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Stretched polymers in a poor solvent
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Stretched polymers with attractive interaction are studied in two and three dimensions. They are described
by biased self-avoiding random walks with nearest-neighbor attraction. The bias corresponds to opposite forces
applied to the first and last monomers. We show that botth=r2 andd=3 a phase transition occurs as this
force is increased beyond a critical value, where the polymer changes from a collapsed globule to a stretched
configuration. This transition is second ordedir 2 and first order ird=3. Ford=2 we predict the transition
point quantitatively from properties of the unstretched polymer. This is not possitile & but even there we
can estimate the transition point precisely, and we can study the scaling at temperatures slightly below the
collapse temperature of the unstretched polymer. We find very large finite size corrections that would make
very difficult the estimate of the transition point from straightforward simulations.
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I. INTRODUCTION where m is the number of nonbonded occupied nearest-
neighbor pairs, and is the distancdin units of lattice con-
Deformations of polymers have been studied for manystants between the two end points of the chain in the direc-
years, such as stretching a single DNA or titin macromol-ion of F. We are interested in polymers that form collapsed
ecule[1-6]. Such experiments will become even more im-globules if they are not stretched, i.ey>>q, where q,
portant with the rapid improvement in single molecule ex-—g=¢/kT;
periments[7]. Their theoretical understanding has attracted | the present paper we employ the pruned-enriched-

much attention. Most such experiments hqve been performegysenpliuth method@PERM) [18] to study the phase transi-
in good solvents, where also the theory is best understoogl), of the BISAW ind=2 and 3. But we shall see that. in

[8]I.I But cc)if pa{“ﬁ“'ﬂ mter?st 'nlb'r(;lorg% is the rstrelt\(;hlr:lgbo;‘ ?Norder to understand the BISAW, we need also some other
collapsed polymer, 1.€., of:a polymer in a poor Sovent beIoW, o 115 More precisely, we will need also some more results
the ® temperature. Up to now there seem to exist only few

experiments in this regimg9]. Unfolding proteins in this 82A§R/§ t;Jntkalasne?nﬁlr?iieraztcljngn ?i(anlif{a\llotlglng gﬁfm \IN?Ik
way could, e.g., give important information on their sponta-t. ,'tho 0 dic b € ‘2 0 d'? attices. ¢ S ath
neous folding pathways. ices with periodic boundary conditions we can study the

Although there exist several theoretical papers on stretcH2Ulk behavior of collapsed polymeric matter without being
ing of collapsed polymerLl0—16, we believe that further disturbed by surface effecf49,18. _
work is needed for a full understanding. It is generally be- AS we shall see, a stretched collapsed polymed:n2
lieved that there is a first-order transition between the globforms, in the infinite chain length limi— o and for forces
ule and the stretched phases in three dimensions. But Relow the transition to the stretched phase, a compact object
seems that precise estimates of the critical force do not exisef a shape shown in Fig. 1. There the boundaries are circular
Also, there are no predictions for the scaling laws expectedrcs, the density inside is independent of the stretching force
when the temperature approaches the collapse temperatureand the shapg.e., the angles at the two extreme pojriss
T, from below. Finally, it seems that there is only one paperdetermined both byF and by g. The transition to the
[16] that deals withd=2. Moreover, while it is claimed in stretched phase occurs when these angles tend to zero.

Ref. [16] that the transition is also first order oh=2, we In d=3 the situation is more complicated because of the
shall find there a rather different situation and a second-orddrayleigh instability. FoiF <F . one has an object of roughly
transition. elongated ellipsoidal shape, but flér=F . two phases coex-

A stretched polymer in a poor solvent is modeled as dst. Part of the chain is stretched, while the rest is still col-
biased interacting self-avoiding random waldSAW) on a  lapsed(Fig. 2). In the collapsed part, the density is the same
regular lattice(square ind=2, simple cubic ind=3) with  as in an unstretched globu{@®r N— ). The stretched part
nearest-neighbor attraction. In this model no two monomersnight consist of a single piedgadpoleconfiguration[20]),
can visit the same site. The attraction is taken into account bgr of two pieces as in Fig. 2. Within our theory both configu-
a Boltzmann factorq=e~#¢ for each pair of nonbonded rations have the same energies. The critical fétrcganishes
monomers occupying nearest-neighbors on the lattice. Helgearly whenT—T,.

B=1/KT and e<0 is the attractive potential between non-  The paper is organized as follows: In Sec. Il we treat the
bonded nearest-neighbor pairs. The stretching is described iyo-dimensional2D) case. We first formulate in more detail
a factorb=exp(BaF) wherea is the lattice constant arfdlis ~ the model sketched above, and we show that it is in good

the stretching forc@17]. The partition sum is, therefore, agreement with simulations both of stretched and unstretched
chains. The three-dimensional case is discussed in Sec. lll.
7= E qmb%, (1) Conclusions are (_jrawn in Sec. .IV. Finally, dgtails of the
walks Monte Carlo algorithm are given in the Appendix.
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(@) 1.
o=5o \@. (4)

Now assume we start stretching the polymer by pulling at the
two ends. The first effect will be that the ends are drawn
toward the surface and the whole globule is rotated such as
to minimize the potential energy. We will neglect the change
in entropy associated to that. When the stretching force in-
creases, we develop a shape as indicated in Fm). We
shall assume that the bulk is incompressible, so that we still
have the same bulk free energy, and we obtain our final an-
satz

Y, ~InZy(q,b)~u.N+oP—2LF, (5)

whereP is the perimeter andl2is the end-to-end distance.
L Parametrizing the shape by a functigs-y(x) with y(0)

/ =Y,, dy/dx|,—,=0, andy(L)=0 [see Fig. )], we have
L L
P=4J dx\/1+(dy/dx)7, 4pJ dxy(x)=N. (6)
0 0
The optimal shape is obtained by maximizidg at constant
FIG. 1. (a) The geometric shape of a stretched polymer in a pooN. The Euler equations for this maximization problem con-

/N

solvent ind=2. (b) Coordinates used in the calculation. sist of two parts. The first, resulting frodZy(q,b)/dL=0,
gives the equilibrium condition between stretching and sur-
I d=2 face tension forces,
Let us first consider an unstretched polymedidimen- F=20cos¢, (7)

sions, for anyd=2, below the® point. In the following, the o o .
lattice constant will always ba=1. For largeN and for ~Where the angle is indicated in Fig. 1a). Thus the critical
infinite lattices the polymer forms globule with a bulk  Point, corresponding te=0, is atF =20 or

monomer density(T) that tends to zero fof —T,, p(T) b= e20 ®
~(Ty—T)P. Ford=3 we havef=1 and logarithmic cor- ¢ '

rections[18], but for d=2 the powers seems to be Un- The second part, maximization with respectyix), gives

known. ForT—0 we havep(T)—1. _ thaty(x) is a circular arc. Using the anglgindicated in Fig.
The free energy for such a polymer consists of two parts:l(a) we have then

an extensive bulk contributiorN, and a surface contribu-

tion «N@~1d Ford=2 this reads ) ¢—sing cos¢
_ _92
P_4Lsin¢>’ N/p=2L St d . 9)
—InZy(q,b=1)~pu.(q)N+0o(q) VN, 2
n(G,b=1)~= u.()N+ () VN @ Lorb<b, we have
with u.. being the chemical potential per monomer in an  —InZy(q,b)= w..N+oNY{8(—sin¢ cosd)/p]Y2,
infinite chain, and is related to the surface tensior free (10
energy per unit of perimeter lengtlr by )
with
oN=27Ro, (3) ~__Inb
d= arcco% . (11

with 7R2p=N. Combining the last two equations we obtain ) ] ) .
Equationg8)—(11) form our final solution. They involve the

three temperature dependent material constants o, and
p. The former two can be estimated from Ef) if we mea-
sure in addition the gyration radius, but more precise esti-
mates ofu., and p result from simulations on finite lattices
in the dense limif21,18. Thus our strategy in verifying the
FIG. 2. Schematic drawing of a stretched polymer in a poorabove theory numerically consists of the following steps.
solvent ind=3, at an intermediate forde where the collapsed and (1) We simulate chains on finite lattices of sizexL
extended phases coexist. (typically with L=8 to 64 by means of theerM algorithm
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FIG. 4. , as obtained from Fig. 3, plotted agaihst®2 which

gave the most straight extrapolation. Error bars are ca. 0.00005,

smaller than the symbol sizes. The extrapolatioth tox is u..=

—1.3213+0.0001.

FIG. 3. Ford=2, q=2.4, andb=1, InZy+ N versusN/L?
for finite lattices withL2=27,28 ... 22 The values ofu, were
fixed by demanding that the peaksNfl_?~0.85 have zero height.

that gives us directly estimates of the partition sum. &or
>(, its logarithm is not convex. For suitably adjustgd,
InZ\(g,b=1L)+ u N has two peaks of equal heights. One
at N~0, the other atN~L?p. Extrapolating toL=% we
obtain u.. .

(2) In the next step we simulate chains oractically

Results from unbiased ISAW on an “infinite” lattidg.e.,
on a lattice that was so large that no walk reached the bound-
ary) are shown in Fig. 5. There we plot Ziy+ «..N against
N2, From Eq.(2) we expect this to give a straight line with

slope— . Actually the line is slightly curved, indicating that
infinite lattices, again by means of PERM. Using E2).and there are further finite size corrections for smdlbnd sys-
' ' : tematic sampling corrections at larye The latter are indeed

the already obtained values pf, andp we then obtaino. b 4 Wh d hi p
(3) Finally we simulate stretched polymers, to compare'© P€ expected. When we constructed histograms of tour

- - e ights (see the Appendix we found that the simulations
with the prediction of Eq(10). In addition toZy(q,b) we Welg ;
measure in these runs aléo) that should be eqlNJaI tol2for are unreliable foN>1000. We should have shown only the
largeN as long ab<b, . We should, however, immediately data forN<<1000, but we showed all data, for the following
c- H )

warn that these latter measurements are not very conclusiv@avsvons' ‘'t th imulati ith biased and
since finite size corrections are large in this regime. We € want to compare these simuiations wi lased an

: : _ : finite volume simulations of the same length that are easier
might point out that folb=1 there is the exact result for PERM and that are thus still reliable fot=3500, the
longest chains used in Fig. 5.

bi<x):(x2), (12) Even if we cannot be sure that the data for 1000 are
b correct, we cannot argue either that they must be wrong.
They are most likely too low, since PERM has difficulties to
Since(x?)~N for collapsed polymer inl=2, we thus have sample configurations that start o@ts the chain growsto
(x)~N for very smallb. This shows that the above model
(which would give(x)~N?) cannot be correct for smal, 5
as we had indeed pointed out already before.
In Fig. 3 we show IrZy+u N for q=2.4, b=1, and for
finite lattices withL?=27,28, ... 21? sites, plotted against
N/L2. The curves are in the same order as shown in the 3
legend. Sincey,~ 1.95 for this mode[22], this is deep in- =
side the collapsed regime. We used helical boundary condi- a
tions. WhenlL? was not an integer, the effective lattice shape z
was not a perfect square, but this led to negligible correc- g
tions. The values ofi, N were fixed by demanding the right-
hand peak to have height exactly zero. The values obtained 25 |
this way are shown in Fig. 4. They are plotted there against

L~ 172 because this gave the best straight extrapolation to 0 10 20 "~ " - s
=00, The extrapolated value jg.,=—1.32131). Theposi- N2

tions of the right-hand peaks give finite lattice approxima-

tions to the densityp. Extrapolating toL=o gave p FIG. 5. Values of IrZy(g,b=1)+u..N versusNY2 for d=2, q
=0.84(1).Analogous simulations were also done at different=2.4, and u..=—1.3213. The dashed line has slopes (o
values ofq. =0.46+0.02).
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FIG. 6. Values of IrZy(q,b)+u..N versusN for the sameg and FIG. 8. Average displacemerik) in the bias direction ford
M. as in Fig. 5, and for various values bf =2, g=2.4, and for various values &k

have high energyi.e., few contacts but which become enough to quote a meaningful critical exponent. It is compat-
“good” during later growth stages. But we do not know how jple with 3/2, but the uncertainty is large.
important this is. o _ ~ Among the other measurements during these runs, the
The curvziture observed in Fig. 5 dominates the error inygst interesting are those ¢f). Again they are not precise
our estimateor=0.462). Combining this with the previous enough for a detailed comparison with the predictions in the
estimate forp we obtainc=0.1195), andfrom this we regimeb<b,. But they also show clearly the phase transi-
predictb,=1.269(13). Remember that all this is fge=2.4.  tion at b=b,, since(x) rises linearly withN only in the
Finally, results from simulations witb=1 are shown in  stretched phasgsee Fig. 8 Values ofv =d(x)/dN, obtained
Figs. 6-9. In Fig. 6 we show B(q,b)+ w..(q)N versusN. by extrapolating the observed slopes in plot$JfagainstN
We expect these curves to become horizontalNer> as  towardN=co, are shown in Fig. 9. Again we see a continu-
long asb=<b,, while they should increase linearly fdr = ous transition with an exponent that is roughly equal to 0.7,
>Db.. This is indeed seen, although we now find a slightlybut uncertainties are too large to make a more definite state-
larger valueb.=1.2856). In spite of the small discrepancy ment.
with the predicted value we consider this as a remarkable Before concluding this section we should remark that we
agreement. Our data are not precise enough to allow a conechecked carefully, in view of Ref.16], that the unfolding
parison with the detailed predictions foxb<b,. transition is indeed second order in our model. We looked,
For b>b, the chemical potentialsu®(q,b) in the e.g., at histograms analogous to those in Figs. 12 and 13. We
stretched phase can be estimated easily by demanding théefinitely saw no hint of bistability or hysteresis. Together
In ZN(q,b)+,u£f)(q,b)N becomesN independent for large\. with the good agreement with the above model this seems
The results are shown in Fig. 7. Although this figure clearlydefinitely to rule out a first order transition. We cannot rule
shows a continuous transition, the data are not preciseut, however, that the transition is first-order in another mi-
croscopic model such as the bond fluctuation model studied

1.35 : . : : : in Ref. [16].
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FIG. 7. Values of lim_.[N""InZyq,b)] versusb, for d=2 b

and q=2.4. Forb>b, this is — «(q,b). For b<b(~1.3), we
replaced the actual numerical estimates by the theoretical value FIG. 9. Asymptotic “velocity” d(x)/dN in the bias direction for
— (). d=2, q=2.4, and for various values &t
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FIG. 10. IN[Zy_n(O)/Zn+n(@)V(2n) versusN~3 for d=3, b
=1, and several values of The points on the axis are obtained

from dense limit simulations on finite lattices, and the straight lines

are extrapolations tdtN—o, constrained to pass through these
points.
. d=3

Some of the treatment fad=2 can be carried over to

three dimensions with minor modifications. Instead of Eq.

(2) we now haveg 23,19
~INZy(q,b=1)~ p..(q)N+ o (q)N?2. (13)

Again we estimatew., most reliably from finite lattice simu-
lations in the dense limif18]. Again & can be related to a

PHYSICAL REVIEW &5 031807

On the other hand, things also simplify because the criti-
cal exponents at th® point now should be mean field like
(the upper critical dimension for th® point is 3[8]). This

means in particular that,p, and u..(q) — u..(q.) all should
vanish as~(T,—T) whenT—T, from below.

For a stretched globule with<<b, we expect thatZy
differs from the value fob=1 only by its changed surface,
i.e., by terms~N?%3, For b>b. we have a stringlike phase
whose free energy should increase linearly whitlvith very
small corrections,

—InZy(q,b>be)~u®(q,b)N

(14)
where the chemical potentigk(®(q,b) in the stretched
phase is a function independent of the chemical potential
M(Q,b) in the globular phase. The end-to-end distance in
the stretched phase is given by) =Nv(q,b) with

au9(q,b)

b (15

v(g,b)=-b

Stability of the stretched phase requires tldat(q,b)/db
>0, i.e.,

dul® b
bM(Q)

9 2
T (b%) w®(q,b)<0. (16)

In between these two regimes we expect a coexistence region
where part of the chain forms @ingle globule, while the

surface tension, and can be estimated numerically by plottingest forms one or two stretched pieces. A somewhat crude

In Zy(q,b=1)+ u..(q)N againstN?2,
In the weak stretching regime we could still try to solve

model of a polymer in the coexistence region that, however,
catches all essential features including finite size effects, is

the optimal shape, but this time the minimization problem isthe following. The stretched part ha& monomers, and its
more complicated and we were not able to find an explicitpartition sum is described by E¢L4) with N replaced sim-

solution. But more importantly, we do not expect a continu-
ous transition as ird=2. The reason is that we expect a

ply by Ng. The globular part halg=N—Ng monomers, and
its part|t|on sum is described by EQLS) W|th N replaced by

Rayleigh instability when the globule is stretched too much\N, . The total partition sum is just the product of the two,

which is expected to occur, before the lingit=0 is reached.

i.e., the free energy is just the sum of free energies of the two

Thus we cannot expect to be able to predict the transitiofarts. Notice that this involves a number of approximations.

point as ind=2.
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FIG. 11. Average displacement in the bias direct{et for d
=3, g=1.5, and for various values &f

There is no penalty for the area where the globule and the
stretched pa¢$) are attached to each other. Such a free en-
ergy contribution should be independent idfand can be
safely neglected.

The globule is approximated by a sphere. This is a more
serious approximation. It systematically overestimates the
free energy, by an amoumN5’3. This is of the same order
of magnitude as if a wrong surface tension were used. It
should, therefore, lead to quantitative errors, but not to quali-
tative ones. Moreover, the errors should be small because too
elongated globules are prevented by the Rayleigh instability.

We neglect all fluctuations. The total free energy in the
coexistence region is thus, for a fixed total end-to-end dis-
tancex (and not denoting explicitly the dependencemn

—InZy=Ngpoo + NG%0+ (N=Ng) uO(b) —xF. (17)

Minimizing this with respect tdN, we obtain
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o 0.008
—uO(b)+ ZING =0 (19
Moo ™ 1 3 Vg . 0.007 | N=2000 ——
i N=1500 -
0.006 | “;‘ N=1000 - J

This can be read as an implicit equation forlf solved, it
givesb as a function oN,. Notice thatb is independent of 0.005 r
Ns. According to our model the force needed to pull out the
chain from the globule depends on its size through the sur- *
face tensiorlast term in Eq(18)], but not on the lengtiNg
of the stretched part. 0.002 b
In the limit Ny— o this term does not contribute, and we
obtain the condition for the true transition point

(m)

0.004

0.003

0.001 |

wO(b.) = p.. . (19) 0 02 04 06 08 1 12 14
m/N

For finite Ny we see that at the coexistence po;._rff)(b) FIG. 12. Histograms of the number of nonbonded nearest-
decreases withN, . Sincedu'®(b)/db<0, this implies that neighbor pairsP(m) versusm/N for d=3, q=1.5, andb—1.55
the effective criticab increases wittN, . In other words, as <}, . The peaks nean/N~0.4 correspond to the stretched phase,
the chain is pulled out from the globuly shrinks, and thus  the ones neam/N~0.9 to the collapsed phase. Notice that chains
the force needed to pull out more of the chain decreases. Thigith N=1000 are for these values df and q entirely in the
is the basic instability that makes the transition first ordefstretched phaséhere is no peak nean/N~0.9), in agreement
and shows that our ansatz is consistent. It implies that a finit@ith Fig. 11. Normalization is arbitrary.
globule will be entirely pulled open as soon &$ b,
—constNY2. Notice that a more realistic modéihere the linear range of x) versusN extends tdN =<0, indicating the
spherical globule is replaced by some other shape with limphase transition from the collapsed to the stretched polymer
ited aspect ratipwould still give the same qualitative results: phase. From Fig. 11 the critical point of the finite system
For infinitely large globules, the critical point is given by might be guessed to be between 1.60 and 1.65, but we will
equatingu® (b,) with the chemical potential famnstretched  see that finite-size corrections are very large bpds actu-
globules; and finite size corrections to this are negative ang|ly |arger than 1.85.
decrease all™ . Very similar behavior is seen fd®? and for the average

In a first set of simulations we determined numerically number of nonbonded nearest-neighbor pajrs) (not
w-(0) andp(q) for a wide range ofi. We did this again, as  shown. For b>b, they increase linearly withN, RS e (m)
in d=2, by performing the simulations on ~flnlte lattices in o N For b<b, but close tob, they first show the same
the dense limit. In a second step, we obtaietfom simu-  pehavior, indicating that short polymers would be stretched
lations of unbiased ISAWSs in infinite lattices. In contrast to gt thisb, but then cross over to the collapsed phase in a very
d=2, here we encountered the problem that there are signifnarrow range oN.
cant further corrections to the asymptotic ansatz(Eg). We We claim that this is a firstyet inconclusivg indication
llustrate  this in  Fig. 10 where we plot for the first-order nature of the transition. More direct indi-
IN [Zy—n(Q)/Znsn(@) 1/(2n) againstN~ 3 for b=1 and several
values ofg. Here,n=1+|N/20|. The points on thg axis are
obtained from dense limit simulations. The straight lines are
extrapolations constrained to pass through these points. Their 5|

slopes are @/3. While the curves are compatible with these
extrapolations, close inspection shows that they are not con- 4}
vex as one might have guessed naively. Thus, extrapolationsz
not aided by the dense limit simulations would be prone to * 3|
large errors.

Finally, we performed simulations of BISAWbn ‘“infi-
nite” lattices). We shall discuss in detail only the most ex-
tensive simulations, done at=1.5 that is deep in the col-
lapsed region[qe=1.3087(3) for this model[18]]. But o ket
similar simulations were also done at different valueg).of

Average displacementx) againstN for various biase®

are shown in Fig. 11. Fdb=1, we have of coursex)=0. FIG. 13. Histograms of the end point distarfegx) versusx/N

With increasingb, (x) still remains close to zero for lardé o, g=1.5. Biases were adjusted so that both peaks have equal
and increases very slowly &— as long adis close to 1.  pejght: b=1.4040 (N=500), 1.4925 K=1000), 1.5386 K

But for small N it increases roughly<N, with an abrupt =1500), 1.5658 ll=2000), and 1.5855N=2500). Normaliza-
decrease in a narrow range that shifts toward lafy@hen  tion is arbitrary. The peak at/N~0 corresponds to the collapsed

b is increased. A increases above a certain valoig, the  phase, the other to the stretched phase.

2 L

0.25
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cations are obtained by studying the histogramg ahd m. 1.9

The histograms shown in the following figures are obtained

by combining data from runs with differerg and b and 18 -

reweighting them. Combining MC results from different 17t

temperatures is not trivial for conventional Metropolis-type

Monte Carlo algorithms where absolute normalization is un- = 167 **

known [24]. In contrast, it is straightforward for PERM, 3 T

since PERM gives directly estimates of the partition sum and ST

of the properly normalized histograms 14|

Pao(MX)= 2 q™ b 6y Sy (20 e )

walks 12

I . . . . 0 002 004 006 008 01 012 014 0.16
Reweighting histograms obtained with runs performed nomi- N033

nally atq andb is trivially done by
e FIG. 14. Effective transition points,(N) versusN~*3 for d
Pg b (M,X)=Pgqp(m,x)(q'/q)"(b"/b)*. (21) =3, q=1.5. The true transition poinb,=1.84+0.04 is deter-

L . . mined by extrapolating to thg axis.
Combining results from different runs can then be either

done by selecting for eachm(x) just the run that produced estimate is obtained by analyzing the partition sum itself. In

the least noisy datévhich was done here in most case®  Fig. 15 we show 1Zy(q,b)+ ..N versusN. For smallb the

by assuming that the statistical weights of different runs argyryes are close to the curve fbe=1. As b increases, the

proportional to the number of “tours18] that contributed jnjtial (smallN) parts of these curves are straight lines with

to Pg p(m,X). ) ) ) _less and less negative slopes. In this regime the polymer is
In the present work we studied only single variable histo-stretched. As long as these slopes are negative, the straight

gramsP4(m) andPy(x), for which the above holds with the |ines will intersect the curve fdo=1 at some finite value of

appropriate modifications. _ N, sayN.(b). Obviously these are the chain lengths where
Histograms ofm for fixed g andb, and for three different p—p (N,) (see Fig. 14
values ofN, are shown in Fig. 12. FON=1500 andN For N>N(b), the values of I1Zy(q,b)+ x.N must devi-

=2000 we see two peaks, corresponding to the collapsegte from the straight lines. Indeed, the curves in Fig. 15
(I’Ight, m*Og\l) and Stl’etChe(ﬂeft, m~04N) phaseS. For cannot cross each other S”{%]
N>2000 all chains would be collapsed, while fidk 1000

all chains are stretched, in agreement with Fig. 11. InZy(q,b)—InZy(q,b=1)=In[(coskxInb)),_1]
Analogous histograms aof are shown in Fig. 13 for a )
: (Inb)
wider range ofN. We now see an even more pronounced =Inl1+ (x2)
double peak structure, with the Idfight) peaks correspond- 2 b=1
ing to the collapsedstretched phase. In this figure we kept 23)

g=1.5 fixed but varied, so that both peaks have the same

height for eachN. In addition we adjusted the normalization |n the simulations, such a crossing can of course happen due
arbitrarily such that all peaks have similar heights. We seeo metastability of the stretched phase. With our algorithm,
clearly that the height of the minimum between the peakshe collapsed state has much lower energy close to the tran-
shrinks to zero foN—o, and that the horizontal distance

between the peaks increases with Taken together, they 50

form a clear indication for a first-order transition. Notice that

a double peak structure with decreasing minimum alone 0 e ]

would not be a conclusive proof, as shown by égoint in

dimensionsd=4 [25]. = 50 1

The valuesb=b.(N) for which the two peaks to have g b=1.87 —— S T

equal heightindicated in the caption of Fig. 1&re effective g 100 ]39713'22 : 1

finite N transition points. According to our phenomenologi- ~N b=1.80 -

cal model we expect them to scale as g 0o |
b=1.60 -

|be(N) = be|osN . (22 200 f b=130 - :

b=1.00 ——

The values obtained from Fig. 13 are plotted in Fig. 14 -250

0 1000 2000 3000 4000 5000 6000

againstN Y. From Eq.(22) we expect them to fall onto a S

straight line. This is indeed the case, and the extrapolation to
N—co givesb,=1.84+0.04. FIG. 15. InZ\(qg,b)+ u..N for d=3, q= 1.5, and for various val-

This estimate ob, is already more precise than any esti- ues ofb. The valueu..= —1.7530+ 0.0003 used in this plot was
mate we could obtain from Fig. 11. But an even more precis@btained from dense limit simulations on finite lattices.
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FIG. 16. Log-log plots of Ib.(q) and of surface tensions(q)

versus §—qy)/q, for d=3. The continuous lines are drawn to
guide the eye.

sition point, but also much lower entropy, so that it can easily
be missed during a run with finite CPU time. Whenever this

happened, the value predicted by EQ3) were plotted in
Fig. 15 instead of using the direct estimateZgf(q,b).

Since the curve fob=1 becomes horizontal fal— oo,
the true phase transition occurs at that valué é6r which
the straight line in Fig. 15 is also horizontal. This can be
estimated very easily and with high precision, giving épr
=1.5 our final estimateb,~1.851). This is in perfect
agreement with the above finité-extrapolation. Its error is
dominated by the uncertainty @f.. .

The results of IN§.(g)) and o(q) for a wide range ofy

PHYSICAL REVIEW @5 031807

The most precise estimates of critical forces were ob-
tained via a direct comparison of the free energies in the two
phases. This is easily done witfERM, in contrast to most
other Monte Carlo methods. We found that the partition sum
of the collapsed phase is very closely related to that of com-
pletely unstretched collapsed polymers. An essential part of
our numerical effort went indeed into improved estimates of
the latter. In particular, we verified that the concept of a
surface tension applies both to 2D and 3D collapsed poly-
mers, and foild=3 we verified its scaling with temperature.

We compared the finit&l corrections in detail with phe-
nomenological models that yield different order transitions in
d=2 andd=3, and found perfect agreement. The latter is a
bit surprising since fluctuations and surface layer thicknesses
are neglected in the latter. These approximations should be-
come exact in the limit of chain lengthl—o, but our
present chains, with~10>—10%, could be expected pri-
ori to be much too short for this.
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APPENDIX

PERMIs a particular depth-first implementation of sequen-
tial importance sampling with reweighting?8]. Polymer
chains are built like random walks by adding one monomer
at each step.

As in any such algorithm we have the freedom to sample
these steps from a wide range of possible distributions, pro-
vided this additional bias is taken into account by suitable

values are shown in Fig. 16. We see that both curves argeight factors. First of all, we used a Rosenbluthlike bias in

roughly linear near th&® point, with slopes close to one.
Exact scaling laws Ii(q))~q—q, ando(q)~q— g, cannot

avoiding steps that would lead to self-intersections. Among
the other possible steps we selected those parallel, antiparal-

be expected because of the strong logarithmic corrections #l, and transverse td- with probabilities p.,:p_,:p,

the ® point[19,18.

IV. CONCLUSION
By applying thePERM algorithm to the BISAW model

=.b:\/1/b:1. The Boltzmann factors for the pair interac-
tions were taken into account entirely by the weight factors
and did not enter into the step probabilities. Let us define
p{9=1, p®=b*2 Then we have,;=0 if stepi is forbid-
den, and

with attractive interaction on square and simple cubic lat-
tices, we have studied the process of stretching collapsed

polymers in two and three dimensions. di=2 we find a

second-order transition, in contrast to previous results for the

bond fluctuation modgR27]. We do not know whether this is
due to an inherent difference in the modelsda 3 a clear

(0)
I

pi= (A1)
(0)

allowed J

first-order phase transition is observed, in agreement with all ) ) _
previous studies. But it seems that the present study is thetherwise. The corresponding weight factors are then

first with a detailed study of the transition region and of finite
size effects.

We indeed found the latter to be extremely important, in
particular ford=3. Estimates of the critical force obtained
without careful extrapolation toN—o would be grossly

qmnbei
Pi

w;= (Ax;=0,1, or-1), (A2)

wrong. This is similar to th® collapse of unstretched poly- Wheremy, is the number of neighbors of the new site already
mers in high dimensionk25] where these finite size effects occupied by nonbonded monomers.

even mimicked a first-order transition, while the true transi-

The total weight of a chain of lengthh is then W,

tion is second order. We believe that we can exclude the" Il <nW; ,. Every time annth monomer is added to the

latter for the present case.

chain, we update the current estimate of the partition sum to
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) Mn measurements. Most importantly, we generated histograms
Z,=M_ "1 > Wy(a), (A3)  of tour weightdistributions[29] in order to test whether the
a=l results are statistically reliable or not.

where M, is the number of chains reaching lengthand In all cases we used a single integer to label lattice sites,
W, (@) isnthe weight of thexth chain. Chains are cloned and and used helical boundary conditions. If the lattice size was a

pruned if their weight is aboveZ3, and belowZ,,/3, respec- power Of_ 2, sy kZd W'.th |r}E%gl?{k, thgn the ne|ghpors of
tively. sitei arei =1, *_(;2 , L. E2 , and mteger's gut3|de the

For different sets of simulations we measured different@19€[0, - 2< —1] are brkodught back to this interval by
observables. In the dense limit simulations, e.g., we meal1€ans of bitwise\D with 2™%—1. If the lattice size was a
sured only the partition sum, while the largest number ofdifferent power of 2, say 2 the numbers 1/2 ... , 29~ b«
observables was measured for stretched chains on infini@re replaced by the integers nearest td’f,2 . ., 29~ 19,
lattices. There we measured the partition sz the aver- In d=2 and for finite lattices, self avoidance and contacts
age end-to-end displacemef) parallel to the force, the were simply checked by means of bit maps: in an array of
average squared end-to-end distafR®), and the number of characters, each occupied site was marked “1,” while each
contacts between nonbonded monom@ns that is a mea- empty site was marked “0.” For opens systemddis 3 this
sure for the internal energy. We also measured histograms efould have needed too much storage and we used hashing.
the parallel displacement and of the contact number. In adin this way we could implement effectively infinite lattices
dition during all runs we made also some technical controwith relatively small computer memory.
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