance between the ends of the two single
followed by large jumps, and we derive a statistical descripstrands, which is easily measured. Our main goal is to un-
tion of this striking behavior. We also demonstrate that, deyerstand how thequilibrium ensemble averagen) (where
spite its choppy appearance, such a curve contains hiddgRe angle brackets indicate an average over thermal noise
signatures of the smooth disorder-averaged behavior. SUbS&épends off and on the base sequence of the DNA strand.
quent sections consider the relationship between the conju- | certain limiting cases, the dependencengn F is easy
gate constant force and constant extension ensen®®s 5 nderstand. One might expect that at large enough forces
VI) and give a brief overview of the dynamics of unzipping the gsDNA will unzip completely, whereas for very small
(Sec. VI). We point out that polynucleotide unzipping pro- forces at most a few bases will open. We show below that
vides an expenment'al reallz_atlon of .the famous Sinai probipese two regimes are separated by a sharp first-order phase
lem of thermally activated diffusion in a quenched randomy ansition. Below the critical forc€ .., only a finite number
force field[25,26. Anomalous, quasilocalized dynamics per- ot hases at the end of the double strand are pulled open; in
sist up to roughly SpN above the unzipping transition. Fi-the thermodynamic limit of an infinitely long DNA molecule,
nally, in Sec. VIIl, we discuss the implications of DNA un- he pulling force thus has no effect on tiraction of open
Zipping  for micromanipulation experiments on  mMOre pages which remains very small in physiological conditions.
complicated systems. The Appendix gives a brief descriptiol\poye F_; the entire molecule unzips, and the fraction of
of the numerical methods used to generate results dlscussggen bases jumps discontinuously to one. This phase dia-
in the body of the paper. gram is sketched in the inset to Fig. 1. Rsapproache$
from below, the numbem of unzipped bases at the end of
Il. THE MODEL the molecule diverges. Because this divergence is entirely a
surface phenomenon, the unzipping transition can be thought
Figure 1 depicts the situation studied in this paper: One obf as the one-dimensional analog of a continuous wetting
the single strands from a double-stranded DNA molecule igransition[28].
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FIG. 2. Definition of the variables; ando; in the Ising-like R(n) —>
model[Eq. (1)]. In this figure, three bases are open at the end of the
dsDNA. Counting the first open base as 0, the location of the
first closed base is theey=3. Similarly, the next open base is at
0,=10.

The effect of base sequence on the force-elongation curve |
is less straightforward. We can gain some insight into the 1
role of a variable sequence by considering the problem of o _ ) )
unzipping a DNA molecule where each successive base is FIG. 3. _Deflnltlon of the variables in the contlnL_Jum mogied.
chosen at random, with at most short-ranged correlations bé2]- The distance between the ends of the two single stréhes
tween bases. Although the sequence of protein-coding DNAXENSiOnis r, and the number of open basesmsThe bases are
is certainly not random in any strict sense, it nonetheles@dexed byn.’ the separation bet.""een the two single strands at the
_ 2 L . nth base pair from the end is given R(n).
appears to many statistical criteria to fit this descriptiop
to a length scale set by the sequence’s mosaic strudibie ) - )
Deviations from randomness that escape these tests presuffRm being closed; sequence-dependent stacking interactions
ably involve fairly subtle multipoint correlations. Although €an be included by adding an additional enesgy, ,, [30].
the structure of the protein for which the DNA codes is likely For the case of a random DNA sequence, dhare indepen-
to depend on such correlations, the mechanical denaturatigient random variables. The energy @er open section gives
of the DNA itself, which depends only on the cumulative the energetic cost of initiating a melted region, &ifd;_ ;
energy cost of opening bases, should be relatively insen- —0i)*In2(ci+1—0) is the entropic penalty associated with
sitive to them. Simulations of the more complicated problemforming a closed loop of length 2(.;—0;). If there are
of pulling on folded RNA's have shown good agreement withOpen bases at the end of the molecule, before the first closed
the predictions of a random moddl9]. It is thus reasonable, Section, they are counted as the zeroth open section and do
at least as a first approximation, to take the DNA sequenc&0t incur any loop penalty. The model's partition function is
being unzipped to be random and uncorrelated. In the red sum over all possible opening and closing poir#s,
mainder of this section, we develop a mathematical descrip= Zo=c,<o,< - <c,<o, .- EXP(~H,/KgT).
tion of the unzipping of such a DNA sequence by a constant Alternatively, some models of the melting transition are
force. written in terms of the position of each base in three-
dimensional spacg31]. In the continuum limit, the simplest
A. Semimicroscopic models such description of a dsDNA of finite lengtN has the
Hamiltonian

The bulk thermally drivermelting transition of dsDNA
(see Fig. 1 can be described at varying levels of detail by a
number of models, all of which are expected to give the B Nd kgTd
same universal behavior on long enough length scales. One He= fo n 4ab
popular choice is an Ising-like description, in which a base
pair is taken to be in one of two discrete states—open or ) ) ) )
closed. By convention, the free energy of an unconstraine¥here R(n) is the relative displacement of the two single
base pair in the open state is set to zero. A melted stretch §frands at base pair, d is the spatial dimensiorg is the
single-stranded DNA flanked by two unmelted regions musPackbone Iength of a chemical monomer along a single
form a closed loop, and a loop factor accounts for the loss oftrand, and is the Kuhn length of single-stranded DNgee
entropy caused by this constra[29]. The Hamiltonian of a  Fig. 3); the factor of 14b appears instead of the more usual
semi-infinite strand can be written as a suntfoée) energies 1/b? [32] becausen indexes base pairs rather than Kuhn

associated with successive paired and unpaired regions: Segments. We will usually be interested in the liiit-o of
a semi-infinite polymer, just as for the Ising-like model. By
o1 convention,R(n) =0 when thenth set of bases are paired.
H=2 1| 2 en|+23+f(cii1—0) . (1) Because we will be especially interested in the distance be-
I n=_¢; . o .
: tween the ends of the two single strands, it is useful to define
the extension

dR\?

dn

+Vn[R(n)]], @

Here base positions are indexed by {0,1,2 . ..}, and the
ith closed and open sections start at base nunthensdo; ,
respectively(see Fig. 2 Each base pair gains an energy r=R(0). 3
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The first term in Eq(2) describes the entropic elasticity of cause the monomers gain energy by aligning with the pulling
the single strand§32] and thus has the same effect as theforce, g(F) decreases with increasirfg For example, the
loop factors in the Ising-like model. The second term ac-continuum model Hamiltoniaf®) is quadratic idR/dn and
counts for the attractive interactions between the two singléhus describes a polymer that responds linearly to an arbi-
strands. Coarse-grained over a number of bases, they atrarily large force. Such a Gaussian model results (@)
described by a phenomenological potential energy term  that is quadratic irf:

V[R(N)]=[1+7(n)]h[R(N)]. (4) )= a F?b?
9(F) =" 2digT

(Gaussiain (6)
Hereh is a short-ranged attractive potential, and the variation
with base sequence of the strength of the attractiomsimilarly, for an inextensible freely jointed chain, one finds
between strands is described ky(n). Standard methods [33]

show that the continuum partition functioZc(R,N)

=[D[R’(n)]exp(—H[R']/ksT) obeys an imaginary time ! kgT sinh(Fb/kgT) -
Schralinger equation32]. 9(F)=- BkBT In Fb (Freely jointed.
Either model can readily be extended to include a force (7)

pulling apart the double-stranded molecule. We first show
explicitly how this can be done neglecting long-ranged interdn these equations is again the backbone distance between
actions(e.g., excluded volume or base-pairing interactjons bases; the factor /b is necessary becaugéF) is defined
within the liberated single strands. Subsequently, we will aras the free energy per chemical monomer, not per Kuhn
gue that including such effects will lead to only minor length. More generally, if the forc&.{x) exerted by the
changes in our results near enough to the transition. A corsingle-stranded polymer as a function of the extensiqer
stant force acting at the end of the DNA#0) to separate base can be measured, then

the two single strands contributes an energy that is linear in

their separation. In the case of the continuum magglone g(F):f
must thus add a term to the Hamiltonian of the form 0

x(F) F
Fss(x’)dx’—Fx(F)=—j0 xX(F")dF’, (8

N . . .
 Cr— ] wherex(F) is the inverse function o . X).
Hepul(F)=—F-r fo dnF-dR/dn. ® Regardless of the exact form @fF), the effect of an

unzipping force can be included in the Ising-like model by

In writing the second equality, we have neglected the effechdding a term to the Hamiltoniafd) that gives the free en-
of the other end of the dsDNA dti=; with a physical ergy of the unzipped monomers under tension. Because
polymer of finite lengthN, this approximation should be =c;, we haveH="H,+H, ,y with
valid as long as the number of open basesN, so that
R(N)~0. Hi,pun(F)=2c19(F). 9

Unlike the continuum model, the Ising-like model does ) _ _
not keep track of the positions of the open bases. We mustinceg(F)<0, this term favors increasing;, and thus un-
thus take an alternative view of the effect of an unzippingZiPRing the dsDNA.
force. The last equality of Ed5) gives a hint of how to do
this. Suppose that, as in Fig. 2, the first closed section of B. Reduction to one degree of freedom

dsDNA starts at base,, so thatm=c, bases are unzipped  gemimicroscopic models such as those just discussed

by the force. In the dlscretellsmg-hke model, eac_h .I'beratedcontain far more details than are necessary to describe the
single strand can be described as a stringroindividual —,,,inhing transition. Our calculations would simplify if we
MONOMETS. ;I'henth such monomer contributes a displace- ., |4 integrate out nonessential degrees of freedom to obtain
mentuy, or u, to the total end-to-end distance of the single 5 gescription that focuses on the number of unzipped bases
strand, where the superscripts distinguish the two strandgy The full partition function of the Ising-like model is a sum
The energy of unzipping is thus-F-r=—X{L,F-Ui  over all of the closing and opening poirds,c,,Cs, . .. and

+ Enm=0|:~ uﬁ. Note that there is no reason to extend the sumg, ,0,,04, . ...Among these parameters, the only one that
overn to infinity; the positions of base pairs beyond the firstdetermines the number of bases that have been unzipped is
closed pair have no effect on the end-to-end distance c,. Hence we focus on a constrained partition function with
=R(0). Wewould now like to trace over the’s to obtain a  ¢,=m fixed,
contribution to the Hamiltonian that depends only on the

number of open monomensi=c;. The precise result will 0 &(m)
depend on the model used to describe the elastic properties ' B kgT
of a single-stranded monomer. For any reasonable choice,

however, the traces over the differems must decouple, Hy+Hi pun(F)
leading to a free energy of the forrm®y(F). Hereg(F) is X expg - keT ’
the change in free energy of a single-stranded monomer

caused by applying a tensidén by definition,g(0)=0. Be-  where the partition function

M=C1<0{<Cr<0p< -+ <CR<Op<+ -+

(10
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Y.

z0= > exl — H, IkeT = H, pui(F)/ kg T] |

0=c1<09<---<Ch<O,:-- S L

with ¢, constrained to be zero is included so t0)=0. N
This expression defines the functiéiim); it can be intro- \
duced in a similar manner in the continuum model, by add- N
ing the constraintR(m)=0 to the partition function AN
Zc(R,N)=[D[R'(n)]exp(—Hc/kgT—Hc pui/ksT) and 80

replacing the attractive potenti&l, with a hard core repul-
sion forn<m. &(m) gives the change in free energy from
unzipping exactlym bases under the influence of a fofeelt
can be written as the sum of the free energyd®F) of the

m liberated base pairs and of the change in free energy of the 2 g(F)
dsDNA when it is shortened bgn base pairs. This second
term takes account of any fluctuations that open base pairs ’
beyond the first closed basg and is independent d¥. For \

homopolymeric DNA, this term takes the form mg,, FIG. 4. Sketch of the bulk free energies per base ggiof the
where go<<0 is the average free energy per base pair ofipped phase andgF) of the unzipped phase as a function of the
dsDNA. Once sequence heterogeneity is present, howeveipplied forceF. These negative energies are measured relative to
we must include Sequence-dependent deviations from the dthe free energy of a base pair at infinite separation WithO.
erage. If the deviation from the average on openingritie  While g, is independent oF, 2g(F) decreases with increasirtg
base isy(n), then&(m) can be written as At a critical force valueF., the zipped phase becomes unstable
relative to the unzipped phase, and a phase transition occurs. The
m equilibrium free energy per base pair as a functiofr @ given by
&(m)=[2g(F)—golm+ >, n(n). (1) the solid curves; the discontinuous change in slogé.atdicates a
n=1 first-order transition.

Consider now the statistics of the random contributigm), ) i .
assuming that the underlying DNA sequence is random and Eduations(13) through(15) define the basic model that
uncorrelated. The functiom(n) reflects this bare sequence We Will study for the remainder of this paper. It is simple

[represented by in th ntinuum model potentia)] enough to allow a number of exact predictions, but still cor-
epresented byn € continuu odel pote . rectly captures the coarse-grained features of unzipping in

Yhe presence of sequence heterogeneity. It is not difficult to

well below its melltmg temperature’ one expects thawil see that our model shows a sharp unzipping transition: At
be a random variable with correlations that decay on thg-_ f=29(0)—go=— g, is positive. As the pulling force

scale of the finite correlation length of the dsDNA. If we are - ;" o0 o 0 0g(F) becomes negative, arfdde-

only interested in Ipng-ler)gth-s_cale p.roperties,. we can t.huéreases but remains positive(m) thus grows linearly for
take 7 tq be Gaussian white noise. It is convenient to dEfInqargem and at most a finite number of bases near the end of
a quantity the dsDNA can be unzipped. These do not contribute appre-
f=29(F)—go: 12 ciably to the average free energy per base pair of a very long

o molecule, which remaing, as at zero force. AE increases

f is positive below the unzipping transition and negative2Ndd(F) becomes increasingly negative, howevehanges
above it. Passing to the continuum limit, we can then write SIgn at some critical force valug, satisfying

&(m)=fm+ fmdmy(n), (13 29(F¢)=do- (16)
0

. ) ) Upon expanding abouf.we see that to leading ordef,
where 7(n) is a zero-mean Gaussian random variable that. F.—F. For F>F,, the average slopkof &m) is nega-
satisfies tive, and&(m) tends towards negative infinity for large It

—_— ) is thus advantageous to unzip the dsDNA completely. With
n(n)p(n’)=As(n—n"). (14 all base pairs unzipped, the average free energy per pair be-

. _ .. comes (F). The discontinuous slope &t.of the free en-
Here the overbar indicates a “disorder average” over differ-g, y per base pair as a function Bf(see Fig. 4 indicates

ent realizations of the random base sequence. The associaigd the bulk transition is first order. Surface quantities such
partition function is simply, up to an unimportant multiplica- 54 (m) will nonetheless diverge as the transition is ap-
tive constant, proached, just as in a critical wetting transition near a con-
ventional first-order phase transitig@8]. The precise sur-
Z=fwdmex;{— E(m)>. 15y  face behavior in this one-dimensional system will be the
0 kgT subject of subsequent sections.
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For dsDNA in physiological conditions, one can ignore
the rare fluctuational openings of base pairs in the bulk and
use published base pairing energies to estimate the parameter
values in our model. The pairing energies typically vary be-
tween roughly kgT and XgT per basd34]; one thus finds
go~2kgT and A~1(kgT)?. A typical Kuhn length for
single-stranded DNAssDNA) is b~ 15 A [33,35; inserting
this value into the freely jointed chain expression fgF) | I |

F
—>

V4

[Eq. (7)] gives a pulling force= of order 10 pN at the un-
Zipping transition. As we shall see, the sequence randomness
dominates whehf| < A/kgT~kgT; randomness is hence im-
portant whenever there is appreciable unzipping in heteroge-
neous polynucleotide sequences in physiological conditions.
The model of Eqs(13) through(15) is considerably more
general than the semimicroscopic models from which we
derived it. For example, onagF) has been ascertaingelg.
by measuring the force-extension curve of ssDNA in appro-
priate conditiong3,33,33 and using Eq(8)], it can be used FIG. 5. Schematic of dsDNA unzipping through a narrow pore
without reference to any underlying description of the ss{37]. The pore is assumed to be large enough that single-stranded
DNA. In fact, many predictions of our model are indepen-DNA, but not double-stranded DNA, can fit through it. Under the
dent of its exact form. Similarly, most models of dsDNd&x influence of an electric field or comparable forEe one single
of RNA hairping can be used to define parametggsandA; strand inserts into the channel and is gradually pulled through. As
all of the relevant information about the duplex is containedthe strand is drawn through the pore, it must unzip from its comple-
in these two numbers. We also expect that our descriptiofentary strand.
applies even when nonlocal interactions along the ssDN

NN

. . ) Acor example, an alternative method for unzipping DNA is to
backbone are allowed. All that_|s required is that thg fre€orce one of the single strands through a very small pore by
energy of the SSDNA be proportional iy so that a f_unct|on applying an electric field37]. If the pore is so narrow that
g(F) can be defined. For example, a polymer in a goody, pje-stranded DNA cannot fit through it, and if the applied
solvent under tension can be described as a string of blolg, 4 ig strong enough, one of the single strands can enter the
[36]. Oncemis larger than the blob size, as must occur close, e and be drawn through it, thereby unzipping the duplex
e.nough to the upzipping tran'sition, the free energy O.f th;)see Fig. 5. In this case, the analog of(F) is the electro-
single strands will be proportional to. In fact, in physi- = giaic energy gained by the single strand passing through the
ological conditions and at the forces of order 10 pN requ'reCEore, reduced by any entropic penalty the other single strand
to unzip dSD.NA’ the blab size will be at most a few mono- ¢ pay due to confinement by parts of the pore or the
mers, meaning that excluded volume interactions can be n%’djoining walls[38]. Continuum models such as E@) are

g:ﬁec_tedl ent|relé/ '3 a fl'rSt al;:)prpglmat[or?. L!:ferIse, a mo.delalso commonly used to describe a number of other systems;
of single stranded polynucleotides with uniformly attractive,;, seyera| of them, there is a natural analog to the pulling

nonrandom base pairing interactior@nding to produce (5o £ Examples include the adsorption of a Gaussian
hairping predicts a free energy proportional to the number of

. . . .~ random heteropolymer, wheie, maps directly to a force
bases in the strar[d(?‘]. This model agrees well with experi- pulling the end of the polymer away from the adsorbing
mental force-extension curves for sSDNA. The same calcu

; ! . . “~“Surface[39], and a flux line in a type Il superconductor
lations show that the fraction of bases in the liberated S'ngl%ound to a fragmented columnar defé46], whereF, can
' Cc

strands involveq ir_' intrastr_a_nd pairing interac_tio_ns W.i” bebe viewed as the magnetic field strength perpendicular to the
small at the unzipping transition. Sequence variation will fur-defect In addition, the Hamiltoniaftc+ H o, bears a
. ' C C,pu

wifrr] Sel;?:?lreo?ﬁesruci:thvaﬁlrgljne?]:eii;agzeng(():tasas"a:)yastgsr::;e p%'trrong resemblance to models of the wetting transition in two
) ' - imensions in a w with angle close to 1801].
large loop in order to bring together two stretches of bases ons edge angle close to 1841

that can pair to form a stem. This means that more work
must be done against the pulling force for the same gain in
base pairing energy. Although it might still be possible for a

stem region of atypically higtcC content to pair in this Before tackling the more difficult problem of unzipping a
way, in a truly random sequence the probability of findingdouble-stranded molecule with a random base sequence, we
such a region decays exponentially with its length. describe some results for a uniform sequef@]. If the
energy cost of opening each successive base pair is the same,
then the deviationp(n) from the average vanishes identi-
cally, and&(m)=fm. Even if, as would be the case for an
Although the main focus of this paper will be the me- alternating base sequencg(n) is a nonzero periodic func-
chanical unzipping of polynucleotide duplexes, our formal-tion, we expect that on scales longer than its periggh)
ism also applies to other experiments and physical systemsan safely be set to zero. In this section, we show explicitly

lll. STATISTICAL MECHANICS OF HOMOPOLYMER
UNZIPPING

C. Related physical systems
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that the semimicroscopic continuum model discussed abovean thus be used to relate the operaf¢F) at a forceF to
[Egs. (2) and (5)] gives results identical to those following the Hermitian operatof(0):
from the simpler single degree of freedom description.

Equilibrium statistical mechanics in a linear potential is L(F)=ULOU 1,
straightforward. The partition function of our minimal model 5
is simply Z= [dmexp(—mflksT) =kgT/f, and the prob- L(O)z—b—VZ YR 20
ability of opening exactlym bases is {/kgT)exp(mf/ d R keT

ksT). The equilibrium moments ai can be obtained from ) ] )
derivatives of the free energyG(f)=—kgTInZ with Under the same transformation, the agenfunct@ﬁﬁ?) of
respect to f  (my=0Glaf=kgT/f, (m®)—(m)2  L(F) are given by

=9°G/9f2=kgT/f2, and so on. Recalling th&t-F.— F, we E o 700 0rms  FtkaT 10

see that m)exhibits a power law divergence near the unzip- Pn(R)=Upn(R)=e""78 ¢ (R). (21

ping transition; Equation(21) shows that exerting a nonzero forEebiases

the eigenfunctions in the direction of the force. This trans-
formation is valid as long as the new eigenfunctip@ sat-

. . - isfies the same boundary conditions as the untransformed
The divergence ofm) has a simple origin: Although the oioenfinction. If we think of an isolated polymer in a box

absolute minir_n_um oE(m) remains am=0 everywh_ere be_:- whose size tends towards infinity, the appropriate boundary
onv the transition, the .system explores aII_ conﬂguratlonsconditions are thays" be well behaved at infinity; given the
with £(m)=<kgT, or equivalentlym=<kgT/f; this of course n '

: . form of U, this is equivalent to demanding that the eigen-
suggests the same scaling fon) found in the exact calcu- . 0 .
h . function ¢, (R) of the Hermitian problem decay at least at as
lation. The homopolymer thus opens patrtially for<F. en- fast as expt FRIksT) for largeR=|R|. When this condition
tirely in order to gainentropy We shall see in subsequent ger=|x|.

: : : . ! olds for then™ eigenfunction, the corresponding eigenval-
e the imsinping, of hetoronohmars - TocramSm dominatefe % 710y ‘and 2(F) wil be idendcal, and he eigentunc.

tions will be related according to ER1). Because, accord-
_ N o ing to Eq.(18), the contribution of each eigenvalug to the
Connection to non-Hermitian delocalization partition function decays as expi,N), the smallest eigen-

A different perspective on the mechanical denaturation of/alue A, dominates in the limit of a very long polymer du-
a homopolymer follows from viewing the energ§t{.  plex. We are interested in conditions in which the dsDNA is
+He pun Of the continuum modefEgs. (2) and (5)] as an  stable in the absence of a pulling force; in this cas€),
imaginary time quantum mechanical action. The partitionwhich describes the native, unpulled polymer, must have at
function Z(R,N) of a strand of lengttN, subject to the con- least one bound state. The ground state eigenvajse0
straint R(N) =R, satisfies the partial differential equation differs from the free energy per lengty of dsDNA intro-

(my~(F.—F)~! (homopolymey. (17

[32] duced previously only by a factor ¢zT: go=KkgTh. Be-
) ) causeV(R) is a short-ranged potential, the ground state
%:b_ Vot i Z_V(R) —_L(F)Z (18) wave functionz,bg(R) should decay as exp(xoR) for large
N d | RT KT kgT ' R, with the decay rate given by
where the sequence-dependent funcligg(R) is replaced _1 i |d—3 |gold 22)
by theN-independent potentidl(R) for a homopolymer. In Ko=pVItol® = kgT '

order to avoid a proliferation of factors aflb, we assume
that the backbone distaneebetween chemical monomers is Whered is the spatial dimension. When applied to the ground
equal to the Kuhn length. WhenF=0, Eq. (18) is just an  state wave function, the gauge transformation of E2{)
imaginary-time Schidinger equation. With the addition of a thus breaks down at a force of magnitugggiven by
nonzero pulling forcd=, the strict correspondence with con-
ventional quantum mechanics is lost. Nonetheless, much can Fe SN _kB_T |9old 23)
be learned by studying the evolution operatbusing the kBT_K0 ) kgT "’
language of quantum mechanics. This avenue as been pur-
sued for the formally identical problem of a flux line pinned It is natural to regard this force as the location of the
to a defect in a type Il superconductet?]. In this section, unzipping transition. Indeed, one can shgl2] that far from
we show explicitly that results from this more microscopic the ends of a long polymer, the probability that a given base
approach can be recovered from the simplified model empair_will be separated by a displacemeRt is P..(R)
bodied in Eqs(13) through(15). = ng(R) ngF(R). ForF<F., the two gauge transformations
In analyzing Eq(18), it is useful to view the forcé& as a  cancel each other, ariam(R)=[1,08(R)]2. Thus, belowF,
constant, imaginary vector potential. The “gauge transformapaired bases in the bulk of the dsDNA always stay near each
tion” operator other, and the polymer is below the unzipping transitisee
Fig. 6. Conversely, abov€ ., where the gauge transforma-
U (R)—exp(F-RIkgT) #(R) (190  tionis no longer valid, the eigenfunctiomﬁF are dominated

031917-7
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A

F-
V(R) F<F %(r)z%(r)zexp[ﬁ—xolrl
B

: (24
Peo(R)

where the last equality is valid outside the range of the po-
tential V(R). Focusing, for simplicity, on the case of one

R spatial dimensiond=1), and replacing the vectoiR and

rby the scalar®k andr, it follows that the average distance

v

v (r) between the ends of the two single strands diverges as
A
F>F
V(R ¢
R) P.(R) " (ko—F/kgT) 2+ (ko+F/kgT) 2 1
(Ko_F/kBT)71+(K0+F/kBT)7l FC_F
- > (25
R
| Slightly more involved calculationp42] give the decay of
v the end-to-end distance as the bulk value is approached,

FIG. 6. Schematic of the base separation probakiityR) be- n
low and above the first-order unzipping transitigime probability is (R(n))= (r)exr{ — _) , (26)
expected to depend only on the radial distaRcenot on angular n*
coordinates Below the transitionP.,(R) decays quickly to zero

beyond the range of the atiractive poteniigR). Above the ran-  \yhere(R(n)) is the average distance between the two single
sition, in  contrast, it approaches a constant nonzero value aSande at base pair The healing lengtim* diverges near

R—oe. F. as
by F and are extended. Indeed, one can demonstrate that they KgT2 1
become plane waves & —c. The two single strands are n* = 27 2 F_F (27
then typically widely separate@Fig. 6), and the DNA is b*(F"—F%) ¢
above an unzipping transition given by HE&3).
Upon inserting the expression fg(F) [Eq. (6)] appro- To check these results against the single degree of free-

priate for the Gaussian single-stranded polymer into our pred®m model defined by Eqé13)—(15), one must translate the
vious criterion J(F.) =g, we obtain a value for the critical number of unzipped base paimsinto a distance between

o . ; . the ends of the two single strands. Wharbase pairs have
unzipping force .. identical to Eq(23). In fact, provided the b inpedr is simpl i
T . . th d-to-end dist f
duplex binding potentiaM(R) vanishes afR— o, ¢§(R) cen unzippedy IS Smply te end-o-enc distance ot a

: Gaussian polymer of lengthn2 subject to a forcé-; it thus
will approach a nonzero constant for lar@eboveF .. One

> has distributior 36]
can then read off\o=—Db?F?/d(kgT)? directly from Eq.
(18); the free energy above the transition is Sim@lyTA,

— 2
=2g(F), a natural result given that above the unzipping Po(F|m) = exp{ _ [r—2mb?F/kgT] .
transition the DNA is entirely in the single-stranded form. Vamrmb? amp?
Within the present formalism, one can also obtain a closed- (28)

form expression foing, and hence for the free energy per

monomer, below the unzipping transition. FBKF,, the  The probability that preciselyn base pairs have been un-
transformatior(21) is valid, and\ o= — b2x3(T)/d, indepen-  Zipped isP(m) =(f/kgT)exp(~mfikgT), so the full distribu-
dent of F. Both the entropy, given by a derivative b§Tr,  ton of r is given by

with respect tal, and the average extension per nucleotide in
the bulk, given by a derivative dfgT\ with respect taF,
change discontinuously &t. (see Fig. 4. The bulk unzip-
ping transition is thus first order, as is the case for the related

problem of a single flux line torn away from a columnar gyqjyating this integral leads to the prediction summarized
defect in a type Il superconductp42]. in Eq. (24). Similarly, the distributiorP,(R) of R(n) for any

BecausekgT) is thebulk free energy per monomer, its n can be obtained by summing over a conditional distribu-
derivatives tell us nothing about the diverging surface pretion, assuming thatn>n bases are open, and another one
cursors to the unzipping transition. To study surface effectgiven thatm<n bases are open. The latter distribution is
within the quantum mechanical formalism, note that thewell approximated, except fon very nearm, by the bulk
probability that the ends of the two single strands are sepadistribution for dsDNAP.[R(n)] introduced earlier. Thus,
rated by a displacement=R(0) is given by[42] we find that

Po<r>=f:dmp<m>Po<r|m>. 29
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% n dynamicsof unzipping for a similar range above, .
Pn(R)= j dmP(m)Po(Rim—n)+ Px(R)J dmP(m) This scaling argument can be extended to the case of ran-
n 0 . .
dom DNA sequences with long-ranged correlati¢éas may
nf f nf be the case for noncoding DN®]). If the correlations be-
= ex;{ - ﬁ) Po(R) + ﬁ{ 1- exp( - ﬁ) tween nucleotides separated Imybase pairs decay asm,
B B B the fluctuationn(m) around the average energy to open a
XP.(R), (30 base pair will likewise have a correlation function
n(m)p(m’)~1//m—-m’|?. For y<1, the mean-squared
where Po(R|m—n) and Po(R) are given by Eqs(28) and  gjye of [Tdm’ »(m’) then grows as/Tdm’ fTdm’1/m’
(29). SinceP-.(R) must be symmetric with respect =0,  _ |7~ m2-7, A typical random contribution t&(m) then
its average vanishes. Upon using E20) to evaluatgR(n))  increases asn!™”2 balancing this random energy against
and recalling that =|go| —29(F) = (F¢*~ F)b?/(kgT)*for ¢ suggests thatm)~m* ~f =27, If we take, for example
a Gaussian chain, we recover E¢g6) and (27). Thus, the 2 —= 3 . '
predictions obtained by studying directly the evolution equa—y_ s [6], then{m)~1/f%, an even stronger divergence.
To verify our scaling argument for the case of a random,

tion (18) of the partition function coincide with those ob- ncorrelated base sequence, we begin by calculating the

tained by integrating out most degrees of freedom to arrive at. —
a simplified formulation in terms of the unzipping energy §|sorder—averaged number of bases opefral (as before,

£(m). the overbar indicates an average over different random base
sequencegsFluctuations about this average will be studied in

more detail in the following section. To fingn), one must

first compute the average free energkgT In Z; disorder-

In contrast to the entropically driven opening of a ho-averaged cumulants ah can then be obtained by taking
mopolymer, the unzipping of a polymer with a random se-derivatives with respect tb Remarkably, the entire distribu-
quence is driven primarily by the possibility of lowering tion of Z can be found exactly by treating the random energy
&(m) by unzipping a string of base pairs that are moren as a Langevin noise. Several variations on this procedure
weakly paired than the average. The two transitions are thuisave appeared in other physical contd®#), as have related
qualitatively different. To see this explicitly, consider a approaches to the same formal problgtB].
simple application of the Harris criterion for the importance  We begin by defining the partition function of a polymer
of disorder[43]. The typical variation per monomer due to of finite lengthm,
disorder in the base-pairing energgm) of a liberated sec-
tion of length(m) is (A/(m))¥?~ [F.—F, where theF de- = m.o &m’)
pendence follows from the result?) for the divergence of Z(m)= fo dm’exp — keT
(m) near the transition for a homopolymer. These energy
variations vanish more slowly @—F than the average The partition functionZ of interest to us is recovered by
energy differencé ~F.—F between the two phases, indicat- taking the limit of an infinite length polymer:Z
ing that sequence randomness dominates at the unzipping
transition.

A related argument can help us to guess the correct criti- ~
cal exponent for the divergence ¢m) when disorder is d_Z:e—e(m)/kBT (32)
present: The contribution t8(m) of the average energy dif- dm '
ference ismf, while a typical favorable contribution from 5
random variations about the average is of ordgfAm. The  with initial condition Z(0)=0. Similarly, the derivative of
random part thus exceeds the average rfeem* =A/f2 &(m) is, from Eq.(13),

When this is the case,(m) is roughly as likely to be nega-

tive as to be positive. One thus expects that a typical value of de

(m) will be at least of ordem*. Near enough to the unzip- d_m:f+ n(m), (33

ping transition atf=0, m* is larger than the equilibrium

averagekgT/f for a nonrandom sequence. Instead of thewith initial condition£(0)= 0. Equationg32) and(33) make
1/(F.—F) divergence ikm) seen for a homopolymer, one up a system of coupled Langevin equations, analogous, for
might thus expect DNA with a random sequence to show @&xample, to those describing the Brownian motion of a mas-
considerably stronger_ll?@— F)_2 singularity. The crossmz/er sive particle, with€ playing the role of momentum ard
between the two scaling regimes should occur wiéh that of position. They can be transformed in the usual man-
~kgT/f, gr whenf~A/kgT. For dSD’;IA'dbOtI?\/'I'K and the  ner into an equivalent Fokker-Planck equation for the joint
average base pairing energy are of orderkgT; we can T 5 S g n
estimate f~g' (Fo)(Fo—F)~(go/Fo)(Fo—F). Hence, F;g]babmty distributionP(&,Z,m) of £ andZ at “time” m
when fkgT/A~O(1) at the crossover, the reduced force™
(F.—F)/F.is alsoO(1), confirming that disorder cannot be P
neglected in polynucleotide unzipping even ferof order, | _f__e kT __|p. (34)
say, F./2. As we shall see in Sec. VII, disorder affects the am |2 g2 9E d

IV. DISORDER-AVERAGED BEHAVIOR

. (3D

lim,, ... Z(m). The derivative ofZ is simply
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To solve Eq(34) in the~||m|t of |argem, we first Laplace exponentia”y Suppressed. Hence, we expect ﬁ]amust
transform with respect t@ and tom, with conjugate vari- have a well-defined limiting distribution am—oc. This, in

ables\ ands, respectively. The resulting (zrdinary differen- tyrn, implies that the Laplace transforﬁ()\,s) should di-
tial equation for the transformed distributi®f{&;\,s) takes  verge like 16 ass— 0, or equivalently, ag— 2fkgT/A. An

the form examination of Eq(40) reveals that this is in fact the case.
R R Specifically,l ,(x) ~x” for smallx, so the integral from 0 to
Ad’P dP kTS B Xg diverges whernv approaches tkgT/A. This singularity
P @ - f& —he P—sP=—4(&). 39 dominates the largm behavior of the inverse Laplace trans-
form with respect tcs, allowing us to perform the inversion
The change of variables analytically:
8\ 1/2 ~ 2 2)\(kBT)2 fkgT/A
— on —&l(2kgT : =
X—kBT< A ) e~ &/(2kaT) (36) P(\im—=2) F(2kaT/A){ A
leads to an inhomogeneous Bessel equation 8\
! g . quat X K2kaT/A< ksT \/ X) : (41)
, %P 4tkgT| P [, 8s(kgT)?
X E+ It X~ — P where we have substitutexh,=kgT/8N/A. Note that the
asymptotics are completely determined by the smbakhav-
AXokgT ior of I5(x;)\,s). Because smab corresponds to largg, this
N 8(X=Xo), (37) is quite reasonable: It follows directly from E(R3) that the

distribution of £(m) is a Gaussian centered if, so only
where Xo=X|c—o=KgTV8\/A. Although £ has been re- very large€ will have any weight for largen.
placed byx, P remains normalized as a function &fOne To evaluate the disorde[—averaged free energy, we must
can easily check that the solution of E@Q7) follows the invert the Laplace transforrR(\;m—c) to obtain the dis-
usual form for the Green’s function of a Sturm-Liouville tribution P(Z) of the partition function. With the aid of vari-
equation, ous Bessel function identities, one discovers that the integral
can be evaluated analytically. The result is the distribution

4 (xq Z”‘BT’AK | c=x over possible random sequences of the partition funciof
A Alx AXo)(X),  X=Xo our minimal unzipping mod€l44]:
P(x;\,5)=kgT

(xih.8)=ks 4 [xo)2fkeT/a 1 2(kgT)2]2MkeT/A [ 1) 1+2fkgT/a
Alx X0, X P = FiafkaTia A } (Z>
. . 2(kgT)
wherel , andK, are modified Bessel functions, and X ex x| (42
2
p=kaT §+ ﬂ (39) The disorder-averaged free energy follows immediately by
B A A2 integration; with the substitution=2(kgT)?/(ZA), one has

Equation(38) represents an exact solution to our single de- 1 o /A1 -
gree of freedom model. We are interested primarily in the —kgTInZ=kgT —f dyy*'e In(y)e™
I'(2fkgT/A) Jo

distribution of Z for largem, so we would like to integrate

over all £ and then take the limitn—-oo. The first task can A
easily be accomplished on a formal level: n 2T [ (43
B
I5()\,s):f dEP(EN;S) Taking a derivative with respect foyields the main quantity
- of interest,
8(kBT)2 xod X Xo 2fkgT/A -
= K,,(xo)f —| = [,(x) — dlnZz
A 0o X\ X (my= _kBTT
=dx [ x| 2MkeT/A
+|V(Xo)f —(—) K, (x) . (40) 2(kgT)? fhgT/A—1 20—y
x X\ X T T(2fkgT/A)A Jo dyy?eT I(iny)%e
Because&(m) grows linearly withm below the unzipping P 2
transition for large enough, the contributions to the parti- _ 2(keT)T"(2fksT/A) (44)
tion functionZ of the parts of the dsDNA at very large are I'(2fkgT/A)2A
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FIG. 7. Log-log plot of Eq.(44) for (m)as a function off FIG. 8. Log-log plot of the average number of bases opgned
=2¢(F)—go~F.—F. For largef, the plot has slope-1, but it (closed symbolsand the location of the absolute minimumy, of
crosses over to slope 2 atf~A/kgT. &(m) (open symbolsas a function of the distandefrom the un-

zipping transition. Both variables are plotted for each of four indi-
wherel'’ (z)=dI'/dz This function is plotted in Fig. 7. In yidual polymers, represented by four diffe_rent symbol shazpes, with
agreement with our earlier scaling argument, there is a cros&dependently chosen random sequerjvesianceA =9 (kgT)“] of
over from 1f to 1/f? behavior aff of order A/kgT. Indeed, length N:5.X1.06 bases. Note that, except whem=0(1), (m)
one can analytically extract the asymptotic sniddehavior and My, coincide very well. T_he energy Ia_nds_capes for the four
from Eq. (44). One finds that to leading order &s-0, duplexes are plotted for a particular valuefoh Fig. 9.

sition seen in homopolymers and in the disorder avetage

has evidently been replaced by a series of “micro-first-order

transitions.” The four traces, moreover, are not the same—
(45) the unzipping of a single random dsDNA does not exhibit

self-averaging, but instead shows large sequence-dependent
Additional results follow for the higher cumulants of For  variations. Most equilibrium systems with quenched disorder
example, the disorder-averaged variancemoéan be found are self-averaging because the macroscopic observables of
from the second derivative & Z. For smallf, (m?)—(m)* interest are the sums of contributions from many essentially
=kgTdIn Z%of>~1/f3. The square root of this variance is a independent correlation volumes, each with their own inde-
length scale that can be comparec@. In the nonrandom pendent realization of the quenched random variables; the
case, both quantities are of ordlegT/f In contrast, once central limit theorem then guarantees that in the thermody-
sequence randomness is added, we have thgtamic limit, measurements will always coincide with the dis-
(W)MN 1/£32 which is much smaller th@ for  order average. In a sm_gle mo_lecule DNA unzipping experi-
sufficiently smallf. Thermal fluctuations aboutm) in a ~ MeNt, in contrast, one is probing only one realization of the
given random heteropolymer thus become small compared f@@uenched random sequence. As Fig. 9 indicates, each ran-
the mean near the transition. As we shall see in the followinglom realization ofé(m) will be different, and the value of
section, this fact allows us to predict not just disorder-(M) at a givenf can thus be expected to differ from one
averaged quantitieét might be tedious to average over all Polymer to the next. Furthermore, for each sequedice)
possible sequences in a real experimenit also the unzip- Varies over many tens &T; one thus might expect tha

A 1

AT

(random heteropolymegr

ping behavior of asingle dsDNA molecule. would not fluctuate very far from the minima. Figure 8 bears
out this idea: The locatiom,, of the absolute minimum of
V. FORCE-DISPLACEMENT CURVE FOR A SINGLE &(m) for each value off coincides remarkably well with
POLYNUCLEOTIDE DUPLEX (m). Becausef(m) is usually negative at these minima, the

dsDNA gains energy by unzipping some bases at its end,
Figure 8 plots the average number of unzipped bésss even below the bulk unzipping transition. This mechanism
versus force near the unzipping transition for simulations ottontrasts with the essentially entropic impetus for surface
four different dsDNA molecules, with different random se- opening in the case of a homopolymer. We show in this
quences[47]. The corresponding energy landscapes for asection that, near enough to the transitiom) for a given
force close td~. are shown in Fig. 9. Far from being smooth, DNA or RNA duplex coincides witim,,;, with arbitrary pre-
each(m) versusf curve shows long plateaus, whefm)  cision and that this fact can be used to gain a quantitative
remains essentially constant, separated by sudden, largmderstanding of the abrupt jumps seen in Fig. 8. We will
jumps. The smoothly diverging precursor to the phase tranusually work in the continuum approximation, with the prob-
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6000 —_———— sidering scenarios in which E@47) would not hold, then
showing that the probability of each such event vanishes as
o f—0. In renormalization-group language, BE4.7) can be

' read as stating that the unzipping transition for a random
dsDNA sequence is governed by a zero-temperature fixed
point; such fixed points have been found in a number of
other random systenjg9].

The simplest way thai,,;,, and (m) could differ is for
Mmin t0 equal 0; sincém) is necessarily positive, their ratio
would then be infinite. The probability tham,,,=0 is the
same as the probability that the biased random viéik),
which starts at£(0)=0, has&(m)>0 for all m>0. More
generally, the probability thaf(m)>0 for all m>0 for a
random walk starting a£(0)=&, is known in the literature
on first passage problems as the “splitting probability”
m (&y). The splitting probability satisfies an equation involv-

ing the adjoint of the diffusion operat¢46],

3000

€(m)

-3000
0

FIG. 9. Plot of four different random realizations &fm). All
four random walks have the same variarce 9(kgT)? and aver-

age biasf =0.002%gT. All four also pass belowf=0, suggesting A PP Jr
that, near the unzipping transition, dsDNA molecules with random 52 + ff =0. (48)
sequences will usually havenergeticreasons to partially unzip. 9Eq 0

The four energy landscapes are taken from the four polymers whose

force-extension curves are shown in Fig. 8; the solid, dashed, do The solution of this equation with boundary conditions
ted, and long-dashed curves correspond, respectively, to the circles, .
9 P pec Ve (0)=0 and m(x)=1 is m(Ex) =1—exp(—2£,f/A). The

squares, diamonds, and triangles. In order to focus on regions wheré\Y) . ; j
£(m) is near zero, the landscapes far- 1P are not shown. requirement thatr(0)=0 is an artifact of the behavior of a

continuous time random walk an—0: Becauseg(m) ex-
periences small jumps up and down on all scales, a random
walk that starts at(0)=0 will pass below the line€=0
many times for very smath. This behavior is not relevant to
real DNA with discrete bases, and we can regularize it by

ability P(&,m) of finding an energy after openingn bases
satisfying a diffusionlike equation,

2
P _A Q_fi (46)  considering, instead of a random walk that starts exactly at

am 2 pg2 9E &=0, one that starts slightly above 0. For smél,
(&) ~=2&FIA, so the splitting probability vanishes linearly
This result follows directly from Eq(33) or from integrating  asf—0. Indeed, for any,, 7(&;) goes to zero linearly for
the full Fokker-Planck equatiofB4) with respect toZ. At ~ smallf, as one might expect based on the well-known result
eachm, &(m) thus has a Gaussian distribution; because outhat a completely unbiased random walk in one dimension
results do not depend on the tails of this distribution, theymust eventually visit the entire real line. The same linear

should be equally valid for more realistic, discrete models ofoehavior for small enough bias is seen in random walks on
dsDNA. one-dimensional lattice$46]. We thus conclude that the

probability thatm,,,;,=0 is proportional tof and can be ne-

glected af—0.

) ] N Now consider other possible valuesrof,,. We shall see
We begin by arguing that, close to the transition, the lo-jy the following section that the distribution afi;, for

cationmp,, of the absolute minimum of(m) is in fact the  m . ~0 is a function of the dimensionless ratiq,;, f%/A.

same agm). More precisely, we wish to show that, for a The probability thatm,,,~O(1/f?), with 8+2, hence be-

A. Dominance of the absolute free energy minimum

random DNA sequence, comes negligible for smalf, and we need only consider
(m) myin~O(1/f2). For the absolute minimum and the thermal
lim =1 with probability 1. (47)  averagenot to coincide in this case, there must be a local
f—0 Mmin minimum nearly degenerate wif{m,,,) a distanced(1/f?)

away fromm,,,. Note in particular that a degenerate mini-
In qualitative terms, one might expect this result to holdmum closer tam;, thanO(1/f2) will contribute an additive
because the scale 6{m) grows like the square root of the correction to(m) that is much smaller tham,,,~O(1/f?)
distance from the minimum; it is thus very unlikely that for small enoughf, and thus will not affect the ratio
&(m) will revisit the neighborhood of its minimum value for (m)/m,;, asf—0. The same holds true for thermal fluctua-
m far from the location of the original minimum. Here, we tions in the well surroundingny;, .
simply outline the arguments necessary to support this intu- We can rephrase the question of the existence of degen-
ition; closely related theorems have, however, been provearate minima as follows: What is the probability that, for a
with mathematical rigof48]. We will proceed by first con- given positiveE ande,
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E(m)>E&(my,i,) +E  for all m such that 3000 '

[m—mpn| > eA/f22 (49

If this inequality is satisfied, them)/m,,;,— 1 is at most of

the sum of a term of ordee and of a term of order exp
(—FE/kgT); if for any choice ofE ande the probability that it~ _
is satisfied can be made arbitrarily close to 1 fosmall s
enough, then Eq47) must hold. One can easily argue from
dimensional analysis that this is the case: The probability 0
Pineq. that the inequality Eq(49) holds is a function of the
dimensionless parameterand of the three parametefs A,

1500

and f, with dimensions, respectively, of energy,

(energyf/nucleotide, and energy/nucleotide. Becabg,, 1‘

is itself dimensionless, it must depend only on dimensionless ~ -15% 3x10 5 o0 °
ratios of the latter three parameters; by rescaling energie: m

and nucleotide numbers, one can easily conclude that the
only such ratio isEf/A. Hence, Pjneq=Pineq(€,EF/A).
Moreover, we know thatn,;, is the absolute minimum of the

random walk, so it must b_e true th‘?‘nef 1 thnE=O: different average biasefs =0.0087 (upper curvg and f,=0.0067
As long asPineq(€,EF/A) is a continuous function of its o er curve. As indicated by the arrows, in the upper curve, the
second argument, it must then be true tRafq—1 asf  apqoiute minimunm,,, is atm,,;,~5 000, while in the lower curve,
—0 for any fixede andE. This is sufficient to confirm that jtjs atm,_. ~445000. A< is tuned fromf, down tof,, m,,, and

Mpip @and(m) coincide with probability 1 for small. If Pipeq thus(m) jump from one minimum to the other.
has a well-defined first derivative, ther-Pj,.q~Ef/A for
small f, a result that can be verified by a more detailed _
calculation. minimum atm>m,, will move below &(My,;,), and My,
This linear dependence has a simple interpretation: For afr (M) Wwill shift from the old minimum to the new one. As
unbiased random walk, the probability to make a first returrFig. 10 shows, the two minima can be separated by a con-
to the starting point aftem steps decays asr?? this is  Siderable distance, thus giving a physical explanation for the
also approximately the case for a biased random walk onlramatic jumps seen in Fig. 8.
scales smaller than-A/f2. Upon integrating 1h®? from To develop a quantitative theory of these effects, we begin
eA/f2 to some large upper bound, we see that the probabilitpy calculating the distribution ofn,,, for a givenf, then
not to return at alland thus not to have any minima nearly consider the conditional probability that,,;,=m, when f
degenerate witimy,,) differs from 1 by a number of orddr ~ =f,, given that the minimum was an, at a biasf;. This
Our earlier observation thdm?)—(m)?~ goes as ¥ can  conditional distribution will allow us to make predictions, for
also be explained by the smdlbehavior of 1-Pijneq [44]: example, about the typical sizes of plateaus and jumps.
The disorder average is dominated by the probability of or- We first ask for the probabilit® in(Mmin» Emin) thatE(m)
derf that(m?®) — (m)? will be of order 1f*. The notion that  has its absolute minimum am,,,Emi), O equivalently the
disorder averages of higher f:umulan_ts can be determined tbfobability that&(m) first reaches,,, at “time” m,;,, mul-
rare configurations _of the disorder in which _there are tWOtipIied by the probability thaf(m)> &, for m>m,,,. The
widely separated minima has been explored in several othgter js simply the splitting probabilityr introduced in the
random systemp49,50. preceding subsection. Although in the continuum approxima-
tion (&) is singular asy— &nin, We can regularize it in a
B. Statistics of minima: Plateaus and jumps manner similar to that used previously. Becausés just a
Having determined that the absolute minimumg,;, of copsta_mt factor, i_ndependent &fin, Fhe details of the regu-
£(m) and the average numbém) of bases opened coincide larization are unimportant. In practice, can be determined
near the unzipping transition, we can now use this fact tdy demanding thal min(Emin, Mmin) be correctly normalized.
study the(m) versusf curve for asinglerandom sequence. ~ More interesting is the probability of first passageig, .
Consider the effect on the energy landsc&pm) describing We first define the probability5(&,m;&yin) that, starting
a given dsDNA molecule, with a given random sequence, ofrom £=0 atm=0, the random walk has arrived at enetgy
tuning the biad towards zero. Decreasirfygradually tilts ~ after openingm bases, without ever having hag(m)
the energy landscape towards the horizontal, as illustrated iff Eyjn. It turns out thatS satisfies the same Fokker-Planck
Fig. 10. The location of the absolute minimum will then equation (46) as the probabilityP(&,m) for the uncon-
remain constant over a rangefpfjiving rise to the observed strained random walk to arrive aim(&) [46]. The con-
plateaus. As the landscape tilts, however, local minima astrained probability5, however, is also subject to the bound-
larger values ofm move downwards faster than those atary condition S(Emin,M;Emin) =0. With this boundary
smallerm. At certain specific values of, the energy of a condition, one can solve the Fokker-Planck equation to find

FIG. 10. Plot illustrating the physical origin of jumps in exten-
sion versus force during unzipping. The two curves represent ran-
dom walks&(m) with identical random contributiongV(m), but

031917-13



DAVID K. LUBENSKY AND DAVID R. NELSON

. 1 (E—1fm)? f€ 2m

S(EM &) = | X0~ x| "M T " 3
(Z‘C/‘min_g)2

B 2Am ] (50)

The probability to first cros<,,, after my,;, steps is then
given by (A/2)&S/&5|5:5mm, i.e., the diffusive flux of ran-

dom walkers crossing,;, for the first time. The distribution

P min(Emin»Mmin) differs from this function only by a normal-
ization factor. Finally, we determine the probability that the
minimum occurs am,,, for any &, by integrating from
—o to 0 with respect t&f,,;,. The final result is

f2

2 oo
P min( Mmin) = —— €~ Mminf ’ZAJ dw
mln( mln) WA 0

Jw
wrl  ©b

X exp( — wmmianIZA)W
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FIG. 11. Log-linear plot of the distribution over different ran-

dom sequences of the average number of opened KagesThe

horizontal axis givesm), suitably rescaled so that random se-

in agreement with the distribution obtained by le Doussalyuences with different values dfand A can be compared. The

et al. using a real space renormalization grog®]. Note
from Fig. 11 thatP,;,(mpmin) agreeswithin counting errors
with the distribution of(m) obtained from simulations. As
claimed aboveP(m,,,) takes the form of a scaling function

vertical axis shows the log of the probability of seeing a particular

(m). The squares represent binned data from numerical simulations
(described in the Appendixthe solid curve the analytic prediction
of Eq. (51) based on the assumption tHat)=m,,;,. This predic-

of My, f2/A. Variations inmg,,~(m) between different ran- tion has no adjustable parameters. The scatter seen for large
dom sequences are thus of the same order as the avera@ef*/A is the result of counting noise.

(m), and the system is not self-averaging.

We now turn our attention to the more interesting andProbability that eventdI; andlI, both occur for the same

experimentally relevant question of correlations within arandom

single (m) versusf curve. In particular, we would like to
know the probability that(m) has its minimum atm, at a
biasf, given that, for thesamerealization»(m) of the ran-
dom base sequence, the minimum wasmtat a biasf,
>f,. This probability will turn out to depend only on the
jump sizem;,,,=m,—m;,. The plateaus seen in Fig. 8 sug-
gest as function contribution at,,,=0. To determine the
strength of thisé function, consider a polymer with a fixed
base sequence giving rise to an energy landscape

W(m)EJ’Omdm’ n(m’). (52

If the minimum of &(m) is at m, for bias f;, then W(m)
+fm>W(m,)+fm=¢&; for all m, and henceW(m)
+fom>W(m,)+fm=&, for m<m,; and f,<f,. If the
minimum is to move fromm, as the bias is tuned down to
f,, it must move towards largen. This is not surprising—
one can easily prove thai{m)/df<O0.

Let IT; andII, denote the events, respectively, that for m;;q,

m>my, W(m)+f;m>¢&;, andW(m)+f,m>¢&,. The prob-
abilities thatlT, andII, occur are simply the splitting prob-
abilities 7y« f, and o f,. If the minimum of the random
walk falls atm, for a biasf,, thenlII, is true if and only if
the minimum remains an; at the biasf,. In other words,
the coefficient of thes function atm;,,,=0 in the distribu-
tion of mym, is simply the conditional probability
Prof IT,|I1,]. From Bayes’ theorerf61], we know that the

sequence is Pifdb,/\IT4]
=Prol IT,|IT,]Prof I1,]. But if IT, occurs, thenl; must
also occur—if the random walk never passes below its value
at m; with the smaller biag,, then it can never do so with
the larger biasf;. Thus, Propll,/\Il;]=ProlIl,]. The
conditional probability thus takes the simple form

Prod I1,]

T2 f)
ProjIl,] m

SO

Prolj IT,|T1,]=

and the probability that a plateau stretches frbndown to

f, is justf,/f,. Upon taking a derivative with respect fg,

we conclude that the end point of a plateau that starts at a
bias fg, is uniformly distributed between 0 anfly..
Equivalently, the log ratid =In(fg,./fsop Of the starting
and ending biases of a plateau is distributed as-eRp(

The distribution of plateau lengths, of course, is only part
of the description of a plot ofm) versusf; to complete the
characterization, we must also study the distributtg,, of
jumps My, for nonzeromyy,,. The full distribution of
will then take the form {,/f;)8(Mmjmp)+(1
—f2/f1) Pjum{Mjump) - The calculation ofP,,, requires an
extension of our previous first passage approach. As before,
we are interested in the probability that the biased random
walk W(m)+ f,m first reaches the energg, at m,=m;,
+Myump, but subject now to the additional constraint that
(my,&;) is the absolute minimum for the larger bids.
Hence, we demand thav(m)+f,m>¢&; for all m>m,,
where W(m) is the same fixed realization of the random
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energy landscape. To calculate this modified first passagt 10’ . . . .
probability, note that for eactn, only one of the two condi-

tions has to be taken into account. Fofm,<(&1—&)/(f4

—f5), W(m)+f;m>¢; is the stronger constraint on the al-
lowed value of &m), while for my,,>(&—&)/(fy

—f,), W(m)+f,m>¢&, is the stronger. We can find the first ~ 10”
passage probability, subject to both constraints, by multiply-
ing the probability of arriving atmjm,=(E1— &)/ (f1—15)
subject to the first constraint by the probability of going from
there to M,,&) subject to the second. Specifically, let

—— Prediction
O Simulation

Jump-

Prob[m,

Si(E,m;Eqnin) be the probability of arriving af after opening
m bases, with bia§; and with&(m) always larger tha&

and letS,(€,m;&yin) be the corresponding probability with

bias f,. Both probabilities are given by E@50), with the
appropriate substitution fof. As in our calculation of the
distribution of minima, the derivative &b is also an impor-
tant quantity, so it is useful to defin&; (& m;Enyn)
=S, ,/ €. The probability that a random walk with bids
will arrive at (m,£), subject to the constraint tha¥(m)
+fim>¢&,, is related toS; by a “Galilean” transformation
(with m viewed as a time and, —f, viewed as a velocity
jump). Upon making use of the invariance of tl&s with
respect to uniform translations i and inm, one can thus

4
10 E 1 ) B ) 3
0 1 2 3
LAY

FIG. 12. Log-linear plot of the distribution of jumps,y,, for
folf,~0.77. mjumpfglA is plotted on the horizontal axis, the log of
the probability ofm;,m, on the vertical axis. The points represent
binned data from numerical simulatiodescribed in the Appen-
dix), the solid curve an analytic predictidno adjustable param-

eters based on the assumption tiat) = m,,;,. The scatter seen for

write the probability thati,,&,) is the minimum at bia$,,
large mjumpfglA is the result of counting noise.

given that (n,,&;) is the minimum at biag,, as

To find the distribution ofmy,,, alone, and thus ofn,,
one must integrat®;ym(Mjump, Eump) With respect to;m,
from —(f{—f,)m, to 0. The lower bound reflects the con-
straint thatw(m,) + f;m,>¢&;; the upper bound ensures that
E,<&(my). Figure 12 compares a numerical calculation of
the full distributionPj,,,, obtained in this way with simula-
tion results. The good agreement confirms raj~ my,;, .

where m'=(&,—&,)/(f,—f,) is the value ofm,,=m, ;
—m, at which the two constraints switch precedence. The N€ figure also shows that for larg@8ump, Pjump decays as

quantity S,[ & — &+ (f,— f,)m’,m’:0], which is formally gxp(— rqumpf_§/2A). This is the same as the largg,;, behay-
zero, is assumed to be regularized by replacing 6-yand 107 Of Prip with f=15; for large enoughmy ., the constraint
we have suppressed the normalization factor proportional t§nPosed by the minimum an, has no effect on the distri-
5. According to Eq.(54), Pj,m, depends only on the two bution. o _ S
biasesf; andf, and on the differencesy,m, and &um=£ Addltlona! analytic insight can be obtained by considering
—&+(f,—f,)m,. The latter is the difference between Various limits. When {;—f;)/f,;>1, one finds that
&(my) and&(my), both defined with bias,; the extra factor  Pjump{Mump:Ejump) = Prmin(Mjump: Ejump)» Where Py is the
proportional tom, is necessary becaugk is defined with d!stnbunon of the absolute m|n|mum.at a given vallue.fof
bias f,. It is straightforward to show that the conditional discussed aboviEq. (51)], evaluated wittf =f5. In the limit
distributions of minima are Markovian—that is, the joint dis- ©f large f1—f5, the lower bound oj,m, approaches-,
tribution of m, and&, does not depend on the location of the @nd the integral oPjym, with respect tajym, introduces no
absolute minimum for any<f,: Suppose that one were to €Xtra complications. The distribution @iy, is thus no dif-
ask for the distribution ofn, and&, subject not only to the ferent from that of the minimurm,,;, without any additional
constraint that at biag,, the minimum was atrfi;,&,), but ~ constraints. After normalization, we find

also that at a biag,<f,, the minimum was amy<<m; and
Epy With &+ (fo—f1)My<E<&1+ (fo—f1)my. This addi-
tional demand translates into the condition tHAL(m)
+fom>¢&, for m>m;,. This constraint, however, is weaker
than the requiremetv/(m) + f;m>&; imposed by the loca-
tion of the minimum at the biag,. The distribution of
(m,,&,) is thus independent of what happend gtand the
probability of a given sequence of measurementsrof
=M, for successive values 6ttan be expressed as a prod-
uct of factors ofPjymp-

Pjump(E2,My| E1,my) o L d&'S[ & =&+ (f1— 1))
2

X(m’'+my),m’;0]S5(E— & ,m,

—my—m’;E-E&"), (54

f2
l:)jump( mjump) = Pmin( mjump) = A exp(— mjumpf Z/ZA)

><J dw exp( —Wmym,f4/24)
0

w f,—f
T 2>1>.

X_
w+1 fsy

(55
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Equation (55) can be understood as follows: Whéag is 10°
much smaller thari;, the smaller bias allows the system to
visit much more random sequence before fime term in

&(m) makes the energy cost prohibitive. With so many more
places where the new absolute minimum could occur, the 10° %A 1

constraint from the location of the old minimum at the larger

bias becomes unimportant, arg],,,(Mj,mp) becomes inde-
pendent ofm;. Indeed, becausm,~ 1/f§ is typically much
larger thann1~1/f§, m, differs very little fromm;,,. The
distribution of m, thus approache®,,,(m,). That is, the
minimum at biad , is essentially choseimdependentlyrom
the same scaling distribution as the minimum at biadVith 102
a long enough sequence, it should in principle be feasible tc AA
make many such independent measuremems,gf~(m) at
different values off. Although DNA unzipping is not self-
averaging in the usual sense, the data from even a singl 10° L L L .
random sequence thus nevertheless contain remnants of tf 10 10 10 10
disorder averaged behavior. In particular, ifmnis plotted T

versus Inf for a long enough polymer, the best-fit line should £, 13. plot illustrating the recovery of the disorder-averaged
have slope—2, as predicted by our calculation of the scaling law(m)=A/2f2 in the force-extension curve of a single
disorder-averag€m) [Eq. (45)], albeit with considerable random heteropolymer. The points gi¢m) as a function of for a
scatter about the line. Figure 13 illustrates this point. single polymer; the solid line is the best-fit power law, with expo-
The distribution of myy, in the opposite limit {;  nent—1.96x0.12.
—f,)/f,<1 is the size distribution of jumps between two 2 )
successive plateaus, one ending and the other startihg at SharPens as;. In contrast, we have seen that a typical pla-
~f,. Put in different terms, it gives the distribution of dis- (€U at biag, extends for a distance of ordéy. As f;—0,
tances between two essentially degenerate minima at a givéfe width of the jumps thus becomes very small compared to
bias f, assuming that such minima exist. Because the twdhe size of the plateaus, in agreement with our arguments that
minima are already required to be at almost the same energ ,min/fm>—>_1 in this limit. The sharpening of the jumps as
Pjump IS independent o€, in this limit. The integral over —07 is evident in Figs. 8 and 13.

Eump is then elementary, and the resulting distribution takes Note also that if the temperature is raised at fixed force
the form near the unzipping transitidine., a vertical instead of a hori-

zontal trajectory in the inset to Fig),Jwe havef~T-—T.
f, 1 mjumpfg) 'I_'he _surfﬁce ﬁozrl(t;r/ib#-tzjon-rtzo ;[heZ/ s?zeci;‘ic >r}e]:alt n(ra]ar trzse transi-
P (o )= exd — tion is thus T3G/aT2~T?3dIn Z/9f>~Km)ldf, where G=
pamel T N2A N Miymp 24 —kgTInZ is the “surface” free energy of the partially un-
o raveled polymer duplex at fixed temperature and force de-
! 2<1>_ (56)  fined in Sec. Ill. If{m) as a function of takes the form of a
f2 sequence of plateaus and jumps, then the derivatignof
) o ) ) with respect tof must vanish except in the vicinity of the
This expression is valid fommf5/A<f,/(f1—15); for  jumps, where it will show a sharp spike proportional to the
larger values ofmymp, the power law prefactor oPjump  jump sizemy,y,. As f—0 and the jumps become very sharp,
crosses over from Ukfy,mp)  to 1/(my,mp) 2 The tail of the  the specific-heat spikes will approastiunctions. Each jump
distribution thus still agrees with that &;,, as expected. can thus be thought of as a “micro-first-order transition.”
Knowledge ofPj,,, gives a detailed description of the e close this section with an example of how plateaus
statistics of(m} versusf curves, under the assumption that and jumps can appear in the unzipping of a b|0|og|ca||y rel-
(m) and my,, coincide. We have already seen that this asevant DNA sequence, that of phage lamij8a]. Figure 14
sumption is valid with probability 1 a&— 0. For any finitef, plots the energy landscagém) of a 28-kb segment of the
however, there will be occasions when it does not hold. Inambda genome for two different biases. The energy to open
particular, it must break down in the vicinity of jumps be- each base pair is taken from a widely used parameter set
tween different plateaus. Near enough to a jump, the minimg34], and we neglect the possibility of rare denaturation
giving rise to the two plateaus will be nearly degenerate, angubbles under physiological conditions. The energy land-
<m> will contain substantial contributions from both minima. scape shows two pronounced minima; a third minimum very
Indeed, if a jump of sizeny,,, occurs at a biaé,, then both  nearm=0 is barely visible. The corresponding plot @h)
minima will be appreciably occupied if the difference be- versus the distande~F.—F from the transition, determined
tween their energielf — f;|m;,n;=kgT. The sharp disconti- py an exact evaluation of the partition function, appears in
nuity in (m) at f, will be replaced by a smooth transition of Fig. 15. As expected, it consists of three plateaus, corre-
width of orderkgT/m,,,. We have already seen thak,,  sponding to the three minima. Thus, the qualitative ideas
is typically of orderA/f%, so the width of a typical transition developed in this section apply to real sequences found in
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FIG. 14. The energy landscaggm) for unzipping bacterio- FIG. 15. Log-log plot of the average number of open bases

phage lambda DNA at two different biases. In this figure, the bas@y versus biad for unzipping bacteriophage lambda DNA. The
pairs are opened in the reverse of the conventifb@lorder, start-  energys(m) is as in Fig. 14. The three plateaus correspond to the
ing with base number 48 502. Base pairing and stacking energi€§,inima of £(m) at m~1, m~1500, andm~26000; the jumps
are taken from[34] and are scaled bykgT, with T=37°C  paqyveen them occur at biasésandf, as indicated in the figure.
=310 K. The biase$, andf, are the locations of the two jumps  Assuming freely jointed chain elasticity for sSDNEg. (7)], with
marked in the force-extension curve of Fig. 15. The locations of thg,— 1 5 nm[33], the definition off [Eq. (12)] implies that these
two minima that exchange stability at each bias are indicated byjqeg correspond respectively to forcesFgi=7.90 pN andF,
arrows. Note the difference in scales between the upper and lower g 14 pN. The middle plateau is actually subdivided into three
plots. smaller plateaus, separated by jumps between nearby minima. Simi-

) ) ] ) larly, a local minimum am= 60 is the most stable for a small range
experimental biology as well as to the idealized randomys f petween the plateaus at=1 andm~ 1500.

models explored here.

o o N . Because it is difficult to synthesize long polynucleotides
C. Application: Determination of base-pairing energies with prescribed sequences, one would like to be able to mea-

In this section, we digress briefly from our primary focus Sure pairing energies on relatively sh@ens of nucleotides
on polynucleotides with random sequences to discuss hoWairpins. Even for short hairpins, one can still define an av-
the mechanical denaturation of specially designed sequenc€§age pairing energyy, a variation about the averaggm),
might be used to measure the strength of the base pairing adcritical unzipping forceF. satisfying Eq.(16), and a dis-
stacking interactions that stabilize polynucleotide duplexestance f=2g(F¢)—g, from the transition. Drawing on the
Traditionally, these interactions have been studied by analyZdeas developed in Secs. VA and V B, we expect that, for a
ing the thermal melting curves of double-stranded DNAsgiven hairpin in the constant force ensembe) will re-
and RNA's[34,58. Most commonly, the stability of a duplex main close to minima of(m) except for jumps at certain
is assumed to be determined by ten phenomenological pa@lues off. The measurement @f, for a hairpin of lengttN
rameters giving the combined pairing and stacking energiets most straightforward if there are only two such minima, at
of the ten possible distinct groups of two successive base'=0 andm=N; the unzipping transition then shows a two-
pairs. These parameters can be inferred from the meltingtate behaviof34]. For this to be the case, the energy land-
temperatures of a set of duplexes with appropriately chosescape&(m) must take roughly the form shown in Fig. 16.
sequences. Although in most ways quite successful, thiBecause of the energy barrier betwaer0 andm=N, the
method has the disadvantage that it yields values of the teunzipping fork is always localized in the vicinity of one of
energy parameters only in the vicinity of the melting tem-these minima, with a sharp jump between the twb afFig.
peratures of the double-stranded molecules. Because the$@). F. is thus easily read off from the experimental exten-
energy parameters are expected to depend on a variety sfon versus force curve, ag is then given by Eq¥8) and
conditions, including salt concentratiopH, and (for en-  (16). Just as for the standard methods based on melting
tropic reasonstemperature, it would be useful to have a curves, the ten energy parameters can be estimated from the
technique that allowed the measurement of duplex stabilitknowledge ofg, for enough different hairpins. One can
in a wider range of conditions. It has already been showrstraightforwardly design hairpins with two-state unzipping
experimentally that micromechanical experiments can béehavior by joining a stretch of strongly paired bases to a
used to estimate the binding energy of a particular RNA hairless stable stretch. Thus, for example, if one strand of the
pin [3]. Here we extend the analysis of RE3] to consider hairpin has sequence &) n(A)n23", With opening start-
more generally how mechanical denaturation might be usethg from the 3 end [and complementary sequence
to infer the stability of duplexes. 3'"(G)np(T)neD'], 9o for the hairpin approaches for large
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FIG. 17. Force extension plot for a designed oligonucleotide
FIG. 16. Schematic energy landscape for a designed oligonucléluplex that could be used to measure base pairing and stacking

otide duplex that could be used to measure base pairing and stacRPergiessee Fig. 16 Starting from the end from which it is being

ing energies. The duplex is chosen to have stronger base pairs nd4fZiPPed, the duplex has sequenceé,(C)z03', with base pair-

the end from which it is opened, and weaker base pairs at the f4P9 energies taken from Ref34]. The sharp unzipping transition

end. The energy of opening(m) thus first slopes upwards, then allows an accurate measurementFf=8.32 pN, and thus of the
downwards, and the only two minima occur for a completely un-energies stabilizing the duplex. Forces are calculated assuming that

zipped and completely zippedn=0) duplex. As the bias is tuned SSDNA is a freely jointed chaifiEq. (7)], with Kuhn lengthb
through the unzipping transition, the two minima exchange stability,~ 1.5 nm[33].

giving rise to a sharp unzipping transitésee Fig. 1.

stranded polymer is equal to the lengsh per chemical
monomer.

, . . A We begin by considering the constant extension ensemble
o?e strand of a d,uple}>_<5 CC_?’ _and SAA3". S|m_|larly, in the absenceof sequence randomness. We neglect long-
5" (CO)nia(AT)nya3", paired with its complement, gives the angeq interactions within the single-stranded polymers: be-

average of the energies associated wite 63", 5'GC3’,  cayser and F will always be parallel on average, we can

5'AT3', and STA3'. Corrections due both to the junction work with the (signed scalarsr and F. Regardless of the

between the two homopolymeric stretches and to the conelastic properties of the single-stranded Di¥eely jointed

finement energy of the loop section of the hairpin decay ashain, Gaussian, elc.one can define the statistical weight

1/N; they can be eliminated by measuring hairpins with sev-G,(r) for a single-stranded chain of lengtim2o have an

eral different values ofN. Mechanical denaturation in the end-to-end distance The partition functionZ in the con-

constant force ensemble can thus be used systematically stant extension ensemble can then be viewed as a weighted

determine the ten standard duplex stability parameters in sum over the number of unzipped bagseswith r fixed.

wide range ofpH, salt concentration, and temperature. Given the energy cosgym of openingm bases, one has
[19,27

N, the average of the energies associated (éhding along

VI. CONSTANT EXTENSION ENSEMBLE

So far, we have considered only the constant force en- Z(r)=J dmG,n(r)exp(—gom/kgT). (57
semble, in which a fixed force is applied to the two single 0
strands of the dsDNA, and one measures the average number
of base pairs opened or the average separgtipietween In the limit of larger, one expects the number of unzipped
the ends of the two single strands. Constant extension expefdasesn to be proportional ta. It then makes sense to con-
ments, in which the separatianis fixed, and the average sider the free energy per babkéx) of the liberated single
force is measured, are also possible. In the classical thermstrands as a function of the extension per base/2m. The
dynamics of macroscopic systems, these two ensembldeee energy per basg(F) in the constant force ensemble is
would be equivalent. That is, the functios)(F) and related toh(x) by the Legendre transformg(F)=h[x(F)]
(F)(r) measured in the two ensembles would be inverses of-Fx, and in the thermodynamic limit—c with r/m fixed,
each other. In single molecule experiments, however, suchae expect—kgT IN[Gy(r)]=2mh(x). It is not difficult to
relation is not guaranteed, and the two ensembles are in fashow that the leading correction to this result is of order
not equivalent in DNA unzipping. For simplicity, we assume In(m)/2. Hence, for large the partition function becomes, up
throughout this section that the Kuhn lengtlof the single-  to r-independent multiplicative constants,
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= fwdm th r gom = focdm th r) gom W(m)
(0= Jo a2 ket "\ 2m)  keT (0= Jo e "kt 2m) " kT~ T

\ffwdn p[ Ay gonH xFe \rw(n*) f“’ dn
2Jo nllzex kgT nh(1/n) 2 )’ rex keT  2kgT |J-=(n)¥2
(58) rk(n—n*)2  JrW(n—n*)
Xexpg — T , (61
where we have introducet=2m/r =1/x in the second line. B V2kgT
For larger, Z may be evaluated in the saddle point approxi- B ok i .
mation, which gives wherek=(1/n*)"h"(1/n*). In passing from the first to the
second expression, we have used the scaling properties of a
> , . random walk to make the substitution, valid on the level of
)=~/ (n*) o F{— rh'(1/n*) 1+O<1”. statistical distributionsyV(rn/2)= \r/2W(n). We have also
h”(1/in*) kT r expanded around the locatiorf of the saddle point in the

(599  nonrandomcase. Because the average terms in the exponen-
tial grow asr, while the coefficient ofV(n) is only propor-

The O(1/r) term comes from subleading corrections tional to \r, this expansion will still give the correct
to Gom(r) that we have chosen not to calculate explicitly. 28Symptotic behavior as— . _ _
The location n* of the saddle point satisfie’(1/n*) ~ __ Equation (62) shows that the leading corrections to
=(n*)[h(n*)+go/2], whereh’(x)=dh/dx plays the role (F)(r) can be described by the equilibrium extension of a
of a force. Indeed, upon using the Legendre transform relaspring “dragged” across a random potentfdl9]. One can
tion betweerh andg, we find thath’ (1/n*)=F.. Thus, for ~ estimate the spring’s extension by balancing the elastic en-
larger, the average force in the constant extension ensembR¥gy cost of extension-rk(n—n*)%/2 with the typical ran-
takes the simple form dom energy gain\/FW(n—n*)~\/rA|n—n*|. These two
terms are of the same order whgn-n* |~ (A/k?r)3. The
1 typical energy gain due to extension is thgnA(n—n*)
=F + O(—z). 60)  ~(A?r/k)¥3 note that althougm—n* is positive or nega-
r tive with equal probability, the associated change in energy
must always be negative. We thus expect that the disorder-
In the constant force ensemble, on the other hgngi:1/f  averaged free energy should behave as
~1/(F,—F), which upon inversion gives the slower ap-
proach toF.;F=F.+O(1/). Both ensembles predict that
complete unzipping of the dsDNA occurskatF; in fact,
in the limit r —oo, the constant extension ensemble simply
demonstrates coexistence of the bulk unzipped and zippeote that the term proportional #/(n*) averages to zero.
phases, as in any first-order transition. The approack to Upon taking a derivative with respect t¢o one concludes
=F. asr becomes large, however, is markedly different.that the disorder-averaged force in the constant extension
Equivalence of ensembles exists only in the “thermody-ensemble approaché&s for larger according to
namic limit” r—oo,
Because DNA unzipping does not show self-averaging, _
the situation becomes even more complicated when sequence Fo—(F)(r)~
randomness is introduced. In the constant force ensemble,
(m) (and hencér)) increases monotonically &sincreases, . N
for any DNA sequence. In the constant extension ensembldh contrast, in the constant force ensemble)~(m)
in contrast, we expect large regions whet&dm, which  ~1/(Fc—F)?, which upon inversion gives ,—F~ 1/r)*2.
plays roughly the role of,, is smaller than average; when Once again, the two ensembles agoeéy on the location of
the unzipping fork enters one of these regioffs) should the unzipping transition.
decreasePrecisely such behavior is observed in experiments There is one further, more subtle relationship between the
and simulations on the unzipping of lambda phage DNAWO ensembles with sequence randomness. For a given se-
[21]: (F) is seen to vary randomly about an average value aguence, the constant force partition function can be written
r is increased. For a given random sequence, the functiori either of two ways:
_ > ) = f dr
(r)(F) and(F)(r) are simply related. Once sequence het- kg —e
erogeneity is present, a term proportionaMgm) [see Eq.

(r)(F) and(F)(r) thus cannot be inverses of each other.
(52)] must be incorporated int8(r). In analogy to Eqs(58) Xexp{ B OF(r)+(Fe— F)r}

dinZ

<F>:_kBT ar

2

ko

1/3

—kgTIn Z(r)~rF.— (62

2\ 1/3

One can still ask, however, whether the disorder averages [~ W(m)+fm
Z(F)= | dmexp - — ——
0
and(59), one finds kgT

(64)
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where 6F(r)=—kgT IN[Z(r)]—Fy. These two expressions mer of order the monomer size The mobility of a single
must of course ultimately lead to the same result, and thistrand of lengthmis then of order 1/4 nam, wherez is the
fact has interesting consequences for the propertie87of  solvent viscosity, regardless of whether the strand is de-
Near the unzipping transitionf,=2g(F)—go~29'(F.)(F scribed by the Rouse or by the Zimm model. Assuming a
—Fo)=2|g'(Fo)|(F.—F). Up to a constant facta@and ne- force F of order 10 pN, one then finds thats{m)
glecting exponentially suppressed contributions to the sec=4mna?m/F~ (1 nsecjn. Similarly, we can estimate the
ond integral fronr <0), both expressions fat(F) can thus rotational relaxation time,,0f a dSDNA molecule of length

be viewed as Laplace transforms with respect to the sam@N—m) by finding the time for it to turn through
variable. Hence, we expect thaF(r) must have statistics 2#/10.5 rad(with the denominator of 10.5 arising from the
very similar to those ofV(m). In particular, for smallF, ~ number of base pairs per helix turn in B form DNA in solu-
—F, the integral with respect tg like the one with respect tion [54]). For a dsDNA strand of radius 1 nm, the torque
to m, is likely to be dominated by its absolute minimum. In exerted by the two single strands under tension is roughly
order to give the correct sequence of plateaus and jump2xX10 pNx1 nm=20 pNnm. Classically, the rotational
6F(r) should thus behave like a random walk for large mobility u,,; of a dsDNA molecule of lengtiN has been
with (8F(r")— 6F(r))?=2|g'(F¢)|A|r’ —r|. Scaling argu-  calculated by assuming it is a straight, rigid rod, yielding the
ments due to Gerlanek al.[19] suggest that the force devia- value u,,~(2x 108 sec/g crf)N [55]; this would imply
tion 8F(r)=(F(r))—F,=ad8Fdr should have a variance 7o~ (3 nsec)N—m). More recently, Nelson has argued
that decays asF (r)2~AY3(k/r)?3. For (sF(r')—6(r))?  that the presence of intrinsic bends in natural dsDNA could
to behave correctly at large scale®;(r) must then have a decrease the rotational mobility, and thus increagg by
correlation length that grows a€ One plausible explana- Several orders of magnitud&6.

tion for this behavior is that, much as in the constant force The time dependence of the number of unzipped bases
ensembien |ocks into a Singie minimum OW(n) asr iS m(t) will be determined by which of these four time scales is
increased over a finite intervai before Jumping to a new mini_the S|0W€St. The most d|ﬁ|CU|t Situation to analyze OocCcurs |f

mum, with the size of this interval increasing aggrows  the system is dominated by, as can be the case for small
larger. enoughm andN. In this case, the dynamics of the denatur-

ation bubbles in the bulk dsDNA will be slower than the
dynamics of the actual unzipping. Unlike in our equilibrium
calculations, the bubbles then cannot be integrated out to
So far, we have only considered static, equilibrium behavgive an effective(local) dynamics that depends only on
ior. In real experimental systems, of course, dynamical efindeed, in the limit that bases at the unzipping fork open
fects can play an important role. The complete description ofnuch faster than those in the bulk, the unzipping fork will
the dynamics of the unzipping transition, allowing for the propagate into an almost frozen landscape of opened and
possibility of thermally activated denaturation bubbles in theclosed base pairs. Strongly nonequilibrium effects, including
bulk dsDNA, is a challenging and still open problem. Foura depression of the effectiig,, could then become visible
time scales come into play: the time scalgsyand 7, of  [57]. The predicted decrease in the apparent critical force has
base pairing and unpairing at the end of a double-strande@ simple origin: The base pairs’ fluctuations between open
region and in the bulk, the relaxation time{m) of the  and closed contribute some entropy to the dsDNA's average
liberated single strands, and the rotational relaxation timdree energyg,, makingg, more negativeand thus the ds-
To(m) of the still zipped dsDNA, which because of its he- DNA more stablgthan it would otherwise be. On time scales
lical structure develops excess twist as it is unravelled fronsuch that these fluctuations are frozen out, this entropy is
one end. The latter two time scales are expected to depend ¢vst, the dsSDNA appears less stable, &ddecreases. Be-
m. Coccoet al.[14] have suggested that there may be a fifthcause 7,{m) grows with m, it must eventually become
scale associated with overcoming an additional energy baslower thanry,,; beyond this point, more conventional be-
rier to unzipping the first few bases of an initially blunt- havior should reemerge.
ended dsDNA, but such a barrier would not affect the long Fortunately, in physiological conditions, opening of base
time unzipping dynamics. Although not the subject of exten-pairs in bulk dSDNA is extremely rare. Well below the melt-
sive investigation, the opening rate,4 of terminal base ing temperature, it is then reasonable to assume that all base
pairs is thought to be between 1 and 10 mgbt59. Be-  pairs beyond the unzipping fork are closed, and to focus only
cause opening a base pair in the middle of a double-strandeth the position of the unzipping fork. Consider first the case
region requires overcomirtgvo stacking interactions, instead in which the slowest of the three remaining time scales is
of one for opening at the end, we expegl,> 7enq[14,53;  independent of, either because,,qis the slowestas will
in unzipping experiments, the pulling force will further ac- be the case fom<N=10® or 10* under the assumption of a
celerate base-pair opening at the unzipping fork. Marenstraight rod rotational mobility for dsDN)Yor becauser, is
duzzoet al.[12] have argued that the relaxation time of the the slowest, but wittm<N so that changes im have a
ssDNA is given by the time required to move the entirenegligible effect onr,y. In this regime, the unzipping dy-
single strand a distancefor each monomer that is opened or namics is dominated by the diffusion of the unzipping fork in
closed. Because the forces required to denature dsDNA atbe one-dimensional energy landscden). In other words,
fairly large, each single-stranded monomer will be undeiit is an example of the well-studied problem of a random
considerable tension, with the average extengipar mono-  walk in a random force field, sometimes known as the Sinai

VIl. DYNAMICS
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problem[25] (for reviews, sed26]). The overdamped dy- bias[61]. The time to opermm base pairs is a sum @(m)
namics associated with the continuum free energy of E8).  such trapping times, with each time chosen independently.

then takes the form For u<1, the median value of this sum grows ms$’*, so
q se(m) one has sublinear growth with time of the sequence-averaged
m m d f unzipping,
G =T g HO=—TIf+y(m)]+ (1), (65 9T O HNZPRING

o (m(t))~t* (u<1). (70)
where the effect of thermal fluctuations is included through

the noise sourcé(t) with correlations The average extent of unzippingn(t)) of a given poly-
nucleotide is typically also of order*, but with time and

(L) =2kaTT (T —1"). (66 sequence-dependent fluctuations in the prefactor. Fop 1
The magnitude of the phenomenological drag coeffidieit < 2: (m(t))~t recovers its usual behavior, but there |Zs still
set by the slowest time scale: anomalous behavior in the second cumulagm(t)<)
—(m(t))? typically grows ast?*. Conventional diffusion
1 with drift is recovered only for forces large enough that
F:W’ (67 >2, or [f|>A/kgT~O(kgT) for dsDNA in physiological

conditions. For the freely jointed chain expressiah for

with 7 equal tore,qOF 7,4 as appropriate. We expect that Eq. 9(F), this condition translates t& —F.=5 pN; there is

(65) describes the dynamics of the unzipping fork at longthus a substantial window where anomalous drift can be ob-
times for smallf. In the absence of sequence heterogeneitygerved in a single molecule experiment. Just as for the equi-
[ »(m)=0], it yields simple diffusion with drift above the librium results discussed earlier in this paper, most of the

unzipping transition, qualitative features of the unzipping dynamics for uncorre-
lated random sequences also apply to the unzipping of cor-
(m(t))=(T|fHt and ([m(t)—(m(t))]?)=(TkgT)t. related random sequences, albeit with different exponents
[62].
(68) These results have interesting implications for attempts to

read sequence information via experiments that monitor the

In contrast, in the presence of sequence heterogeneity, thelocity dm/dt of the unzipping fork for a fixed forc&
long time dynamics is determined by large energy barriers-F_.. Read naively, Eq.65) suggests that the coarse-
that grow withm; a number of rigorously established results grained sequence fluctuations embodiedzifm) and the
can then be reproduced by simple physical argumentgermal noise’(t) will together modulate a mean unzipping
[26,50,57. For example, wher=F; (i.e., f=0), &(m)  velocity(dm/dty=T|f|. This picture is certainly correct suf-
~ JAm; taking this to be a typical barrier size, one finds thatficiently far above the unzipping transition, where deep traps
the time to go a distanamis t~ 7 exp(/Am/kgT), suggest- in the energy landscape are rare. However, we can estimate
ing thatm(t) is typically of order If(t/7). Indeed, itis known that thermal fluctuations will obscure the sequence-
that in the presence of a single reflecting w@il our case, dependent modulation of the mean velocity whenever
the end from which the semi-infinite duplex is being un-
zipped, the ratiom(t)/In%(t/7) approaches #&independent (L)L) T2y(T|f|t) p(T|f]t"), (72)
limiting distribution at large time§50]. Similarly, justbelow
the unzipping transition, the unzipping fork is essentially al-where we have used the zeroth-order relation
ways in a region where the small bidscan be ignored.
Given that mjump~<m)~A/f2, we expect that the typical m(t)~I"ft (72
time to equilibrate at a bials(and in particular to jump from
one local minimum to a new minimum with lower energy asto approximaten(t). Equationg14) and(66) then show that
fis decreasedshould be of order exp(A/fkgT), a result that  thermal noise can only be neglected provided
is supported, up to logarithmic factors, by renormalization
group calculation$50]. A

Justabove F, the dsDNA must eventually unzip com- 2kgTl'< IE (73
pletely, but the propagation of the unzipping fork is again
dramatically slowed by the presence of large energy barrier§Jr for
The distribution of barrier heights is known to have expo-
nential tails[60], leading to a distribution of trapping timds 2kgTlf|
that decays as T**1, with = BA <1

(74

w=2kgT|f|/A. (69
In this regime, however, the approximatidi2) breaks
This same exponent appeared, for example, in(B8), and  down; indeed, we have seen that fox 1, the dynamics is
is known more generally to control the probability of large dominated by the presence of deep traps in the energy land-
excursions of a biased random wakkg.,£(m) ] against its  scape, withm(t)~t*. Efforts to extract sequence informa-
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tion from dm/dt in this regime will be seriously hampered  For the particular case of unzipping a single dsDNA mol-
by the slow, erratic dynamics associated with energy barrierecule, these qualitative observations can be given more pre-
of order JAm. cise meaning. The energy functiém) then behaves like a
The results discussed above are valid as long as the slovsiased random walk on scales beyond a few bases. When the
est time scaler is roughly independent afn. If m depen-  pulling forceF is increased to a critical valug,, the biasf
dence becomes important, large energy barriers still domichanges sign, and a phase transition occurs. Randomness is
nate the dynamics, but our arguments must be modified tg\ways relevant at this wettinglike transition, with the aver-
account for this new featurgl2]. Thus, for example, iim age number of broken base pain®) diverging as 1/,
becomes large enough, the relaxation of the single strands F) for homopolymer duplexes, but as Ef—F)?2 in the
will set the basic scale for the dynamics. Exactly at the tran—presence of a random sequence. Individual dsDNA mol-
sition, we then expe¢t~mexp(\/H/kE§T) (the prefactor of  gcjles approaching the unzipping transition open in a se-
m arising from the fact thatss~m); this yields exactly the g, ,ence of sharp jumps, separated by long plateaus in which
same very slow asymptotic behavigm)~In’(t) as before. /1) remains essentially constant. The jumps become sharper
Likewise, the equilibration times below the transition remain, g sharper ab— 0. For smallf, (m) for any given polymer
unchanged. On _the other hanq, fEDFF' new behavior must approach the absolute minimumé&jm). The plateaus
errr:erges. The ime to go a distanoe is now of orQer_ and jumps can then be understood as arising from a sequence
EH%OnT“_' W't_h efiCh of tffleT“ chosen _from the same d|§tr|— of minima. A given minimum remains stable over a range of
bution with tails like 174" . The median of the distribution f values. As the biaé decreases, however, eventually a new
of this new sum occurs at a time of ordef** V', suggest- i at largerm will become lower in energy; at this
Ing <m>(t).~tﬂ_/(u+l); As hypothesized in Ref12], the scal- i (m) will jump to the new minimum. Starting from this
ing laws in this fegime are thus re_la'Fed to those #gfm) picture, we were able to make precise predictions about sta-
< Tend bY the SUbSt'tUt"_)rth/X' Similarly, \_/vherj Trot(M) tistical features of single molecule unzipping such as the dis-
~N-mis the SIOV\.'E.’St time §cale, the Ioganthm!c growth ayribution of jump sizesn,,.,,- These showed good agreement
or be-I(_)W the tranSI'[I(_)n remains unchanggd, vvhﬂe above th9\/ith simulations. The dJistrr)ibution afhmp also revealed that
transition an analysis of a sum of trapping tMER_o(N  the correlation betweegm)at different valuesf, and f,

—n)T, suggests (m)(t)~N[1—(1—kt“/N-HPED] 0 ¢ o ¢ yanishes for smalf,/f,. As a result, even though
with k an undetermined constant. Thus, the fact thaand é,

X ! m) can differ significantly from(?) at any single force
Trot depend onm does not change the essential physical resul alue, a plot of(m) versusf for a given random sequence

that sequence randomness leads to large energy barriers, afff shows the same scaling behavior as does the average
thus 1o a substantial slowing down of unzipping. over many sequence@. Several of these features, most
notably the dominance of the absolute minimum, are known
VIIl. CONCLUSIONS to occur more gener_ally in r_andom systems; i_ndeed, an qdded
interest of DNA unzipping is that it is a physical realization
In this paper, we have given a detailed theoretical analysisf one of the simplest models in the statistical mechanics and
of a simple micromechanical experiment: the mechanical dedynamics of random systeri35,26,44. Similar conclusions
naturation, or unzipping, of double-stranded DNA with ashould apply to experiments on the unzipping of individual
random base sequence. Although of current experimental irRNA hairpins[3], although experiments on longer hairpins
terest in its own right, this system can also serve as a springvould be required to provide a complete test of the theory.
board for developing ideas with potential applications to mi-  Although the predictions for DNA unzipping do not apply
cromanipulation  experiments on more structurally directly to micromechanical assays on systems such as pro-
complicated biomolecules. Several such ideas emerged frogeins [4] or the complex RNA folds of naturally occurring
our study. On the most basic level, the constant force anéibozymes[3], they do suggest a definite agenda for under-
constant extension ensembles were shown to give differerftanding such experiments. In varying the pulling foFca
force-extension curves in single molecule experiments. Wehe constant force ensemble, one is essentially searching for
argued that unzipping in the constant force ensemble cajcal minima along the denaturation pathway; each observed
always be described by a one-dimensional free-energy langslateau corresponds to a state that is metastable at zero force,
scapef(m), with an average slope=2g(F)—g, set by the  but is stabilized in an appropriate rangeFofalues. Ifg(F)
applied forceF and F-independent fluctuations about this can be determined from measurements on unfolded strands,
average determined by the structure and sequence of thien the energies of the original metastable states are easily
molecule being examined. The number of monomgny inferred from the forces at which jumps occur. Related ideas
liberated at a giverfr is then simply an equilibrium average have been applied with great success to the interpretation of
over mwith weight exp—&(m)/kgT]. Once sequence varia- micromanipulation experiments on individual “lock and
tion is present&(m) will in general pass below zero for key” bonds[63].
small enoughf >0. Partial mechanical denaturation then al-  This picture of plateaus and jumps could break down if,
lows the liberated monomers to gain more free energy bynstead of traversing only a single pathway, the mechanical
aligning with the applied force than they lose by breakingdenaturation can proceed along one of many different routes
native contacts. For smdill(m) should be dominated by the [19]. For example, in micromanipulation experiments on
deepest minima ig(m). folded RNASs, it can transpire that a series of many hair-
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diffusion in a random force field, and one might expect in
appropriate parameter ranges to find strong disorder-induced
slowing of the sort discussed in Sec. VII. More generally, the
kinetics of multiple polymerization boundarigassociated
with multiple recA domainson a single long polynucleotide
can naturally be mapped to the dynamics of kinks in a one-
dimensional random field Ising model, which is known to be
in the Sinai universality clas$§25,2€. Although the rel-

) _ evance of such anomalous dynamics to the functioning of
FIG. 18. Sketch of several RNA stems being opened in para"elbiological systemsn vivo remains to be established, these

as might occur in a micromechanical experiment on a ribozyme OL¢ : Co
. ects may play a role in a number iof vitro assays.
other folded RNA molecule. If each stem has an independently y play y

chosen random sequence, then in the limit of a large number of long

stems, the number of unzipped bases will equal the disorder- ACKNOWLEDGMENTS
averaged valuém). The measured force-extension curve must then
be smooth and monotonic in any ensemble.
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pins are under tension simultaneously, as in Fig. 18. In thend Roy Bar-Ziv and Albert Libchaber for introducing us to
constant force ensemble, if there dvelong hairpins with  recA polymerization. This research was supported by the
independently chosen random sequences, the average ext&BF through grant DMR97-14725 and through the Harvard
sion (r) will be simply the sum ofM independent single MRSEC via grant DMR98-09363. Work at the University of
hairpin extensions. As a function &f each of these single California, Santa Barbara was supported by NSF Grant No.
hairpins will go through its own sequence of plateaus and®HY99-07949.
jumps. Each time a particular hairpin has a junp), will
also jump, but the typical jump size will ie)/M instead of APPENDIX: SIMULATION METHODOLOGY

(r). Similarly, the plateaus iqr) will be shortened: The . . . .
probability that none of the single hairpins jump fais de- This appendix describes the numerical method used to
creased fromf, to f, is (f,/f;), which decays very generate the data points in Figs. 8—13. The simulations were

quickly for large M. As M increases, shorter and shorter performed on a simplified model of dsDNA in which a4T

jumps and plateaus will eventually merge into a smoothP@S€ pairs have a pairing energyr and allG-C base pairs
curve. Indeed, one expects that &—oc <r>HMm a pairing energyegc [21]. In contrast to the convention of

: - ... Sec. Il A, here we define pairing energies as the free ener
+O(\M). 'I_'hat is, a system of many ha!rp!ns should ex.h'p'tdifference between the ch))und %ase pgair and the two mongo)f
self-averaging. Moreover, because the limit of many hairpin

is essentially a thermodynamic limit, equivalence of en—%erS subject to the tensid The average pairing energy of
y y » €4 the sequence is thus All base pairs other than the un-

iﬁ:‘/gliens trr?eusctoilstgrgee;?gﬁ\s/gr?de.nlgefri(l:)tl,eﬂ;r?ufs?rge_?c(:cnh&tozq ped bases are assumed to be closed, an excellent approxi-
) PP ation for dsDNA in physiological conditions. We are inter-
disorder-averaged curve for the constfamte ensemble ad

becomes larae. In ohvsical terms. there must be a constas ted primarily in behavior near the unzipping transition,
. ge. In pny i P U ere many bases have been unzipped. In this regime, most
tension along the entire chain of hairpins; in the limit of

many hairpins, each one sees this tension rather than tr?f our predictions depend only on universal properties of
y hairpins, . . Yndom walks, so the simplifications in our model are justi-
extension imposed on the entire chain. Once there ar

. . S . fed. Our results are always reported in terms of the param-
enough competing hairpins, any equilibrium experiment will

give the same smooth curve. Such smoothing, with its atte etersf and A that can be defined with reference only to the

. . argem behavior of€(m). We assume for simplicity tha-T
dant loss of structural information, has recently been ob:,jde_C airs occur with equal probability 1/2. and we take
served in simulation§19]. Both the continuous increase of P quai p y e,

the disorder average and the plateaus and jumps of a singﬁ%}e r:je}iring energieshfo. beAT:J_ ‘{]K and ngC:g+ VA 1
hairpin can thus appear in single molecule experiments. e disorder strengti Is usually chosen to be between

We note in conclusion that the ideas from the physics of"d 9 whilef varies from 1 down t;) a lower bound deter-
one-dimensional disordered systems applied here to mdrined by demanding thgtm)~A/(2f%)<N/8. HereN is the
chanical denaturation experiments may find applicationdotal number of base pairs in the dsDNA, which we usually
elsewhere in biophysics. To cite one example, the DNAChoOse to fall between10> and 5<10°. For a given se-
binding protein recA adheres with a binding affinity that de-duence{s;}, with eachs; equal to eitheesr or egc, &(m)
pends strongly on the nucleotide sequeféel. When ATP is  takes the form€(m)=3{" ;&;. The average and variance of
replaced by the nonhydrolyzable analog AFR, allowing & are thenf(m)=mf and&(m)?—&(m)?=Am, allowing di-
the system to reach equilibrium, the position of the pointlikerect contact with the continuum limit described by Es3)
polymerization boundary separating domains of polymerizecind (14). The temperatur&gT is set to one.
recA from bare DNA can be described by a coarse-grained Our one-dimensional system is sufficiently simple that it
model like Egs(13)—(15). Similarly, the motion of a single is possible to proceed by direct evaluation of the partition
boundary during polymerization can be described as biasefdinction z=2220exq—5(m)] and the average number of

031917-23
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unzipped baseém)=3N_ mexd —&(m)]/Z. For each ran-
dom sequence, successive values;are chosen at random,
starting withey . The running sumiiEELi exd —&(m)

PHYSICAL REVIEW E 65 031917

The binned data in Figs. 11 and 12 represent the output of
several thousand runs with independently chosen random se-

quences and varying values af andN. In Fig. 11, which

plots the distribution of m), data points for each value 6f

then updated according = exp(—&)(1+Z.,) and(m); from each run were rescaled appropriately and used together
=exp(—s;)(i+(m);,,); once the sum is completén) is nor-  to construct the histogram. Similarly, all pairs of points with
malized by dividing byZ. We keep separate sums for eachf,/f;~0.77 were rescaled and used in making the histogram
value off, and, at each, update each of them with the same of mj,, in Fig. 12; in order to account for the predictéd
random choice okt Or egc. In some runs, we also kept function atm;,,,=0, a fractionf,/f, of the total number of
track of the running sum of; and of the location of the data points was subtracted from the number of counts in the

+&31—1)] and (m)=3)_mexgd—&m)+&(>i—1)] are

deepest minimum encountered up to position

bin that includedn;,,= 0.
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