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It is generally difficult for a large population at a fithess peak to acquire the genotypes of a higher peak,
because the intermediates produced by allelic recombination between types at different peaks are of lower
fitness. In his shifting-balance theory, Wright proposed that fitter genotypes could, however, become fixed in
small isolated demes by means of random genetic fluctuations. These demes would then try to spread their
genome to nearby demes by migration of their individuals. The resulting polymorphism, the coexistence of
individuals with different genotypes, would give the invaded demes a chance to move up to a higher fitness
peak. This last step of the process, namely, the invasion of lower fithess demes by higher fitness genotypes, is
known as phase Ill of Wright’s theory. Here we study the invasion process from the point of view of the
stability of polymorphic populations. Invasion occurs when the polymorphic equilibrium, established at low
migration rates, becomes unstable. We show that the instability threshold depends sensitively on the average
number of breeding seasons of individuals. Iteroparous spéwigis many breeding seasonkave lower
thresholds than semelparous spe¢igigh a single breeding seaspmy studying a particular simple model, we
are able to provide analytical estimates of the migration threshold as a function of the number of breeding
seasons. Once the threshold is crossed and polymorphism becomes unstable, any imbalance between the
different demes is sufficient for invasion to occur. The outcome of the invasion, however, depends on many
parameters, not only on fitness. Differences in fitness, site capacities, relative migration rates, and initial
conditions, all contribute to determine which genotype invades successfully. Contrary to the original perspec-
tive of Wright's theory for continuous fithess improvement, our results show that both upgrading to higher
fithess peaks and downgrading to lower peaks are possible.

DOI: 10.1103/PhysReVvE.65.031909 PACS nuni)er87.23.Cc, 05.45.Ra, 87.23.Kg, 45.70.Qj

In the genomic distribution of an evolving population, move up to a higher fitness peak. This last step of Wright’s
there are often several advantageous combinations of allelethieory is known as phase Ill. Although there has been a
each well adapted. These combinations usually involve allemajor controversy on the credibility of Wright's theof$],
les at several loci, and the transition from one advantageouse are not discussing the theory as a whole in this paper. We
combination to another requires multiple allele changesare focusing on the understanding of genetic invasion pro-
Changes in a single gene or in a small group of genes lead wessegwith or without genetic drift from the viewpoint of
less fit individuals. In genomic space, one can imagine atability, which is relevant only to phase Ill of Wright's
fitness landscape where local maxima are separated hfeory. In addition, we shall see that it may also be relevant
troughs and valleys of varying depths. Crossing from oneén a much broader ecological and evolutionary contexts. The
local maximum to a higher one may be very difficult for process of genetic invasion by migration of individuals has
large populations, since organisms with small genomideen addressed in many recent papérs9]. The main ques-
changes are usually less fit, so that the mechanism of sexutin discussed is the calculation of a migration threshold be-
reproduction makes the population drift back to the localyond which invasion should occur. The many models consid-
maximum. Even if a fitter combination arises by chance, itered involve differential migration rates, mutations and
will generally not persist into the next generation. Evolutiondifferent numbers of loci, demes, and dimensions for the
toward higher fithess peaks becomes nearly impossible. Ipopulation distribution in physical space. The conclusions
his famous shifting-balance theory, Wright,2] proposed vary, ranging from very small migration thresholds5,7] to
that, by means of random genetic fluctuations, the genotypdsigher migration thresholdgs,8,9 according to the model
of various local maxima could become established in smalused for the population dynamics and structure.
demes, i.e., small isolated groups in physical space. These For small enough migration rates, invasion cannot happen
demes would then try to spread their genome to nearbwynd polymorphic populations are establisi&@,9]. In this
demes, oninvadethem, by migration of a few individuals. paper, we are mainly concerned with the stability of these
The resulting polymorphism, mixing of organisms from the polymorphic populations. Under certain conditions the popu-
different demes, would give the invaded ones a chance ttations arestable small changes in the migration rates, site
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capacities, reproduction rates, death rates, or any other peate,7=1/(1— o). The reproduction rates and\’ measure
rameter, cause only small changes in the long-term behaviothe average number of offspring for each genotype. The
Under other conditions the populations arestable they are  terms inside the square brackets restrict the population size,
very sensitive and small changes in the parameters or initiads in the logistic equation. They apply only to the reproduc-
conditions may lead to completely different outcomes. Wetive rate, modeling the fact that adult individuals usually
shall argue that the process of invasion results from destabhave large advantages when competing with newborns. In
lization of the polymorphic populations. We shall also arguewhat follows, we shall write.’ =\ + €=\, indicating thatG
that iteroparity, or multiple breeding seasons, can play a cruis the fitter genotype whea>0.
cial role in this process. When a polymorphic population The above equations for the population dynamics are the
becomes unstable, any imbalance between the demes wrean field version of a spatially extended model that has
genotypes may decide the outcome of the invasion. Fitness fseen successfully applied to study symmetry breaking and
just one of many possible parameters that can cause such aoarsenind11] and pattern formatiofil2] in spatially dis-
imbalance. Any asymmetry in the site capacities, the migratributed populations. Equatior{¢) describe very accurately
tion rates, or even the initial conditions, for example, maythe dynamics in regions with uniformily distributed popula-
also have the decisive role, and it is not at all certain that théions, which is the case of isolated denjé®,13. The dy-
fitter group always prevails. namics at larger scales, where many such regions coexist and
In order to study the process of migration between demesnteract, may be treated either by considering individual or-
we shall consider the simplest possible case: two initiallyganisms at each site and resorting to Monte Carlo simula-
isolated demes, which we shall refer to as lské andright  tions[14-16], or by diffusive partial differential equations
demes. We assume that in the left deme a certain combin§11-13,17. In this work, we assume that demes have already
tion of alleles has prevailed; we call this particular genomebeen formed and are sufficiently isolated so that the only
G. In the right deme, on the other hand, a different combi-relevant interaction is through migration.
nation dominates; we call this genoride Both combinations For a single isolated group, Eq6l) possess four, and
correspond to fit genotypes, but the offspring resulting fromonly four, solutions that are independent of time, or station-
mating betweerG andH are assumed to be of much lower ary:
fithess than botlG andH. For simplicity, we shall assume in
the following that these cross-breeds are nonviable. Assum- 1. All individuals have genotyp&. The number of indi-
ing that they are viable but of low fitness does not change theiduals is given byg=k(\+e+o—1)/(\ +€)=kg, with
conclusions of this paper, as we discuss later. h=0. We call this outcome thkigh-fitness solution
Once the left and right demes start exchanging individuals 2. All individuals have genotypél. The number of indi-
with small migration rates, a polymorphic population is es-viduals is given byh=k(\ +o—1)/A=kh, with g=0. This
tablished in both groups. The population will be dominantlyis the low-fithess solution
of genotypeG on the left and of genotypld on the right. For 3. The population goes extinct, i.¢=h=0.
small enough migration rates we expect these polymorphic 4. Both genotypes coexist. In this cage k[\/(2\ + €)
populations to be stable. We shall actually show that this is- (1—g)/(\+ €)] andh=Kk[ (A + €)/(2\+ €) — (1— a)/\].
the case using a particular model. Therefore, if invasion is trhis is themixed solution
occur, it happens either because the migration rates are very
large (and possibly asymmetric between left-to-right andThe mixed solution is always unstable. In this paper, we
right-to-left), or because the polymorphic populations are revestrict ourselves to the caser A >1, where the third solu-
ally unstable due to some structural property that had nofjon, corresponding to extinction, is also unstable. For a com-
been considered before. Indeed we shall see that the numbglete analysis of all stationary points, refer to Réf2].
of breeding seasons is such a property. Next, we study the conditions under which an incom-
We callg; andh, the number of individuals at timewith  pletely isolated grougnvadesa neighbor population and
genotypess andH, respectively. After each breeding seasonpromotes its change to the genotype carried by the invaders.
part of the previous population dies and offspring are bornin order to study this process, phase Il of Wright's shifting-
The total population on each deme is limited by an intrinsichalance theory, we assume the existence of two demes
site capacityk. The populations are updated according to thecoupled by migration in both directions. The main question
following equations: we want to address here is whether the polymorphic equilib-
rium promoted by migration may become unstable, thus pull-
ing both populations to the same genotype. We shall see that

2
Ori1= Ugt+)\'g—t 1— E(gﬁ ho |, the number of breeding seasonsan play a decisive role in
(9ethy k this process. We emphasize again that the fitter group is not
guaranteed to be the invader.
2 1 Let the four-vectoly,= (g} ,h!,g",hl) denote the popula-
ht+1=g'ht+)\—t 1——(gi+hy|, (1) tions of genotypess andH on the left and right demes at
(9t hy) k generationt. Assume a migration rate from left to right

andm* from right to left. Over the duration of one genera-
whereo is the survival rate of the parents. The average numtion, these rates change the populations frgnto M(y;)
ber of breeding seasonds given by the inverse of the death according to the linear equations
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the G genotype, namelyy’=2.01 vs\ =2.00. The popula-

08 @ 08 ()] tions are plotted in units of the common site capacity. For

06 . 0sk ] o=0, when all parents die after each generation and the
Y 04k ] Y 04l 7] population is totally replaced by the offspring, no invasion

sl h sl b occurs and only a very small amount of mixing is observed.

M N , N This is shown in Fig. (@). As ¢ increases to 0.3 the mixing
ol . . P . A )
0 080 120 0 0 80 120 increases, as shown in Figibl. For largera’s, however, the
same rate of migration leads to invasion, as shown in Figs.

l—71 I——

ok © 1 osh '(d)_ 1(c) and Xd) for c=0.5 and 0.8. Notice that=0.5 corre-
) LJ ' . sponds to only two breeding seasons and 0.8 to five.
y [N 1 v N ] Notice also that the duration of the invasion process is much
Py

041 h ] 04r longer fore=0.5 than foro=0.8.
i ] To analyze the effect of in biological terms, let us see
ol— L . ol I 1 how the few migrants with genotyp® manage to fixate at

! 0o ¥ 0 0 o ® . the right deme. The number &f offspring in a dominanthH

FIG. 1. The role of the number of breeding seasons in the pro_envwonment t_endsrto be very_small,_proportlonal gb)E. I_f
cess of invasion. The panels show the time evolution, measured iff — 0» &ll previousg’ parents die leaving very few offspring.
number of generations of the four populations described by the |h€ Polymorphic character is maintained only because new
vectory: G (thick lineg andH (thin lines in the left deme(con- ~ Migrants arrive all the time. However,_if is large, many
tinuous lines and in the right demedashed linesfor different ~ Parents survive and add to the new migrants. Therefore, al-
survival rates. The populations are plotted in units of the site capadhough the number o€ offspring is initially small, it tends
ity, which is the same for both demes. Genotypédas a slightly ~ to increase with the increase in the number of parents. When
larger reproduction rat@larger fithess The migration rates in both  a critical threshold is reached, the populat@rsurpasseh’
directions are equal to 0.1. Par(@ shows the populations far and invasion occurs.
=0 (nonoverlapping generationsvolving to polymorphic equilib- Figure 1 has shown how a small difference in fitness can
rium with low mixing of genotypes. Ilb), o=0.3 and more mixing  result in invasion when the survival rate is sufficiently large.
is observed. Panels) and(d), for 0=0.5 ando=0.8, respectively, We now argue that fitness is just one among many param-
show the fitter genotype invading the right deme. For the lasger eters that may affect invasion. In Fig. 2, we set bitand

0.2

the invasion occurs more rapidly. N’ equal to 2.00. And, as an example, we discuss the effect
of the initial conditions. Figure (@) shows the evolution of
g't—mg't+ m* g; the populations in perfectly symmetric demes, i.e., with the
h! — mh'[+ m* h' same 'r('aproducti.on rates, same migrat'ior) rgtes, anq same site
M(y)=| . o e (2)  capacities, starting from the symmetric initial conditicgls
g;—m*g; +mg =kgo, h'=0 (on the left dempandg'=0, h"=kh, (on the
hf —m* h{+mh{ right deme. The populations on the figure are again mea-

sured in units ok. We takeo=0.2 andm=m* =0.1. After a

The complete update of the populations after one generatiol§W generations the populations reach the polymorphic equi-

is given by the composite actions of reproductidn and  librium, which, as expected, is symmetric between the two
migration (2): demes. Figure ®) shows the same situation fon=m*

=0.2. The difference between FigdaRand Zb) is that the
Vir1=R(M(yy)), (3) firstis stable, whereas the second is not: perturbing the initial
conditions has no effect in the long term behavior for the first
whereR represents Eqgl) applied to both demes. Equilib- case, but it completely changes the outcome in the second
rium is reached whew,,=y,. There are two trivial solu- case. To see this, we plot in Figs(c2 and Zd) the time
tions to this condition, when the populations on both demegvolution with the same parameters as in Fidp) 2but start-
are either all of types or all of typeH. The nontrivial poly-  ing from slightly asymmetric initial conditions, namelg!
morphic solution is a complicated function of all the param-=kg,, h'=0.01k (left deme and g"=0, h'=kh, (right
eters involved and can only be found numerically. For smalldems for (c), and the opposite fofd), i.e.,g'=kg,, h'=0
migration rates, however, an analytic solution is possible. Weand g"=0.01k, h"=kh,. The result is that, despite the dy-
obtain this solution explicitly in the Appendix. namical symmetry, the right deme invades the left on@jn
In order to understand the effect of the number of breedwhereas the opposite happens(i. This suggests that the
ing seasons on the stability of the polymorphic equilibrium,polymorphic solution has become unstable and, therefore,
we show in Fig. 1 numerical calculations of the time evolu-any breakdown in the symmetry between the demes will
tion of the populations for different values of The starting cause one of the two populations to invade the other. Fitness
point is the isolated equilibriurh'=0, g'=k'g, (on the left  is one possible parameter, but site capacities, differential mi-
deme and h'=k'hy, g"=0 (on the right deme The site  gration rates, or just simple random fluctuations may do it. In
capacitiesk” andk' are set equal and the migration rates ina more complex situation, the balance between ttase
both directions are 0.1. The symmetry between the demes jsossibly otherfactors will actually dictate which group does
broken by assigning a slightly higher reproduction nateéo  the invading. Figure 3 illustrates the role of the relative deme
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FIG. 2. Stability and instability of the polymorphic populations. ) ) o
Time evolution, in number of generatiohsof the populations de- FIG. 3. The role played by relative deme sizes and migration
scribed by the vectoy: G (thick lines andH (thin lines in the left ~ 'ates in the outcome of the Invasion process. khaxis is the
deme (continuous linesand in the right demédashed lingsfor ~ relative size of the demes;=k'/k’; they axis is the relative mi-
symmetric dynamics. The populations are plotted in units of the sit@ration ratgg=m®/m. Each curve corresponds to a different fitness
capacity, which is the same for both demes. In paaethe migra- differential paramett_e&. For scenarios where the_pmmy,(ﬁ) lies
tion rate is smallm=0.1, and the polymorphic populations are '€ft of the curve,G invades. For points on the rightj does the
stable. The initial conditions arg)=h\=0. In panels(b) to (d),  nvading, even when it is less fit thad
m=0.2: the polymorphic populations are unstable and sensitive to
initial conditions. In(b), the initial conditions are symmetrigg;  fact that the stability eigenvalugs are just small perturba-
=hp=0. This leads to a symmetric, but unstable, evolution: anytions of the original eigenvalué¢assumed stableTherefore,
minor fluctuation along the way can tilt the balance and lead tanvasion can only occur for substantial migration rates. dor
invasion. In(c), a small imbalance is included from the beginning, ¢lgse to 1, however, the denominators—&) occurring in
gh=0, ht=0.0%k. This is sufficient to decide the invasion in favor the equilibrium populations, i, and inu,4, can destabilize
of H. In (d), the initial conditionsgg=0.0k andho=0, favorG,  the polymorphic equilibrium, even for quite small migration
which invades the right deme. rates. The dotted line in Fig.(d, calculated with the equa-

tions in the Appendix, divides them-o plane into two re-
sizea=k'/k'" and the relative migration rafg=m*/minthe  gions, stable and unstable. This is for the symmetric case,
outcome of the invasion process for three values of the reke., m* =m, equal size demes, and both genotypes with the
production rate difference. The populations start from the same reproduction raté=2. We found the instability
isolated initial condition,g'=k'gy, h'=0 (left demé and  threshold by setting the eigenvalugs (A9) equal to 1 and
g'=0, h"=Kk"h, (right dems, as in Figs. 2a) and 2Zb). The  solving for m as a function ofo. This line actually corre-
left-to-right migration ratem is fixed at 0.15 andr is 0.5  sponds to the equatiqu,=1, sinceu, is the first eigenvalue
(two breeding seasond-or e=0 it suffices to have a slightly to become unstable as increasegsee Eq.(A11)]. Larger
larger deme or a slightly larger migration rate towards thes’s correspond to a smaller migration threshold for invasion.
other deme to guarantee a successful invasion. HoweveThe dotted line is an approximate curve, obtained from a
even if the individuals with genotyp® are fitter than those linear analysis, and it is only valid for small valuesmfThe
with genotypeH, a sufficiently larger right demea(>1) or  actual curve can be computed numerically and is shown by
right-to-left migration rate >1) may decide the invasion the solid line. Both curves have the same shape and show the
in favor of the less fit group. same qualitative features. They are displaced by an amount

These results can be understood in mathematical termsf the order ofm?, which is consistent with the linear theory
using linear stability analysis. The polymorphic solution canemployed. Figure @) shows the same data in terms of the
be constructed explicitly for small migration rates and itsnumber of breeding seasoms-1/(1— o). The existence of
stability studied. The calculations are performed in the Ap-such a critical curve is not special to the symmetric case.
pendix. The solution is given by E4A7) and the stability ~Given anya=Kk'/K', €, and ratiom*/m, polymorphism is
eigenvaluesu; by Eq. (A9). The polymorphic solution is going to be stable for sufficiently small migration rates and a
stable if all four eigenvalues satisfy.;|<1. Form=m*  threshold for invasion will exist. Above the threshold, the
=0 the demes are isolated and their populations are stabldirection of invasion will depend on all the parameters, as we
As mor m* increase, the eigenvalues change. When the firsshowed earlier.
eigenvalue becomes larger than 1, the solution becomes un- Finally, we note that if the intermediate genotypes have
stable and any perturbation in the symmetry between théow but nonzero fitness, the essential conclusions of the
demes causes invasion to occur. Wheiis very small and model do not change. These marginal populations turn out to
the populations have only one breeding seasoi ), mi-  be relevant only in the case of genomes with few [&Gi0],
gration cannot overcome selection. This is apparent from thevhen their offspring may still be of genotyp&or H. Ba-
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sically, including such intermediates in a few-loci model tedious. The results are valid for the small migration rates
lowers the migration threshold and increases the time foconsidered in this paper. The second linearization is a stan-
invasion. No substantial difference is expected if the numbedard linear stability analysis with respect to small changes in
of loci is large. the populations.

To summarize, we have shown that the process of inva- It is convenient to measure the populations in units of the
sion by migration of individuals can be understood as thesite capacities. In analogy to the four-vecygrwe definex;
loss of stability of the polymorphic equilibrium. This is a =(gl/k',hl/k!,g{/k",h{/Kk") wherek™ andk' are the right and

conceptually important result. Among other things, it impliesleft site capacities respectively. In termsxfEgs. (2) and
that many factors, not only fitness, combine to dictate thg3) become

outcome of an invasion process. Downgrades of populations

to lower-fitness peaks, as well as upgrades to higher ones, g't/k'—mg't/k'+m* ag/K'
may take place. \_Ng, therefore, conclude that W_rlghts origi- h't/k'—mh'[/k'+m* ah!/K"

nal concept of shifting balance theory as describing a mecha- ;) =x,+F(x,)
nism for systematic fithess improvement does not adequatly ! gi/K —m* gi/k" + mg't/(k'a) ! v
capture the subtlety of the dynamics of genetic invasion.

We have also shown that iteroparous species, where indi- (A1)

viduals have more than one breeding season, have lower mi-

gration thresholds for the onset of instability. The balancegng

between aging and fertility has been the subject of many

papers in the field of life history theorgsee, for instance, Xe+1=R(M (X)) =R(X¢+ F(x)=U(xy),
Ref.[18]). Although iteroparity seems to be a common fea-

hi/k"—m*h{/k"+mh/(K «)

(A2)
ture in many speciegl9], it has not been considered before wherea=k'/k' represents the relative size of the demes and
in this context.

F is a vector of the order ah or m*. Equation(A2) defines
a four-component, nonlinear evolution operatthr
M.A.M.A. acknowledges financial support from the Bra-

The first linearization consists in expanding the right-hand
zilian agencies FAPESP and CNPq. The work at the Centeside of Eq.(A2) to first order with respect to the migration
for Theoretical Physics was supported partially by the U.Srates, i.e., to first order with respectRgx;). In order to find
Department of EnergyDOE) under Contract No. DE-FC02- the stationary solution we also sgt. ;=x,=X. This yields
94ER40818.

Xx=R(X+F(x))~R(x)+R'(X)F(x), (A3)
APPENDIX: STABILITY OF THE POLYMORPHIC

SOLUTION whereR’(x) is a derivative matrix, obtained by differentiat-

ing the components of the vectd® with respect tox:
In this appendix, we find the polymorphic solution explic- Ri"j(x) =dR; /9x;(x). A special case of this matrix is shown

itly by solving Eq.(3) in the approximation of small migra- in Eq. (A6). When no migration is preserf(x) =0 and the
tion rates. Then we study its stability. Thus, we perform twosolution isx=x°=(g,,0,0h,). For small migration rates, we
linearizations in succession. The first one is a linearizatiorwrite x=x%+x* and substitute this solution in EGA3),

with respect tam and m* . With this approximation, we can keeping only first-order terms i andx?. Solving forx* we
deal with Egs.(1) analytically, though the work is long and obtain
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x'=[1-R' (x9] R (xO)F(x9). (A4) 2—0—\A—€ —(\+e) O 0
This expression gives the result of the first linearizatiion R (x0) = 0 o 0
plicitly). It is a correction to the solution® for isolated 0 0 o 0 ’
demes. It accounts for the polymorphism due to migration. 0 0 N 2—0—1\
Next, we perform the second linearization, which is the
stability analysis. The stability of the polymorphic solution is (AB)

determined by the linearized dynamics of EA2) in the s the stability matrix of the isolated demes solutidn R” is

vicinity of x°+x". It is given by the matrixU'(x’+x%), 4 tensor with three indices, obtained by differentiating the
which is the derivative o) with respect to each of the four components of R twice with respect to x. R[,
coordinates. When an eigenvalue_ldf(xoﬂ—xl) is larger = 9°R; /9x;0xx . Explicit evaluations of Eqs(A4) and (A5)
than 1(in absolute valug the equilibrium is unstable: the (egyit in
time evolution from initial conditions close to equilibrium,
and in the direction of the corresponding eigenvector, di-
verges exponentially. If, on the other hand, an eigenvalue has 2—0—\N—¢€ hg «
absolute value smaller than 1, under the same conditions the X1=Go—M——— ~ m* go1-0"
time evolution converges back to the equilibrium point. Only
when all the eigenvalues &’ have absolute value smaller ao
than 1 is the equilibrium stable. Xo=m* hol— .
We use the result of the first linearization to calculate the
stability matrixU’ in an approximation valid for small mi-

g
ration rates, and we obtain = S
g9 X3=Myg 1—0)’
7 (0 1\ R/ (y0 7 (0 (0 (y1 0 2—0—N\
U'(x°+x)~R'(x")(L+F’(x”))+R"(x”) (x*+ F(x")), Xa=hg— m* —m% - , (A7)
(AS) A 0 C!( _0')
where for x, while U’ is given by
|
2—0—\—¢€ (A +e)(1—m) am*(2—o—\—¢) —am*(\+¢)
—2(\N+€)z4 +2(N+€)z,/9g0
-m(2—o—\—¢€)
0 o(1—m) 0 am* o
+2N(1-90)Z2/90
m< 0 o(1—m*) 0 :
(44
+2()\+ 6)(1_h0)23/h0
A 2—0—N\
—m> S N (1—m*) 2—0—\
o o
+2Nz3/hg —2\z4
-m*(2—o—N\)
|
where The four eigenvalueg; of U’, the stability eigenvalues,
can be calculated analytically to first order im and m*
using standard perturbation theory. The result is
X1~ Mg
1 *
X5+ am*h — (DN
2= x4+ F(x%) = i+ /0 . (A8) u1=(2—A—€e—0o)+tm\+eto)
Xz3+mgy/a - 2a(A+e)’(N+o—1)
1
Xg—m*hg M TN teto—1)
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wo=A+A’—B, ) A+e A
B=mm*|o“+4—
2—N—€—20)\2—\—20
us=A—JA’—B,
20m? (A +tet+to—1 ) ANt+o—1
(9 _\ _ * — —2om*cq| ——— .
Ha=(2=N=o)+m*(A+o) a A+o—1 Nteto—1
2\°(Ateto—1) (A10)
Mot eonte-1 A9
In the case of symmetric demes, when& =m, «=1, and
where €=0, u, is the first eigenvalue to become larger than Inas
increases. Setting,=1 for this case gives
A N */2+m ANteto—1
=—o(m+m*) ol B ()= (At o—1)(1-0) (A1)
AN\—oc(A+o—-1)"
ANt+o—1
+m*a| ——— |, L . . . .
Nt+eto—1 which is the migration threshold curve shown in Fig. 3.
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