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Convergence of sampling in protein simulations

Berk Hess
Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

~Received 3 August 2001; published 1 March 2002!

With molecular dynamics protein dynamics can be simulated in atomic detail. Current computers are not fast
enough to probe all available conformations, but fluctuations around one conformation can be sampled to a
reasonable extent. The motions with the largest fluctuations can be filtered out of a simulation using covariance
or principal component analysis. A problem with this analysis is that random diffusion can appear as correlated
motion. An analysis is presented of how long a simulation should be to obtain relevant results for global
motions. The analysis reveals that the cosine content of the principal components is a good indicator for bad
sampling.
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I. INTRODUCTION

Proteins are complex objects with motions in a lar
range of length and time scales. In a classical descriptio
protein dynamics the fluctuations range from bond and an
vibrations of tenths of Ångstroms on the femtosecond ti
scale to~un!folding of the whole protein on a time scale o
seconds. Currently, there are no experimental techniques
can follow the detailed dynamics of proteins in time. Th
leaves molecular dynamics as the only tool to study t
regime. With the current computers simulations of prote
are limited to hundreds of nanoseconds.

In a trajectory of a protein the Cartesian coordinates of
atoms contain a mixture of fast and slow modes of moti
Covariance or principal component analysis, which has a
been termed quasiharmonic analysis@1#, ‘‘molecule optimal
dynamic coordinates’’@2,3# and ‘‘essential dynamics’’@4#,
can be used to separate these modes of motion base
amplitude. In a protein a few modes contain more than h
of the total fluctuation in the system. For a long simulati
the first few modes usually describe global, collective m
tions. But one has to be careful when interpreting the res
of such an analysis, since random diffusion can produce
terns that resemble collective behavior. There are severa
amples in the literature where cosine-shaped principal c
ponents have been interpreted as transition of the pro
from one state to another. Recently this has been proven
such cosines also emerge from random diffusion without
tential @5#. For short protein simulations the first few princ
pal components will always be caused by random diffusi
since the time is too short to reach barriers in the poten
Although this diffusive behavior can be of interest, the fin
direction and amplitude of the motions cannot be estima
because of the inherent properties of random diffusion. T
paper will assess when effects of the potential become
ible in the first few principal components. This determin
the minimum simulation length that is required to draw a
conclusions on global motions in the protein. First princip
component analysis will be described in more detail.

Most degrees of freedom of a protein will be highly co
strained due to bonded interactions between the atoms.
protein moves in aN-dimensional space, whereN is three
times the number of atoms. Only a few of these degree
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freedom will contribute significantly to the global fluctua
tions of the protein. Mass-weighted covariance or princi
component analysis can be used to find these degrees of
dom. This is the equivalent of normal mode analysis at n
zero temperatures@6,7#. The analysis can be applied on an
high-dimensional set of coordinatesx(t). After a transla-
tional and rotational fit of all structures to a reference str
ture, the mass-weighted covariance matrixC is built and di-
agonalized

Ci j 5Mii
1/2
„ xi~ t !2xi~ t !̄̄ …M j j

1/2
„ xj~ t !2xj~ t !̄̄ …, ~1!

C5R diag~l1 ,l2 , . . . ,lN!RT, ~2!

where an overline denotes averaging over time,M is a diag-
onal matrix containing the masses of the particles andN is
three times the number of particles. Thei th column of the
rotation matrixR is the eigenvector or principal mode corr
sponding to eigenvaluel i . The eigenvalue is the mea
square fluctuation in the direction of the principal mode. T
projections ofx on the eigenvectors are the principal com
ponents,

p~ t !5RTM1/2x~ t !. ~3!

Principal component analysis is just a rotation of spa
wherep(t) are the new, massweighted, rotated coordina
In the following sections the analysis will be applied to fo
molecular dynamics trajectories of proteins and a model s
tem.

II. MOLECULAR DYNAMICS SIMULATIONS

Four molecular dynamics simulations of 40 ns each w
performed on two different proteins in explicit solvent. Th
proteins are HPr, Histidine containing phosphocarrier p
tein, of 85 residues andT4-lysozyme of 164 residues. Th
simulations were performed with the Gromacs package@8#,
using the Gromos96 force field@9#. In all simulations the
angle vibrations of the hydrogens in the protein were
moved, by replacing the hydrogen atoms with interact
sites@10#. The hydrogen charges were fixed at the position
the minimum of the angle potentials. This procedure,
gether with theLINCS algorithm for constraining bonds@11#
©2002 The American Physical Society10-1
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BERK HESS PHYSICAL REVIEW E 65 031910
enables the use of a time step of 4 fs. The temperature
coupled to 300 K, the pressure to 1 bar, using a Berend
thermostat and barostat@12#, with coupling times of 0.1 and
1 ps, respectively.

The starting structure for the HPr simulations was tak
from protein data bank~PDB! entry 1poh@13#. The protein
with 89 crystal waters was solvated in a truncated octahed
with a nearest image distance of 5.5 nm. The total numbe
SPC ~simple point charge! water molecules@14# was 3841.
After energy minimization two simulations of 40 ns we
performed using different random initial velocities. A twin
range cutoff of 1.0/1.4 nm was used. Forces below 1.0
were updated every step, the forces between 1.0 and 1.4
and the neighbor list were updated every five steps.

The starting structure for theT4-lysozyme simulations
was taken from PDB entry 2lzm@15#. The protein with 118
crystal waters was solvated in a rhombic dodecahedron
a nearest image distance of 7 nm. After energy minimizat
the system was neutralized by replacing eight waters w
eight chlorine ions. The ions were inserted at the water o
gen position with the most favorable electrostatic potent
the potential was recalculated after every ion insertion. T
total number of water molecules was 7156. After anot
energy minimization two simulations of 40 ns were pe
formed, using different random initial velocities. A reactio
field with a dielectric constant of 80 was used to prev
accumulation of ions at the cutoff. A twin-range cutoff
1.0/1.5 nm was used.

For HPr the average root mean square deviation~RMSD!
of Ca atoms over 5–40 ns with the pdb structure is 0.29
for the first and 0.23 nm for the second trajectory. Af
diverging initially, the two trajectories come close togeth
The RMSD between the final structures is 0.24 nm. The f
and most of the secondary structure stays intact during
simulations, the RMSD is mainly caused by a slight reorie
tation of the secondary structure elements with respec
each other. For lysozyme the average RMSD of Ca atoms
over 5–40 ns with the pdb structure is 0.28 nm for the fi
and 0.32 nm for the second trajectory. The main motion
hinge bending of the two domains. In the first simulation t
protein closes with respect to the pdb structure, in the sec
one it opens. The programDYNDOM @16# was used to quan
tify the rotation between the two structures from the first a
second simulation that have the highest RMSD with resp
to each other.DYNDOM reports a 71° rotation between tw
domains, which consist of residues 14-58,65-78 and resid
3-13,79-159, respectively. In Figs. 1 and 2 RMSD matric
are shown in which transitions between conformations
be seen easily. It is impossible to cluster the sampled con
mations in a unique way. But roughly one could say that e
simulation samples three conformations with a time span
tween 4 and 22 ns. The average RMSD between struct
within each conformation is between 0.1 and 0.15 nm. T
RMSD between structures from different conformatio
ranges from 0.2 to 0.4 nm.

A search was performed on all simulations for time int
vals in which the protein seems to move around only o
structure. Principal component analysis on the Ca atoms was
used as a tool to find such intervals. Since all Ca atoms have
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FIG. 1. Root mean square deviation~RMSD! matrix, showing
the RMSD of the Ca atoms of each pair of structures in HPr sim
lation 1 ~upper-left triangle! and HPr simulation 2~lower-right tri-
angle!.

FIG. 2. Root mean square deviation~RMSD! matrix, showing
the RMSD of the Ca atoms of each pair of structures in lysozym
simulation 1~upper-left triangle! and lysozyme simulation 2~lower-
right triangle!.
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CONVERGENCE OF SAMPLING IN PROTEIN SIMULATIONS PHYSICAL REVIEW E65 031910
the same mass, a non-mass-weighted analysis was
formed. The criterion for sampling around one structure w
that the distribution of the principal components~PC’s! was
close to Gaussian. The relative deviation of the third a
fourth central moments from those of a Gaussian distribu
with the same mean and variance was used as a measu
similarity to a Gaussian distribution. A number of candida
intervals were identified by visual inspection of the RMS
matrices. From this set of intervals the two where the P
were closest to Gaussian were selected. In the first HPr s
lation interval 5–19.1 ns was found, the average devia
from Gaussian over all PC’s, weighted with the widths of t
distributions, is 7% and 3% for the third and fourth cent
moment, respectively. In the second lysozyme simulation
terval 13.3–26.8 ns was found, the deviations are 11%
7%. All structures were fitted to the first structure of t
interval.

The eigenvalues depend on the principal component in
as a power law with an exponent of24/3 ~not shown!, ex-
cept for the first nine eigenvalues of HPr, which have
exponent of about22/3. The first four PC’s for the time
intervals are shown in Figs. 3 and 4. All PC’s exhibit rap
fluctuations of the order of tens of picoseconds and slo
fluctuations of the order of hundreds of picoseconds. O
the fourth PC of the lysozyme simulation shows significa
‘‘nonrandom’’ behavior with a jump between two states at
ns. Inertia effects are negligible, since the velocity autoc
relation functions of the PC’s~not shown! have a negative
minimum around 1 ps, which is an order of magnitu
shorter than the correlation times of the PC’s. The ov
damped dynamics together with the Gaussian distribution
the PC’s suggests the approximation of diffusion in a hig
dimensional harmonic potential. In this approximation, t
force constant for the harmonic potential of PCi is given by

ki5
kBT

l i
, ~4!

FIG. 3. First four principal components for the interval of H
simulation 1. Unit: nm.
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wherekB is the Boltzmann’s constant,T is the temperature
andl i is the eigenvalue or mean square fluctuation of PCi.
The friction coefficient is given by

z i5kit i , ~5!

wheret i is a correlation time. The autocorrelation functio
of the PC’s can be fitted well with a sum of two exponentia

f ~ t !5lF ~12b!expS 2
t

t f
D1b expS 2

t

ts
D G , ~6!

wheret f and ts are the fast and slow correlation time, r
spectively. This implies two stochastic processes with wh
noise and time independent friction constants. For the firs
PC’s of HPrb is 0.51 on average, for lysozyme this is 0.5
Some of theb ’s of the first few PC’s differ significantly from
the average. A separate harmonic force constant and fric
constant can be calculated for the fast and slow fluctuati
of each PC. The obtained friction constants for the first
PC’s of HPr and lysozyme are shown in Fig. 5. Although t
friction constants vary by an order of magnitude, they sh
little systematic dependence on the PC index. Only the
17 friction constants for the slow fluctuations of HPr a
significantly higher than first 13. When the high friction co
stant of PC number 15 of HPr is discarded, the average r
of the slow over the fast friction constant is 33 for both H
and lysozyme. This analysis suggests that the global dyn
ics of both proteins is governed by a fast and a slow diffus
process, for which the diffusion constants are independen
the direction. In the harmonic approximation, the hig
dimensional energy landscapes for both processes are al
identical. The harmonic force constants are close to lin
with PC index.

To study the convergence of the sampling, both interv
were divided in up to 256 subintervals, with steps of a fac
of 2. Principal component analysis was performed on eac
these subintervals. This gives good statistics for the sh

FIG. 4. First four principal components for the interval
lysozyme simulation 2. Unit: nm.
0-3
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BERK HESS PHYSICAL REVIEW E 65 031910
intervals and bad statistics for longer times. The increas
fluctuations with time can be seen in the root mean squ
fluctuation~Fig. 6!, which is equal to the square root of th
sum of eigenvalues divided by the number of atoms. T
fluctuations of HPr seem to have leveled off at 14 ns,
fluctuations of lysozyme still increase at 14 ns, but with
smaller slope than at shorter times.

The overlap of the fluctuations can be used as a mea
for the convergence of the sampled space. This can be d
in terms of covariance matrices. The elements of the cov
ance matrix are proportional to the square of the displa
ment, so the square root of the matrix is required to exam
the extent of sampling. The square root can be calcula
from the eigenvaluesl i and the eigenvectors, which are th
columnsRi of the rotation matrixR. For a symmetric and
diagonally dominant matrixA of sizeN3N the square root
can be calculated as

A1/25R diag~l1
1/2,l2

1/2, . . . ,lN
1/2!RT, ~7!

FIG. 5. Estimated friction constants for the fast and slow flu
tuations of the first 30 PC’s of HPr~solid lines! and lysozyme
~dashed lines!.

FIG. 6. Root mean square fluctuation~RMSF! of the Ca atoms
as a function of the length of the subinterval for HPr~thick line! and
lysozyme~thin line!. The lines are averages over all subinterva
the error bars indicate the intervals containing 90% of the poin
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where diag() is a diagonal matrix. It can be verified eas
that the product of this matrix with itself givesA. Now a
differenced between covariance matricesA and B can be
defined as follows:

d~A,B!5Atr@~A1/22B1/2!2# ~8!

5Atr~A1B22A1/2B1/2! ~9!

5F(
i 51

N

~l i
A1l i

B!22(
i 51

N

(
j 51

N

Al i
Al j

B~Ri
A
•Rj

B!2G1/2

,

~10!

where tr is the trace of a matrix. The overlaps as can now be
defined as

s~A,B!512
d~A,B!

Atr A1tr B
. ~11!

The overlap is one if and only if matricesA andB are iden-
tical. It is zero when the sampled subspaces are comple
orthogonal. This measure has several advantages ove
commonly used subspace overlap, which is the overlap
tween the subspaces of the firstnA and nB eigenvectors of
matrix A and B. The subspace overlap depends strongly
nA and nB . Also, it ignores the eigenvalues. Thus, diffe
ences between eigenvectors with small and large eigenva
contribute equally. But more importantly,~nearly! degenerate
subspaces are treated incorrectly. When two or more eig
values are equal, the orientation of the corresponding eig
vectors within the subspace is random. This will cause
random difference in the subspace overlap number, whe
for the covariance matrix overlap measure, these ident
subspaces do not contribute to the difference.

The covariance matrices for each time were compa
with the matrices over the whole intervals~Fig. 7!. The over-
lap is not an exact measure of the convergence, since

-

,
.

FIG. 7. Overlap@expression~11!# of the sampling of each sub
interval with the sampling after 14 ns for HPr~thick line! and
lysozyme~thin line!. The lines are averages over all subinterva
the error bars indicate the intervals containing 90% of the poin
0-4
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CONVERGENCE OF SAMPLING IN PROTEIN SIMULATIONS PHYSICAL REVIEW E65 031910
covariances have not converged after 14 ns. It should, h
ever, give a good indication, especially for the HPr interv
since the total fluctuation seems to be converged.

A possible measure for the sampling of a simulation co
be the cosine content of the PC’s. The first few princip
components of random diffusion, without potential, are c
sines with the number of periods equal to half the princi
component index, as was proven in Ref.@5#. A measure for
similarity to random diffusion is the cosine content

ci5
2

T S E
0

T

cos~kpt !pi~ t !dt D 2S E
0

T

pi
2~ t !dtD 21

. ~12!

The cosine content can take values between zero~no cosine!
and 1~a perfect cosine!. It is an absolute measure, which ca
be extracted from one covariance analysis, in contras
many other convergence measures, which require comp
sons of quantities between different analysis intervals. T
cosine content for the time intervals is shown in Fig. 8. T
average cosine content decreases from 70% at 50 ps t
most 0 at 14 ns. This would make the cosine content a g
indicator for convergence, but unfortunately the deviatio
from the average are of the size of the average itself.

III. ONE-DIMENSIONAL DIFFUSION

Diffusion in a harmonic potential is described by a s
chastic differential equation

dx

dt
52ax1r ~ t !. ~13!

The stochastic termr (t) is d correlated

^r ~ t !&50, ~14!

^r ~ t !r ~ t1t!&52Dd~t!, ~15!

FIG. 8. Cosine content@expression~12!# of the first principal
component as a function of the length of the subinterval for H
~thick line! and lysozyme~thin line!. The lines are averages over a
subintervals, the error bars indicate the intervals containing 90%
the points.
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whered(t) is the Diracd function. The parametera, which
is the inverse correlation time and the diffusion constanD
are determined by the force constantk of the harmonic po-
tential, the friction constantz, the temperatureT, and the
Boltzmann’s constantkB ,

a5
k

z
, ~16!

D5
kBT

z
. ~17!

The solution of the differential equation can be written wr
ten as the sum of an exponent times the position at time z
and an integral over the stochastic term

x~ t !5e2atS x~0!1E
0

t

eavr ~v !dv D . ~18!

When simulating a complex system it is generally n
known where the minimum of the potential is located. T
best estimate for the center is a time average over the s
lation ~assuming it started from an equilibrated conform
tion!. For the model system, the deviation of the avera
position from zero can be calculated, when starting fro
positionX0,

^x̄2&x(0)5X0
5K S 1

TE0

T

x~ t !dtD 2L
x(0)5X0

~19!

5
1

~aT!2 F ~12e2aT!2X0
21

D

a
~2312aT

14e2aT2e22aT!G , ~20!

here^ & denotes ensemble averaging and an overline den
time averaging, the full derivation is given in the Append
When also the ensemble average over the starting positi
which are Gaussian distributed with varianceD/a, is taken,
the expression simplifies to

^x̄2&5
D

a

2212aT12e2aT

~aT!2
. ~21!

The deviation from the average can be expanded foraT or
1/aT small,

^x̄2&5
D

a S 12
aT

3 D1O„~aT!2
…, ~22!

^x̄2&5
D

a

2

aT
1OS 1

~aT!2D . ~23!

The average position converges to zero as 1/AT, this reflects
the fact that for long times the positions are uncorrelat

r

of
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BERK HESS PHYSICAL REVIEW E 65 031910
The 1/AT convergence is equivalent to the 1/An convergence
of the average overn independent draws from a distribution

When a minimum has been sampled to a reasonable
tent, the variance over the simulation is a good indication
the size of the energy well. In the model system the conv
gence of the variance can be calculated, when starting f
positionX0,

^ ~x2 x̄! 2̄ &x(0)5X0
~24!

5^ x2̄2 x̄2&x(0)5X0
~25!

5K 1

TE0

T

x~ t !2dtL
x(0)5X0

2^x̄2&x(0)5X0 ~26!

5
1

2aT F ~12e22aT!X0
21

D

a

3~2112aT1e22aT!G2^x̄2&x(0)5X0
, ~27!

or when starting from an ensemble average,

^ ~x2 x̄! 2̄ &5
D

a
2^x̄2&. ~28!

The variance can be expanded foraT small, using Eq.~22!

^ ~x2 x̄! 2̄ &5
1

3
DT1O„~aT!2

…. ~29!

This shows that on short time scales the system beh
purely diffusive. The variance and the expansions for sh
and long times are plotted in Fig. 9. It is not possible
calculate the expectation of the cosine content analytica

FIG. 9. Ensemble average of the variance of diffusion in a h
monic potential in one dimension@expression~28!#, the dashed
lines are the approximations foraT small and large. The dot-dashe
line is the expectation of the part of the variance that is caused
cosine of half a period, expression~A8! with k51.
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because of the stochastic term in the denominator. The
pectation of the numerator only can be calculated@see the
Appendix, Eq.~A8!#, it is also plotted in Fig. 9.

IV. DIFFUSION WITH TWO TIME SCALES

In the protein simulations each principal component h
two correlation times, which differ more than an order
magnitude. To model this the position of the minimum in E
~13! needs to diffuse in a harmonic potential according to
same equation, but with a longer correlation time. The
namics ofx is now described by two coupled stochastic d
ferential equation

dx

dt
52ax~x2y!1r x~ t !, ~30!

dy

dt
52ayy1r y~ t !, ~31!

whereax@ay . The stochastic terms have expectation ze
and the variances areg correlated:

^r x~ t !r x~ t1t!&52Dxd~t!, ~32!

^r y~ t !r y~ t1t!&52Dyd~t!. ~33!

When variance ofx is l and the diffusion of the minimum
contributes a fraction ofb to the variance, the diffusion con
stants are given by

Dx5~12b!lax , ~34!

Dy5blay . ~35!

Becauseax is much larger thanay ,y in Eq. ~30! can be
considered as a parameter and the two stochastic differe
equations can be treated separately. In this approximation
expectation of the variance ofx over an interval of lengthT
is

^ ~x2 x̄! 2̄ &5lS 12~12b!
2212axT12e2axT

~axT!2

2b
2212ayT12e2ayT

~ayT!2 D . ~36!

V. HIGH-DIMENSIONAL DIFFUSION

The one-dimensional model with two time scales can
extended toN dimensions by simply combiningN uncorre-
lated one-dimensional models,

dxi

dt
52ax,i~xi2yi !1r x,i~ t !, i 51, . . . ,N, ~37!

dyi

dt
52ay,i yi1r y,i~ t !, i 51, . . . ,N. ~38!

r-

a
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CONVERGENCE OF SAMPLING IN PROTEIN SIMULATIONS PHYSICAL REVIEW E65 031910
The stochastic terms have expectation zero and the varia
areg correlated:

^r x,i~ t !r x, j~ t1t!&52Dx,id i j d~t!, ~39!

^r y,i~ t !r y, j~ t1t!&52Dy,id i j d~t!. ~40!

This model describes diffusion in anN-dimensional har-
monic potential, with two correlation times for each dime
sion. To mimic protein dynamics, the force constants w
chosen equal forxi and yi , proportional toi and the diffu-
sion constants independent of the direction:

ai ,x532ai, ~41!

ai ,y5ai, ~42!

Di ,x50.532D, ~43!

Di ,y50.5D. ~44!

Although the model is relatively simple, analytically deri
ing collective properties, such as principal modes, is v
difficult, if not impossible. To analyze the collective prope
ties, 100 simulations were performed of the model syst
with N530. Thus the longest correlation time in the mode
1/a and the shortest correlation time is 1/(960a). The time
step of the Euler integrator was 1/(204 80a) and
1/(204 800a) to collect short time-scale data. Each simu
tion was started from a different, equilibrated, conformat
with a different random seed. The simulations were analy
for time intervals with 16 different lengths, ranging fro
1/(512a) to 64/a.

The only quantity for which the expectation can easily
calculated analytically is the sum of variancesV(T),

V~T!5(
i 51

N

~xi2xī !
2̄, ~45!

^V~T!&5(
i 51

N
D

ai S 120.5
22164aiT12e232aiT

~32iT !2

20.5
2212aiT12e2aiT

~ iT !2 D . ~46!

For the model systemV(`) is 4.0D/a. In Fig. 10 the average
of AV(T)/V(`) over the simulations in plotted, whic
matches the analytical expression exactly. The transiti
range from random diffusion to full fluctuation is larger tha
in the one-dimensional case, since the time scales in the
ferent dimensions cover a range of 30. The length of
transition range can be scaled by choosing a different ex
nent for theai ’s in Eqs.~41! and~42!. Figure 10 also shows
a measure for the convergence of the sampled spaces, which
is defined in the Appendix@expression~11!#.

When the time evolution of a high-dimensional system
known, but the potential is unknown or too complex to an
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lyze, the only method to find the directions with the large
fluctuations is principal component analysis. There are t
limiting types of behavior in the model system. On ve
short time scales,ax,NT!1, the systems behaves purely d
fusive. This regime was analyzed in Ref.@5#. The principal
modes have a random orientation and the eigenvalues o
covariance matrix decrease with the square of the index.
PC’s are cosines with the number of periods equal to half
eigenvector index. On very long time scales,ay,1T@1, the
principal modes are oriented along the coordinate axis. Pi
converge toxi , the eigenvalues toD/(ai). On intermediate
time scales the principal modes will be partially oriented
the coordinate directions. The first few PC’s will still re
semble cosines. This was analyzed qualitatively using
ensemble of 100 trajectories and with an analytical appro
mation for the first PC. No fitting was used in the princip
component analyses.

The cosine content of the first principal component~12! is
shown in Fig. 11, both for the simulations and for the an
lytical approximation. As expected, the analytical appro
mation overestimates the cosine content at intermed
times. Although the average cosine content decreases m
tonically in time, it is not a sensitive measure for sampli
because of the large fluctuations over the different simu
tions. When the cosine content is close to 1, one can be
that the simulation is not converged. When the cosine c
tent is close to zero, one could have full sampling, but it
equally possible that the simulation time is about 2/a or less,
where the sampling is far from converged and the diffusio
motion dominates.

VI. DISCUSSION

In the simulations presented the two proteins jump in
relatively short time from one shallow potential well to a

FIG. 10. Top curve is the square root of the sum of varian
over all 30 coordinates as a function of time, divided by the value
full sampling. The dashed line is the analytical curve@expression
~46!#. The bottom curve is the overlap@expression~11!# of the
sampled space with the space at full sampling. All values are a
ages over 100 simulations, the error bars indicate the intervals
taining 90% of the points.
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BERK HESS PHYSICAL REVIEW E 65 031910
other. The time spent in each well is relatively long. T
behavior of the proteins, in the 14 nanoseconds that t
spend in one well, and the model system is nearly diffus
on short time scales and becomes more ordered on long
scales. When the longest correlation time in the model, 1/a is
chosen as 2 ns for HPr and as 4 ns for lysozyme the qua
tative agreement with the model is good. This holds for
total fluctuation, the overlap of the sampled spaces and
cosine content. The agreement can be partially explaine
the three adjustable parameters, which are the expone
the eigenvalue curve, the ratio of the two correlation tim
and the ratio of the amplitudes of the slow and fast fluct
tions. However, the exact exponent of the eigenvalue curv
not critical; HPr and lysozyme have exponents of abo
22/3 and24/3, respectively, while in the model an exp
nent of21 was used. The model is relatively simple in t
sense that the force constants scale with the same expo
and the slow and fast diffusion constant do not depend on
spatial direction. An important observation is that the mo
also describes the spread around the averages correctly.
means that not only the average properties of the prot
and the model are similar, but also the ensembles of tra
tories. Although the correlation times of the individual d
grees of freedom can differ up to a factor of 2 from t
algebraic model curve, this does not influence the con
gence behavior significantly. For short time scales the mo
is compatible with the one proposed by Amadeiet al. @17#,
which was not intended to model the long time behavior.

An advantage of the model system is that the converge
behavior can be studied accurately. This is impossible
proteins, not only because of the current speed of compu
but more importantly because proteins tend to jump to
ferent conformations on a time scale that is not much lon
than the longest correlation time within a conformation. O
should realize that because of these jumps it is impossib
get a complete picture of the available phase space, with
current speed of the computers. Even when the protein s

FIG. 11. Cosine content@expression~12!# of the first principal
component as a function of time. The curve is the average over
simulations, the error bars indicate the intervals containing 90%
the points.
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in one conformation during a simulation, a jump could occ
when the simulation is prolonged.

Thus, the main part of the fluctuations of the two prote
during the chosen intervals can be described as diffusion
high-dimensional harmonic potential, of which the positi
of the minimum diffuses in a potential of the same shape,
on a much longer time scale. The behavior can be interpre
as thermal motion of slow, collective coordinates in a pote
tial of mean force of the faster degrees of freedom of
protein and the solvent. The minimum of this potential flu
tuates slowly around an average, probably due to slow r
rangement of the packing of the side chains.

Using the model system it can be estimated that the 14
intervals of the protein simulations are approximately eig
and four times longer than the longest correlation time
HPr and lysozyme. The longest correlations times for
proteins obtained from the fits of the autocorrelations of
PC’s are shorter than a nanosecond. However, fitting the
tocorrelation of the PC’s of the model system shows thata
is underestimated on average by a factor of 2 and 3 for si
lation times of 8/a and 4/a, respectively. The simulation time
needs to be increased by an order of magnitude to obta
reasonable estimate of the longest correlation time. Ne
theless, the chosen intervals seem to be long enough to
mate the mean square fluctuation.

The hope was that with the model system some indica
could be found that provides a good prediction of the co
vergence of the sampling around one conformation. The t
fluctuation, a simple property, is not suitable, since it
creases logarithmically on intermediate time scales. The
sine content of the first principal component seems m
promising. The sampling as defined by the overlap@expres-
sion ~11!# is approximately equal to one minus the cosi
content. Unfortunately, the fluctuations in the cosine cont
are of the size of the average. This renders it useless a
indicator, since an accurate value can only be obtained
averaging over many pieces of a long trajectory. The cos
content is a useful negative indicator. When the first princi
component is similar to a cosine with half a period, the sa
pling is far from converged. From the results for the prote
simulations and the model system we can conclude tha
quantities are too uncertain to predict the long term samp
from a short simulation. The only way to assess the conv
gence of sampling of a short simulation seems to be by p
forming a longer one.
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APPENDIX

The expectation of the square of an integral of the s
chastic processx(t), as defined by Eqs.~13!, ~14!, and~15!,
with an arbitrary functionf (t) can be calculated as follows

00
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K S E
0

T

f ~ t !x~ t !dtD 2L
x(0)5X0

~A1!

5K H E
0

T

f ~ t !e2atFx~0!1E
0

t

eavr ~v !dvGdtJ 2L
x(0)5X0

~A2!

5K S E
0

T

f ~ t !e2atx~0!dtD 2

12E
0

T

f ~ t !e2atx~0!dtE
0

T

f ~ t !e2atE
0

t

eavr ~v !dv dt

1S E
0

T

f ~ t !e2atE
0

t

eavr ~v !dv dtD 2L
x(0)5X0

~A3!

5S E
0

T

f ~ t !e2atdtD 2

X0
21E

0

TE
0

T

f ~ t ! f ~u!e2a(t1u)E
0

tE
0

u

^ea(v1w)r ~v !r ~w!&dw dv du dt ~A4!

5S E
0

T

f ~ t !e2atdtD 2

X0
21E

0

TE
0

T

f ~ t ! f ~u!e2a(t1u)
2D

a
$exp@2a min~ t,u!#21%du dt ~A5!

5S E
0

T

f ~ t !e2atdtD 2

X0
21

2D

a E
0

TE
0

T

f ~ t ! f ~u!~e2aut2uu2e2a(t1u)!du dt. ~A6!
The expectation of the square of the average ofx can be
obtained from expression~A6! by taking f equal to 1,

K S E
0

T

x~ t !dtD 2L
x(0)5X0

5
1

a2
~12e2aT!2X0

21
D

a3
~2312aT14e2aT2e22aT!.

~A7!

The expectation of the overlap ofx with a cosine, ensemble
averaged over the starting value~a Gaussian distribution
with varianceD/a) is

K S 1

TE0

T
A2cos~kpt !x~ t !dtD 2L

5
2DT$k2p21a2T212aT@211e2aT~21!k#%

~k2p21a2T2!2
.

~A8!

The expectation of the integral over the square ofx is

K E
0

T

x~ t !2dtL
x(0)5X0

~A9!
03191
5K E
0

TH e2atFx~0!1E
0

t

eavr ~v !dvG J 2

dtL
x(0)5X0

~A10!

5K E
0

T

@e2atx~0!#212e22atx~0!E
0

t

eavr ~v !dv

1e22atS E
0

t

eavr ~v !dv D 2

dtL
x(0)5X0

~A11!

5E
0

T

e22atdtX0
21E

0

T

e22at

3E
0

tE
0

t

^ea(v1w)r ~v !r ~w!&dw dv dt ~A12!

5E
0

T

e22atdtX0
21E

0

T

e22atE
0

t

De2avdv dt ~A13!

5
1

2a
~12e22aT!X0

21
D

2a2
~2112aT1e22aT!. ~A14!
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