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Area-constrained planar elastica
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We determine the equilibria of a rigid loop in the plane, subject to the constraints of fixed length andfixed
enclosed area. Rigidity is characterized by an energy functional quadratic in the curvature of the loop. We find
that the area constraint gives rise to equilibria with remarkable geometrical properties; not only can the
Euler-Lagrange equation be integrated to provide a quadrature for the curvature but, in addition, the embedding
itself can be expressed as a local function of the curvature. The configuration space is shown to be essentially
one dimensional, with surprisingly rich structure. Distinct branches of integer-indexed equilibria exhibit self-
intersections and bifurcations—a gallery of plots is provided to highlight these findings. Perturbations con-
necting equilibria are shown to satisfy a first-order ODE which is readily solved. We also obtain analytical
expressions for the energy as a function of the area in some limiting regimes.
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I. INTRODUCTION

Our object of study in this paper is a deflated rigid lo
~elastica hypoarealis!. To explain this, consider a closed loo
in a plane. The loop is made of some elastic material and
taken thin enough, the contribution of its longitudinal defo
mations to its elastic energy can be ignored. This gives
to a Hamiltonian density proportional to the square of
curvature—henceelastica. It is clear that fixing only the
lengthL of the loop will not lead to any surprises, the on
possible equilibrium being a circle. What will happen thou
if we, in addition, fix its areaA to be less than that of th
circle? ~hencehypoarealis!.

This particular Hamiltonian~without the constraints! has
a distinguished history, dating back at least to the Bernou
It makes a reappearance in Euler’s inspired analysis o
mundane but subtle problem in mechanical engineering:
buckling of a loaded beam@1,2#. More recently, variants o
this problem have attracted the attention of mathematicia
In particular, the problem of determining the curves of co
stant length which minimize the bending energy, on surfa
of constant curvature, is considered in Refs.@3–5#, while
interconnections with knot theory are explored in@6#. Adding
the constraint on the enclosed area, as we propose here
vides a particularly fruitful generalization of this work.

Hamiltonians depending on extrinsic curvature have a
been studied in statistical physics@7,8#. For space curves, a
effective Hamiltonian which depends on twist as well
bending provides a phenomenological description of s
polymers, and in particular DNA~see, e.g., Refs.@9, 10#!.
Moving up one dimension, the leading term in the Helfri
Hamiltonian, which describes the equilibrium configuratio
of lipid membranes, is proportional to the square of t
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traced extrinsic curvatureK integrated over the surface
namely, the conformally invariant Willmore functiona
@11,12,13,14#. In the variant of the Helfrich model propose
by Svetina and Zeks, the so-called bilayer couple mod
constraints are placed on the surface, such as constant
constant enclosed volume, and constant integrated mean
vature ~the latter breaking theK→2K symmetry of the
problem! @15#.1 However, the equations which determine t
equilibrium are highly nontrivial higher-order partial differ
ential equations~PDE’s!. One motivation for introducing our
variant of theelastica, as a planar analog of the above, is
potential as a toy model for understanding these high
dimensional membranes. At the simplest level, if a clos
membrane possesses a symmetry along thez axis, its profile
at any z will be a fixed loop. The dimensionally reduce
Helfrich Hamiltonian is then the bending energy of this loo
It is possible to examine the loop Hamiltonian exactly. Wh
a lot is known about axially symmetrical closed configur
tions @16#, there is very little nonperturbative knowledge
the equilibria which exist when axial symmetry is broke
the loop configurations provide an analytic point of entry.

An additional application of the planar problem wa
pointed out recently by Willmore; any closed loop can
exploited to generate an axially symmetric toroidal geome
The equilibria of the loop Hamiltonian on a surface of co
stant negative curvature can be mapped into equilibria of
Helfrich functional@17#.

We will exploit the integrability feature of our mode
which is very well disguised when the problem is cast w
respect to the variables embedding the loop in the pla
Indeed, the determination of the curvature at equilibrium c
be reduced to the study of the motion of a particle in
one-dimensional quartic potential. The curvature can
solved as a quadrature in terms of elliptic integrals. Rema
ably, we discover that the problem possesses a second
less obvious, level of integrability; the embedding can

1We note that there is no genuine one-dimensional analog o
refinement, the so-called area difference model@21#.
©2002 The American Physical Society01-1
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ARREAGA, CAPOVILLA, CHRYSSOMALAKOS, AND GUVEN PHYSICAL REVIEW E65 031801
expressed as a local function of the curvature without
need of the two integrations one would have expected. A
consequence, the equilibrium configuration is given by
geometrical construction of pythagorean simplicity.

The condition of closure of the loop results in a discre
spectrum for a given constrained perimeter and area.
show that scaling can be exploited to fix one of these, say
perimeter. One branch of the spectrum then consists of c
figurations with ann-fold symmetry (n52,3, . . . )which in-
flate into a circle as the enclosed area is increased. If the
is evacuated these configurations will eventually se
intersect, tending to a limiting configuration of an invert
~i.e., negative area! circle, windingn21 times and decorate
with n infinitesimally small circles. The latter dominate,
this limit, the energy and give rise to a pole in the ene
versus area diagram, the residue of which we evaluate
actly for eachn.

The remaining branches of the spectrum correspond
rather complicated self-intersecting pairs which bifurc
from a limiting configuration. While self-intersecting con
figurations are undoubtedly of interest mathematically, th
are not of primary relevance to the physical problem
pose—we determine sufficient conditions for avoiding th
~nevertheless, we describe a physical situation where
may arise!.

In general, one would expect equilibria-connecting pert
bations to be governed by a fourth-order differential eq
tion. We show, however, that this equation can be redu
~by three orders! to a first-order one. The latter is singular
the circular configuration, where bifurcation occurs. Analy
cal approximations for the energy as a function of the a
are derived, in the limit of sinusoidal perturbations of t
circle of frequencyn. Combined with the pole mentione
above, these expressions provide a reliable sketch of
energy-area relationship for eachn.

The paper is organized as follows: Section II introduc
the model and the shape equation that determines equili
We show how it can be reduced to the motion of a fictitio
classical particle in a quartic potential. We address the
havior under scaling of the shape equation and we show
the problem has essentially one free parameter. Moreove
analyze the loop statics; this provides a physical interpr
tion for the shape equation itself. In Sec. III we study t
configuration space for this model. In particular, we descr
the angleQ0 by which the normal to the loop gets rotated
a full oscillation of the fictitious particle in the potentia
Equilibria-connecting perturbations are the subject of S
IV. These are determined by a complicated fourth-order
ferential equation, which is used to obtain the purely g
metrical construction mentioned above. In turn, the la
permits the reduction of the order of the original equat
from four to one, as well as the derivation of a sufficie
condition for non-self-intersections. Finally, we obtain an
lytical expressions for the energy as a function of the area
some limiting regimes, which allow for a reliable sketch
its behavior. In the appendices we collect various expr
sions, useful in the calculation of variations, we derive
recursion relation for the average of the powers ofK and
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comment on an interesting Legendre transform in the sp
of parameters of the model.

II. FIRST CONSIDERATIONS

A. Energy functional

A closed loop, parametrized bysP@0,1#, is described by
the embedding in the plane,

xW5XW ~s!.

The arc lengthl along the loop is given by

l ~s!5E
0

s

ds8S dXW

ds8
•

dXW

ds8
D 1/2

. ~1!

The most general expression for the energy of the confi
ration XW (s) which ~i! does not depend on the parametriz
tion, ~ii ! involves no higher than two derivatives ofXW and,
~iii ! is quadratic in these derivatives, is given by

F@XW #5aE dl K2, ~2!

whereK is the geodesic curvature, equal to the inverse of
radius of curvature at each point of the loop. We will ta
hencefortha to be equal to 1 (a is dimensionful, unlike its
two-dimensional analog, and this means we are measu
length in units ofa!. Let t̂ be the unit tangent to the loo
~transversed counterclockwise! and n̂ its outwards normal.
Then we have the Frenet-Serret equations for a plane cu2

~the prime denotes a derivative with respect to arclengthl!,

n̂85Kt̂ , t̂852Kn̂. ~3!

In terms of the angleQ that n̂ makes with, say, thex axis,
K5Q8.

To implement the constraints of fixed length and enclos
area, we introduce the constrained functional:

Fc@X#5F@X#1mS E dl2L D1sS E
int

d2x2AD . ~4!

m appears as a Lagrange multiplier enforcing the constr
fixing the length of the loop to some valueL. In the same
way, 2s is associated with the constraint fixing the enclos
area to the valueA. We note that, in general,

m52
]Fc~L,A!

]L
, s52

]Fc~L,A!

]A
. ~5!

In particular, if the area constraint is relaxed so thats50,
then]Fc(L,A)/]A50. Looking at Eq.~5!, one might be led
to identify m, s with the tension and differential pressure o
the loop but this is only half true—we discuss the physi

2Notice that the opposite sign convention forK is quite common
in the literature.
1-2
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AREA-CONSTRAINED PLANAR ELASTICA PHYSICAL REVIEW E65 031801
meaning of these parameters in Sec. II E. We have not
cluded, in our energy functional, a term proportional to t
integral ofK. This is because such a term is simply the to
angle by whichn̂ gets rotated in transversing the loop onc
equal to 2p for a non-self-intersecting loop.

We emphasize that the bending energy is not scale inv
ant ~notice that neither is the dimensionally reduced Helfr
Hamiltonian!. An unconstrained circular loop will expan
without limit. The natural scale invariant expression,*dluKu,
though not in itself a topological invariant, does have a v
ishing Euler-Lagrange derivative almost everywhere. Ta
as an energy functional, its constrained configurations wil
arcs of a circle~solutions ofmK5s! joined together at cur-
vature discontinuities in such a way as to mimimize the c
responding constrained energy function. This model will
considered elsewhere.

B. Shape equation

The Euler-Lagrange equations follow from extremizi
Fc@X#,

dFc

]Xm 50. ~6!

The reparametrization invariance ofFc@X# implies that the
tangential projection of these equations is vacuous. The
mal projection gives

2K91K32mK2s50 ~7!

~see the Appendix for some relevant formulas!. We note that
with the identification,m→m1K0

2, Eq. ~7! coincides with
Eq. ~7! of @18# ~see also@19#!. Is is worth pointing out that a
loop on a surface of constant Gaussian curvatureG satisfies
the above equation withm→m22G.

A plane curve is determined, up to rigid motions, by
curvature@20#. As is well known, our one-dimensional sy
tem is completely integrable. This is obvious because
have cast derivatives with respect to arclength. With resp
to an arbitrary parametrization of the loop, first derivati
terms associated with the one-dimensional Laplacian ap
which conceal this fact. Writing Eq.~7! in the form

K952
d

dK
V~K !, V~K ![

1

8
K42

m

4
K22

s

2
K, ~8!

we map our problem onto the problem of determining
motion of a fictitious particle in a quartic potential, withK
being the displacement of the particle, andl playing the role
of time. The total energyE of the particle is conserved,

dE

dl
50, E[

1

2
K821V~K !, ~9!

a fact that permits the expression ofK8 in terms ofK and
hence, of the arclength along the loop as an integral oveK
~via dl5dK/K8!
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l 5E dK

A2@E2V~K !#
. ~10!

We emphasize the difference between the energyE of the
fictitious particle, on the one hand, and the bending energF
of the loop, on the other. In particular, the configuration
least ‘‘energy’’ in the analog is not the minimum of th
Hamiltonian.

The motion of the particle in the potentialV is periodic.
Closed loop configurations consist of an integer number
identical segments, each one corresponding to one full os
lation of the particle, and hence made up itself of two sy
metric halves. Then, the condition of closure of the loop c
be expressed as

Q05
2p

n
, n52,3, . . . , ~11!

whereQ0 is the angle by which the normaln̂ gets rotated in
one full oscillation of the particle, given by

Q052E
Kmin

Kmax K dK

A2@E2V~K !#
~12!

~Kmin , Kmax denote the turning points!. The equilibrium con-
figurations haven-fold symmetry and a well-defined cente
The valuen51 is omitted in Eq.~11! because it is special—
see below. We examine in detail the resulting configuratio
in Sec. III.

C. Scaling

Let us examine the behavior of Eq.~7! under scaling of
the position vector,XW →lXW . We find

l→l l ,
d

dl
→ 1

l

d

dl
, K→ 1

l
K. ~13!

Let XW ( l ) correspond to some given solution of Eq.~7!, with
parameter values (s1 ,m1). Then, a scaled solution with
the same shape,lXW (l l ) and with (L1 ,A1 ,F1 ,E1)
→(lL1 ,l2A1 ,l21F1 ,l24E1), is obtained by rescaling the
multipliers as follows:

m1→
1

l2 m1[ml , s1→
1

l3 s1[sl . ~14!

Eliminatingl we find the orbits of scaling in the~s;m! plane,

ml5
m1

s1
2/3sl

2/3. ~15!

Furthermore, an inversion in the origin,Xm→2Xm can be
identified with a rescaling byl521, which maps a solution
with a given s into one with 2s. It follows that, for the
purpose of identifying distinct configurations at least, o
can set, e.g.,s51 and scan the essentially one-dimensio
configuration space by varyingm. For each value ofm,
which fixes the form of the potentialV(K), one still has to
1-3
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FIG. 1. On the left: the potentialV̄(K̄), for the values ofm̄, s shown. Barred quantities, in this and subsequent figures, are measu

units ofm0
2q/2 , q being their length dimension. Also shown, with horizontal lines, are the energiesĒ(n) that give rise to then52,3,4,5 closed

configurations, equal to 0.253, 0.278, 0.298, 0.320, respectively~in units of m0
2 and measured from the bottom of the well—compare w

the m̄50.5 curve in Fig. 4!. On the right: the closed trajectories in the phase planeK̄-K̄8 of the fictitious particle, corresponding t

oscillations in the potentialV with energiesĒ(2), Ē(5)—the n53,4 trajectories lie in between the two shown.
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vary the energyE of the particle in the well so as to satisf
Eq. ~11!, resulting, in general, in an infinite discrete spectru
‘‘above’’ the point ~1, m! in the ~s, m! plane.

D. Windings

The closed configurations we wish to classify possess
topological invariants, both given as the winding numbers
mapsS1→S1. The first such map is the normal map of th
loop, associating with each value of the parameters ~which
ranges over the firstS1 above! the corresponding value ofn̂
~which ranges over the unit circle, the secondS1 above!. For
each rotation ofs, n̂ will generally rotatem times, withm an
integer. Configurations with distinctm’s are topologically
isolated, the physical implementation being the infinite e
ergy barrier associated with the move

Non-self-intersecting loops correspond to normal maps w
index m561 ~the converse is not true!.

The second map is from thes circle to the closed orbit
(;S1) traced by the phase point in the plane (K,K8). For a
configuration corresponding ton complete oscillations of the
particle, the phase point goes around the closed curve1

2 K82

1V(K)5E n times, Fig. 1. There is a finite energy barri
separating configurations with distinctn’s which prevents
transitions between them.

E. Forces and torques

What can we learn about the loop configurations by lo
ing at the equilibrium of forces and torques on an infinite
mal loop segment? First we ask, why would a rigid lo
want to have area less than the maximal allowed by
length? One setup that supplies an answer is to imagine
our loop is actually the cross section of an infinite cylind
the interior and exterior of which are filled with an incom
pressible fluid. We start by filling the cylinder to its max
mum capacity, this gives a circular loop. We then take
03180
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t

some fluid from the interior while making sure that the e
ternal pressure is large enough so as to prevent the forma
of bubbles in the interior. Notice that, because of its rigidi
the cylinder takes up some part of the exterior pressure
only transmits to its interior a fraction of it, it’s the differen
tial pressure that crumbles the cylinder walls. The second
Eq. ~5! then points to the identification of2s with this dif-
ferential pressure, taking into account that the latter po
inwards. One has to be careful in applying the same ar
ment tom. The first of Eq.~5! seems to suggest thatm is the
tension of the loop but this would presuppose the possib
of tangential deformations—there is nothing in our ener
functional that tells us how much energy these cost a
indeed, we have already assumed that the loop canno
stretched or compressed tangentially. The derivative in
first of Eq.~5! is computed by comparing distinct loops wit
infinitesimally differing lengths, it does not refer to the d
formation of a single loop. With this in mind, we now turn t
loop statics.

We denote byTW ( l 0) the total force from the segment o
the loop with l , l 0 to the one withl . l 0 and byt( l 0) the
corresponding torque. The latter is equal to22K—this fol-
lows from our normalization of the bending energyF. Then,
balancing the torques on a segment extending froml to l
1dl we get

t~ l !2t~ l 1dl !1Tn~ l 1dl !dl

50⇒t82Tn50, ~16!

whereTn is the normal force, the reference point was tak
at l, and the sign conventions are shown in Fig. 2. The eq
librium of normal forces on the segment gives

Tn~ l !2Tn~ l 1dl !1Tt~ l 1dl !K~ l !dl2sdl

50⇒2Tn81KTt2s50, ~17!

while the tangential components give

Tt~ l!2Tt~ l1dl!2Tn~ l1dl!K~ l!dl50⇒Tt81KTn50.
~18!
1-4
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FIG. 2. Balancing of~a! torques,~b! normal forces, and~c! tangential forces on a segment of the loop.K andK8 are sketched positive
the resulting directions of torques and forces are shown. ForTt this data is not enough; we have assumed additionallyK2.m—this puts the
center of the loop somewhere towards the left of each picture.
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Notice how, in Eqs.~17! and~18!, the curvatureK is respon-
sible for the tangential force atl 1dl contributing a normal
component atl and vice versa. Solving the above system
equations we find

t522K, Tn522K8, Tt5K22m, ~19!

where, in the third relation, the integration constant was fix
to the valuem by the requirement that one recover the d
ferential equation forK, Eq. ~7!. We see from Eq.~19! that
2m is the tension of the loop at its inflection points, if an
Notice also how Eq.~7! is obtained upon substitution of th
last two of Eq. ~19! in Eq. ~17!, thereby identifying the
physical origin of each of the terms in the former. In a fort
coming publication, where we extend our considerations
the case of a loop in space, it is shown how the above
pressions for the forces and torque follow, in a model in
pendent way, from an application of Noether’s theorem.

Our submerged cylinder model for the loop leaves
room for self-intersecting configurations, could there be a
use for these? Imagine the loop made of superconduc
material, in the presence of a uniform magnetic field perp
dicular to its plane. In the limit where the magnetic flux d
to self-inductance is negligible compared to the one due
the external field, the area of the loop has to be constan
keep the flux constant. One can then adjust the area
changing the magnetic field and, for small enough are
self-intersecting configurations will appear.

III. CONFIGURATIONS

A. Qualitative remarks

For the purposes of this section, we may set, as expla
above,s51 in the expression for the potentialV(K). Its
critical points are given by the zeros of its derivative, i.e.,
the rootsKi , i 51,2,3, of

K32mK2150. ~20!

We find

K152K11 i)K2 , K252K12 i)K2 , K352K1 ,

~21!

where
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K1[
m

12
1

m

m
, K2[

m

12
2

m

m
, m3[1081108A12

m3

m0
3 ,

~22!

wherem0[3/22/3. Of these,K3 is always real while the first
two are real only form>m0 . Notice that, for anym, the
effect of the quadratic and the linear term in the potentia
relatively important only in a neighborhood of the origin. F
motions of the particle with sufficiently high-energyE, the
time spent by the particle in this region is negligible and t
quartic term dominates the motion. As a result, we may c
clude thatQ0 approaches zero with increasingE, due to the
approximate symmetryK→2K of the motion. The term lin-
ear inK spoils this symmetry and, fors.0 ~as taken in this
section!, makesQ0 slightly positive for largeE. As Q0 de-
scends, with increasingE, from this positive value to 0, it
will cross all critical values 2p/n for n greater than some
n0 . We expect, therefore, to encounter configurations w
arbitrarily highn, for all m—see Fig. 4.

On the other extreme, when the energyE is only slightly
greater than a local minimum of the potential~at K1 or K3!,
and the particle oscillates around that minimum, we m
approximateV(K) by a quadratic expression inK and find
for Q0 the limiting value

Q0i
max52p

&

A32
m

Ki
2

, i 51,3, ~23!

where the superscript~max! is used because, as we shall s
shortly, this is actually a maximum ofQ0i(m,E), for fixedm.
Starting from Eq.~21!, one infers the limiting values

Q01
max~m→m0

1!52`, Q01
max~m→`!522p, ~24!

as well as

Q03
max~m→2`!50, Q03

max~m50!52pA2
3 ,

Q03
max~m→`!52p. ~25!
1-5
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A plot of Q0i
max ~m! is given in Fig. 3. We notice that, fo

m.m0 , there are no non-self-intersecting configuratio
corresponding to oscillations in the left well.

We explain now why the valuen51 was omitted in Eq.
~11!. The reasoning behind that relation was that a clo
configuration should correspond ton complete oscillations of
the particle. This is not necessarily so in the case of
circle. Anynumber of ‘‘oscillations’’~of zero amplitude! will
fit into a circle, including irrational numbers, and indeed, E
~23! shows that the circle corresponding to the particle re
ing at Ki , i 51,3, is made ofA(32m/Ki

2)/& complete os-
cillations.

To examine what happens for values ofE that render the
quadratic and linear terms important, we analyze the ca
m,m0 andm>m0 separately.

B. µËµ0

The potential possesses only one minimum, atK3.0
given by Eq.~21! ~see Fig. 1!. Q03 starts atQ03

(max), for E
5V(K3), and form far from m0 , decreases monotonically t
zero with increasingE. The configurations that do not appe
are those for which 2<n,2p/Q0

max as well as all with nega-
tive n. This condition determines a set$mnun52,3, . . .% of
critical values ofm, such that, form,mn , all configurations
with n852,3, . . . ,n are absent~the circle is, of course, al
ways there!. As m approachesm0 , the left wall of the poten-
tial develops a plateau that tends to the horizontal, asm
→m0 . The particle spends a relatively long time in th
~negativeK! region, which results in a negative bump in th
Q0 curve. Asm→m0 , the minimum of this bump tends t
2`—negativen configurations appear accordingly. Dire
evaluation of the integral~12! gives @21#

Q03~m,E!5
8g~aB1bA!

A2B Fa2K~k!

1
a2a2

12a2 PS a2

a221
,kD G , ~26!

wherek25(a2b)22(A2B)2/4AB,

g5
1

AAB
, a5

A2B

A1B
, a25

bA2aB

aB1bA
,

FIG. 3. Q0i
max(m), i 51,3.
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A25~a2b1!
21a1

2, B25~b2b1!
21a1

2, b152
1

2
~a1b!, ~27!

a1
25

4

a1b
1ab2

1

4
~a1b!2, a5Kmax~m,E!,

b5Kmin~m,E!

andK, P are the complete elliptic integrals of the first an
third kind, respectively, given by

K~k!5E
0

p/2 du

A12k2 sin2 u
,

P~a2,k!5E
0

p/2 du

~12a2 sin2 u!A12k2 sin2 u
. ~28!

The result~26! holds form.m0 as well, with the appropriate
choice ofKmin , Kmax. A plot of Q03(m;E), for various val-
ues ofm, appears in Fig. 4.

A couple of remarks are in order at this point. Consid
the point A in Fig. 4, which is the intersection of them̄
50.5 curve with then52 line, corresponding to ann52
configuration. Imagine now that m̄ is diminished
continuously—the corresponding curve will move more
less downwards forcingA to move to the left. The corre
spondingĒ then diminishes, which means that the fictitio
particle oscillates in the potential well with smaller amp
tude. WhenA hits theQ03 axis, Ē is zero, the particle sits a
the bottom of the well, and the corresponding configurat
becomes a circle. In other words,all configurations like the
one corresponding to the point A can be continuously
formed to a circle.

FIG. 4. Q03(Ē), Ē[@E2V(K3)#/m0
2, for various values of

m̄[m/m0 . Also shown, with horizontal dashed lines, are some
the values ofQ03 that give rise to closed configurations. The corr

sponding values ofĒ can be read off as in the casem̄50.5,
n52 shown—the~self-intersecting! configuration itself appears in
Fig. 9. Notice how them̄521,22.5 curves miss then52, n
52,3,4 configurations, respectively.
1-6
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This is not the case though with the pointsB1 , B2 in the
same figure. ConsiderB1—it corresponds to ann524 con-
figuration form̄51.01. Imagine now thatm̄ is diminished in
a continuous way. As soon as it becomes smaller than 1
infinite negative pole of the corresponding curve is soften
to a negative minimum which, form̄ sufficiently close to 1,
still intersects then524 line. Given that them curves in
Fig. 4 become almost horizontal at highE, we give an exag-
gerated sketch of the situation in Fig. 5. As the value ofm̄ is
lowered, this negative minimum rises and, for a critical va
of m̄, will just touch then524 line, i.e.,B1 andB2 collapse
to a single pointB. The configuration that corresponds to th
point is not a circle, sinceĒ is positive and the particle
oscillates with a finite amplitude, i.e.,K is not constant. We
conclude thatconfigurations corresponding to points lik
B1 , B2 cannot be continuously deformed to a circle. More-
over, there exist bifurcation points, like B above, distin
from the circle. Whenm̄ is lowered even more, the minimum
of the m̄ curve becomes positive and remarks similar to
above can be made about its points of intersectionB18 , B28
with sufficiently highn lines ~see Fig. 5!.

C. µÐµ0

The potential possesses two local minima, atK1,0 and
K3.0 @with V(K1).V(K3)# and one local maximum a
K2,0 ~see Fig. 6!. Depending on its energy and where it
started from, the particle is confined in the left well, the rig
well, or visits both during every oscillation.

FIG. 5. Bifurcations: asm̄ is reduced, the minimum of the curv
shifts upwards andB1 , B2 collapse to a point. Further decrease
m̄ forcesB18 , B28 to collapse to a point. The corresponding config
rations cannot be continuously deformed to a circle.

FIG. 6. On the left: the potentialV̄(K̄) for m̄52. On the right:
spiraling configuration forE5V(K2), with the particle starting at
the turning point on the right with zero velocity.
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We note the following, regarding the asymptotic behav
of Q0i as m→`. In this regime, the linear term become
negligible inV(K) and the integral givingQ0i can be easily
seen to reduce~with K2→x! to an integral giving~half! the
period of a harmonicoscillator in a potentialx2/42mx/2,
which is independent of its energyE, as well as the ‘‘con-
stant force’’m. Another way to see them independence is by
observing that, withs50 ~which is equivalent to sendingm
to infinity!, one lies on them axis in the~s, m! plane, which
is an orbit under scaling, hence changes inm in this regime
leaveQ0i invariant. As the energy approachesV(K2) ~either
from above or below!, the period of the motion tends t
infinity, most of which the particle spends atK2 . Assume we
start the particle at the turning point on the right with ze
velocity and with just the right energy to reach the cent
maximum ofV, E5V(K2). The corresponding curve star
in a counterclockwise sense with decreasing curvatu
passes through an inflection point, and acquires infin
length spiraling forever clockwise as it approaches asym
totically a circle of radius 1/K2 , see Fig. 6.

Q03 tends accordingly to2`, which corresponds to the
negative poles in Fig. 4. As mentioned already, forV(K1)
,E,V(K2), Q0 will have two branches,Q01 andQ03, cor-
responding to the motions confined to either well. Both
these branches will tend to2` as E→V(K2). For E
.V(K2) there is only one branch, which starts from2` and
approaches asymptotically zero~as E→`!, after having
reached a positive local maximum. A three-dimensional p
of Q03(m,E) is given in Fig. 7. We present a representati
collection of configurations in Fig. 8. We also show, for re
erence purposes, some self-intersecting configurations in
9.

IV. PERTURBATIONS

A. Equilibrium-connecting deformations

We study here the following problem: given an equili
rium configurationXW , find an infinitesimal deformationdeXW

5en̂ such thatXW 1deXW describes a nearby equilibrium. No
tice that deXW is not necessarily the displacement vector
some point of the loop—the latter will generally have a ta
gential component as well. Our motivation is to obtain ne
solutions from known ones, with the closure condition au
matically satisfied.

Using some of the formulas listed in the Appendix, t
linearization of the equilibrium condition~7! gives that the
deformatione must satisfy

DE4~e![2e991~5K22m!e9110KK8e8

1~12E2 5
2 K416mK2110sK !e

52demK2des, ~29!

where the deformed configuration satisfies Eq.~7!, with
m→m1dem, s→s1des. The energy will change as wel
E→E1deE. This appears explicitly in the linearization o
Eq. ~8!, which gives
1-7
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FIG. 7. The angleQ03(m̄,Ē), for 0.5<m̄

<1.3, in steps of 0.05 and 0<Ē<0.8, in variable
step. The m̄51 curve has been shifted tom̄
51.01 in order to avoid the ambiguity in th

number of roots ofV̇. The negative pole in the
curves form̄.1 occurs atE5V(K2).
an
in.

he
ra-
DE3~e![2K8e-1~K32mK2s!e912K2K8e8

1K~12E2 1
2 K412mK215sK !e

52 1
2 K2dem2Kdes2deE. ~30!

B. The s identities

We introduce a number of functions on the loop, relev
in the study of the solutions of Eq.~29!. Any vector fieldaW
defines the following two functions on the loop:

FIG. 8. Non-self-ntersecting configurations form̄520.5, ṡ
51, and n52,3,4,5. Also shown, for each configuration, is t
circle of radiusX0 @see Eq.~38!#, passing through its inflection
points.
03180
t

an[aW •n̂, at[aW • t̂ . ~31!

The position vectorXW , in particular, supplies

h[XW •n̂, p[XW • t̂ , ~32!

both functions evidently dependent on the choice of orig
One finds

an852Kat , at85Kan , h85Kp, p8512Kh,
~33!

FIG. 9. Self-intersecting configurations form̄50.5, s51, and
n52,3,4,5. Also shown, for each configuration, is the circle of
dius X0 @see Eq.~38!#, passing through its inflection points.
1-8
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whereaW is henceforth assumed constant. We will say tha
function f on the loop is thegeneratorof a transformation if
and only if under the latter,dXW •n̂5 f . With this definition,
an , at are the generators of translations alongaW and perpen-
dicularly to it, respectively.p and h generate rotations an
dilations, respectively~both with respect to the origin!. One
easily verifies thatDE4(an)5DE4(at)5DE4(p)50 while
DE4(h)52mK13s, in accordance with the scaling beha
ior of m, s found earlier, Eq.~14!. Experimenting a little with
Eq. ~29! we find, not without some surprise, two more so
tions:

DE4~K8!50, DE4@s21~K22m!#52mK13s. ~34!

Noting, additionally, that when the origin is at the center
the loop, the zeros ofp coincide with the extrema ofK, as
well as the coincidence of the extrema ofh andK2, we make
the ansatz

h5s21~K22m!1 f , p52s21K81g, ~35!

with f, g to be determined. Substituting in Eq.~33!, we find
f 85Kg, g852K f , with solution

f 5a cos~Q2f0!, g5a sin~Q2f0!, ~36!

wherea, f0 are arbitrary constants. One recognizesf, g to
be, respectively, the functionsan , at corresponding to the
position vectoraW of the center of the loop, then Eqs.~35!
state

h5s21~K22m!1an , p52s21K81at , ~37!

a remarkable geometrical property, the implications of wh
will occupy us shortly. Notice that neither part of Eq.~37!
survives in thes→0 limit. Unless otherwise stated, we wi
takeaW equal to zero in what follows.

One might wonder whether Eq.~29! admits other polyno-
mial solutions inK, apart from the second of Eq.~34!. To
investigate this, we rewrite Eq.~29! in terms of derivatives
with respect toK, usingd/dl5K8d/dK and find forDE(Kn)

the leading term (18 n41 3
4 n31 1

8 n223n2 5
2 )Kn14, with only

positive integer rootn52. We conclude that no other poly
nomial solutions of Eq.~29! exist.

C. Geometrics

We are now in a position to give a purely geometric
construction of the equilibria. Indeed, starting fromX25h2

1p2 and using Eq.~37!, we find

X22X0
254s21K, X0[s21A8E1m2, ~38!

where, in the derivation, use was made of the first integ
Eq. ~9!. This remarkable formula expresses the embedd
completely in terms ofK( l ). We emphasize that the shape
obtained directly fromK, given (s,m,E), without any inte-
gration. Note that both the relations~37! follow by taking
derivatives with respect to the arclength of Eq.~38!. It fol-
03180
a

f

h

l

l,
g

lows from Eq.~38! that the moment of inertiaI of the loop
around an axis perpendicular to its plane and passing thro
its center, is given by

I5LX0
218ps21. ~39!

To construct geometrically the equilibrium curve~for
given s, m, E!, we draw a circle with radiusX0 and from a
point P outside it, bring the tangentPA to the circle~see Fig.
10!. Taking as base the square of this tangent, we constru
parallellepiped with volume 4s21, the height of which is the
radius of curvature of the equilibrium curve atP—this fol-
lows from Eq. ~38!, written in the form (X22X0

2)r
54s21, wherer is the radius of curvature atP. To achieve
closure of the resulting curve, one has to start with a parti
lar slope, given by either part of Eq.~37!. In this way, one
constructs the part of the curve lying outside the circle~the
latter intersects the curve at its inflection points, if any!—the
interior part, present only if the ficticious particle reach
into the negativeK region, is constructed in a similar man
ner.

Referring back to our expression for the forceTW ( l ), Eq.
~19!, we realize that Eq.~37! implies thatTW ( l ) is orthogonal
to XW ( l ) while T( l )5sX( l ), i.e.,

TW ~ l !5s~ n̂3 t̂ !3XW ~ l !, Tn52sp , Tt5sh, ~40!

with TW ( l ) the force on the part of the loop pointed to byt̂ .
Notice thatTW is generally compressing but changes nevert
less to true tension at the points wereXW is tangential to the
loop. Also,p has acquired a direct physical interpretation
a consequence of Eq.~40!, spdl is just the torque, with
respect to the origin, of the force due to the pressure o
segment of the loop with lengthdl. Then the vanishing of
the total torque on the loop is guaranteed by the fact thatp is
a derivative. In fact, one may derive a compact and rat
pleasing formula for the torque due to pressure on any s

FIG. 10. Geometrical construction of the equilibrium curve. T
parallelepiped has a square base with sideAP and volume 4s21. Its
height p gives the radius of curvature atP. The part of the curve
lying in the interior of the circle is constructed similarly.
1-9
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ment of the loop, like the one defined byA,B in the sketch of
an n54 configuration of Fig. 11.

Suppose we takeA as reference point, then Eq.~37! is
valid with aW connectingA with the centerO of the loop. We
get

tAB
~A!5sE

A

B

dl p5sE
A

B

dl~2s21K81at!

52~KB2KA!1ssW •E
A

B

dW l ,

i.e.,

tAB
~A!52~KB2KA!1saW •ABW . ~41!

Moving the reference point simply moves one endpoint ofaW .
For aW 50 ~torque with respect toO!, tAB

(O)52(KB2KA).

D. Self-intersections

Given that some potential applications of our model e
clude self-intersecting configurations, we look now for su
cient conditions for non-self-intersection. We restrict our
tention to self-intersections that can be reached by
continuous deformation of non-self-intersecting configu
tions. In other words, we consider a one-parameter family
configurationsXW ( l ,t), tP@0,1#, continuous int, such that,
for every t, the corresponding curvature satisfies Eq.~7! and
we takeXW ( l ,0), XW ( l ,1) to be non-self-intersecting and se
intersecting, respectively. Then, we observe that ast varies
from 0 to 1, one necessarily encounters a ‘‘kiss’’:

The position vectorXW A is along the axis of symmetry of th
lobe and tangential to the loop atA. The third of Eq.~40!
then shows that the force atA is normal to the loop, while the
second of Eq.~40! gives its magnitude as

TA5sXA . ~42!

The tangency ofXW at A implies thathA50 and hence, using
Eq. ~37! once more, we get~assuming thatK is negative at a
kiss3!

3This assumption is true for all configurations we have stud
numerically.

FIG. 11. Computing the torque due to pressure on the arcAB.
03180
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KA52Am, ~43!

for all kisses, regardless of the order of the configuration.
conclude thata sufficient condition for non-self-intersectio
(of the type defined above), ism,0. Equation~43! givesKA8

2

in terms ofs, m, E:

KA8
252~E1 1

8 m22 1
2 sAm!. ~44!

On the other hand, from Eq.~38! we find that

XA
25s22~8E1m2!24s21Am. ~45!

The tangency ofXA though means that 2s21KA85pA5XA

and the above two equations then give~settings51!

E21 1
4 ~m224Am2 1

2 !E1 1
64 ~m224Am!~m224Am21!50,

~46!

with roots

E15 1
2 Am2 1

8 m21 1
8 , E25 1

2 Am2 1
8 m2. ~47!

For the particular casen52, KA850 and we getE5E2 . We
have seen in Sec. III that the relationQ052p/n defines a
curve in the~m, E! plane, consisting of all parameter pai
giving rise to a configuration of ordern. The intersection of
that curve with the ones just written above, consists of
points~m, E! giving rise to a kissing configuration of ordern.

Consider how Eqs.~40! and~41! guarantee equilibrium in
some particular examples. First, look at an even-n configu-
ration, say,n52:

The total force due to the pressure, pushing together the
halves in the sketch, issuABW u. Equation~40! says that the
tension atA,B ~purely tangential, compressing! is suABW u/2,
thus leaving each half at rest. As a second example, cons
the lobe defined by a self-intersection:

The total force due to the pressure on the lobe is zero,
Eq. ~40! says that the forces from the rest of the loop, on
two ends of the lobe that meet atA, are opposite~with direc-
tion so as to keep the lobe closed!. As a further check on our
results, one can verify the balancing of torques using
~41! on, say, the right half of a kiss.

E. Connecting equilibria

There is more to be derived from Eq.~38!. Taking de on
both sides, we find

DE2
~a!~e ![2e91~3K22m!e5

s

2
deX0

222Ks21des,

~48!
d

1-10
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a considerable improvement over Eq.~29!.4 Moreover, by
varying the first of Eq.~37! we also find

DE2
~b!~e ![2Ke922K8e81~s12K3!e

52s21~K22m!des2dem. ~49!

Comparison with Eq.~48! leads to a first-order equation fo
e :

DE1~e![4K8e824K9e5c2K21c1K1c0 , ~50!

where the constantsci are given by

c2[22s21des, c1[sdeX0
2, c0[2dem22ms21des.

~51!

Noting thatd/dK5(K8)21d/dl, Eq. ~50! can be written in
the form

8~E2V!ė14V̇e5c2K21c1K1c0 , ~52!

where the dot denotes differentiation with respect toK and
V5V(K). This latter equation is readily integrated to give

e5
1

4
K8E dK

c2K21c1K1c0

@2~E2V!#3/2 . ~53!

One may add an arbitrary amount ofK8 ~rotation! to this~but
not an or at , since these move the origin!. To get particular
solutions from Eq.~53!, we need to specify the direction o
the deformation in the~s, m! plane, i.e., the ratiodem/des.
It will prove convenient for our further analysis of Eq.~53!,
to reparametrize the~s, m! plane introducing new coordi
nates~l, j! via

l~s,m!5s21/3, j~s,m!5s22/3m. ~54!

A point P with coordinates (s,m)Þ(0,0) lies on a unique
scaling orbit, which can be specified by them coordinate of
its point of intersectionP8 with the s51 line; this is the
value ofj for P. One can get now fromP8 to P by scaling by
l ~see Fig. 12!. The obvious advantage of these new coor
nates is that the scaling orbits are constant-j lines. The de-
pendence onl of an arbitrary quantityS(l,j), with length
dimensionq, is S(l,j)5lqS̃(j), where we denote by a tilde
the remaining function ofj. It follows that ]S/]l5ql21S

4Notice, however, that Eq.~48! is only valid when the center o
the loop is at the origin.

FIG. 12. Definition of the coordinatesl, j.
03180
-

so thatdeS5ql21Sdel1lqS̃8dej, the prime denoting here
differentiation with respect toj.

We verify that Eq.~53! givese;h for scaling. Equation
~51!, written in terms of~l, j!, gives

c256l21del,

c15l22~16Ẽ12j2!del1l21~8Ẽ812j!dej, ~55!

c052l23jdel12l22dej,

whereE(l,j)5l24Ẽ(j) is the energy that guarantees cl
sure of some particular configuration. An incrementdel cor-
responds to scaling by a factor of 11del/l, hence the cor-
respondinge should bee5(del/l)h. Puttingdej50 in Eq.
~56! one determines theci for pure scaling, then computing
d/dK @(K22m)/K8# one finds that theK5 andK3 terms in
the numerator cancel and one recovers the integrand in
~53! with just the rightc’s.

Integrating the first of Eq.~37! with respect todl, and
using

A5
1

2 E d l h, ~56!

we get

F5mL12sA, ~57!

from which

deF5Ldem1mdeL12Ades12sde A ~58!

follows. On the other hand, direct variation ofF, Eq. ~2!,
gives

deF52mdeL2sde A. ~59!

Comparing with Eq.~58! we find

Ldem12Ades13sde A12mdeL50. ~60!

For a length-preserving deformation,deL50, and Eq.~60!
reduces to

Ldem12Ades13sde A50. ~61!

We note in passing that the various differential operators
have defined above are related in the following way:

@DE1~e!#852K8DE2
~a!~e !,

K@DE1~e!#852K8DE2
~b!~e !1K8DE1~e!,

DE3~e!5K8@DE2
~a!~e !#82K9DE2

~a!~e !

2 1
4 ~K22m!DE1~e!,

K8DE4~e!52@DE3~e!#8.

It follows that any perturbation that satisfies Eq.~50! will
necessarily satisfy all the higher-order ones.
1-11
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F. Perturbing the circle

Referring to our cylinder model of the loop~see Sec. II E!,
we consider here the following thought experiment: we s
with the loop ‘‘filled’’ to capacity, i.e., in a circular configu
ration, and start deflating it by removing fluid from its int
rior while keeping its length fixed. We would like to follow
the evolution of its shape, for distinctn’s, and derive the
limiting form of the bending energyF as a function of the
areaA near the circular extreme. Going beyond the cylind
model, we would also like to allow for self-intersections—
what happens if one just keeps subtracting area?

Consider the following perturbation to a circle of radi
R:

r~u!5Ra@11a sin~nu!#, a!1. ~62!

The line element and curvature in these coordinates are

dl5Ar21 ṙ2 du, K5
r212ṙ22rr̈

~r21 ṙ2!3/2 , ~63!

where the dot here denotes differentiation with respect tou.
Substituting Eq.~62! in the first of Eq.~63!, integrating over
u, and requiring the total length to be equal to the init
value 2pR, we find

Ra5RS 12
n2a2

4 D1O~a3!, ~64!

while for the curvature the second of Eq.~63! gives

K5
1

R
@11a~n221!sin~nu!#1O~a2!. ~65!

We substitute the above expression in the differential eq
tion for K, Eq. ~7!, and demand that it be a solution toO(a).
The constant andO(a) terms, respectively, give

12R2m2R3s50, 2n41~R2m25!n2132R2m50.

~66!

Notice that the first relation is simply the statementV̇(1/R)
50 while the second also follows from Eq.~29! with e as in
Eq. ~62!. For this perturbation the differential equation ca
not be satisfied toO(a2). From Eq.~66! we get

s5
2

R3 ~n221!, m5
1

R2 ~322n2!. ~67!

During the deflating process, boths andm will vary as func-
tions of A. The point in thes-m plane corresponding to th
configuration will trace out an orbit, starting at the abo
points ~for eachn!, all of which lie on the lineR3s1R2m
51. ForF andA we find

F5
2p

R F11
1

2
~n221!2a2G1O~a3!,

A5pR2F12
1

2
~n221!a2G1O~a3!. ~68!
03180
rt
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Notice that, near the circle,

dF

dA
52

2

R3 ~n221!52s,

in agreement with Eq.~59! ~for dL50!. As A keeps dimin-
ishing, our numerical analysis shows that the configurati
start self-intersecting, giving rise to regions of negati
area—this scenario is sketched in Fig. 13. Notice how
winding numbers~11 for the little circles,21 for the big
one! add up correctly to match that of the circle to which th
configuration can be continuously deformed. This obser
tion points to a feature of the abovem51 limiting configu-
rations already alluded to in the introduction; the big circle
the configuration of ordern actually winds around itselfn
21 times. For example, to move from one lobe to the n
along the loop, in then53 configuration, one must travel a
angle of 4p/3, not 2p/3 @a glance at Fig. 9~b! reveals how
this comes about#. The limiting shape in this direction then i
a circular one, with radius slightly less thanR/(n21) andn
little circles attached to it. In this extreme,F(A) is domi-
nated by the little circles and assumes the limiting form

F~A!>
4pn2

R

1

11~n21!
A

pR2

, ~69!

where the area is counted with the appropriate multiplic
due to the winding~e.g., plus three times the area of the litt
circle, minus twice that of the big one, in then53 case!. A
sketch ofF(A) that interpolates between Eqs.~68! and ~69!
is given in Fig. 14.

V. CONCLUSIONS

In this paper, we have studied the equilibrium configu
tions of elastic planar loops with constant area and cons
length. The condition of closure of the loop gives a discr
spectrum of configurations, lying along several branches
parameter space. We focus on non-self-intersecting lo
that inflate to a circle when the enclosed area is increa
due to their relevance as a toy model for two-dimensio
membranes. For this branch, starting from analytical exp
sions in the relevant limit cases, we obtain a reliable ske
of the dependence of the energy on the area. The equa
that determines equilibria-connecting perturbations led
rather unexpectedly, to thes identities, Eq.~37!, from which
a geometrical construction of the~constrained! elastic loop
followed. In turn, these identities permit the expression of

FIG. 13. Evolution of an52 configuration under deflation
~sketch!. The central region in the third configuration, as well as t
big circle in the fourth one, contribute negative area.
1-12
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equilibrium-connecting normal deformation in terms of t
curvature and the appropriate perturbations of the par
eters.

In future work, we plan to address the important issue
the stability of the equilibrium configurations. In light of th
complicated structure of the fourth-order differential opera
appearing in Eq.~29!, this appears to be a nontrivial task
the general case. It is indicative of the intrinsic complexity
the question that even the relatively simple case of the fig
eight configuration requires the elaborate analysis of@6#.

Another interesting issue is the analysis of thermal fl
tuations in this model, which would provide an analytic
counterpart to the study of Ref.@22# of two-dimensional
vesicles, using Monte Carlo techniques. In particular, ther
a similarity between some of the configurations of Fig. 2
the above work and the configuration of Fig. 8~a! in this
paper. It is also interesting to note that the shapes of Fi
closely resemble a top view of the starfish vesicles of R
@23#, which are almost planar. Finally, configurations simi
to ours appear in@24#, where our problem has been a
proached from a functional analytic point of view and impo
tant existence results have been derived, as well as in@25#.

After the completion of this paper, we set out to study
most natural extension: geometric models for loops in spa
We became aware of a large body of literature that explo
the interconnections among hierarchies of functionals of
geometry of a curve, their corresponding generators of r
motion and integrable systems, such as the KdV equat
We have found Ref.@26# an excellent point of entry to the
subject. We also realized that ours identities can be obtaine
by adapting the cylindrical coordinates used by Langer
Singer@27# in the analysis of buckled rings. We expect th
these explorations, apart from their intrinsic interest, w
contribute to a deeper understanding of two-dimensio
membranes.

FIG. 14. Bending energyF̄ vs areaA/pR2 for n52,3,4,5~in-
terpolation!. All curves touch at the point on the right, which co
responds to a circular configuration, giving rise to bifurcation. T
vertical asymptotes are at21/(n21).
03180
-

f

r

f
re

-
l

is
f

8
f.
r

e.
s
e

id
n.

d
t
l
al

ACKNOWLEDGMENTS

G.A. wishes to thank Gilberto Tavares for technical ass
tance and CONACyT for financial support. R.C. was su
ported by CONACyT Grant No. 32187-E.G.A. C.C. and J.
were supported by CONACyT Grant No. 32307-E a
DGAPA-UNAM Grant No. IN119792.

APPENDIX A: SOME USEFUL FORMULAS

Under an infinitesimal deformation of the loop along t
normal,XW →XW 1deXW [XW 1e( l )n̂, we find

dedl5Kedl, de t̂5e8n̂, deK52e92K2e,

de

d

dl
52Ke

d

dl
, den̂52e8 t̂ ,

deK852e-2K2e823KK8e,

deh5e2pe8, dep5e8h,

deK952e992K2e925KK8e8

2S 6E2
11

4
K41

7

2
mK215sK D e

@we have used the equation of motion and the first integ
Eqs.~7! and~9!, to expressK9 and (K8)2 in terms ofK#. For
the derivatives ofh,p,K we find

h85Kp,

h952K2h1K8p1k,

h-523KK8h1S 2
3

2
K31

m

2
K1

s

2 D p12K8,

h-85S 26E1
15

4
K42

7

2
mK225sK Dh

1S 2
15

2
K2K81

s

2
K8D p2

5

2
K31

3

2
mK1

3

2
s,

p8512Kh,

p952K8h2K2p,

p-5S 3

2
K32

m

2
K2

s

2 Dh23KK8p2K2,

p-85S 15

2
K2K82

m

2
K8Dh

1S 15

4
K42

7

2
mK225sK26ED p25KK8,

K85&S E2
1

8
K41

m

4
K21

s

2
K D 1/2

,

K95
1

2
~2K21mK1s!,

e
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K-52
3

2
K2K81

m

2
K8,

K-85
3

2
K52

10

4
mK32

15

4
sK21S m2

4
26EDK1

ms

4
.

APPENDIX B: AVERAGES

Consider the quantitiesWn , defined by

Wn5E
0

L0
Kn dl52E

Kmin

Kmax
Kn

dK

K8
. ~B1!

L0 here is the length along the loop corresponding to one
oscillation of the particle~we will useF0 later with a similar
meaning!. Wn is then ~proportional to! the average ofKn

along the loop. Starting from

E
Kmin

Kmax d

dK
~KnK8!50, ~B2!

one may derive the recursion relation@28#

2
1

8
~n12!Wn131

m

4
~n11!Wn111

s

4
~2n11!Wn

1EnWn2150, n50,1,2, . . . , ~B3!

which permits, in principle, the calculation of the average
any power series inK, for a given equilibrium configuration
In particular,

W35mW11sW0 , W45 4
3 W212sW11 8

3 EW0 . ~B4!
s

,

nd

d

03180
ll

f

Referring back to Fig. 1, we notice that the areaS en-
closed by the orbit of the phase point, for some givens, m,
E, is given by

S~s,m,E!52E
Kmin

Kmax
K8 dK. ~B5!

Differentiating with respect tos and using the fact that the
integrand vanishes at the endpoints, we find

Q052
]S

]s
. ~B6!

Length and bending energy per full oscillation also follow
simple differentiation

L05
]S

]E
, F054

]S

]m
. ~B7!

Notice that these quantities are defined whether or not
closure condition is satisfied, i.e., they are functions of
three independent variabless, m, E. Combining ~B5! and
~B4! above, we get

S5
4

3
EL1

1

6
mF1

1

2
sQ. ~B8!

One may regardL0 , Q0 , andF0 as new coordinates in th
space of~not necessarily closed! configurations—the chang
of coordinates is nonsingular, except for some special poi
and is given by a Legendre transform. Then the closure c
dition, Eq.~11!, is restricted to the configurations that lie o
the L0-F0 plane, withQ052p/n.
s

ett.

tt.

l

@1# C. Truesdell, Bull. Am. Math. Soc.9, 293 ~1983!.
@2# M. Giaquinta and S. Hildebrandt,Calculus of Variations I

~Springer-Verlag, Berlin, 1996!.
@3# P. A. Griffiths, Exterior Differential Systems and the Calculu

of Variations~Birkhaüser, Boston, 1983!.
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