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Stretched polymers in a poor solvent
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John-von-Neumann Institute for Computing, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 9 November 2001; published 7 March 2002!

Stretched polymers with attractive interaction are studied in two and three dimensions. They are described
by biased self-avoiding random walks with nearest-neighbor attraction. The bias corresponds to opposite forces
applied to the first and last monomers. We show that both ind52 andd53 a phase transition occurs as this
force is increased beyond a critical value, where the polymer changes from a collapsed globule to a stretched
configuration. This transition is second order ind52 and first order ind53. Ford52 we predict the transition
point quantitatively from properties of the unstretched polymer. This is not possible ind53, but even there we
can estimate the transition point precisely, and we can study the scaling at temperatures slightly below the
collapse temperature of the unstretched polymer. We find very large finite size corrections that would make
very difficult the estimate of the transition point from straightforward simulations.
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I. INTRODUCTION

Deformations of polymers have been studied for ma
years, such as stretching a single DNA or titin macrom
ecule@1–6#. Such experiments will become even more im
portant with the rapid improvement in single molecule e
periments@7#. Their theoretical understanding has attrac
much attention. Most such experiments have been perfor
in good solvents, where also the theory is best underst
@8#. But of particular interest in biology is the stretching of
collapsed polymer, i.e., of a polymer in a poor solvent bel
the Q temperature. Up to now there seem to exist only f
experiments in this regime@9#. Unfolding proteins in this
way could, e.g., give important information on their spon
neous folding pathways.

Although there exist several theoretical papers on stre
ing of collapsed polymers@10–16#, we believe that further
work is needed for a full understanding. It is generally b
lieved that there is a first-order transition between the gl
ule and the stretched phases in three dimensions. B
seems that precise estimates of the critical force do not e
Also, there are no predictions for the scaling laws expec
when the temperature approaches the collapse temper
Tu from below. Finally, it seems that there is only one pap
@16# that deals withd52. Moreover, while it is claimed in
Ref. @16# that the transition is also first order ind52, we
shall find there a rather different situation and a second-o
transition.

A stretched polymer in a poor solvent is modeled a
biased interacting self-avoiding random walk~BISAW! on a
regular lattice~square ind52, simple cubic ind53) with
nearest-neighbor attraction. In this model no two monom
can visit the same site. The attraction is taken into accoun
a Boltzmann factorq5e2be for each pair of nonbonded
monomers occupying nearest-neighbors on the lattice. H
b51/kT and e,0 is the attractive potential between no
bonded nearest-neighbor pairs. The stretching is describe
a factorb5exp(baF) wherea is the lattice constant andF is
the stretching force@17#. The partition sum is, therefore,

Z5 (
walks

qmbx, ~1!
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where m is the number of nonbonded occupied neare
neighbor pairs, andx is the distance~in units of lattice con-
stants! between the two end points of the chain in the dire
tion of F. We are interested in polymers that form collaps
globules if they are not stretched, i.e.,q.qu where qu
5e2e/kTu.

In the present paper we employ the pruned-enrich
Rosenbluth method~PERM! @18# to study the phase trans
tion of the BISAW ind52 and 3. But we shall see that, i
order to understand the BISAW, we need also some o
results. More precisely, we will need also some more res
on the unbiased interacting self-avoiding random w
~ISAW!, both on infinite and on finite lattices. On finite la
tices with periodic boundary conditions we can study t
bulk behavior of collapsed polymeric matter without bei
disturbed by surface effects@19,18#.

As we shall see, a stretched collapsed polymer ind52
forms, in the infinite chain length limitN→` and for forces
below the transition to the stretched phase, a compact ob
of a shape shown in Fig. 1. There the boundaries are circ
arcs, the density inside is independent of the stretching fo
F, and the shape~i.e., the angles at the two extreme points! is
determined both byF and by q. The transition to the
stretched phase occurs when these angles tend to zero.

In d53 the situation is more complicated because of
Rayleigh instability. ForF,Fc one has an object of roughl
elongated ellipsoidal shape, but forF5Fc two phases coex-
ist. Part of the chain is stretched, while the rest is still c
lapsed~Fig. 2!. In the collapsed part, the density is the sam
as in an unstretched globule~for N→`). The stretched par
might consist of a single piece~tadpoleconfiguration@20#!,
or of two pieces as in Fig. 2. Within our theory both config
rations have the same energies. The critical forceFc vanishes
linearly whenT→Tu .

The paper is organized as follows: In Sec. II we treat
two-dimensional~2D! case. We first formulate in more deta
the model sketched above, and we show that it is in go
agreement with simulations both of stretched and unstretc
chains. The three-dimensional case is discussed in Sec
Conclusions are drawn in Sec. IV. Finally, details of t
Monte Carlo algorithm are given in the Appendix.
©2002 The American Physical Society07-1
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II. dÄ2

Let us first consider an unstretched polymer ind dimen-
sions, for anyd>2, below theQ point. In the following, the
lattice constant will always bea51. For largeN and for
infinite lattices the polymer forms aglobule with a bulk
monomer densityr(T) that tends to zero forT→Tu , r(T)
;(Tu2T)b. For d>3 we haveb51 and logarithmic cor-
rections @18#, but for d52 the powerb seems to be un
known. ForT→0 we haver(T)→1.

The free energy for such a polymer consists of two pa
an extensive bulk contribution}N, and a surface contribu
tion }N(d21)/d. For d52 this reads

2 ln ZN~q,b51!'m`~q!N1s̃~q!AN, ~2!

with m` being the chemical potential per monomer in
infinite chain, ands̃ is related to the surface tension (5free
energy per unit of perimeter length! s by

s̃AN52pRs, ~3!

with pR2r5N. Combining the last two equations we obta

FIG. 1. ~a! The geometric shape of a stretched polymer in a p
solvent ind52. ~b! Coordinates used in the calculation.

FIG. 2. Schematic drawing of a stretched polymer in a p
solvent ind53, at an intermediate forceF where the collapsed an
extended phases coexist.
03180
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Now assume we start stretching the polymer by pulling at
two ends. The first effect will be that the ends are dra
toward the surface and the whole globule is rotated such
to minimize the potential energy. We will neglect the chan
in entropy associated to that. When the stretching force
creases, we develop a shape as indicated in Fig. 1~a!. We
shall assume that the bulk is incompressible, so that we
have the same bulk free energy, and we obtain our final
satz

2 ln ZN~q,b!'m`N1sP22LF, ~5!

whereP is the perimeter and 2L is the end-to-end distance
Parametrizing the shape by a functiony5y(x) with y(0)
5yo , dy/dxux5050, andy(L)50 @see Fig. 1~b!#, we have

P54E
0

L

dxA11~dy/dx!2, 4rE
0

L

dxy~x!5N. ~6!

The optimal shape is obtained by maximizingZN at constant
N. The Euler equations for this maximization problem co
sist of two parts. The first, resulting from]ZN(q,b)/]L50,
gives the equilibrium condition between stretching and s
face tension forces,

F52s cosf, ~7!

where the anglef is indicated in Fig. 1~a!. Thus the critical
point, corresponding tof50, is atF52s or

bc5e2s. ~8!

The second part, maximization with respect toy(x), gives
thaty(x) is a circular arc. Using the anglef indicated in Fig.
1~a!, we have then

P54L
f

sinf
, N/r52L2

f2sinf cosf

sin2f
. ~9!

For b,bc we have

2 ln ZN~q,b!5m`N1sN1/2@8~f2sinf cosf!/r#1/2,
~10!

with

f5arccos
ln b

2s
. ~11!

Equations~8!–~11! form our final solution. They involve the
three temperature dependent material constantsm` , s, and
r. The former two can be estimated from Eq.~2! if we mea-
sure in addition the gyration radius, but more precise e
mates ofm` andr result from simulations on finite lattice
in the dense limit@21,18#. Thus our strategy in verifying the
above theory numerically consists of the following steps.

~1! We simulate chains on finite lattices of sizeL3L
~typically with L58 to 64! by means of thePERM algorithm

r

r
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STRETCHED POLYMERS IN A POOR SOLVENT PHYSICAL REVIEW E65 031807
that gives us directly estimates of the partition sum. Foq
.qu its logarithm is not convex. For suitably adjustedmL ,
ln ZN(q,b51,L)1mLN has two peaks of equal heights. On
at N'0, the other atN'L2r. Extrapolating toL5` we
obtainm` .

~2! In the next step we simulate chains on~practically!
infinite lattices, again by means of PERM. Using Eq.~2! and
the already obtained values ofm` andr we then obtains.

~3! Finally we simulate stretched polymers, to compa
with the prediction of Eq.~10!. In addition toZN(q,b) we
measure in these runs also^x& that should be equal to 2L for
largeN as long asb,bc . We should, however, immediatel
warn that these latter measurements are not very conclu
since finite size corrections are large in this regime.
might point out that forb51 there is the exact result

b
]

]b
^x&5^x2&. ~12!

Since^x2&;N for collapsed polymer ind52, we thus have
^x&;N for very smallb. This shows that the above mod
~which would give^x&;N1/2) cannot be correct for smallN,
as we had indeed pointed out already before.

In Fig. 3 we show lnZN1mLN for q52.4, b51, and for
finite lattices withL2527,28, . . . ,212 sites, plotted agains
N/L2. The curves are in the same order as shown in
legend. Sincequ'1.95 for this model@22#, this is deep in-
side the collapsed regime. We used helical boundary co
tions. WhenL2 was not an integer, the effective lattice sha
was not a perfect square, but this led to negligible corr
tions. The values ofmLN were fixed by demanding the righ
hand peak to have height exactly zero. The values obta
this way are shown in Fig. 4. They are plotted there aga
L21.72 because this gave the best straight extrapolation tL
5`. The extrapolated value ism`521.3213(1). Theposi-
tions of the right-hand peaks give finite lattice approxim
tions to the densityr. Extrapolating to L5` gave r
50.84(1).Analogous simulations were also done at differe
values ofq.

FIG. 3. Ford52, q52.4, andb51, lnZN1mLN versusN/L2

for finite lattices withL2527,28, . . . ,212. The values ofmL were
fixed by demanding that the peaks atN/L2'0.85 have zero height
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Results from unbiased ISAW on an ‘‘infinite’’ lattice~i.e.,
on a lattice that was so large that no walk reached the bou
ary! are shown in Fig. 5. There we plot lnZN1m`N against
N1/2. From Eq.~2! we expect this to give a straight line wit
slope2s̃. Actually the line is slightly curved, indicating tha
there are further finite size corrections for smallN and sys-
tematic sampling corrections at largeN. The latter are indeed
to be expected. When we constructed histograms of t
weights ~see the Appendix!, we found that the simulations
are unreliable forN.1000. We should have shown only th
data forN,1000, but we showed all data, for the followin
reasons.

We want to compare these simulations with biased a
finite volume simulations of the same length that are ea
for PERM and that are thus still reliable forN53500, the
longest chains used in Fig. 5.

Even if we cannot be sure that the data forN.1000 are
correct, we cannot argue either that they must be wro
They are most likely too low, since PERM has difficulties
sample configurations that start out~as the chain grows! to

FIG. 4. mL as obtained from Fig. 3, plotted againstL21.72, which
gave the most straight extrapolation. Error bars are ca. 0.00
smaller than the symbol sizes. The extrapolation toL5` is m`5
21.321360.0001.

FIG. 5. Values of lnZN(q,b51)1m`N versusN1/2 for d52, q

52.4, and m`521.3213. The dashed line has slope2s̃ (s̃
50.4660.02).
7-3
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PETER GRASSBERGER AND HSIAO-PING HSU PHYSICAL REVIEW E65 031807
have high energy~i.e., few contacts!, but which become
‘‘good’’ during later growth stages. But we do not know ho
important this is.

The curvature observed in Fig. 5 dominates the erro
our estimates̃50.46(2). Combining this with the previous
estimate forr we obtain s50.119(5), and from this we
predictbc51.269(13). Remember that all this is forq52.4.

Finally, results from simulations withb>1 are shown in
Figs. 6–9. In Fig. 6 we show lnZN(q,b)1m`(q)N versusN.
We expect these curves to become horizontal forN→` as
long as b<bc , while they should increase linearly forb
.bc . This is indeed seen, although we now find a sligh
larger valuebc51.285(6). In spite of the small discrepanc
with the predicted value we consider this as a remarka
agreement. Our data are not precise enough to allow a c
parison with the detailed predictions for 1,b,bc .

For b.bc the chemical potentialsm`
(s)(q,b) in the

stretched phase can be estimated easily by demanding
ln ZN(q,b)1m`

(s)(q,b)N becomesN independent for largeN.
The results are shown in Fig. 7. Although this figure clea
shows a continuous transition, the data are not pre

FIG. 6. Values of lnZN(q,b)1m`N versusN for the sameq and
m` as in Fig. 5, and for various values ofb.

FIG. 7. Values of limN→`@N21ln ZN(q,b)# versusb, for d52
and q52.4. Forb.bc this is 2m`

(s)(q,b). For b,bc('1.3), we
replaced the actual numerical estimates by the theoretical va
2m`(q).
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enough to quote a meaningful critical exponent. It is comp
ible with 3/2, but the uncertainty is large.

Among the other measurements during these runs,
most interesting are those of^x&. Again they are not precise
enough for a detailed comparison with the predictions in
regimeb,bc . But they also show clearly the phase tran
tion at b5bc , since ^x& rises linearly withN only in the
stretched phase~see Fig. 8!. Values ofv5d^x&/dN, obtained
by extrapolating the observed slopes in plots of^x& againstN
towardN5`, are shown in Fig. 9. Again we see a contin
ous transition with an exponent that is roughly equal to 0
but uncertainties are too large to make a more definite st
ment.

Before concluding this section we should remark that
checked carefully, in view of Ref.@16#, that the unfolding
transition is indeed second order in our model. We look
e.g., at histograms analogous to those in Figs. 12 and 13
definitely saw no hint of bistability or hysteresis. Togeth
with the good agreement with the above model this see
definitely to rule out a first order transition. We cannot ru
out, however, that the transition is first-order in another m
croscopic model such as the bond fluctuation model stud
in Ref. @16#.

e

FIG. 8. Average displacement^x& in the bias direction ford
52, q52.4, and for various values ofb.

FIG. 9. Asymptotic ‘‘velocity’’d^x&/dN in the bias direction for
d52, q52.4, and for various values ofb.
7-4
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III. dÄ3

Some of the treatment ford52 can be carried over to
three dimensions with minor modifications. Instead of E
~2! we now have@23,19#

2 ln ZN~q,b51!'m`~q!N1s̃~q!N2/3. ~13!

Again we estimatem` most reliably from finite lattice simu-
lations in the dense limit@18#. Again s̃ can be related to a
surface tension, and can be estimated numerically by plot
ln ZN(q,b51)1m`(q)N againstN2/3.

In the weak stretching regime we could still try to sol
the optimal shape, but this time the minimization problem
more complicated and we were not able to find an expl
solution. But more importantly, we do not expect a contin
ous transition as ind52. The reason is that we expect
Rayleigh instability when the globule is stretched too mu
which is expected to occur, before the limitf50 is reached.
Thus we cannot expect to be able to predict the transi
point as ind52.

FIG. 10. ln@ZN2n(q)/ZN1n(q)#/(2n) versus N21/3 for d53, b
51, and several values ofq. The points on they axis are obtained
from dense limit simulations on finite lattices, and the straight lin
are extrapolations toN→`, constrained to pass through the
points.

FIG. 11. Average displacement in the bias direction^x& for d
53, q51.5, and for various values ofb.
03180
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On the other hand, things also simplify because the c
cal exponents at theQ point now should be mean field like
~the upper critical dimension for theQ point is 3 @8#!. This
means in particular thats̃,r, andm`(q)2m`(qc) all should
vanish as;(Tu2T) whenT→Tu from below.

For a stretched globule withb,bc we expect thatZN
differs from the value forb51 only by its changed surface
i.e., by terms;N2/3. For b.bc we have a stringlike phas
whose free energy should increase linearly withN with very
small corrections,

2 ln ZN~q,b.bc!'m (s)~q,b!N, ~14!

where the chemical potentialm (s)(q,b) in the stretched
phase is a function independent of the chemical poten
m`(q,b) in the globular phase. The end-to-end distance
the stretched phase is given by^x&5Nv(q,b) with

v~q,b!52b
]m (s)~q,b!

]b
. ~15!

Stability of the stretched phase requires that]v(q,b)/]b
.0, i.e.,

b
]m (s)~q,b!

]b
, S b

]

]bD 2

m (s)~q,b!,0. ~16!

In between these two regimes we expect a coexistence re
where part of the chain forms a~single! globule, while the
rest forms one or two stretched pieces. A somewhat cr
model of a polymer in the coexistence region that, howev
catches all essential features including finite size effects
the following. The stretched part hasNs monomers, and its
partition sum is described by Eq.~14! with N replaced sim-
ply by Ns . The globular part hasNg5N2Ns monomers, and
its partition sum is described by Eq.~13! with N replaced by
Ng . The total partition sum is just the product of the tw
i.e., the free energy is just the sum of free energies of the
parts. Notice that this involves a number of approximatio

There is no penalty for the area where the globule and
stretched part~s! are attached to each other. Such a free
ergy contribution should be independent ofN and can be
safely neglected.

The globule is approximated by a sphere. This is a m
serious approximation. It systematically overestimates
free energy, by an amount}Ng

2/3. This is of the same orde
of magnitude as if a wrong surface tension were used
should, therefore, lead to quantitative errors, but not to qu
tative ones. Moreover, the errors should be small because
elongated globules are prevented by the Rayleigh instab

We neglect all fluctuations. The total free energy in t
coexistence region is thus, for a fixed total end-to-end d
tancex ~and not denoting explicitly the dependence onq),

2 ln ZN5Ngm`1Ng
2/3s̃1~N2Ng!m (s)~b!2xF. ~17!

Minimizing this with respect toNg we obtain

s

7-5
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m`2m (s)~b!1
2s̃

3
Ng

21/350. ~18!

This can be read as an implicit equation forb. If solved, it
givesb as a function ofNg . Notice thatb is independent of
Ns . According to our model the force needed to pull out t
chain from the globule depends on its size through the
face tension@last term in Eq.~18!#, but not on the lengthNs
of the stretched part.

In the limit Ng→` this term does not contribute, and w
obtain the condition for the true transition point

m (s)~bc!5m` . ~19!

For finite Ng we see that at the coexistence pointm (s)(b)
decreases withNg . Since]m (s)(b)/]b,0, this implies that
the effective criticalb increases withNg . In other words, as
the chain is pulled out from the globule,Ng shrinks, and thus
the force needed to pull out more of the chain decreases.
is the basic instability that makes the transition first ord
and shows that our ansatz is consistent. It implies that a fi
globule will be entirely pulled open as soon asb.bc
2const/N1/3. Notice that a more realistic model~where the
spherical globule is replaced by some other shape with
ited aspect ratio! would still give the same qualitative result
For infinitely large globules, the critical point is given b
equatingm (s)(bc) with the chemical potential forunstretched
globules; and finite size corrections to this are negative
decrease asN21/3.

In a first set of simulations we determined numerica
m`(q) andr(q) for a wide range ofq. We did this again, as
in d52, by performing the simulations on finite lattices
the dense limit. In a second step, we obtaineds̃ from simu-
lations of unbiased ISAWs in infinite lattices. In contrast
d52, here we encountered the problem that there are sig
cant further corrections to the asymptotic ansatz Eq.~13!. We
illustrate this in Fig. 10 where we plo
ln @ZN2n(q)/ZN1n(q)#/(2n) againstN21/3 for b51 and several
values ofq. Here,n511 bN/20c. The points on they axis are
obtained from dense limit simulations. The straight lines
extrapolations constrained to pass through these points. T
slopes are 2s̃/3. While the curves are compatible with the
extrapolations, close inspection shows that they are not c
vex as one might have guessed naively. Thus, extrapolat
not aided by the dense limit simulations would be prone
large errors.

Finally, we performed simulations of BISAW~on ‘‘infi-
nite’’ lattices!. We shall discuss in detail only the most e
tensive simulations, done atq51.5 that is deep in the col
lapsed region@qQ51.3087(3) for this model@18##. But
similar simulations were also done at different values ofq.

Average displacementŝx& againstN for various biasesb
are shown in Fig. 11. Forb51, we have of coursêx&50.
With increasingb, ^x& still remains close to zero for largeN
and increases very slowly asN→` as long asb is close to 1.
But for small N it increases roughly}N, with an abrupt
decrease in a narrow range that shifts toward largerN when
b is increased. Asb increases above a certain valuebc , the
03180
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linear range of̂ x& versusN extends toN5`, indicating the
phase transition from the collapsed to the stretched poly
phase. From Fig. 11 the critical point of the finite syste
might be guessed to be between 1.60 and 1.65, but we
see that finite-size corrections are very large andbc is actu-
ally larger than 1.85.

Very similar behavior is seen forRN
2 and for the average

number of nonbonded nearest-neighbor pairs^m& ~not
shown!. For b.bc they increase linearly withN, RN

2 }^m&
}N. For b,bc but close tobc they first show the same
behavior, indicating that short polymers would be stretch
at thisb, but then cross over to the collapsed phase in a v
narrow range ofN.

We claim that this is a first~yet inconclusive! indication
for the first-order nature of the transition. More direct ind

FIG. 12. Histograms of the number of nonbonded neare
neighbor pairsP(m) versusm/N for d53, q51.5, andb51.55
,bc . The peaks nearm/N'0.4 correspond to the stretched phas
the ones nearm/N'0.9 to the collapsed phase. Notice that cha
with N51000 are for these values ofb and q entirely in the
stretched phase~there is no peak nearm/N'0.9), in agreement
with Fig. 11. Normalization is arbitrary.

FIG. 13. Histograms of the end point distanceP(x) versusx/N
for q51.5. Biases were adjusted so that both peaks have e
height: b51.4040 (N5500), 1.4925 (N51000), 1.5386 (N
51500), 1.5658 (N52000), and 1.5855 (N52500). Normaliza-
tion is arbitrary. The peak atx/N'0 corresponds to the collapse
phase, the other to the stretched phase.
7-6
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STRETCHED POLYMERS IN A POOR SOLVENT PHYSICAL REVIEW E65 031807
cations are obtained by studying the histograms ofx andm.
The histograms shown in the following figures are obtain
by combining data from runs with differentq and b and
reweighting them. Combining MC results from differe
temperatures is not trivial for conventional Metropolis-ty
Monte Carlo algorithms where absolute normalization is
known @24#. In contrast, it is straightforward for PERM
since PERM gives directly estimates of the partition sum a
of the properly normalized histograms

Pq,b~m,x!5 (
walks

qm8bx8dm,m8dx,x8 . ~20!

Reweighting histograms obtained with runs performed no
nally at q andb is trivially done by

Pq8,b8~m,x!5Pq,b~m,x!~q8/q!m~b8/b!x. ~21!

Combining results from different runs can then be eith
done by selecting for each (m,x) just the run that produced
the least noisy data~which was done here in most cases!, or
by assuming that the statistical weights of different runs
proportional to the number of ‘‘tours’’@18# that contributed
to Pq,b(m,x).

In the present work we studied only single variable his
gramsPq(m) andPb(x), for which the above holds with the
appropriate modifications.

Histograms ofm for fixed q andb, and for three different
values of N, are shown in Fig. 12. ForN51500 andN
52000 we see two peaks, corresponding to the collap
~right, m'0.9N) and stretched~left, m'0.4N) phases. For
N.2000 all chains would be collapsed, while forN<1000
all chains are stretched, in agreement with Fig. 11.

Analogous histograms ofx are shown in Fig. 13 for a
wider range ofN. We now see an even more pronounc
double peak structure, with the left~right! peaks correspond
ing to the collapsed~stretched! phase. In this figure we kep
q51.5 fixed but variedb, so that both peaks have the sam
height for eachN. In addition we adjusted the normalizatio
arbitrarily such that all peaks have similar heights. We
clearly that the height of the minimum between the pe
shrinks to zero forN→`, and that the horizontal distanc
between the peaks increases withN. Taken together, they
form a clear indication for a first-order transition. Notice th
a double peak structure with decreasing minimum alo
would not be a conclusive proof, as shown by theQ point in
dimensionsd>4 @25#.

The valuesb5bc(N) for which the two peaks to hav
equal height~indicated in the caption of Fig. 13! are effective
finite N transition points. According to our phenomenolog
cal model we expect them to scale as

ubc~N!2bcu}N21/3. ~22!

The values obtained from Fig. 13 are plotted in Fig.
againstN21/3. From Eq.~22! we expect them to fall onto a
straight line. This is indeed the case, and the extrapolatio
N→` givesbc51.8460.04.

This estimate ofbc is already more precise than any es
mate we could obtain from Fig. 11. But an even more prec
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estimate is obtained by analyzing the partition sum itself.
Fig. 15 we show lnZN(q,b)1m`N versusN. For smallb the
curves are close to the curve forb51. As b increases, the
initial ~small N) parts of these curves are straight lines w
less and less negative slopes. In this regime the polyme
stretched. As long as these slopes are negative, the str
lines will intersect the curve forb51 at some finite value of
N, sayNc(b). Obviously these are the chain lengths whe
b5bc(Nc) ~see Fig. 14!.

For N.Nc(b), the values of lnZN(q,b)1m`N must devi-
ate from the straight lines. Indeed, the curves in Fig.
cannot cross each other since@26#

ln ZN~q,b!2 ln ZN~q,b51!5 ln @^cosh~x ln b!&b51#

> ln F11
~ lnb!2

2
^x2&b51G .

~23!

In the simulations, such a crossing can of course happen
to metastability of the stretched phase. With our algorith
the collapsed state has much lower energy close to the t

FIG. 14. Effective transition pointsbc(N) versusN21/3 for d
53, q51.5. The true transition pointbc51.8460.04 is deter-
mined by extrapolating to they axis.

FIG. 15. lnZN(q,b)1m`N for d53, q51.5, and for various val-
ues ofb. The valuem`521.753060.0003 used in this plot was
obtained from dense limit simulations on finite lattices.
7-7



sil
hi

be

a
.

s

lat
s

th

a
t

ite

in
d

-
s
si
th

ob-
two

um
m-
t of
of
a
ly-
.

in
a

ses
be-

s.

n-

er

ple
ro-

ble
in
ng
aral-

c-
ors
ne

dy

e
to

o

PETER GRASSBERGER AND HSIAO-PING HSU PHYSICAL REVIEW E65 031807
sition point, but also much lower entropy, so that it can ea
be missed during a run with finite CPU time. Whenever t
happened, the value predicted by Eq.~23! were plotted in
Fig. 15 instead of using the direct estimate ofZN(q,b).

Since the curve forb51 becomes horizontal forN→`,
the true phase transition occurs at that value ofb for which
the straight line in Fig. 15 is also horizontal. This can
estimated very easily and with high precision, giving forq
51.5 our final estimatebc'1.856(1). This is in perfect
agreement with the above finite-N extrapolation. Its error is
dominated by the uncertainty ofm` .

The results of ln(bc(q)) and s̃(q) for a wide range ofq
values are shown in Fig. 16. We see that both curves
roughly linear near theQ point, with slopes close to one
Exact scaling laws ln(bc(q));q2qu ands̃(q);q2qu cannot
be expected because of the strong logarithmic correction
the Q point @19,18#.

IV. CONCLUSION

By applying thePERM algorithm to the BISAW model
with attractive interaction on square and simple cubic
tices, we have studied the process of stretching collap
polymers in two and three dimensions. Ind52 we find a
second-order transition, in contrast to previous results for
bond fluctuation model@27#. We do not know whether this is
due to an inherent difference in the models. Ind53 a clear
first-order phase transition is observed, in agreement with
previous studies. But it seems that the present study is
first with a detailed study of the transition region and of fin
size effects.

We indeed found the latter to be extremely important,
particular ford53. Estimates of the critical force obtaine
without careful extrapolation toN→` would be grossly
wrong. This is similar to theQ collapse of unstretched poly
mers in high dimensions@25# where these finite size effect
even mimicked a first-order transition, while the true tran
tion is second order. We believe that we can exclude
latter for the present case.

FIG. 16. Log-log plots of lnbc(q) and of surface tensionss̃(q)
versus (q2qu)/qu for d53. The continuous lines are drawn t
guide the eye.
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The most precise estimates of critical forces were
tained via a direct comparison of the free energies in the
phases. This is easily done withPERM, in contrast to most
other Monte Carlo methods. We found that the partition s
of the collapsed phase is very closely related to that of co
pletely unstretched collapsed polymers. An essential par
our numerical effort went indeed into improved estimates
the latter. In particular, we verified that the concept of
surface tension applies both to 2D and 3D collapsed po
mers, and ford53 we verified its scaling with temperature

We compared the finiteN corrections in detail with phe-
nomenological models that yield different order transitions
d52 andd53, and found perfect agreement. The latter is
bit surprising since fluctuations and surface layer thicknes
are neglected in the latter. These approximations should
come exact in the limit of chain lengthN→`, but our
present chains, withN'1032104, could be expecteda pri-
ori to be much too short for this.
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APPENDIX

PERM is a particular depth-first implementation of seque
tial importance sampling with reweighting@28#. Polymer
chains are built like random walks by adding one monom
at each step.

As in any such algorithm we have the freedom to sam
these steps from a wide range of possible distributions, p
vided this additional bias is taken into account by suita
weight factors. First of all, we used a Rosenbluthlike bias
avoiding steps that would lead to self-intersections. Amo
the other possible steps we selected those parallel, antip
lel, and transverse toF with probabilities p1x :p2x :p'

5Ab:A1/b:1. The Boltzmann factors for the pair intera
tions were taken into account entirely by the weight fact
and did not enter into the step probabilities. Let us defi
p'

(0)51, p6
(0)5b61/2. Then we havepi50 if step i is forbid-

den, and

pi5
pi

(0)

(
allowedj

pj
(0)

~A1!

otherwise. The corresponding weight factors are then

wi5
qmnbDxi

pi
~Dxi50,1, or21!, ~A2!

wheremn is the number of neighbors of the new site alrea
occupied by nonbonded monomers.

The total weight of a chain of lengthn is then Wn
5)n8<nwi n8

. Every time annth monomer is added to th
chain, we update the current estimate of the partition sum
7-8
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Ẑn5Mn
21 (

a51

Mn

Wn~a!, ~A3!

where Mn is the number of chains reaching lengthn and
Wn(a) is the weight of theath chain. Chains are cloned an
pruned if their weight is above 3Ẑn and belowẐn/3, respec-
tively.

For different sets of simulations we measured differ
observables. In the dense limit simulations, e.g., we m
sured only the partition sum, while the largest number
observables was measured for stretched chains on infi
lattices. There we measured the partition sumZn , the aver-
age end-to-end displacement^x& parallel to the force, the
average squared end-to-end distance^R2&, and the number of
contacts between nonbonded monomers^m& that is a mea-
sure for the internal energy. We also measured histogram
the parallel displacement and of the contact number. In
dition during all runs we made also some technical con
nc

nc

nc

ta

nc

s

n

.,
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measurements. Most importantly, we generated histogr
of tour weightdistributions@29# in order to test whether the
results are statistically reliable or not.

In all cases we used a single integer to label lattice si
and used helical boundary conditions. If the lattice size wa
power of 2d, say 2kd with integerk, then the neighbors o
site i are i 61,i 62k, . . . i 62(d21)k, and integers outside th
range @0, . . . 2kd21# are brought back to this interval b
means of bitwiseAND with 2kd21. If the lattice size was a
different power of 2, say 2p, the numbers 1,2k, . . . ,2(d21)k

are replaced by the integers nearest to 1,2p/d, . . . ,2(d21)p/d.
In d52 and for finite lattices, self avoidance and conta

were simply checked by means of bit maps: in an array
characters, each occupied site was marked ‘‘1,’’ while ea
empty site was marked ‘‘0.’’ For opens systems ind53 this
would have needed too much storage and we used has
In this way we could implement effectively infinite lattice
with relatively small computer memory.
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