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Investigation of the electric potential near the DNA-solvent interface:
Conclusions about the stability of B-DNA
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In the present paper DNA is treated as a crystal with symmetry corresponding to a double-helix surface
charge density, due to the phosphate groups, immersed in a weak electrolyte. The surrounding solvent is treated
via the nonlinear Poisson-Boltzmann equation and the boundary conditions of electrostatics are exactly ful-
filled on the DNA-solvent interface. Analytical solutions for the electric potentials and fields inside and outside
DNA are obtained. The results give the possibility for a map of the surface potential of DNA to be created.
They also show that the electric field inside DNA may decay in two different ways if we change the chemical
content of the surrounding solvent. According to this we can draw conclusions about the stability of DNA with
respect to the internal and changeable parameters of the system such as chemical content of the aqueous
solvent. The position of the condensed counterions around DNA in the Manning cloud can be determined.
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[. INTRODUCTION the solvent was neglected. As is pointed ouf15], in the
case of DNA and some proteins, such as lypoliginecause

The purpose of this paper is the problem of finding thethey are highly charged biopolymérdhe NPBE must be
electric field emanating from dissolved DNA from both in- used for the correct description of the solvent.
side and outside this macromolecule. The correct consider- Here we will consider DNA as a special crystal with cor-
ation of the field of the surrounding ion atmosphere revealsesponding symmetry, taking into account the double-helix
new properties of this field and helps to predict changes isurface charge distribution and treating the surrounding sol-
the structure of DNA due to changes of the internal paramvent via NPBE. We will also use proper nonorthogonal co-
eters of the DNA-solvent system. The creation of a relativelyordinates consistent with the internal symmetry of this sys-
realistic model of the electric field outside and inside DNA istem.
important for the determination of the influence of this field ~Our investigations in this direction started with the paper
on DNA protein[1] and DNA-DNA interactiong2,3], for _[16] in which the Lapl_ace equation insid_e the dielectric cyl-
investigation of the thermodynamic properties of the systeninder and the NPBE in the solvent outside were solved and
of DNA and the surrounding solvent, and for attempts tothe boundary condlthns of the electrostatics on the cylmdn—
image DNA with scanning force microscops]. cal_surface were fulfilled. 1116] the surface charge is an

Born, Onsager, and Kirkwoofb—7] have shown that a arbitrary function of the pplar angle .
molecule in a solvent must be considered as a “Kwavity Our n_ext papef17] applies the mathematical method pre-
and the surrounding solvent as a media with differenif sented |_n[16] o the case of B'DNA' In both cases the

. . . . . method is purely analytical and circumvents the bottleneck
we investigate the electrostatic properties of this system, th

b d diti ¢ | - h ; £ th roblems[18] of the numerical simulations due to the large
ounaary con itions or electrostatics on the suriace of t ength of the DNA as well as the large amount of solvent that
biopolymer must be fulfilled.

. ; L ) has to be taken into account.
The next step in developing the main ideas frBr 7] is Here we will develop a model where the helical structure

to consider DNA as a crystal immersed in an electrolyte anght the surface charge of DNA will be considered. The general
to take into account the surface charge distribution, whichmathematical approach for satisfying the boundary condi-
has a special concrete form. tions that were developed {16] will be applied. This will

In the beginning, DNA was considered to be a homogeelp to evaluate main ideas frof6—7] and obtain the re-
neously charged cylinder and the Debye-Huckel theory foguired results.

the treatment of the solvent was usggl. After that, the
nonlinear Poisson-Boltzmann equati@dPBE) was consid-
ered for the description of the solvel].

In recent years, the double-helix charge distribution due to
the charge of the phosphate groups on the surface of DNA We will use the nonorthogonal helical coordinates pre-
was taken into accourifl0,11], but the solvent was consid- sented in13], which are a variant similar to the helical co-
ered to be a continuous dielectric medium with two differentordinates fron{19]. The coordinates frorfiL3] have the ad-

g, corresponding to the Manning cloud and to the solventvantage of being orthogonal on the cylindrical surface with
outside it. The same authors developed their model, using theadiusb, which helps the boundary conditions of electrostat-
Debye-Huckel theory12]. Another approach to the consid- ics to be correctly fulfilled on this surface.

eration of the surface double-helix charge in nonorthogonal The relations between these coordinates and the cylindri-
coordinates is presented[ib3] and discussed if14]. In[13]  cal ones are given by

II. SOLUTIONS OF THE NPBE
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P=p, that the two terms in these brackets are positive and that no

pole exists, this means that we have to slightly change the
T=bo sinB—z cosg, solution inEdirection. The approximation is c_ompletely cor-
rect wherep— 0 or when we are near the axis of the DNA.
S=b# cosB+zsinB. (1) In the whole interval of investigation we neglect a small

constant term in the brackets mentioned above, but we keep
Here b is the radius of the cylinder on which the helical the functional dependence pfin it.
coordinates are orthogonal amlis the angle of the helix Accordingly, in our model the NPBE has the form
with pitch p,

Py . 19V . b2 _nZBaZ\If 47nN - quIkT)
St —tosi—=-— exp—q .
tang= %. @ 9° pdp P ot2 & o

As is shown in[13], the Laplacian in the coordinatezss,t_ The dimensionless form is obtained via the transformations
has the form

—  Yq t
19(_a 2 2 [al p=pt. C="17. “ing ©
AV={|——lp—| |+t =+ =T |51
pdp\ dpl| g2 I \p°
or
><(sin/;i_+cos,ﬁi_)2 v, 3) (92<E+1ac1_>+1(925_ & .
at Js 9% o ap FZW—GXIO( ). (7)

In order to solve analytically the NPBE in the solvent aroundHere f=[ (47nN/e)L]*? whereL=q?kT is the Bjerrum
DNA and to satisfy the boundary conditions of the electro-length. Alson is a normalization factor defined by
statics on its surface, we shall make an assumption. This

assumption simplifies the LaplacigB) and makes it less 4 q¥
complicated for the corresponding solutions of the NPBE n :fv &P T kT

around DNA to be found. A reason for this assumption is that °

the origin of the electric field inside and outside DNA are where theV is the volume of the solvent under consider-
charges distributed on a cylindrical surface on lines with ation andN is the number of counterions with chargeper
—const and displaced at 7.0 A along these lines. This giveanit axial length. The NPBE can be rewritten in the form
us ground to assume that the electric field is oriented mainly

in thet direction near the surface of the DNA. Figure 3 from P D

the paper{12] presents the results from the Debye-Huckel v erxml)), ©
treatment, and the good coincidence of the structure of the

potential from[12] and that following from our investiga- where

tions is instructive of the fact that the compromises made in

®

our model are reasonable. The coincidence with our results is x=In(p), d=d+2x,

good enough although an all-atom model of DNA is used in

paper[12]. According to this, the Laplacia(B) can be re- z

written in the form in whichs dependence is disregarded, t=0— cotgp. (10

19(_0 b?sir? 8| &2 As is shown in our previous papé¢fl6], using Backlund
A\P_[ﬁa_ﬁ( p% +| cos B+ 2 ﬁ V. @ ransformations and the original idea of Liouvill20], the
following general solution of Eq9) can be found:

Of course, including the dependence in our investigations 2 2

and decomposing the charged lines on the surface of DNA (aW(x,t)) (aW(x,t)

into discrete point charges will be one of the next steps in our d=In at (11)

work. W2(x,t)

The experimental and numerical estimations and calcula-
tions in[10—12 show that the effective decay length for the Here W(x,t) is an arbitrary harmonic function of andt.
helical information in the local electric field is about 20 A Consequently for the self-consistent potential, which is a so-
beyond the surface of the DNA. Our further calculations will lution of NPBE, we have
show that the approach presented here is valid in the interval ) 5
((9W(p,t)) +2( r?W(p,t)) }
p

0<p=22.3A. In this region the first term in the brackets in
ap ot

front of the derivatives?®/dt? in Eq. (4) or co 8 can be v kT (12)
neglected with respect to the second one. Having in mind q p°W2(p,t) '
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lll. FORMULATION OF THE PROBLEM AND BOUNDARY of the NPBE containing an arbitrary harmonic functionxof
CONDITIONS andt we make the following substitution, which solves the

We will look for a solution of the NPBE in the interval Laplace equation inside the cylinder:

b<p=<p,. The value ofp, is determined by the requirement

of ¥, to be normalized in this interval and the electroneu- o 5m

trality condition to be fulfilled in it. Inside DNA we shall V= K%m(g cog5mt). (18
solve the Laplace equation. The solutions of the Laplace m=1 b

equation inside DNA and the NPBE outside the DNA must

satisfy the boundary conditions of the electrostaticspat For the functionW(x,t) in Eq. (12) we set

=D,

D,—D,)-p=4ma(t), p=b, A _—
(D2=Dy)-p=4ma(t), p W(x,t)=CIn(pyp)+ F+Bp5 cog5t), x=Inp.
(E;~E)xp=0, p=b, (13 19
wheree (p) is The form of o(t), Eq. (17), determines the exponents 5 in
the exponential functions iV, and W(x,t). Only if we
e(p)=e,, 0<p<b, choose the exponents equal to 5, the analytical solution of
the problem can be found. This is an important feature of the
_ presented model and consequences of it will be shown be-
e(p)=¢e,, bsp=pg. (14 low.

Herep is the outward unit radial vector and the indexes 1 N Eds.(18) and(19) Agy,, C, A, B, andp, are arbitrary
and 2 refer to the regions inside and outside the cylindefoefficients. For these expansion coefficient¥ipand ¥,
modeling DNA we have a nonlinear system of algebraic equations. The sys-

tem and its solutions are given in the Appendix. Using ex-
pressiong18) and(19) and the boundary conditiori$3), we

Amo(t)= %[5(t)+5(t—t0)], (15)  obtain the following expressions for the potentials and
V¥, inside and outside the DNA:

where bothé functions model the double-helix space charge

distribution of DNA. The value ofj, is given in[13] and it is o
Al .5m 2
W= >, Al r®Mcos5m| 6— ol (20
1.57 m-t
to=m—2X——=—Xcot B). (16
10
In the case of B-DNA the value df, can be accepted dsr Al=— 422(C/BF at1) ,
with an accuracy of 0.15%. In this case, ®(t) we obtain Sey(a+1)
- 1
o)== 3 cog5my+ |, (17) Al _q_ 4e2(C/BYatl)
T | m=1 10 581((1+1) ’
Here y is the linear charge density on the two helical lines.
where
IV. CALCULATION OF THE ELECTRIC POTENTIAL AND
FIELD AND THE SPACE CHARGE DISTRIBUTION , 1 1 ,
OF THE IONS IN THE SOLVENT S(M+1)Ag(mi 1)~ 2[5MAGm+5(M+2)Ag . )],
Having in mind that we have to match on the boundary
surface, the solution of the Laplace equation and the solution m=1,2,3,...,(21)
|
C s @ 5l 2z\11? @ s\alel g 2z\1)?
E;+’ r Fg co I; + F§+r SI I;

KT
Wo=—-Iny 50 (22)

cos{ 5

022
b

] b2r2

a
[—(1+a)+C|nr+(r—5+r5 .
'p
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In Egs.(22) and(20) r=p/b andr is the Debye radius. Also

8e,—5e

T 126,+58, @3

From Eq.(22) for the space charge density of the counterippsve have

C s« . 22\11? ([« slsins 22\])?
. §+ "= s|co G_H + r—5+l’ si 0_3 .
e —(1+a)+Clinr+ +r 56—— “Amdor” | =
“« 5 b/l ekT

We will obtain the components of the electric fiell, E,, and E, in cylindrical coordinates using the relatio®
= —grad¥ and following[13]. From Egs(20) and(22) using expressiofl7) for the components of the fieIE,z, E2, andEf

outside DNA we have
1 C a 5 2z
, kT 5 | s/ cos 8| 6— ¢ 2
E —

»"bq « ZIAR 29
[Clnr—(1+a)+(r—5+r5 cog{5<0—3> ]
5| 2z
, k_Tl —<+r’|sin5 H_F
Eb bqr? 2z ’ (26)
Cinr—(1+a)+|—5+r° 005{5(6—3)
“ o r5)sin 5| g— 22

2 kT cosB 1 AR A b )

2" "pq sing r* P (27)

The normalization of the NPBE solution and the electroneuThis exact analysis and the determination of the concrete

trality condition demand solutions corresponding to the reality will be subject of our
future work.
U The result from the Appendix gives the components of the
_ 2t electric field inside DNA,
yL J quexr{ kT) v (28
, - . . Ei=— — § 5mAL ™ 1 cog 5m 0—§ (30)
Herel is the length of the helical line per pitch akd is the p qb &4 m b/
regarded volume of the solvent
T1 & 2z
— = Msin 5m| 6——]|, (31
Vo=(po—b)26, 29 b 2.2, S ( b ” D
wherez,=31.56 A. . kT 1 cosp E o 2z
Finally we obtained a family of solutions of the electric  Ez~ qb r? sinB & 5mAG,r o sin 5m| ¢ B

potentials depending on the arbitrary const@nfThe value
of C may be determined by a investigation of the free energy
of the system. As can be seen from the expression for th&€hese results show that to obtain a realistic picture of the
space charge density of the solvé®dl), by changingC we  electric field inside B-DNA (Gsr=<1) it is enough to con-
compress the counterions closer to the DNA macromoleculesider just the first terms in the rows in Eq30)—(32). Keep-

(32
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FIG. 1. The components of the electric field inside B-DNA\. E+,E,E; in the case of B-DNA as a function @fandr, ,=2.4, ¢,
=59.4,T=310K, C=10,b=10A, z=0. In this case the counterions are distributed at larger distances from DNA and larger variations of
the electric field occur inside it. In this case the valueCof larger than in casé). (b) E, El,Ei in the case of B-DNA as a function of
fandr, ,=2.4,£,=59.4,T=310K, C=—1—a, b=10A, z=0. This is a case of an almost complete shielding of B-DNA. The physical
reason for this effect is the space distribution of the counterions near the surface of B-DNA at smaller \v@l(te bf- «~—5/4). The
electric field inside the macromolecule is partially compensated by the field due to the counterions.
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ing just the first term in the rows, in Fig. 1 are prese The expressions for the electric field inside B-DNA have

EL andE! for two values ofC. The value ofE! is the the forms(30)—(32). For the coefficienf\; we have
largest, which is in agreement with the experimental data
[10,14]. AL kT4e,(C+a+1)

This is an interesting result giving simple expressions of 5 Qe (a+1)
the electric field inside B-DNA and revealing possibilities of _ .
changes in its proteins being easily predicted. The formuldt is clear that ifC=—(1+ a), Az is zero. Consequently the
for AL shows thatE® depends ore, or the value of the largest component of the electric fielg in this case decays
electric field inside DNA and its decay can be influenced byinside DNA proportional ta (0<r<1). The fact thaE; is
the value ofe, or the type of conterions and their concen- the Iargest component of the electric field follows from the

(37

trations in the solvent. structure of the surface charge of DNA as was pointed out in
[14]. For all values ofC different from— (1+ a), EX decays
V. THE VOLUME OF THE MANNING CLOUD asr®. This means that we have two different states of the

system of DNA and the surrounding agueous solvent. We

The componenE% of the electric field derived by ushe  may have an electric field inside DNA that may change its
cylindrical coordinateshas the form(26). b is the radius of  structure or one that cannot influence it. Keeping in mind the
the cylinder,C is an arbitrary constant, and farwe have the  expression(24) for the space charge density of the counteri-

expression ons and the fact that in the denominator of this expression we
have the ternC Inr, conclusions about the space distribution
= 8s,— 58,4 (33) of these ions can be made. At larger values of the free con-
12¢,+5e4" stantC, the denominator in Eq24) is larger than whemn

tends to 1, and the counterions are located further from the
In Eq (33) €1 and{;‘z are the dielectric constants inside DNA surface of B-DNA (r =1 Corresponds to the surface of
and in the aqueous solvent. In the intervalsrk<2.23 and  pNA). For small values of we compress the counterions to
—50<C<50 the following inequality is fulfilled: the surface of B-DNA. The charges closely distributed to the
(14 a)+Clnr<afrS+r5 (34) surface compensate to a certain extent for the electric field
' inside the macromolecule, and it is electrically shielded. In

In these intervals for and C there exists a cylinder with the other case of larger values@fwe have larger variations
radiusr , inside which the electroneutrality condition is ful- Of the electric field inside B-DNA due to the location of the

filled. Using Eq.(1) and the Gauss theorem we obtain ancountgrions at larger distances from &t erend_s on the
equation for the radius of the Manning cloud. The improperchemical content of the solvent. Decreasingwe increase
integral, which must be evaluated in order to apply the Gaus{€ électric field produced by the surface charge of DNA
theorem, considering Eq34), possesses a finite main value inside the solvent. This means compression of the counteri-

[21], and the following equation for the radiugis obtained: ~ ©nS to the surface DNA, materialization of a solution with
smallerC, and decreasing of the electric field inside the mac-

alr§—ry 2 romolecule. All this coincides with the speculations pre-
= (35  sented above.

A detailed explanation of the “two ways of decay” of the
From Eq.(35) for the radius of the above-mentioned cylin- €lectric field inside DNA can be performed by investigation
der, we obtairr,=2.23, or the radius of the Manning cloud °f the free energy of the DNA-solvent system. This energy is
is 22.3 A. This result in the frames of our “shell model” & function ofC ande, and such a study is one of the pur-
coincide well with the experimental data for the radius of theP0Ses of our future work.
Manning cloud[8,9].

55 -
alrg—rg  TIo

VIIl. CONCLUDING REMARKS

VI. POSITION OF THE COUNTERIONS IN THE It must be underlined that the singularitiesginmight be
MANNING CLOUD interpreted as Manning’s condensation of counterions. The
The above-mentioned radial position will be determinedpoint here is that the radial position of the condensed charge
from the expression for the space Charge density given bb‘s determined. The exact value of this Charge and its influ-

Eq. (24). In Eq. (24) the denominator is zero where ence on the electric field of the DNA-solvent system will be
the subject of our future work.

a . z The approach in this paper is completely analytical and

~(A+a)+Clinr+| 5+r>jcog5| §-2,)=0. the obtained formulas for the electric field inside and outside

(36)  DNAreveal clear possibilities of influencing its structure and
properties. This can be done by changing the chemical con-

It must be underlined that the improper integral fropover  tent of the surrounding agueous solvent. It is shown that
the volume of the cylinder with radiug, is finite [21]. Asis ~ DNA and the surrounding solvent is a two level system and
shown in our article[22], on the singular surfaces deter- that in one of its states the DNA macromolecule is almost
mined by the conditiori36) we have particle condensation. electrostatically shielded. Of course this might be important
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for the protection of DNA from external electromagnetic in-
fluences. This fact is mainly due to the position of the phos-

PHYSICAL REVIEW E 65 031913

Y
2a[4AGAGT 2AASH TATAS]= HTAGTAZ], (ALD)

phate groups on the surface of the DNA and may be achieved
by changing in a proper way the content of the surrounding
aqueous solvent as is shown in this paper. On the base of the 5(M+1)AL . 1= 5[5MA,+5(M+2)AL 1],

obtained results, also a map of the electric field inside DNA

might be created.

APPENDIX

We introduce the relations

A}=2—TA#, (A1)
A _
(bf)5=A, B(bf)®=B (A2)

From the boundary conditiond3) and the expressions for
¥, and¥, we will obtain the following system of nonlinear
algebraic equations for the expansion coefficientd’inand
V¥,. In the following formulas the expressid7) for o (t)

is used. So we have

ATAS+3ATAZ—2AIAZ=0, (A3)

2AZAS+ IAIAZ-2AIAZ=0, (A4)
3AIAI+AALAZ— AJAZ=0, (A5)

AALAS+ SASAZ—FAIAZ=0, (AB)
AGAG+ATAS=AE, (A7)

e1[ AIAS+3ARAZ+ 2ALAZ = %[A?ﬁ— AZ], (A8)

e1[2AA3+ IALAZ+ 2AIAZ]= b[A0+A] (A9)

e1[BAIAZ+AALAZ+ AJAZ]= b[A2+A] (A10)

m=12,..., (A12)
YT
51l ASAG+ATAS] — e2[ — 12A+8B]= - [AJ+AZ],
(A13)
YT a2, a2
812A5A +282[C_C |n plb]: T[A0+A5],
(A14)

5(M+1)Ag (s 7~ s[EMAGH+5(M+2)A 1, 5]

_ Y 2, a2 _
27Tb[AOnLAS], m=1,2,.... (A15)
The system of equation®3)—(A15) has the nontrivial so-

lution

Agms 1= Asm—2=Agm+3=Asns2=0 mM=0,1,23..
(A16)
4g,(C/IB+a+1)
1_ 2
As= 5¢.(at+1) (AL7)
4g,(C/IB+a+1)
1 . 2
Ao Se(atl) (A18)
A_ _ 882_581 Alg
g_a_ 1282"’581’ ( )
5(M+1)Ag (s 1) = 2[5MAG, +5(M+2)Ad )]
m=1,2,3,.... (A20)

Here B is an arbitrary constant of which the solutions
independent.
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