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in phase III of Wright’s shifting balance theory
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It is generally difficult for a large population at a fitness peak to acquire the genotypes of a higher peak,
because the intermediates produced by allelic recombination between types at different peaks are of lower
fitness. In his shifting-balance theory, Wright proposed that fitter genotypes could, however, become fixed in
small isolated demes by means of random genetic fluctuations. These demes would then try to spread their
genome to nearby demes by migration of their individuals. The resulting polymorphism, the coexistence of
individuals with different genotypes, would give the invaded demes a chance to move up to a higher fitness
peak. This last step of the process, namely, the invasion of lower fitness demes by higher fitness genotypes, is
known as phase III of Wright’s theory. Here we study the invasion process from the point of view of the
stability of polymorphic populations. Invasion occurs when the polymorphic equilibrium, established at low
migration rates, becomes unstable. We show that the instability threshold depends sensitively on the average
number of breeding seasons of individuals. Iteroparous species~with many breeding seasons! have lower
thresholds than semelparous species~with a single breeding season!. By studying a particular simple model, we
are able to provide analytical estimates of the migration threshold as a function of the number of breeding
seasons. Once the threshold is crossed and polymorphism becomes unstable, any imbalance between the
different demes is sufficient for invasion to occur. The outcome of the invasion, however, depends on many
parameters, not only on fitness. Differences in fitness, site capacities, relative migration rates, and initial
conditions, all contribute to determine which genotype invades successfully. Contrary to the original perspec-
tive of Wright’s theory for continuous fitness improvement, our results show that both upgrading to higher
fitness peaks and downgrading to lower peaks are possible.

DOI: 10.1103/PhysRevE.65.031909 PACS number~s!: 87.23.Cc, 05.45.Ra, 87.23.Kg, 45.70.Qj
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In the genomic distribution of an evolving populatio
there are often several advantageous combinations of all
each well adapted. These combinations usually involve a
les at several loci, and the transition from one advantage
combination to another requires multiple allele chang
Changes in a single gene or in a small group of genes lea
less fit individuals. In genomic space, one can imagin
fitness landscape where local maxima are separated
troughs and valleys of varying depths. Crossing from o
local maximum to a higher one may be very difficult f
large populations, since organisms with small genom
changes are usually less fit, so that the mechanism of se
reproduction makes the population drift back to the lo
maximum. Even if a fitter combination arises by chance
will generally not persist into the next generation. Evoluti
toward higher fitness peaks becomes nearly impossible
his famous shifting-balance theory, Wright@1,2# proposed
that, by means of random genetic fluctuations, the genoty
of various local maxima could become established in sm
demes, i.e., small isolated groups in physical space. Th
demes would then try to spread their genome to nea
demes, orinvade them, by migration of a few individuals
The resulting polymorphism, mixing of organisms from t
different demes, would give the invaded ones a chanc
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move up to a higher fitness peak. This last step of Wrigh
theory is known as phase III. Although there has bee
major controversy on the credibility of Wright’s theory@3#,
we are not discussing the theory as a whole in this paper.
are focusing on the understanding of genetic invasion p
cesses~with or without genetic drift! from the viewpoint of
stability, which is relevant only to phase III of Wright’
theory. In addition, we shall see that it may also be relev
in a much broader ecological and evolutionary contexts. T
process of genetic invasion by migration of individuals h
been addressed in many recent papers@4–9#. The main ques-
tion discussed is the calculation of a migration threshold
yond which invasion should occur. The many models cons
ered involve differential migration rates, mutations a
different numbers of loci, demes, and dimensions for
population distribution in physical space. The conclusio
vary, ranging from very small migration thresholds@4,5,7# to
higher migration thresholds@6,8,9# according to the mode
used for the population dynamics and structure.

For small enough migration rates, invasion cannot hap
and polymorphic populations are established@10,9#. In this
paper, we are mainly concerned with the stability of the
polymorphic populations. Under certain conditions the pop
lations arestable: small changes in the migration rates, s
©2002 The American Physical Society09-1
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capacities, reproduction rates, death rates, or any other
rameter, cause only small changes in the long-term beha
Under other conditions the populations areunstable: they are
very sensitive and small changes in the parameters or in
conditions may lead to completely different outcomes.
shall argue that the process of invasion results from dest
lization of the polymorphic populations. We shall also arg
that iteroparity, or multiple breeding seasons, can play a
cial role in this process. When a polymorphic populati
becomes unstable, any imbalance between the deme
genotypes may decide the outcome of the invasion. Fitne
just one of many possible parameters that can cause suc
imbalance. Any asymmetry in the site capacities, the mig
tion rates, or even the initial conditions, for example, m
also have the decisive role, and it is not at all certain that
fitter group always prevails.

In order to study the process of migration between dem
we shall consider the simplest possible case: two initia
isolated demes, which we shall refer to as theleft and right
demes. We assume that in the left deme a certain comb
tion of alleles has prevailed; we call this particular geno
G. In the right deme, on the other hand, a different com
nation dominates; we call this genomeH. Both combinations
correspond to fit genotypes, but the offspring resulting fr
mating betweenG andH are assumed to be of much low
fitness than bothG andH. For simplicity, we shall assume i
the following that these cross-breeds are nonviable. Ass
ing that they are viable but of low fitness does not change
conclusions of this paper, as we discuss later.

Once the left and right demes start exchanging individu
with small migration rates, a polymorphic population is e
tablished in both groups. The population will be dominan
of genotypeG on the left and of genotypeH on the right. For
small enough migration rates we expect these polymorp
populations to be stable. We shall actually show that thi
the case using a particular model. Therefore, if invasion i
occur, it happens either because the migration rates are
large ~and possibly asymmetric between left-to-right a
right-to-left!, or because the polymorphic populations are
ally unstable due to some structural property that had
been considered before. Indeed we shall see that the nu
of breeding seasons is such a property.

We callgt andht the number of individuals at timet with
genotypesG andH, respectively. After each breeding seas
part of the previous population dies and offspring are bo
The total population on each deme is limited by an intrin
site capacityk. The populations are updated according to
following equations:

gt115sgt1l8
gt

2

~gt1ht!
F12

1

k
~gt1ht!G ,

ht115sht1l
ht

2

~gt1ht!
F12

1

k
~gt1ht!G , ~1!

wheres is the survival rate of the parents. The average nu
ber of breeding seasonst is given by the inverse of the deat
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rate,t51/(12s). The reproduction ratesl andl8 measure
the average number of offspring for each genotype. T
terms inside the square brackets restrict the population s
as in the logistic equation. They apply only to the reprodu
tive rate, modeling the fact that adult individuals usua
have large advantages when competing with newborns
what follows, we shall writel85l1e>l, indicating thatG
is the fitter genotype whene.0.

The above equations for the population dynamics are
mean field version of a spatially extended model that
been successfully applied to study symmetry breaking
coarsening@11# and pattern formation@12# in spatially dis-
tributed populations. Equations~1! describe very accurately
the dynamics in regions with uniformily distributed popul
tions, which is the case of isolated demes@12,13#. The dy-
namics at larger scales, where many such regions coexis
interact, may be treated either by considering individual
ganisms at each site and resorting to Monte Carlo sim
tions @14–16#, or by diffusive partial differential equation
@11–13,17#. In this work, we assume that demes have alrea
been formed and are sufficiently isolated so that the o
relevant interaction is through migration.

For a single isolated group, Eqs.~1! possess four, and
only four, solutions that are independent of time, or statio
ary:

1. All individuals have genotypeG. The number of indi-
viduals is given byg5k(l1e1s21)/(l1e)[kg0 with
h50. We call this outcome thehigh-fitness solution.

2. All individuals have genotypeH. The number of indi-
viduals is given byh5k(l1s21)/l[kh0 with g50. This
is the low-fitness solution.

3. The population goes extinct, i.e.,g5h50.
4. Both genotypes coexist. In this caseg5k@l/(2l1e)

2(12s)/(l1e)# and h5k@(l1e)/(2l1e)2(12s)/l#.
This is themixed solution.

The mixed solution is always unstable. In this paper,
restrict ourselves to the cases1l.1, where the third solu-
tion, corresponding to extinction, is also unstable. For a co
plete analysis of all stationary points, refer to Ref.@12#.

Next, we study the conditions under which an incom
pletely isolated groupinvadesa neighbor population and
promotes its change to the genotype carried by the invad
In order to study this process, phase III of Wright’s shiftin
balance theory, we assume the existence of two de
coupled by migration in both directions. The main questi
we want to address here is whether the polymorphic equ
rium promoted by migration may become unstable, thus p
ing both populations to the same genotype. We shall see
the number of breeding seasonst can play a decisive role in
this process. We emphasize again that the fitter group is
guaranteed to be the invader.

Let the four-vectoryt5(gt
l ,ht

l ,gt
r ,ht

r) denote the popula-
tions of genotypesG and H on the left and right demes a
generationt. Assume a migration ratem from left to right
andm* from right to left. Over the duration of one gener
tion, these rates change the populations fromyt to M (yt)
according to the linear equations
9-2
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STABILITY AND INSTABILITY OF POLYMORPHI C . . . PHYSICAL REVIEW E 65 031909
M ~yt!5S gt
l2mgt

l1m* gt
r

ht
l2mht

l1m* ht
r

gt
r2m* gt

r1mgt
l

ht
r2m* ht

r1mht
l

D . ~2!

The complete update of the populations after one genera
is given by the composite actions of reproduction~1! and
migration ~2!:

yt115R„M ~yt!…, ~3!

whereR represents Eqs.~1! applied to both demes. Equilib
rium is reached whenyt115yt . There are two trivial solu-
tions to this condition, when the populations on both dem
are either all of typeG or all of typeH. The nontrivial poly-
morphic solution is a complicated function of all the para
eters involved and can only be found numerically. For sm
migration rates, however, an analytic solution is possible.
obtain this solution explicitly in the Appendix.

In order to understand the effect of the number of bre
ing seasons on the stability of the polymorphic equilibriu
we show in Fig. 1 numerical calculations of the time evo
tion of the populations for different values ofs. The starting
point is the isolated equilibriumhl50, gl5klg0 ~on the left
deme! and hr5krh0 , gr50 ~on the right deme!. The site
capacitieskr andkl are set equal and the migration rates
both directions are 0.1. The symmetry between the deme
broken by assigning a slightly higher reproduction ratel8 to

FIG. 1. The role of the number of breeding seasons in the p
cess of invasion. The panels show the time evolution, measure
number of generationst, of the four populations described by th
vector y: G ~thick lines! and H ~thin lines! in the left deme~con-
tinuous lines! and in the right deme~dashed lines! for different
survival rates. The populations are plotted in units of the site cap
ity, which is the same for both demes. GenotypeG has a slightly
larger reproduction rate~larger fitness!. The migration rates in both
directions are equal to 0.1. Panel~a! shows the populations fors
50 ~nonoverlapping generations! evolving to polymorphic equilib-
rium with low mixing of genotypes. In~b!, s50.3 and more mixing
is observed. Panels~c! and~d!, for s50.5 ands50.8, respectively,
show the fitter genotype invading the right deme. For the larges
the invasion occurs more rapidly.
03190
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the G genotype, namely,l852.01 vsl52.00. The popula-
tions are plotted in units of the common site capacity. F
s50, when all parents die after each generation and
population is totally replaced by the offspring, no invasi
occurs and only a very small amount of mixing is observ
This is shown in Fig. 1~a!. As s increases to 0.3 the mixing
increases, as shown in Fig. 1~b!. For largers ’s, however, the
same rate of migration leads to invasion, as shown in F
1~c! and 1~d! for s50.5 and 0.8. Notice thats50.5 corre-
sponds to only two breeding seasons ands50.8 to five.
Notice also that the duration of the invasion process is m
longer fors50.5 than fors50.8.

To analyze the effect ofs in biological terms, let us see
how the few migrants with genotypeG manage to fixate a
the right deme. The number ofG offspring in a dominantlyH
environment tends to be very small, proportional to (gr)2. If
s50, all previousgr parents die leaving very few offspring
The polymorphic character is maintained only because n
migrants arrive all the time. However, ifs is large, many
parents survive and add to the new migrants. Therefore
though the number ofG offspring is initially small, it tends
to increase with the increase in the number of parents. W
a critical threshold is reached, the populationgr surpasseshr

and invasion occurs.
Figure 1 has shown how a small difference in fitness c

result in invasion when the survival rate is sufficiently larg
We now argue that fitness is just one among many par
eters that may affect invasion. In Fig. 2, we set bothl and
l8 equal to 2.00. And, as an example, we discuss the ef
of the initial conditions. Figure 2~a! shows the evolution of
the populations in perfectly symmetric demes, i.e., with
same reproduction rates, same migration rates, and sam
capacities, starting from the symmetric initial conditionsgl

5kg0 , hl50 ~on the left deme! andgr50, hr5kh0 ~on the
right deme!. The populations on the figure are again me
sured in units ofk. We takes50.2 andm5m* 50.1. After a
few generations the populations reach the polymorphic e
librium, which, as expected, is symmetric between the t
demes. Figure 2~b! shows the same situation form5m*
50.2. The difference between Figs. 2~a! and 2~b! is that the
first is stable, whereas the second is not: perturbing the in
conditions has no effect in the long term behavior for the fi
case, but it completely changes the outcome in the sec
case. To see this, we plot in Figs. 2~c! and 2~d! the time
evolution with the same parameters as in Fig. 2~b!, but start-
ing from slightly asymmetric initial conditions, namely,gl

5kg0 , hl50.01k ~left deme! and gr50, hr5kh0 ~right
deme! for ~c!, and the opposite for~d!, i.e., gl5kg0 , hl50
and gr50.01k, hr5kh0. The result is that, despite the dy
namical symmetry, the right deme invades the left one in~c!,
whereas the opposite happens in~d!. This suggests that the
polymorphic solution has become unstable and, theref
any breakdown in the symmetry between the demes
cause one of the two populations to invade the other. Fitn
is one possible parameter, but site capacities, differential
gration rates, or just simple random fluctuations may do it
a more complex situation, the balance between these~and
possibly other! factors will actually dictate which group doe
the invading. Figure 3 illustrates the role of the relative de
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sizea5kr /kl and the relative migration rateb5m* /m in the
outcome of the invasion process for three values of the
production rate differencee. The populations start from th
isolated initial condition,gl5klg0 , hl50 ~left deme! and
gr50, hr5krh0 ~right deme!, as in Figs. 2~a! and 2~b!. The
left-to-right migration ratem is fixed at 0.15 ands is 0.5
~two breeding seasons!. Fore50 it suffices to have a slightly
larger deme or a slightly larger migration rate towards
other deme to guarantee a successful invasion. Howe
even if the individuals with genotypeG are fitter than those
with genotypeH, a sufficiently larger right deme (a.1) or
right-to-left migration rate (b.1) may decide the invasion
in favor of the less fit group.

These results can be understood in mathematical te
using linear stability analysis. The polymorphic solution c
be constructed explicitly for small migration rates and
stability studied. The calculations are performed in the A
pendix. The solution is given by Eq.~A7! and the stability
eigenvaluesm i by Eq. ~A9!. The polymorphic solution is
stable if all four eigenvalues satisfyum i u,1. For m5m*
50 the demes are isolated and their populations are sta
As m or m* increase, the eigenvalues change. When the
eigenvalue becomes larger than 1, the solution becomes
stable and any perturbation in the symmetry between
demes causes invasion to occur. Whenm is very small and
the populations have only one breeding season (s50), mi-
gration cannot overcome selection. This is apparent from

FIG. 2. Stability and instability of the polymorphic population
Time evolution, in number of generationst, of the populations de-
scribed by the vectory: G ~thick lines! andH ~thin lines! in the left
deme~continuous lines! and in the right deme~dashed lines! for
symmetric dynamics. The populations are plotted in units of the
capacity, which is the same for both demes. In panel~a! the migra-
tion rate is small,m50.1, and the polymorphic populations a
stable. The initial conditions areg0

r 5h0
l 50. In panels~b! to ~d!,

m50.2: the polymorphic populations are unstable and sensitiv
initial conditions. In ~b!, the initial conditions are symmetric,g0

r

5h0
l 50. This leads to a symmetric, but unstable, evolution: a

minor fluctuation along the way can tilt the balance and lead
invasion. In~c!, a small imbalance is included from the beginnin
g0

r 50, h0
l 50.01k. This is sufficient to decide the invasion in favo

of H. In ~d!, the initial conditions,g0
r 50.01k andh0

l 50, favor G,
which invades the right deme.
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fact that the stability eigenvaluesm i are just small perturba
tions of the original eigenvalues~assumed stable!. Therefore,
invasion can only occur for substantial migration rates. Fos
close to 1, however, the denominators (12s) occurring in
the equilibrium populations, inm1, and inm4, can destabilize
the polymorphic equilibrium, even for quite small migratio
rates. The dotted line in Fig. 4~a!, calculated with the equa
tions in the Appendix, divides them-s plane into two re-
gions, stable and unstable. This is for the symmetric ca
i.e., m* 5m, equal size demes, and both genotypes with
same reproduction ratel52. We found the instability
threshold by setting the eigenvaluesm i ~A9! equal to 1 and
solving for m as a function ofs. This line actually corre-
sponds to the equationm451, sincem4 is the first eigenvalue
to become unstable asm increases@see Eq.~A11!#. Larger
s ’s correspond to a smaller migration threshold for invasio
The dotted line is an approximate curve, obtained from
linear analysis, and it is only valid for small values ofm. The
actual curve can be computed numerically and is shown
the solid line. Both curves have the same shape and show
same qualitative features. They are displaced by an am
of the order ofm2, which is consistent with the linear theor
employed. Figure 4~b! shows the same data in terms of th
number of breeding seasonst51/(12s). The existence of
such a critical curve is not special to the symmetric ca
Given anya5kr /kl , e, and ratiom* /m, polymorphism is
going to be stable for sufficiently small migration rates an
threshold for invasion will exist. Above the threshold, th
direction of invasion will depend on all the parameters, as
showed earlier.

Finally, we note that if the intermediate genotypes ha
low but nonzero fitness, the essential conclusions of
model do not change. These marginal populations turn ou
be relevant only in the case of genomes with few loci@6,10#,
when their offspring may still be of genotypesG or H. Ba-

FIG. 3. The role played by relative deme sizes and migrat
rates in the outcome of the invasion process. Thex axis is the
relative size of the demes,a5kr /kl ; the y axis is the relative mi-
gration rateb5m* /m. Each curve corresponds to a different fitne
differential parametere. For scenarios where the point (a,b) lies
left of the curve,G invades. For points on the right,H does the
invading, even when it is less fit thanG.
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FIG. 4. Stability diagram. Panels show th
stability phase diagram for the symmetric cas
m* 5m, e50, anda51, in terms of the survival
rates ~a! and the number of breeding seasonst
~b!. The polymorphic equilibrium is unstable o
the right side of the critical curve. There, an
imbalance between the two populations results
invasion by one of them. The continuous line
the numerical result, while the dashed line is t
approximate result from linear stability analys
~see Appendix!.
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sically, including such intermediates in a few-loci mod
lowers the migration threshold and increases the time
invasion. No substantial difference is expected if the num
of loci is large.

To summarize, we have shown that the process of in
sion by migration of individuals can be understood as
loss of stability of the polymorphic equilibrium. This is
conceptually important result. Among other things, it impli
that many factors, not only fitness, combine to dictate
outcome of an invasion process. Downgrades of populat
to lower-fitness peaks, as well as upgrades to higher o
may take place. We, therefore, conclude that Wright’s or
nal concept of shifting balance theory as describing a mec
nism for systematic fitness improvement does not adequ
capture the subtlety of the dynamics of genetic invasion.

We have also shown that iteroparous species, where i
viduals have more than one breeding season, have lowe
gration thresholds for the onset of instability. The balan
between aging and fertility has been the subject of m
papers in the field of life history theory~see, for instance
Ref. @18#!. Although iteroparity seems to be a common fe
ture in many species@19#, it has not been considered befo
in this context.

M.A.M.A. acknowledges financial support from the Br
zilian agencies FAPESP and CNPq. The work at the Ce
for Theoretical Physics was supported partially by the U
Department of Energy~DOE! under Contract No. DE-FC02
94ER40818.

APPENDIX: STABILITY OF THE POLYMORPHIC
SOLUTION

In this appendix, we find the polymorphic solution expli
itly by solving Eq.~3! in the approximation of small migra
tion rates. Then we study its stability. Thus, we perform t
linearizations in succession. The first one is a linearizat
with respect tom andm* . With this approximation, we can
deal with Eqs.~1! analytically, though the work is long an
03190
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tedious. The results are valid for the small migration ra
considered in this paper. The second linearization is a s
dard linear stability analysis with respect to small change
the populations.

It is convenient to measure the populations in units of
site capacities. In analogy to the four-vectoryt we definext

5(gt
l /kl ,ht

l /kl ,gt
r /kr ,ht

r /kr) wherekr andkl are the right and
left site capacities respectively. In terms ofxt Eqs. ~2! and
~3! become

M ~xt!5S gt
l /kl2mgt

l /kl1m* agt
r /kr

ht
l /kl2mht

l /kl1m* aht
r /kr

gt
r /kr2m* gt

r /kr1mgt
l /~kla!

ht
r /kr2m* ht

r /kr1mht
l /~kla!

D [xt1F~xt!,

~A1!

and

xt115R„M ~xt!…5R„xt1F~xt!…[U~xt!, ~A2!

wherea5kr /kl represents the relative size of the demes a
F is a vector of the order ofm or m* . Equation~A2! defines
a four-component, nonlinear evolution operatorU.

The first linearization consists in expanding the right-ha
side of Eq.~A2! to first order with respect to the migratio
rates, i.e., to first order with respect toF(xt). In order to find
the stationary solution we also setxt115xt5x. This yields

x5R„x1F~x!…'R~x!1R8~x!F~x!, ~A3!

whereR8(x) is a derivative matrix, obtained by differentia
ing the components of the vectorR with respect tox:
Ri , j8 (x)5]Ri /]xj (x). A special case of this matrix is show
in Eq. ~A6!. When no migration is present,F(x)50 and the
solution isx5x0[(g0,0,0,h0). For small migration rates, we
write x5x01x1 and substitute this solution in Eq.~A3!,
keeping only first-order terms inF andx1. Solving forx1 we
obtain
9-5
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x15@12R8~x0!#21R8~x0!F~x0!. ~A4!

This expression gives the result of the first linearization~im-
plicitly !. It is a correction to the solutionx0 for isolated
demes. It accounts for the polymorphism due to migratio

Next, we perform the second linearization, which is t
stability analysis. The stability of the polymorphic solution
determined by the linearized dynamics of Eq.~A2! in the
vicinity of x01x1. It is given by the matrixU8(x01x1),
which is the derivative ofU with respect to each of the fou
coordinates. When an eigenvalue ofU8(x01x1) is larger
than 1 ~in absolute value!, the equilibrium is unstable: the
time evolution from initial conditions close to equilibrium
and in the direction of the corresponding eigenvector,
verges exponentially. If, on the other hand, an eigenvalue
absolute value smaller than 1, under the same conditions
time evolution converges back to the equilibrium point. On
when all the eigenvalues ofU8 have absolute value smalle
than 1 is the equilibrium stable.

We use the result of the first linearization to calculate
stability matrix U8 in an approximation valid for small mi
gration rates, and we obtain

U8~x01x1!'R8~x0!„11F8~x0!…1R9~x0!„x11F~x0!…,

~A5!

where
03190
i-
as
he

e

R8~x0!5S 22s2l2e 2~l1e! 0 0

0 s 0 0

0 0 s 0

0 0 2l 22s2l

D ,

~A6!

is the stability matrix of the isolated demes solutionx0. R9 is
a tensor with three indices, obtained by differentiating t
components of R twice with respect to x: Ri jk9
5]2Ri /]xj]xk . Explicit evaluations of Eqs.~A4! and ~A5!
result in

x15g02m
22s2l2e

l1e
2m*

h0

g0

a

12s
,

x25m* h0

as

12s
,

x35mg0

s

a~12s!
,

x45h02m*
22s2l

l
2m

g0

h0

1

a~12s!
, ~A7!

for x, while U8 is given by
¨

22s2l2e ~l1e!~12m! am* ~22s2l2e! 2am* ~l1e!

22~l1e!z1 12~l1e!z2 /g0

2m~22s2l2e!

0 s~12m! 0 am* s

12l~12g0!z2 /g0

m
s

a
0 s~12m* ! 0

12~l1e!~12h0!z3 /h0

2m
l

a
m

22s2l

a
2l~12m* ! 22s2l

12lz3 /h0 22lz4

2m* ~22s2l!

©
,

,
where

z5x11F~x0!5S x1
12mg0

x2
11am* h0

x3
11mg0 /a

x4
12m* h0

D . ~A8!
The four eigenvaluesm i of U8, the stability eigenvalues
can be calculated analytically to first order inm and m*
using standard perturbation theory. The result is

m15~22l2e2s!1m~l1e1s!

1m*
2a~l1e!2~l1s21!

~12s!l~l1e1s21!
,
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m25A1AA22B,

m35A2AA22B,

m45~22l2s!1m* ~l1s!

1m
2l2~l1e1s21!

a~12s!~l1e!~l1s21!
, ~A9!

where

A52s~m1m* !/21
m

a S l1e1s21

l1s21 D
1m* aS l1s21

l1e1s21D ,
n

on

03190
B5mm* Fs2142S l1e

22l2e22s D S l

22l22s D G
2

2sm2

a S l1e1s21

l1s21 D22sm* 2aS l1s21

l1e1s21D .

~A10!

In the case of symmetric demes, wherem* 5m, a51, and
e50, m4 is the first eigenvalue to become larger than 1 asm
increases. Settingm451 for this case gives

m~s!5
~l1s21!~12s!

3l2s~l1s21!
, ~A11!

which is the migration threshold curve shown in Fig. 3.
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