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Convergence of sampling in protein simulations
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With molecular dynamics protein dynamics can be simulated in atomic detail. Current computers are not fast
enough to probe all available conformations, but fluctuations around one conformation can be sampled to a
reasonable extent. The motions with the largest fluctuations can be filtered out of a simulation using covariance
or principal component analysis. A problem with this analysis is that random diffusion can appear as correlated
motion. An analysis is presented of how long a simulation should be to obtain relevant results for global
motions. The analysis reveals that the cosine content of the principal components is a good indicator for bad
sampling.
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[. INTRODUCTION freedom will contribute significantly to the global fluctua-
tions of the protein. Mass-weighted covariance or principal
Proteins are complex objects with motions in a largecomponent analysis can be used to find these degrees of free-
range of length and time scales. In a classical description gfom. This is the equivalent of normal mode analysis at non-
protein dynamics the fluctuations range from bond and angl@€ro temperaturel$,7]. The analysis can be applied on any
vibrations of tenths of Angstroms on the femtosecond timeligh-dimensional set of coordinategt). After a transla-
scale to(un)folding of the whole protein on a time scale of tional and rotational fit of all structures to a reference struc-
seconds. Currently, there are no experimental techniques thtre, the mass-weighted covariance ma@is built and di-
can follow the detailed dynamics of proteins in time. Thisagonalized
leaves molecular dynamics as the only tool to study this
regime. With the current computers simulations of proteins  Ci;=M{2(x;(t) = x;(t) )M /A x;(t) = x;(1) ), (1)
are limited to hundreds of nanoseconds. ) -
In a trajectory of a protein the Cartesian coordinates of the C=Rdiaghy, Az, . AR, @
atoms contain a mixture of fast and slow modes of motion
Covariance or principal component analysis, which has als

been termed quasiharmonic analyki “molecule optimal three times the number of particles. Thé column of the

dynamic coordinates(2,3] and “essential dynam|cs'[4], rotation matrixR is the eigenvector or principal mode corre-
can be used to separate these modes of motion based gn

amplitude. In a protein a few modes contain more than hal ponding to eigenvalud,. The eigenvalue is the mean
P ' protein . . square fluctuation in the direction of the principal mode. The
of the total fluctuation in the system. For a long simulation

the first few modes usually describe global, collective mo_projections ofx on the eigenvectors are the principal com-

tions. But one has to be careful when interpreting the resultgonems’

of such an analysis, since random diffusion can produce pat- p(t)=RTM¥%(t). 3)

terns that resemble collective behavior. There are several ex-

amples in the literature where cosine-shaped principal comPrincipal component analysis is just a rotation of space,

ponents have been interpreted as transition of the proteiwherep(t) are the new, massweighted, rotated coordinates.

from one state to another. Recently this has been proven tha the following sections the analysis will be applied to four

such cosines also emerge from random diffusion without pomolecular dynamics trajectories of proteins and a model sys-

tential [5]. For short protein simulations the first few princi- tem.

pal components will always be caused by random diffusion,

since the time i_s too short to reach barrier_s in the potel_"ntial. Il. MOLECULAR DYNAMICS SIMULATIONS

Although this diffusive behavior can be of interest, the final

direction and amplitude of the motions cannot be estimated, Four molecular dynamics simulations of 40 ns each were

because of the inherent properties of random diffusion. Thiperformed on two different proteins in explicit solvent. The

paper will assess when effects of the potential become visproteins are HPr, Histidine containing phosphocarrier pro-

ible in the first few principal components. This determinestein, of 85 residues an@4-lysozyme of 164 residues. The

the minimum simulation length that is required to draw anysimulations were performed with the Gromacs packi@&je

conclusions on global motions in the protein. First principalusing the Gromos96 force fiel®]. In all simulations the

component analysis will be described in more detalil. angle vibrations of the hydrogens in the protein were re-
Most degrees of freedom of a protein will be highly con- moved, by replacing the hydrogen atoms with interaction

strained due to bonded interactions between the atoms. Trsites[10]. The hydrogen charges were fixed at the position of

protein moves in aN-dimensional space, wheid is three  the minimum of the angle potentials. This procedure, to-

times the number of atoms. Only a few of these degrees afether with theLiNncs algorithm for constraining bond4.1]

where an overline denotes averaging over tiMds a diag-
Bnal matrix containing the masses of the particles Hnd
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enables the use of a time step of 4 fs. The temperature wa 40
coupled to 300 K, the pressure to 1 bar, using a Berendsel
thermostat and barostgt2], with coupling times of 0.1 and 35
1 ps, respectively.

The starting structure for the HPr simulations was taken
from protein data bankPDB) entry 1poh[13]. The protein
with 89 crystal waters was solvated in a truncated octahedror
with a nearest image distance of 5.5 nm. The total number ot~ 2°
SPC(simple point chargewater molecule$14] was 3841. £
After energy minimization two simulations of 40 ns were @ 20
performed using different random initial velocities. A twin- £
range cutoff of 1.0/1.4 nm was used. Forces below 1.0 nnt— 15
were updated every step, the forces between 1.0 and 1.4 ni
and the neighbor list were updated every five steps.

The starting structure for th&4-lysozyme simulations
was taken from PDB entry 2lzifl5]. The protein with 118
crystal waters was solvated in a rhombic dodecahedron witk
a nearest image distance of 7 nm. After energy minimization
the system was neutralized by replacing eight waters with
eight chlorine ions. The ions were inserted at the water oxy- 0 5 10 1 20 25 30 3 40
gen position with the most favorable electrostatic potential, Time (ns)
the potential was recalculated after every ion insertion. The
total number of water molecules was 7156. After another 0:05 _RMSD {nm} 0

energy minimization two simulations of 40 ns were per- [ T

formed, using different random initial velocities. A reaction FIG. 1. Root mean square deviatiRMSD) matrix, showing
field with a dielectric constant of 80 was used t0 prevenine rRMSD of the G atoms of each pair of structures in HPr simu-
accumulation of ions at the cutoff. A twin-range cutoff of |ation 1 (upper-left triangle and HPr simulation Zlower-right tri-
1.0/1.5 nm was used. angle.

For HPr the average root mean square deviatiMSD)
of C, atoms over 5—-40 ns with the pdb structure is 0.29 nm
for the first and 0.23 nm for the second trajectory. After
diverging initially, the two trajectories come close together.
The RMSD between the final structures is 0.24 nm. The fold
and most of the secondary structure stays intact during the 35
simulations, the RMSD is mainly caused by a slight reorien-
tation of the secondary structure elements with respect tc
each other. For lysozyme the average RMSD qf @&oms
over 5—-40 ns with the pdb structure is 0.28 nm for the first
and 0.32 nm for the second trajectory. The main motion is 2%
hinge bending of the two domains. In the first simulation theg
protein closes with respect to the pdb structure, in the seconig 20
one it opens. The programvNDOM [16] was used to quan- £
tify the rotation between the two structures from the first andF 5
second simulation that have the highest RMSD with respeci
to each otherbyNDOM reports a 71° rotation between two
domains, which consist of residues 14-58,65-78 and residue
3-13,79-159, respectively. In Figs. 1 and 2 RMSD matrices
are shown in which transitions between conformations can
be seen easily. It is impossible to cluster the sampled confor:
mations in a unique way. But roughly one could say that each :
simulation samples three conformations with a time span be: 25
tween 4 and 22 ns. The average RMSD between structure Time (ns)
within each conformation is between 0.1 and 0.15 nm. The
RMSD between structures from different conformations 0.05 RMSD (nm) 0.4

ranges from 0.2 to 0.4 nm. I

A search was performed on all simulations for time inter-

vals in Whlch t_he protein seems to ”.‘0"’3 around only ON&he RMSD of the G atoms of each pair of structures in lysozyme
structure. Prmmpgl compoqent anaIyS|§ on theams was simulation L(upper-left triangl@ and lysozyme simulation Qower-
used as a tool to find such intervals. Since gllafoms have (jght triangle.

30

10—+

FIG. 2. Root mean square deviatiGRMSD) matrix, showing
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FIG. 3. First four principal components for the interval of HPr
simulation 1. Unit: nm. FIG. 4. First four principal components for the interval of

lysozyme simulation 2. Unit: nm.

f(t)=A )

the same mass, a non-mass-weighted analysis was P&t ereke is the Bol , Tis th
formed. The criterion for sampling around one structure was' Erekg IS ¢ e bo tzmann's constant, is the temperatu_re,
P o , and\; is the eigenvalue or mean square fluctuation ofiPC
that the distribution of the principal componertBC'’s) was The fricti Hicient is gi b
close to Gaussian. The relative deviation of the third and ¢ clon COETcients given by
fourth central moments from those of a Gaussian distribution L=k, (5)
with the same mean and variance was used as a measure for
similarity to a Gaussian distribution. A number of candidatewherer, is a correlation time. The autocorrelation functions
intervals were identified by visual inspection of the RMSD of the PC’s can be fitted well with a sum of two exponentials
matrices. From this set of intervals the two where the PC'’s
were closest to Gaussian were selected. In the first HPr simu- t t
lation interval 5-19.1 ns was found, the average deviation (1—,8)exp( B Tf) +,8exp< o7
from Gaussian over all PC’s, weighted with the widths of the
distributions, is 7% and 3% for the third and fourth centralwhere 7; and 75 are the fast and slow correlation time, re-
moment, respectively. In the second lysozyme simulation inspectively. This implies two stochastic processes with white
terval 13.3-26.8 ns was found, the deviations are 11% andoise and time independent friction constants. For the first 30
7%. All structures were fitted to the first structure of the PC’s of HPrg is 0.51 on average, for lysozyme this is 0.50.
interval. Some of theB’s of the first few PC’s differ significantly from
The eigenvalues depend on the principal component indethie average. A separate harmonic force constant and friction
as a power law with an exponent ef4/3 (not shown, ex-  constant can be calculated for the fast and slow fluctuations
cept for the first nine eigenvalues of HPr, which have anof each PC. The obtained friction constants for the first 30
exponent of about-2/3. The first four PC’s for the time PC's of HPr and lysozyme are shown in Fig. 5. Although the
intervals are shown in Figs. 3 and 4. All PC’s exhibit rapid friction constants vary by an order of magnitude, they show
fluctuations of the order of tens of picoseconds and slowelittle systematic dependence on the PC index. Only the last
fluctuations of the order of hundreds of picoseconds. Onlyl7 friction constants for the slow fluctuations of HPr are
the fourth PC of the lysozyme simulation shows significantsignificantly higher than first 13. When the high friction con-
“nonrandom” behavior with a jump between two states at 23stant of PC number 15 of HPr is discarded, the average ratio
ns. Inertia effects are negligible, since the velocity autocorof the slow over the fast friction constant is 33 for both HPr
relation functions of the PC’¢énot shown have a negative and lysozyme. This analysis suggests that the global dynam-
minimum around 1 ps, which is an order of magnitudeics of both proteins is governed by a fast and a slow diffusion
shorter than the correlation times of the PC’s. The over{process, for which the diffusion constants are independent of
damped dynamics together with the Gaussian distribution othe direction. In the harmonic approximation, the high-
the PC’s suggests the approximation of diffusion in a high-dimensional energy landscapes for both processes are almost
dimensional harmonic potential. In this approximation, theidentical. The harmonic force constants are close to linear
force constant for the harmonic potential of PG given by ~ with PC index.
To study the convergence of the sampling, both intervals
were divided in up to 256 subintervals, with steps of a factor
— KeT (4) of 2. Principal component analysis was performed on each of
N these subintervals. This gives good statistics for the short

ki
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FIG. 5. Estimated friction constants for the fast and slow fluc- _ _
tuations of the first 30 PC's of HP(solid lines and lysozyme FIG. 7. Overlapexpression(11)] of the sampling of each sub-
(dashed lines interval with the sampling after 14 ns for HRthick line) and

lysozyme (thin line). The lines are averages over all subintervals,

intervals and bad statistics for longer times. The increase ahe error bars indicate the intervals containing 90% of the points.
fluctuations with time can be seen in the root mean square
fluctuation(Fig. 6), which is equal to the square root of the where diag() is a diagonal matrix. It can be verified easily
sum of eigenvalues divided by the number of atoms. Thehat the product of this matrix with itself give&s. Now a
fluctuations of HPr seem to have leveled off at 14 ns, thalifferenced between covariance matricés and B can be
fluctuations of lysozyme still increase at 14 ns, but with adefined as follows:
smaller slope than at shorter times.

The overlap of the fluctuations can be used as a measutiA,B) = \tr[ (AT?—B1?)2] (8)
for the convergence of the sampled space. This can be done
in terms of covariance matrices. The elements of the covari-
ance matrix are proportional to the square of the displace- " YN '
ment, so the square root of the matrix is required to examine
the extent of sampling. The square root can be calculated E (MAH\iB)—ZE 2 kaMB(Rf'RjB)z ,
from the eigenvalues; and the eigenvectors, which are the =t =i (10
columnsR; of the rotation matrixR. For a symmetric and
diagonally dominant matrixA of size NN the square root where tr is the trace of a matrix. The overisps can now be

Jir(A+B—2AT2B12) 9)

can be calculated as defined as
1/2__ H 1/2  1/2 1/2\pT

AY=Rdiag N7 N7, ... ANIR, (7) o d(A.B) a

S(AB)=1— ————.

' ‘ VirA+trB

0.10 1
ﬂf The overlap is one if and only if matricésandB are iden-
tical. It is zero when the sampled subspaces are completely

orthogonal. This measure has several advantages over the
commonly used subspace overlap, which is the overlap be-

E 0.08 |

f tween the subspaces of the first and ng eigenvectors of

2 matrix A and B. The subspace overlap depends strongly on
o na and ng. Also, it ignores the eigenvalues. Thus, differ-

ences between eigenvectors with small and large eigenvalues
0.06 1 contribute equally. But more importantiearly degenerate
subspaces are treated incorrectly. When two or more eigen-
values are equal, the orientation of the corresponding eigen-
- L L vectors within the subspace is random. This will cause a
10 10 10 ; ;
Time (ns) random dlffer_ence in the_ subspace overlap number,_whereas
for the covariance matrix overlap measure, these identical
FIG. 6. Root mean square fluctuatiRMSF) of the C, atoms ~ Subspaces do not contribute to the difference.
as a function of the length of the subinterval for Hefick line) and The covariance matrices for each time were compared
lysozyme(thin line). The lines are averages over all subintervals, with the matrices over the whole intervalsig. 7). The over-
the error bars indicate the intervals containing 90% of the points. lap is not an exact measure of the convergence, since the
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1 - . where §(7) is the Diracé function. The paramete, which
B I is the inverse correlation time and the diffusion constant
—_ are determined by the force const&nof the harmonic po-

0.8 - + - 1 tential, the friction constant, the temperaturd, and the
_ Boltzmann’s constarkg,
c
206y RN -+ _ - ‘
8 1 1 a=-, (16)
o 4
G 04 f _— :
(&)

kgT
D=—-. (17)
02 f < 1 ¢

= The solution of the differential equation can be written writ-

0 i N S o T ten as the sum of an exponent times the position at time zero
10 ) 10 10 and an integral over the stochastic term
Time (ns)
t
FIG. 8. Cosine conterftexpression(12)] of the first principal x(t)y=e 2t X(0)+f e®r(v)dv |. (18
component as a function of the length of the subinterval for HPr 0

(thick line) and lysozymdthin line). The lines are averages over all

subintervals, the error bars indicate the intervals containing 90% of When simulating a complex system it is generally not

the points. known where the minimum of the potential is located. The
best estimate for the center is a time average over the simu-

covariances have not converged after 14 ns. It should, howation (assuming it started from an equilibrated conforma-

ever, give a good indication, especially for the HPr intervaltion). For the model system, the deviation of the average

since the total fluctuation seems to be converged. position from zero can be calculated, when starting from

A possible measure for the sampling of a simulation couldposition X,

be the cosine content of the PC’s. The first few principal

components of random diffusion, without potential, are co- —, 1(T 2

sines with the number of periods equal to half the principal (x >X(0):Xo: Tjo x(tdt (19)

component index, as was proven in Ré]. A measure for

similarity to random diffusion is the cosine content

1 D

2 -1 = 1-e 3N2X3+ —(—3+2aT

ci=$<chos(kwt)pi(t)dt) (Fp?(t)dt) . (12 (aT)Z[( MY ?
0 0

X(0)=Xq

: . —aT_ n—2aT
The cosine content can take values between gesaosing +tae % —e ")), (20)

and 1(a perfect cosine It is an absolute measure, which can

be extracted from one covariance analysis, in contrast tpere( ) denotes ensemble averaging and an overline denotes
many other convergence measures, which require compatime averaging, the full derivation is given in the Appendix.
sons of quan““es between different analySIS intervals. ThWhen also the ensemble average over the Starting positionS,

cosine content for the time intervals is shown in Fig. 8. Thewhich are Gaussian distributed with variar@éa, is taken,
average cosine content decreases from 70% at 50 ps to ahe expression simplifies to

most 0 at 14 ns. This would make the cosine content a good
indicator for convergence, but unfortunately the deviations D —2+2aT+2e 2T

from the average are of the size of the average itself. (x?)= 2 aT)? . (21
a

Ill. ONE-DIMENSIONAL DIFFUSION The deviation from the average can be expandechfbior

Diffusion in a harmonic potential is described by a sto-1/aT small,
chastic differential equation

—, D aT 5
dx (x >:§ -5 +0((aT)?), (22
q —ax+r(t). (13
The stochastic term(t) is & correlated 2D 2 1
<X >—ga—_|_+ (aT)Z . (23)
(r(1))=0, (14)

The average position converges to zero agT1this reflects
(r(t)r(t+7))=2D&(7), (15 the fact that for long times the positions are uncorrelated.
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1 T T T

because of the stochastic term in the denominator. The ex-
—— 2D(-1+aT+exp(-aT)ya’T’ pectation of the numerator only can be calculaisele the
--- D13 Appendix, Eq.(A8)], it is also plotted in Fig. 9.
0.8 - —— D/a(1-2/aT) 1
—-- cosine part
_ IV. DIFFUSION WITH TWO TIME SCALES
o L .
[3_ 06 In the protein simulations each principal component has
_g two correlation times, which differ more than an order of
S 04+ - magnitude. To model this the position of the minimum in Eq.
- (13) needs to diffuse in a harmonic potential according to the
same equation, but with a longer correlation time. The dy-
021 N ] namics ofx is now described by two coupled stochastic dif-
Y ferential equation
T I I o
0 107 10° 10' 10° 10° dx
T (units of 1/a) a=—ax(x—y)+rx(t), (30)
FIG. 9. Ensemble average of the variance of diffusion in a har-
monic potential in one dimensiofexpression(28)], the dashed d_y: —ay+ry(t) (31)
lines are the approximations faT small and large. The dot-dashed dt Yy Iy,
line is the expectation of the part of the variance that is caused by a
cosine of half a period, expressigA8) with k=1. wherea,>a, . The stochastic terms have expectation zero

and the variances arg correlated:
The 1A/T convergence is equivalent to the// convergence

of the average ovar independent draws from a distribution. (rx(Ory(t+7))=2D,d(7), (32
When a minimum has been sampled to a reasonable ex-
tent, the variance over the simulation is a good indication for (ry(Ory(t+7))=2D,8(7). (33

the size of the energy well. In the model system the conver- . _ - o
gence of the variance can be calculated, when starting frotdhen variance ok is A and the diffusion of the minimum
position X, contributes a fraction o8 to the variance, the diffusion con-
stants are given by
Xx—X)2)x0)= 24
(O hor=xg 24 D,=(1—B)\ay, (34

=(X*=X)x(0)=x, (25 Dy=Bhay. (39

T, — Becausea, is much larger thara,,y in Eq. (30) can be
= $L X(t)<dt —(x >x(O)=XO (26) considered as a parameter and the two stochastic differential
x(0)=Xg equations can be treated separately. In this approximation the
expectation of the variance afover an interval of lengtfT

IS
D
— = |(1—e2aTyx24 —
2at|(178 7%ty — —2+2a,T+2e &7
((x=x)?)=\[ 1-(1-B) aT)?
X(—1+2aT+e 227) | = (x%),0)-x, (27) i
—2+2a,T+ 2”7
or when starting from an ensemble average, —B (ayT)2 ' (36)
fD -
((x=x)%)= 3 —(x?). (28 V. HIGH-DIMENSIONAL DIFFUSION

The one-dimensional model with two time scales can be
extended taN dimensions by simply combininyl uncorre-
lated one-dimensional models,

The variance can be expanded &F small, using Eq(22)

———1
((x=x)?)=3DT+0(@n?. (29 )
X; _
. [ d_tlz_axyi(xi_yi)ﬂx,i(t), i=1,...N, (37
This shows that on short time scales the system behaves

purely diffusive. The variance and the expansions for short
and long times are plotted in Fig. 9. It is not possible to %:—a Vi () i—1 N 38)
calculate the expectation of the cosine content analytically, dt yiYit Tyt e
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The stochastic terms have expectation zero and the variances ' ' ' '

are y correlated: 1
(ry,i(Oryj(t+7))=2Dy; 8 (7), (39 08
c
k]
<ry’i(t)ry'j(t+ 7)>:2Dy,i5ij 5(7’) (40) ;3: 0.6
go
This model describes diffusion in aN-dimensional har- 2
monic potential, with two correlation times for each dimen- g 0.4
sion. To mimic protein dynamics, the force constants were T
chosen equal fok; andy;, proportional toi and the diffu-
. ; S 0.2
sion constants independent of the direction:
3 =321, (41) 907 107 10 10° 10 10°
. T (units of 1/a)
a y=ai, (42

FIG. 10. Top curve is the square root of the sum of variances
D; «=0.532D, (43) over all 30 coordinates as a function of time, divided by the value at
' full sampling. The dashed line is the analytical cufexpression
(46)]. The bottom curve is the overlaexpression(11)] of the
sampled space with the space at full sampling. All values are aver-

Althouah the model is relatively simple. analvtically deriv- ages over 100 simulations, the error bars indicate the intervals con-
g y PI€, y y taining 90% of the points.

ing collective properties, such as principal modes, is very

difficult, if not impossible. To analyze the collective proper-

ties, 100 simulations were performed of the model systerr#yze’ th_e onl_y m?‘th‘?d to find the directions_, with the largest
with N=30. Thus the longest correlation time in the model is luctuations is principal component analysis. There are two

1/a and the shortest correlation time is 1/(8$0The time Iimiting types of behavior in the model system. On very
step of the Euler integrator was 1/(20480 and short time scalesa, yT<<1, the systems behaves purely dif-

1/(204 80@) to collect short time-scale data. Each simula-fus'(\j’e' Eh's reglm((aj was gnatlyfed In gzﬁ] The prlrlmpal fth
tion was started from a different, equilibrated, conformation'0¢€s have a random orieéntation and the eigenvaiues of the

with a different random seed. The simulations were analyze ovariance matrix decrease with the square of the index. The

for time intervals with 16 different lengths, ranging from C'’s are cosines with the number of periods equal to half the
1/(5122) to 64A ' eigenvector index. On very long time scaleg,, T>1, the

principal modes are oriented along the coordinate axisi PC
converge tax;, the eigenvalues t®/(ai). On intermediate
time scales the principal modes will be partially oriented in
N the coordinate directions. The first few PC’'s will still re-
V(T =D (x—-%)2 (45 ~ semble cosines. This was analyzed qualitatively using the
i=1 ensemble of 100 trajectories and with an analytical approxi-
mation for the first PC. No fitting was used in the principal

D;,=0.5D. (44)

The only quantity for which the expectation can easily be
calculated analytically is the sum of variancégr),

N'D —2464aiT+2e 32T component analyses.
(V(T))= E —.( 1-0.5 — The cosine content of the first principal compongr8) is
i=1al (327) shown in Fig. 11, both for the simulations and for the ana-
94 2aiT+ 26 aiT Iyticgl approxim_ation. As expec'ted, the analyticgl appro>'<i-
~05 ) (46) ~ Mation overestimates the cosine content at intermediate
(iT)? times. Although the average cosine content decreases mono-

tonically in time, it is not a sensitive measure for sampling

For the model systei() is 4.0D/a. In Fig. 10 the average because of the large fluctuations over the different simula-
of VV(T)/V(») over the simulations in plotted, which tions. When the cosine content is close to 1, one can be sure
matches the analytical expression exactly. The transitionthat the simulation is not converged. When the cosine con-
range from random diffusion to full fluctuation is larger than tent is close to zero, one could have full sampling, but it is
in the one-dimensional case, since the time scales in the diequally possible that the simulation time is about @f less,
ferent dimensions cover a range of 30. The length of thevhere the sampling is far from converged and the diffusional
transition range can be scaled by choosing a different expdnotion dominates.
nent for thea;’s in Egs.(41) and(42). Figure 10 also shows
a measure for the convergence of the sampled spaekich
is defined in the Appendikexpression11)].

When the time evolution of a high-dimensional system is In the simulations presented the two proteins jump in a
known, but the potential is unknown or too complex to ana-relatively short time from one shallow potential well to an-

VI. DISCUSSION
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1 =T . . . in one conformation during a simulation, a jump could occur
} T__ when the simulation is prolonged.
o8 | L N - ) Thus, the main part of the fluctuations of the two proteins

during the chosen intervals can be described as diffusion in a
high-dimensional harmonic potential, of which the position

é 06 . of the minimum diffuses in a potential of the same shape, but
8 1] Y T on a much longer time scale. The behavior can be interpreted
2 — as thermal motion of slow, collective coordinates in a poten-

2 0.4 A1 . .

8 1 tial of mean force of the faster degrees of freedom of the

protein and the solvent. The minimum of this potential fluc-
0.2+ - tuates slowly around an average, probably due to slow rear-
rangement of the packing of the side chains.

- ] Using the model system it can be estimated that the 14 ns
053 = : : 10 intervals of the protein simulations are approximately eight

1

10 10 10™ 10° 10
T (units of 1/a) and four times longer than the longest correlation time for
HPr and lysozyme. The longest correlations times for the

FIG. 11. Cosine conteriexpression(12)] of the first principal  hroteins obtained from the fits of the autocorrelations of the
component as a function of time. The curve is the average over 1OF

. . I : S C's are shorter than a nanosecond. However, fitting the au-
S|mula_t|ons, the error bars indicate the intervals containing 90% o ocorrelation of the PC’s of the model system shows that 1/
the points. . . .

is underestimated on average by a factor of 2 and 3 for simu-
lation times of 84 and 44, respectively. The simulation time
other. The time spent in each well is relatively long. Theneeds to be increased by an order of magnitude to obtain a
behavior of the proteins, in the 14 nanoseconds that theyjaasonable estimate of the longest correlation time. Never-
spend in one well, and the model system is nearly diffusivgneless, the chosen intervals seem to be long enough to esti-
on short time scales and becomes more ordered on long tim&ate the mean square fluctuation.
scales. When the longest correlation time in the modaljsl/ The hope was that with the model system some indicator
chosen as 2 ns for HPr and as 4 ns for lysozyme the quantioyld be found that provides a good prediction of the con-
tative agreement with the model is good. This holds for the,ergence of the sampling around one conformation. The total
total fluctuation, the overlap of the sampled spaces and thgyctuation, a simple property, is not suitable, since it in-
cosine content. The agreement can be partially explained byreases logarithmically on intermediate time scales. The co-
the three adjustable parameters, which are the exponent gfne content of the first principal component seems more
the eigenvalue curve, the ratio of the two correlation timespromising. The sampling as defined by the ovelflexpres-
and the ratio of the amplitudes of the slow and fast fluctuasjgn (11)] is approximately equal to one minus the cosine
tions. However, the exact exponent of the eigenvalue curve igontent. Unfortunately, the fluctuations in the cosine content
not critical; HPr and lysozyme have exponents of about 3re of the size of the average. This renders it useless as an
—2/3 and—4/3, respectively, while in the model an expo- indicator, since an accurate value can only be obtained by
nent of —1 was used. The model is relatively simple in the averaging over many pieces of a long trajectory. The cosine

sense that the force constants scale with the same expon&¥ntent is a useful negative indicator. When the first principal
and the slow and fast diffusion constant do not depend on th@omponent is similar to a cosine with half a period, the sam-

spatial dire_ction. An important observation is that the mode ling is far from converged. From the results for the protein
also describes the spread around the averages correctly. T Shulations and the model system we can conclude that all

means that not only the average properties of the proteing anities are too uncertain to predict the long term sampling
and the model are similar, but also the ensembles of trajeGrom a short simulation. The only way to assess the conver-

tories. Although the corrglation times of the individual de- gence of sampling of a short simulation seems to be by per-
grees of freedom can differ up to a factor of 2 from theforming a longer one.

algebraic model curve, this does not influence the conver-

gence behavior significantly. For short time scales the model

is compatible with the one proposed by Amaeeial. [17],

which was not intended to model the long time behavior.
An advantage of the model system is that the convergence The author thanks A. E. Mark for his support and H. J. C.

behavior can be studied accurately. This is impossible foBerendsen for stimulating discussions.

proteins, not only because of the current speed of computers,

but more importantly because proteins tend to jump to dif-

ferent conformations on a time scale that is not much longer APPENDIX

than the longest correlation time within a conformation. One

should realize that because of these jumps it is impossible to The expectation of the square of an integral of the sto-

get a complete picture of the available phase space, with thehastic process(t), as defined by Eqg13), (14), and(15),

current speed of the computers. Even when the protein staygith an arbitrary functiorf(t) can be calculated as follows:
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T 2
< ff(t)x(t)dt)> (A1)
0 x(0)=X,
.
=<{f f(t)e &
0

=<(fo(t)e—atx(0)dt
0

T t 2
f f(t)e—atf er(v)dv dt) > (A3)
0 0 X(0)=X,

x(0)+J:ea”r(v)dv

2
dt] > (A2)
x(0)=Xq

2 T T t
+2f f(t)e_atx(O)dtJ f(t)e_atf e®r(v)dv dt
0 0 0

+

|

T 2 T(T t (u
Jf(t)e*a‘dt xg+f J f(t)f(u)e’a(””)JJ(ea(”*‘”)r(v)r(w))dwdvdudt (A4)
0Jo 0JO

0

T 2 T(T 2D

=<f f(t)e aldt X§+f f f(t)f(u)e*a(”“)?{exp[Zamin(t,u)]—l}du dt (A5)
0 0Jo
T 2 2D (T (T

=<J f(t)e adt| X3+ ?f f f(t)f(u)(e alt-ul—ealt+Wyqy dt (A6)
0 0Jo

|
The expectation of the square of the average oén be T t 2
obtained from expressiofA6) by takingf equal to 1, = J’ re a X(O)+foea”r(v)dv ] dt (A10)
X(0)=Xq

T 2
<(f x(t)dt) >
0 X(0)=X,

1 D

= —(1-e )25+ —(~3+2aT+4e *T—e 7). . 2

a a (A7) +e2at( f ea”r(v)dv) dt> (A11)
0 X(0)=X,

The expectation of the overlap &fwith a cosine, ensemble
averaged over the starting valda Gaussian distribution

with varianceD/a) is T T
) :J e—2atdtxg+j e—2at
0 0

1T 2
< #0 ﬁcos{km)x(t)dt) >

T t
=<f [e*a‘x(O)]2+2e*2atx(0)f e*r(v)dv
0 0

t [t
xf J(ea(”"")r(v)r(w))dw dv dt (A12)
0JO
_ 2DT{K*m?+a’T?+2aT[ - 1+e 27(~1)"]}
B (K272 + a2T?)? :
T T t
(A8) = f e A dtX3+ f g2t f De?®dy dt (A13)
0 0 0
The expectation of the integral over the square ¢
<jT 2 1 D
X(t) dt> (A9) ot oaT\y2, © _oaT
° X(0)=X,q =5 (17e o+ (-~ 1+2aT+e ™). (Al4)
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