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Area-constrained planar elastica
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We determine the equilibria of a rigid loop in the plane, subject to the constraints of fixed lengfixechd
enclosed areaRigidity is characterized by an energy functional quadratic in the curvature of the loop. We find
that the area constraint gives rise to equilibria with remarkable geometrical properties; not only can the
Euler-Lagrange equation be integrated to provide a quadrature for the curvature but, in addition, the embedding
itself can be expressed as a local function of the curvature. The configuration space is shown to be essentially
one dimensional, with surprisingly rich structure. Distinct branches of integer-indexed equilibria exhibit self-
intersections and bifurcations—a gallery of plots is provided to highlight these findings. Perturbations con-
necting equilibria are shown to satisfy a first-order ODE which is readily solved. We also obtain analytical
expressions for the energy as a function of the area in some limiting regimes.

DOI: 10.1103/PhysRevE.65.031801 PACS nuniderd6.70.Hg, 87.16.Dg

[. INTRODUCTION traced extrinsic curvatur& integrated over the surface,
namely, the conformally invariant Willmore functional
Our object of study in this paper is a deflated rigid loop[11,12,13,14 In the variant of the Helfrich model proposed
(elastica hypoarealis To explain this, consider a closed loop Py Svetina and Zeks, the so-called bilayer couple model,
in a plane. The loop is made of some elastic material and, jeonstraints are placed on the surface, such as constant area,

. - ; A _constant enclosed volume, and constant integrated mean cur-
taken thin enough, the contribution of its longitudinal defor vature (the latter breaking thé&— —K symmetry of the

o . X : Broblen) [15]. However, the equations which determine the
to a Hamiltonian den§|ty prpporﬂonal to t.h? square of I'[Sequilibrium are highly nontrivial higher-order partial differ-
curvature—henceelastica It is clear that fixing only the  gpntia) equationéPDE'S. One motivation for introducing our
length L of the loop will not lead to any surprises, the only yariant of theelastica as a planar analog of the above, is its
possible equilibrium being a circle. What will happen thoughpotential as a toy model for understanding these higher-
if we, in addition, fix its areaA to be less than that of the dimensional membranes. At the simplest level, if a closed
circle? (hencehypoarealig. membrane possesses a symmetry along s, its profile
This particular Hamiltoniariwithout the constrainishas at anyz will be a fixed loop. The dimensionally reduced
a distinguished history, dating back at least to the BernoullisHelfrich Hamiltonian is then the bending energy of this loop.
It makes a reappearance in Euler’s inspired analysis of & is possible to examine the loop Hamiltonian exactly. While
mundane but subtle problem in mechanical engineering: tha lot is known about axially symmetrical closed configura-
buckling of a loaded bearfi,2]. More recently, variants of tions[16], there is very little nonperturbative knowledge of
this problem have attracted the attention of mathematicianshe equilibria which exist when axial symmetry is broken;
In particular, the problem of determining the curves of con-the loop configurations provide an analytic point of entry.
stant length which minimize the bending energy, on surfaces An additional application of the planar problem was
of constant curvature, is considered in Rdf3-5], while  pointed out recently by Willmore; any closed loop can be
interconnections with knot theory are explored@h Adding  exploited to generate an axially symmetric toroidal geometry.
the constraint on the enclosed area, as we propose here, pibhe equilibria of the loop Hamiltonian on a surface of con-
vides a particularly fruitful generalization of this work. stant negative curvature can be mapped into equilibria of the
Hamiltonians depending on extrinsic curvature have alsdelfrich functional[17].
been studied in statistical physics8]. For space curves, an ~ We will exploit the integrability feature of our model
effective Hamiltonian which depends on twist as well aswhich is very well disguised when the problem is cast with
bending provides a phenomenological description of stiffrespect to the variables embedding the loop in the plane.
polymers, and in particular DNAsee, e.g., Refd9, 10)).  Indeed, the determination of the curvature at equilibrium can
Moving up one dimension, the leading term in the Helfrichbe reduced to the study of the motion of a particle in a
Hamiltonian, which describes the equilibrium configurationsone-dimensional quartic potential. The curvature can be
of lipid membranes, is proportional to the square of thesolved as a quadrature in terms of elliptic integrals. Remark-
ably, we discover that the problem possesses a second, far
less obvious, level of integrability; the embedding can be
*Email address: garreaga@fis.cinvestav.mx
TEmail address: capo@fis.cinvestav.mx
*Email address: chryss@nuclecu.unam.mx We note that there is no genuine one-dimensional analog of its
SEmail address: jemal@nuclecu.unam.mx refinement, the so-called area difference mqaél.
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expressed as a local function of the curvature without angomment on an interesting Legendre transform in the space
need of the two integrations one would have expected. As af parameters of the model.
consequence, the equilibrium configuration is given by a
geometrical construction of pythagorean simplicity. Il. FIRST CONSIDERATIONS

The condition of closure of the loop results in a discrete
spectrum for a given constrained perimeter and area. We
show that scaling can be exploited to fix one of these, say the A closed loop, parametrized k& [0,1], is described by
perimeter. One branch of the spectrum then consists of corthe embedding in the plane,
figurations with am-fold symmetry 6=2,3, . .. )which in- . -
flate into a circle as the enclosed area is increased. If the area X=X(s).
?s evacuated . these c_on.fi.guration_s WiI_I eventua_lly seIf—.I.he arc lengtH along the loop is given by
intersect, tending to a limiting configuration of an inverted
(i.e., negative areaircle, windingn—1 times and decorated s fsd ( dx d)?) 12

s)= s’

A. Energy functional

@

with n infinitesimally small circles. The latter dominate, in d5 de
this limit, the energy and give rise to a pole in the energy

versus area diagram, the residue of which we evaluate he most general expression for the energy of the configu-

actly for eachn. . S .
The remaining branches of the spectrum correspond tcr)_atIon X(s) which (i) does not depend on the parametriza-

rather complicated self-intersecting pairs which bifurcatelion: (i) involves no higher than two derivatives ¥f and,

from a limiting configuration. While self-intersecting con- (iii) is quadratic in these derivatives, is given by

figurations are undoubtedly of interest mathematically, they R

are not of primary relevance to the physical problem we F[X]=af dl K?, 2

pose—we determine sufficient conditions for avoiding them

(nevertheless, we describe a physical situation where theyhereK is the geodesic curvature, equal to the inverse of the

may arise. radius of curvature at each point of the loop. We will take
In general, one would expect equilibria-connecting perturhencefortha to be equal to 14 is dimensionful, unlike its

bations to be governed by a fourth-order differential equatwo-dimensional analog, and this means we are measuring

tion. We show, however, that this equation can be reducefbngth in units ofa). Let t be the unit tangent to the loop

(by three ordersto a first-order one. The latter is singular at (transversed counterclockwisand f its outwards normal.

the circular configuration, where bifurcation occurs. Analyti- Then we have the Frenet-Serret equations for a plane Zurve

cal approximations for the energy as a function of the aredthe prime denotes a derivative with respect to arclemgth
are derived, in the limit of sinusoidal perturbations of the

0

circle of frequencyn. Combined with the pole mentioned A’=Kt, t'=-—Kaf. (3)
above, these expressions provide a reliable sketch of the
energy-area relationship for eanh In terms of the angl® thath makes with, say, the axis,

IFLA)

The paper is organized as follows: Section Il introducesK=0".
the model and the shape equation that determines equilibria. To implement the constraints of fixed length and enclosed
We show how it can be reduced to the motion of a fictitiousarea, we introduce the constrained functional:

classical particle in a quartic potential. We address the be-

havior under scaling of f[he shape equation and we show that FX]=F[X]+ f dI—L) g f d2x—A>. 4)

the problem has essentially one free parameter. Moreover we int

analyze the loop statics; this provides a physical interpreta-

tion for the shape equation itself. In Sec. Ill we study theu appears as a Lagrange multiplier enforcing the constraint
configuration space for this model. In particular, we describdixing the length of the loop to some valde In the same
the angle®, by which the normal to the loop gets rotated in way, —o is associated with the constraint fixing the enclosed
a full oscillation of the fictitious particle in the potential. area to the valué&. We note that, in general,
Equilibria-connecting perturbations are the subject of Sec.

IV. These are determined by a complicated fourth-order dif- _ dF(LA) _

ferential equation, which is used to obtain the purely geo- K== 77 dA ®)
metrical construction mentioned above. In turn, the latter

permits the reduction of the order of the original equationin particular, if the area constraint is relaxed so that0,
from four to one, as well as the derivation of a sufficientthendF.(L,A)/dA=0. Looking at Eq(5), one might be led
condition for non-self-intersections. Finally, we obtain ana-to identify u, o with the tension and differential pressure on
lytical expressions for the energy as a function of the area, ithe loop but this is only half true—we discuss the physical
some limiting regimes, which allow for a reliable sketch of

its behavior. In the appendices we collect various expres-

sions, useful in the calculation of variations, we derive a “Notice that the opposite sign convention ris quite common
recursion relation for the average of the powerskoind in the literature.
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meaning of these parameters in Sec. IlE. We have not in- dK
cluded, in our energy functional, a term proportional to the l=| ——. (10
integral ofK. This is because such a term is simply the total V2[E—-V(K)]

angle by whichh gets rotated in transversing the loop once
equal to 2r for a non-self-intersecting loop.

We emphasize that the bending energy is not scale invar
ant(notice that neither is the dimensionally reduced Helfrich
Hamiltonian. An unconstrained circular loop will expand Lo
without limit. The natural scale invariant expressi¢dj|K]|, Hamiltonian. L L .
though not in itself a topological invariant, does have a van-, The motion of the particle in the potentidl is periodic.

ishing Euler-Lagrange derivative almost everywhere. Takergosed loop configurations consist of an integer number of

as an energy functional, its constrained configurations will b gﬁg:}'c;l tsheegmaer?itcsléez(;]rc]i %giggﬁ:ggtd”}?s;?f (())rf]et\,{,%"sosn?.l-
arcs of a circleg(solutions ofuK = o) joined together at cur- p ' P Y

vature discontinuities in such a way as to mimimize the cor—g]eete”; ?:sl\éisd. ;’shen, the condition of closure of the loop can
responding constrained energy function. This model will be P

considered elsewhere. 20
Oy=—, n=23,..., (11

'We emphasize the difference between the endégyf the

{_ictitious particle, on the one hand, and the bending enErgy
of the loop, on the other. In particular, the configuration of
least “energy” in the analog is not the minimum of the

B. Shape equation

The Euler-Lagrange equations follow from extremizing Where€®o is the angle by which the normalgets rotated in

FJX] one full oscillation of the particle, given by
C 1
5FC 0.=2 Kmax K dK (12)
oxn =0 © O " ki V2[E=V(K)]

The reparametrization invariance Bf[X] implies that the ~(Kmin, Kmax denote the turning pointsThe equilibrium con-

tangential projection of these equations is vacuous. The nofidurations haven-fold symmetry and a well-defined center.
mal projection gives The valuen=1 is omitted in Eq(11) because it is special—

see below. We examine in detail the resulting configurations

2K”+K3—,uK—a=0 @) in Sec. lll.

(see the Appendix for some relevant formylade note that C. Scaling
with the identification,u— u+ Kg, Eq. (7) coincides with Let us examine the behavior of E() under scaling of
Eq. (7) of [18] (see alsd19)). Is is worth pointing out that a the position vectorK— A X. We find
loop on a surface of constant Gaussian curva@isatisfies
the above equation witp— u— 2G. Y d 1d K EK 13

A plane curve is determined, up to rigid motions, by its —Al - A (13
curvature[20]. As is well known, our one-dimensional sys-
tem is completely integrable. This is obvious because weet X(1) correspond to some given solution of Ed), with
have cast derivatives with respect to arclength. With respegiarameter valueso(;,u;). Then, a scaled solution with

to an arbitrary parametrization of the loop, first derivativehe same shapeX(Ml) and with (L,A;,F1,Ey)
terms associated with the one-dimensional Laplacian appear, \ | | \2a, )ClF; \“E,), is obtained by’res’cali’ng the

which conceal this fact. Writing Eq7) in the form multipliers as follows:

. d 1, ., 0 1 1
K'==gg V(K V(K)=gKi= K= oK, (8 M1 2 IS My, 01 33010y (14)

we map our problem onto the problem of determining theEliminating A we find the orbits of scaling in ther; ) plane,
motion of a fictitious particle in a quartic potential, wikn

being the displacement of the particle, drlaying the role M:%gi’?’_ (15)
of time. The total energ¥ of the particle is conserved, o1

Furthermore, an inversion in the origiX*— —X* can be
K'2+V(K), (9) identified with a rescaling b = —1, which maps a solution

with a given o into one with —g. It follows that, for the

purpose of identifying distinct configurations at least, one
a fact that permits the expression Kf in terms ofK and  can set, e.g.g=1 and scan the essentially one-dimensional
hence, of the arclength along the loop as an integral Bver configuration space by varying. For each value ofu,
(viadl=dK/K") which fixes the form of the potentidf(K), one still has to

I

o

m

ll
N| =
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FIG. 1. On the left: the potentiaT(K), for the values ofu, o shown. Barred quantities, in this and subsequent figures, are measured in
units of,uaq/z, g being their length dimension. Also shown, with horizontal lines, are the eneg{:ﬂéthat give rise to th@=2,3,4,5 closed
configurations, equal to 0.253, 0.278, 0.298, 0.320, respectfirelynits of,ué and measured from the bottom of the well—compare with
the w=0.5 curve in Fig. 4 On the right: the closed trajectories in the phase pIEHE’ of the fictitious particle, corresponding to
oscillations in the potentidV/ with energiesE‘z), E®)—then=34 trajectories lie in between the two shown.

vary the energye of the particle in the well so as to satisfy some fluid from the interior while making sure that the ex-
Eq. (12), resulting, in general, in an infinite discrete spectrumternal pressure is large enough so as to prevent the formation
“above” the point(1, w) in the (o, u) plane. of bubbles in the interior. Notice that, because of its rigidity,
the cylinder takes up some part of the exterior pressure and
only transmits to its interior a fraction of it, it's the differen-
tial pressure that crumbles the cylinder walls. The second of
The closed configurations we wish to classify possess tw&q. (5) then points to the identification of o with this dif-
topological invariants, both given as the winding numbers offerential pressure, taking into account that the latter points
mapsS!— St. The first such map is the normal map of the inwards. One has to be careful in applying the same argu-
loop, associating with each value of the paramstérhich  ment tou. The first of Eq.(5) seems to suggest thatis the
ranges over the firs$* above the corresponding value éf  tension of the loop but this would presuppose the possibility
(which ranges over the unit circle, the sec@tdabove. For  of tangential deformations—there is nothing in our energy
each rotation o8, A will generally rotatemtimes, withman  functional that tells us how much energy these cost and,
integer. Configurations with distinat’s are topologically indeed, we have already assumed that the loop cannot be
isolated, the physical implementation being the infinite enstretched or compressed tangentially. The derivative in the

D. Windings

ergy barrier associated with the move first of Eq.(5) is computed by comparing distinct loops with
infinitesimally differing lengths, it does not refer to the de-
L, — AL — . formation of a single loop. With this in mind, we now turn to

loop statics.

Non-self-intersecting loops correspond to normal maps with, VYe denc_)ttrt]al 23{'—(![0) t:]he total f_?rr]fi Ifrom (;ht? selgm(;r:t of
indexm= *+1 (the converse is not triie € loop wi o 0 the one wi o and by 7(lo) the

The second map is from thecircle to the closed orbit corresponding torque. The latter is equgl—tdK—this fol-
(~SY) traced by the phase point in the plari¢,K’). For a lows from our normalization of the bending enefgyThen,

configuration corresponding tocomplete oscillations of the balancing the torques on a segment extending ftam |

particle, the phase point goes around the closed chK/& +dl we get

+V(K)=E ntimes, Fig. 1. There is a finite energy barrier ()= 7(1+d1)+T,(1+d)dl

separating configurations with distinats which prevents

transitions between them. =0=7"-T,=0, (16)

whereT, is the normal force, the reference point was taken
E. Forces and torques atl, and the sign conventions are shown in Fig. 2. The equi-

What can we learn about the loop configurations by lookJibrium of normal forces on the segment gives
ing at the equilibrium of forces and torques on an infinitesi-
mal loop segment? First we ask, why would a rigid loop To(D=Ta(I+dD) + T +dDK(dl = odl
want to have area less than the maximal allowed by its
length? One setup that supplies an answer is to imagine that
our loop is actually the cross section of an infinite cylinder,yile the tangential components give
the interior and exterior of which are filled with an incom-
pressible fluid. We start by filling the cylinder to its maxi-  T,()—=T(I+dl)—T,(I+dl)K()dI=0=T; +KT,=0.
mum capacity, this gives a circular loop. We then take out (18

=0=—T/+KT,~ =0, (17)
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(a) (b) (c)
FIG. 2. Balancing ofa) torques,(b) normal forces, andc) tangential forces on a segment of the loBpandK' are sketched positive;

the resulting directions of torques and forces are shownTFdtis data is not enough; we have assumed additiom&ly u—this puts the
center of the loop somewhere towards the left of each picture.

Notice how, in Eqs(17) and(18), the curvatureK is respon- m u m u “
sible for the tangential force &t-dl contributing a normal K,=--+ o Ko=—— o m3=108+108, [ 1— MT
0

component at and vice versa. Solving the above system of 12 12
equations we find (22
r=—2K, T,=—-2K', T,=K’—p, (190 whereuy,=3/22%. Of theseK; is always real while the first

two are real only foru=puy. Notice that, for anyu, the

where, in the third relation, the integration constant was fixedffect of the quadratic and the linear term in the potential is
to the valueu by the requirement that one recover the dif- relatively important only in a neighborhood of the origin. For
ferential equation foK, Eq. (7). We see from Eq(19) that motions of the particle with sufficiently high-enerdy the
—u is the tension of the loop at its inflection points, if any. time spent by the particle in this region is negligible and the
Notice also how Eq(7) is obtained upon substitution of the quartic term dominates the motion. As a result, we may con-
last two of EqQ.(19) in Eq. (17), thereby identifying the clude that®, approaches zero with increasifg due to the
physical origin of each of the terms in the former. In a forth- approximate symmetri{ — — K of the motion. The term lin-
coming publication, where we extend our considerations t@ar inK spoils this symmetry and, far>0 (as taken in this
the case of a loop in space, it is shown how the above exsection, makes®, slightly positive for largeE. As O, de-
pressions for the forces and torque follow, in a model indesscends, with increasing, from this positive value to 0, it
pendent way, from an application of Noether’s theorem.  will cross all critical values Z/n for n greater than some

Our submerged cylinder model for the loop leaves non,. We expect, therefore, to encounter configurations with
room for self-intersecting configurations, could there be anyarbitrarily highn, for all u—see Fig. 4.
use for these? Imagine the loop made of superconducting On the other extreme, when the enefgys only slightly
material, in the presence of a uniform magnetic field perpengreater than a local minimum of the potentiat K, or K3),
dicular to its plane. In the limit where the magnetic flux dueand the particle oscillates around that minimum, we may

to self-inductance is negligible compared to the one due t@pproximateV(K) by a quadratic expression i and find
the external field, the area of the loop has to be constant tgr @, the limiting value

keep the flux constant. One can then adjust the area by
changing the magnetic field and, for small enough areas, V3
self-intersecting configurations will appear. OI¥=2

|

M
Ill. CONFIGURATIONS V3~ 2
i

A. Qualitative remarks

For the purposes of this section, we may set, as explaine@here the superscrigimax is used because, as we shall see
above,o=1 in the expression for the potenti®i(K). Its  shortly, this is actually a maximum &¥y;(«,E), for fixed u.
critical points are given by the zeros of its derivative, i.e., byStarting from Eq.(21), one infers the limiting values
the rootsK;, i=1,2,3, of

i=1,3, (23

O p—pug)=—», O u—x)=—2m, (24
K3—,LLK—1=0. (20 01&“« Mo ) 01ax(,U« ) (24)

We find as well as

Ki=—K,+iv3K_, Ky=—K,—iv3K_, Ks=2K,, OD )20, ODNu=0)=27m2

(21)
where O (u—o)=21. (25)
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A plot of ®F™ (w) is given in Fig. 3. We notice that, for -1
u>ug, there are no non-self-intersecting configurations
corresponding to oscillations in the left well

We explain now why the value=1 was omitted in Eq.
(11). The reasoning behind that relation was that a close
configuration should correspondiiacomplete oscillations of
the particle. This is not necessarily so in the case of th(ff;
circle. Anynumber of “oscillations”(of zero amplitudgwill
fit into a circle, including irrational numbers, and indeed, Eq.
(23) shows that the circle corresponding to the particle rest-
ing atK;, i=1,3, is made oR/(3—M/Ki2)/VZ complete os- A2=(a—by)?>+a?, B?=(b—b,)?+a2 b =—}(a+b) (27)
cillations. v vt T2 ’

To examine what happens for valuestbthat render the

FIG. 4. Oy(E), EE[E—V(Kg)]/,u(Z), for various values of
w=ulpg. Also shown, with horizontal dashed lines, are some of
Hwe values o y; that give rise to closed configurations. The corre-
sponding values o can be read off as in the cage=0.5,
=2 shown—the(self-intersecting configuration itself appears in
ig. 9. Notice how theu=—1,—2.5 curves miss then=2, n
=2,3,4 configurations, respectively.

guadratic and linear terms important, we analyze the cases ) 1 5
w<uo and u= u, separately. a1=g7p tab—7(@+b)%  a=Kna(u.E),
B. H<Wp b=Kmin( 1, E)

The potential possesses only one minimum,Kat-0 and K, IT are the complete elliptic integrals of the first and
' : ig. {max) ;
given by Eq.(21) (see Fig. 1 ®g; starts at® 3", for E third Kind. respectively, given by

=V(K3), and foru far from uy, decreases monotonically to
zero with increasinde. The configurations that do not appear
are those for which  n<2/@§* as well as all with nega- K(K) = ml2 do

tive n. This condition determines a sgt,n=2,3, ...} of 0o J1—KZsirt o’
critical values ofu, such that, foru<u,, all configurations

with n'=2,3, ... n are absentthe circle is, of course, al- o 40
ways therg As u approachegg, the left wall of the poten- (a2 k):f '
tial develops a plateau that tends to the horizontaluas ’ 0 (1—a?sir 6)y1—Kk?sir? 0
—pug. The particle spends a relatively long time in this

(negativeK) region, which results in a negative bump in the The result(26) holds foru> ., as well, with the appropriate

0 curve. Asu— o, the minimum of this bump tends to choice 0fK i, Kpmax: A plot of @4(u;E), for various val-
—o—negativen configurations appear accordingly. Direct yes ofu, appears in Fig. 4.

(28)

evaluation of the integrall2) gives[21] A couple of remarks are in order at this point. Consider
the pointA in Fig. 4, which is the intersection of thg
@03(M,E):89(L+bA) a,K(K) =0.5 curve with then=2 line, corresponding to an=2
A-B configuration. Imagine now thatx is diminished
o o2 continuously—the corresponding curve will move more or
T SH( > 1,k”, (26) less downwards forcing\ to move to the left. The corre-
— a2

spondingEthen diminishes, which means that the fictitious
particle oscillates in the potential well with smaller ampli-

wherek®=(a—b)?— (A—B)%/4AB, tude. WhenA hits the® o, axis, E is zero, the particle sits at
the bottom of the well, and the corresponding configuration
becomes a circle. In other wordasl] configurations like the

A-B bA-aB one corresponding to the point A can be continuously de-

o= y A= "S5
A+B 2 aB+bA formed to a circle

1
g_\/ﬁ’
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FIG. 5. Bifurcations: ag is reduced, the minimum of the curve
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We note the following, regarding the asymptotic behavior
of Oy as u—. In this regime, the linear term becomes
negligible inV(K) and the integral giving,; can be easily
seen to reducéwith K?>—x) to an integral givinghalf) the
period of a harmonicoscillator in a potentiak?/4— ux/2,
which is independent of its enerdy, as well as the “con-
stant force” u. Another way to see thg independence is by
observing that, withr=0 (which is equivalent to sending
to infinity), one lies on theux axis in the(o, w) plane, which
is an orbit under scaling, hence changesiim this regime
leave®; invariant. As the energy approacheéék,) (either

shifts upwards an®, , B, collapse to a point. Further decrease of lOM above or below the period of the motion tends to
 forcesB] , B} to collapse to a point. The corresponding configu- INfinity, most of which the particle spendstgs . Assume we

rations cannot be continuously deformed to a circle.

This is not the case though with the poifgs, B, in the
same figure. Considé3;—it corresponds to an=—4 con-
figuration foru=1.01. Imagine now thak is diminished in

start the particle at the turning point on the right with zero
velocity and with just the right energy to reach the central
maximum ofV, E=V(K,). The corresponding curve starts

in a counterclockwise sense with decreasing curvature,
passes through an inflection point, and acquires infinite

a continuous way. As soon as it becomes smaller than 1, tHgngth spiraling forever clockwise as it approaches asymp-
infinite negative pole of the corresponding curve is softenedotically a circle of radius K, see Fig. 6.

to a negative minimum which, for sufficiently close to 1,
still intersects then=—4 line. Given that theu curves in
Fig. 4 become almost horizontal at highwe give an exag-
gerated sketch of the situation in Fig. 5. As the value.as

043 tends accordingly te-<0, which corresponds to the
negative poles in Fig. 4. As mentioned already, Y{K)
<E<V(K,), O, will have two branches),; and® 3, cor-
responding to the motions confined to either well. Both of

lowered, this negative minimum rises and, for a critical valuethese branches will tend te-« as E—V(K;). For E

of u, will just touch then= —4 line, i.e.,B; andB, collapse

>V(K,) there is only one branch, which starts freme and

to a single poinB. The configuration that corresponds to this approaches asymptotically zer@s E—<), after having

point is not a circle, sincée is positive and the particle

oscillates with a finite amplitude, i.eK is not constant. We

conclude thatconfigurations corresponding to points like
B,, B, cannot be continuously deformed to a citcMore-

reached a positive local maximum. A three-dimensional plot
of ®ys(u,E) is given in Fig. 7. We present a representative
collection of configurations in Fig. 8. We also show, for ref-
erence purposes, some self-intersecting configurations in Fig.

over, there exist bifurcation points, like B above, distinct

from the circle Whenyu is lowered even more, the minimum

of the u curve becomes positive and remarks similar to the

above can be made about its points of intersecBon B,
with sufficiently highn lines (see Fig. 5.

C. u=Ho

The potential possesses two local minimaKa 0 and
K3>0 [with V(K;)>V(K3)] and one local maximum at
K,<0 (see Fig. 6. Depending on its energy and where it is

started from, the particle is confined in the left well, the right

well, or visits both during every oscillation.

<3

0.4 1
0.2 1

0

04 1
0.6 1

-0.8 7 32001 234X

FIG. 6. On the left: the potentiaf(K) for z=2. On the right:
spiraling configuration foE=V(K,), with the particle starting at
the turning point on the right with zero velocity.

IV. PERTURBATIONS
A. Equilibrium-connecting deformations

We study here the following problem: given an equilib-
rium configuration)?, find an infinitesimal deformatioﬁj
= efi such thatX+ 8.X describes a nearby equilibrium. No-

tice that 55)? is not necessarily the displacement vector of
some point of the loop—the latter will generally have a tan-
gential component as well. Our motivation is to obtain new
solutions from known ones, with the closure condition auto-
matically satisfied.

Using some of the formulas listed in the Appendix, the
linearization of the equilibrium conditiofi7) gives that the
deformatione must satisfy

DE,(e)=2€"+(5K?— )"+ 10KK' €’
+(12E—3K*+6uK?+ 100K ) €
=—0.uK-4.0, (29

where the deformed configuration satisfies K@), with
m—pu+ ., o— o+ 6.0. The energy will change as well,
E—E+ 6.E. This appears explicitly in the linearization of
Eq. (8), which gives
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O3 /2T

FIG. 7. The angle®q(u,E), for 0.5<u
=<1.3, in steps of 0.05 and<OE=<0.8, in variable
step. Thew=1 curve has been shifted tp
=1.01 in order to avoid the ambiguity in the
number of roots of/. The negative pole in the
curves foru>1 occurs aE=V(Ky,).

DE3(€)=2K'€e"+(K3— uK—o)e"+2K?K' €’ a,=a-n, a=4t. (31)
+K(12E—3K*+2uK2+50K) e

= K25 u—KS.0— 8.E (30) The position vectoX, in particular, supplies
-T2 et eV T O

B. The o identities h=X.-n, p=X-t, (32

We introduce a number of functions on the loop, relevant . ) . o
both functions evidently dependent on the choice of origin.

One finds

in the study of the solutions of E@29). Any vector fielda
defines the following two functions on the loop:

a,=—Ka, a/=Ka,, h'=Kp, p'=1-Kh,
(33

(¢)

c d
FIG. 8. Non-self-ntersecting configurations fpr=—0.5, o ) @
=1, andn=2,3,4,5. Also shown, for each configuration, is the  FIG. 9. Self-intersecting configurations fpr=0.5, 0=1, and
circle of radiusX, [see EQ.(38)], passing through its inflection n=2,3,4,5. Also shown, for each configuration, is the circle of ra-
points. dius X, [see Eq(38)], passing through its inflection points.
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wherea is henceforth assumed constant. We will say that a Volume = 4071
functionf on the loop is theyeneratorof a transformation if

and only if under the lattersX - A=f. With this definition,

a,, a; are the generators of translations alcﬁ1gnd perpen-
dicularly to it, respectivelyp and h generate rotations and
dilations, respectivelyboth with respect to the originOne
easily verifies thaDE,(a,) =DE,(a;)=DE,(p)=0 while
DE4(h)=2uK+ 30, in accordance with the scaling behav-
ior of u, o found earlier, Eq(14). Experimenting a little with o
Eq. (29) we find, not without some surprise, two more solu- {
tions: \

DE4(K')=0, DE o Y(K?—pu)]=2uK+30. (34

Noting, additionally, that when the origin is at the center of
the loop, the zeros ab coincide with the extrema df, as FIG. 10. Geometrical construction of the equilibrium curve. The

well as the coincidence of the extrematofnd KZ’ we make parallelepiped has a square base with #iéeaand volume 49'_1. Its
the ansatz height p gives the radius of curvature & The part of the curve

lying in the interior of the circle is constructed similarly.
h=0"YK?—pu)+f, p=20"'K'+g, (35
lows from Eq.(38) that the moment of inertid of the loop
with f, g to be determined. Substituting in EQ®3), we find  around an axis perpendicular to its plane and passing through
f’=Kg, g’ =—Kf, with solution its center, is given by

f=acog®—¢g), g=asin®—d¢), (36) T=LX3+8mo L. (39

\k/)vherea, d"i. arle atrrkljltr:lry :onstants. One recocgj].mietg t'?h To construct geometrically the equilibrium curéor
€, respectively, the funclions,, a, corrésponding to the given o, u, E), we draw a circle with radiuX, and from a

position vectora of the center of the loop, then Eg&5  point P outside it, bring the tange®A to the circle(see Fig.
state 10). Taking as base the square of this tangent, we construct a
P 1, parallellepiped with volume &, the height of which is the
h=o0""(K*=p)t+a,, p=20 K'ta, (7 radius of curvature of the equilibrium curve Bt—this fol-
lows from Eq. (38), written in the form &?>—X3)p

a remarkable geometrical property, the implications of whic _ 401, wherep is the radius of curvature & To achieve

will occupy us shortly. Notice that neither part of E@7) closure of the resulting curve, one has to start with a particu-

survi\!es in theo—0 I_imit. Unless otherwise stated, we will lar slope, given by either part of E¢87). In this way, one

takea equal to zero in what follows. constructs the part of the curve lying outside the cithe
“One might wonder whether E(R9) admits other polyno-  |atter intersects the curve at its inflection points, if gryhe

mial solutions inK, apart from the second of E34). To  interior part, present only if the ficticious particle reaches

investigate this, we rewrite Eq29) in terms of derivatives jntg the negativeK region, is constructed in a similar man-
with respect t&, usingd/dI=K'd/dK and find forDE(K")  per.

the leading termn*+ $n°+gn?—3n—3)K"**, with only Referring back to our expression for the fortd), Eq.

posit.ivle inltetger ro?tll; 22.9We .c?nclude that no other poly- (19) we realize that Eq37) implies thatT(l) is orthogonal
nomial solutions of Eq(29) exist. to X(1) while T(1)=oX(1), i.e.,

C.G tri > ~ -

eometrics T(=a(Ax)xX(1), Ty=—0,, T,=ch, (40)

We are now in a position to give a purely geometrical
construction of the equilibria. Indeed, starting frofi=h?

+p? and using Eq(37), we find with T(l) the force on the part of the loop pointed to by

Notice thatT is generally compressing but changes neverthe-
X2=X2=40"'K, Xo=0 'JBE+pu? (38 less to true tension at the points wefds tangential to the
loop. Also, p has acquired a direct physical interpretation as
where, in the derivation, use was made of the first integrala consequence of Eq40), opdl is just the torque, with
Eq. (9). This remarkable formula expresses the embeddingespect to the origin, of the force due to the pressure on a
completely in terms oK(l). We emphasize that the shape is segment of the loop with lengttil. Then the vanishing of
obtained directly fronK, given (o, #,E), without any inte- the total torque on the loop is guaranteed by the factghst
gration. Note that both the relatiori87) follow by taking a derivative. In fact, one may derive a compact and rather
derivatives with respect to the arclength of £g88). It fol- pleasing formula for the torque due to pressure on any seg-
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FIG. 11. Computing the torque due to pressure on theA&c

ment of the loop, like the one defined ByBin the sketch of
ann=4 configuration of Fig. 11.
Suppose we také as reference point, then E37) is

valid with a connectingA with the center© of the loop. We

PHYSICAL REVIEW EG65 031801

Ka=— i, (43

for all kisses, regardless of the order of the configuration. We
conclude thag sufficient condition for non-self-intersection
(of the type defined above),is<0. Equation(43) givesK ,?

in terms of o, u, E:

Kp2=2(E+§pu’=3on). (44)
On the other hand, from E¢38) we find that
X2=g"2(8E+u?)— 40 W u. (45)

The tangency ofX, though means that® K,=pa=Xy
and the above two equations then gigettingo=1)

get

B B E2+l 2_4/ —LhE+L 2_4 2_4 ~1)=0,
TE'AAB):UJ d|p=0'f dl(20 K’ +a,) i(u m—37)E+g(u V) (e vu—1)
A A

(46)
- B"
=2(Kg—Kp)+o0a- fA dl, with roots
ie., Ei=3Vu—su?+s, E=3Vu—su? (47)
Ty =2(Kg—Kp)+0d-AB. (41 For the particular case=2, K,=0 and we geE=E,. We

_ o . have seen in Sec. lll that the relatié@y,=2=/n defines a
Moving the reference point simply moves one endpoird.of curve in the(u, E) plane, consisting of all parameter pairs

Fora=0 (torque with respect t@), ’T(A%)ZZ(KB— Ka). giving rise to a configuration of order. The intersection of
that curve with the ones just written above, consists of the
D. Self-intersections points(u, E) giving rise to a kissing configuration of order

Consider how Eqg940) and(41) guarantee equilibrium in
some particular examples. First, look at an ewersnfigu-
ration, sayn=2:

Given that some potential applications of our model ex-,
clude self-intersecting configurations, we look now for suffi-
cient conditions for non-self-intersection. We restrict our at-
tention to self-intersections that can be reached by a

) : ; . ) A B
continuous deformation of non-self-intersecting configura- %

tions. In other words, we consider a one-parameter family ofrpq total force due to the pressure, pushing together the two

configurationsX(1.t), te[0,1], continuous int, such that, pa\es in the sketch, is|AB|. Equation(40) says that the
for everyt, the corresponding curvature satisfies Et}.and tension atA,B (purely tangential, compressinis a|AT)B|/2,

we takeX(l,0), X(I,1) to be non-self-intersecting and self- 4, ;5 |eaving each half at rest. As a second example, consider
intersecting, respectively. Then, we observe that @aries 14 |obe defined by a self-intersection:
from 0 to 1, one necessarily encounters a “kiss”:

A

4 %

R Sa The total force due to the pressure on the lobe is zero, and
The position vectoX, is along the axis of symmetry of the Eq. (40) says that the forces from the rest of the loop, on the
lobe and tangential to the loop At The third of Eq.(40)  two ends of the lobe that meetAtare oppositéwith direc-
then shows that the force Atis normal to the loop, while the  tion so as to keep the lobe clogeds a further check on our
second of Eq(40) gives its magnitude as results, one can verify the balancing of torques using Eq.
(41) on, say, the right half of a kiss.

TA= (TXA . (42)
The tangency oK atA implies thath,=0 and hence, using E. Connecting equilibria
Eq. (37) once more, we gglssuming thaK is negative at a There is more to be derived from E@8). Taking 6, on
kiss’) both sides, we find

o
aer o _ _ DE®(e)=2€"+(3K?*— u)e= = 6. X3—2Ko 16,0,
This assumption is true for all configurations we have studied 2

numerically. (48)
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FIG. 12. Definition of the coordinates &.

a considerable improvement over E®9).* Moreover, by
varying the first of Eq(37) we also find

DEY)(e)=2Ke"—2K'€e'+(o+2K3)e

o Y{K2=p)s.0— 6 .. (49

Comparison with Eq(48) leads to a first-order equation for
€:

DE,(e)=4K'e' —4K"e=c,K?+c,K+co, (50

where the constants are given by
C,=—20 6.0, C;=06X5, co=26.u—2u0 16.0.
(51

Noting thatd/dK=(K’)~d/dl, Eq. (50) can be written in
the form

8(E—V)e+4Ve=c,K?+c;K+cg, (52)

where the dot denotes differentiation with respecktand
V=V(K). This latter equation is readily integrated to give

_1K,dec2K2+clK+co 53
T4 [2E-V)¥7 ®3

One may add an arbitrary amountkf (rotation to this(but
not a, or a,, since these move the originTo get particular
solutions from Eq(53), we need to specify the direction of
the deformation in théo, w) plane, i.e., the ratid u/S.0.

It will prove convenient for our further analysis of EG3),

to reparametrize théo, u) plane introducing new coordi-
nates(\, £) via

13

3

L. (54

&ou)=c %
A point P with coordinates ¢, ) # (0,0) lies on a unique

scaling orbit, which can be specified by tpecoordinate of

its point of intersectionP’ with the o=1 line; this is the

value of¢ for P. One can get now fror®’ to P by scaling by

\ (see Fig. 12 The obvious advantage of these new coordi-

nates is that the scaling orbits are constatibes. The de-

pendence om of an arbitrary quantitys(\,£), with length

dimensiong, is S(\,£) =\95(&), where we denote by a tilde
the remaining function of. It follows that 9S/dx =g\~ 1S

No,uw)=0"

“Notice, however, that Eq48) is only valid when the center of
the loop is at the origin.

PHYSICAL REVIEW EG65 031801

so thaté . S= q>\*1556>\+>\q75' 6.&, the prime denoting here
differentiation with respect t@.

We verify that Eq.(53) gives e~h for scaling. Equation
(51), written in terms of(\, &), gives

Co=6N"16.\,

Ci=A"2(16E+2£%) SN+ N"Y8E' +2£)5.£, (55

Co=2\ SESN+2N"26.¢,

whereE(\,£)=\"*E(¢) is the energy that guarantees clo-
sure of some particular configuration. An incremépt cor-
responds to scaling by a factor oftld_\/\, hence the cor-
respondinge should bee= (5 \/\)h. Puttings.£=0 in Eq.
(56) one determines the for pure scaling, then computing
d/dK [(K?— w)/K'] one finds that th&® andK? terms in
the numerator cancel and one recovers the integrand in Eq.
(53) with just the rightc’s.

Integrating the first of Eq(37) with respect todl, and

using
Azif dlh, (56)
2
we get
F=uL+20A, (57)
from which
SF=Lé pu+udL+2A8,0+2068.A (58)

follows. On the other hand, direct variation Bf Eq. (2),
gives

SF=—udéL—osA. (59
Comparing with Eq(58) we find
LSu+2A8.0+308,A+2us5.L=0. (60)

For a length-preserving deformatiod,L =0, and Eq.(60)
reduces to
LS. u+2A8.0+308.A=0. (61)

We note in passing that the various differential operators we
have defined above are related in the following way:

[DEi(e)]'=2K'DE3"(e),
K[DE(e)]' =2K'DEY)(e)+K'DE4(¢),
DEs(e)=K'[DE® ()]’ —K"DE®(¢)
— 1(K*=u)DEy(e),
K'DE,(e)=2[DEs(€)]’.

It follows that any perturbation that satisfies E§0) will
necessarily satisfy all the higher-order ones.
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F. Perturbing the circle
Referring to our cylinder model of the lodpee Sec. Il i
we consider here the following thought experiment: we start - - -
with the loop “filled” to capacity, i.e., in a circular configu-
ration, and start deflating it by removing fluid from its inte-

rior while keeping its length fixed. We would like to follow
the evolution of its shape, for distinets, and derive the
limiting form of the bending energ¥ as a function of the
areaA near the circular extreme. Going beyond the cylinde
model, we would also like to allow for self-intersections—
what happens if one just keeps subtracting area?
Consider the following perturbation to a circle of radius SE
R:

FIG. 13. Evolution of an=2 configuration under deflation
(sketch). The central region in the third configuration, as well as the
rbig circle in the fourth one, contribute negative area.

Notice that, near the circle,

2 2
ﬁ——ﬁ(n —1)——0',
p(0)=R,[1+asinngd)], a<l. (62)
in agreement with Eq(59) (for SL=0). As A keeps dimin-
The line element and curvature in these coordinates are ishing, our numerical analysis shows that the configurations
24207 pis start ser:f-intersec'ging, glivin% :;s_e ';:o_ relgéonNs c_Jf nre]:gativhe
_[2i:2 _ area—this scenario is sketched in Fig. 13. Notice how the
di=vp +p7dd, K (p=+po)~e’ ©3 winding numbers(+1 for the little circles,—1 for the big
] o ) one add up correctly to match that of the circle to which this
where the dot here denotes differentiation with respeat to configuration can be continuously deformed. This observa-
Substituting Eq(62) in the first of Eq.(63), integrating over s points to a feature of the abowe=1 limiting configu-
¢, and requiring the total length to be equal to the initial 51ions already alluded to in the introduction; the big circle in
value 27R, we find the configuration of orden actually winds around itself
—1 times. For example, to move from one lobe to the next
+0(a®), (64)  along the loop, in th@=3 configuration, one must travel an
angle of 47/3, not 2#/3 [a glance at Fig. @) reveals how
this comes abolitThe limiting shape in this direction then is
a circular one, with radius slightly less th&i(n—1) andn

n2a?

R,=R 2

1—

while for the curvature the second of E§3) gives

1 little circles attached to it. In this extremé&(A) is domi-
K= §[1+ a(n®>=1)sin(nd) ]+ O(a?). (65  nated by the little circles and assumes the limiting form
2
We substitute the above expression in the differential equa- F(A)= Amn ! , (69)
tion for K, Eq.(7), and demand that it be a solution@{«). 1+(n—1) A
The constant and(«) terms, respectively, give mR?
1-R*%u—R%c=0, 2n*+(R*u—5)n*+3-R?u=0. where the area is counted with the appropriate multiplicity

(66) due to the windinde.qg., plus three times the area of the little
circle, minus twice that of the big one, in time=3 case. A

Notice that the first relation is simply the statem&t{tl/R) sketch ofF(A) that interpolates between Eq§8) and (69)
=0 while the second also follows from E@9) with € as in is given in Fig. 14.

Eq. (62). For this perturbation the differential equation can-

not be satisfied t@(a?). From Eq.(66) we get
V. CONCLUSIONS

o= %(nz—l), = —12(3—2n2). (67) . In this paper, we have stud_ied the equilibrium configura-
R R tions of elastic planar loops with constant area and constant
, ) ) length. The condition of closure of the loop gives a discrete
During the deflating process, boshand u will vary as func- gpecirum of configurations, lying along several branches in
tions of A. The point in theo-x plane corresponding to the arameter space. We focus on non-self-intersecting loops
configuration will trace out an orbit, starting a3t the zabovethat inflate to a circle when the enclosed area is increased,
points (for eachn), all of which lie on the lineR*c+R°.  gye to their relevance as a toy model for two-dimensional
=1. ForF andA we find membranes. For this branch, starting from analytical expres-
sions in the relevant limit cases, we obtain a reliable sketch
+0(ad), of the dependence of the energy on the area. The equation
that determines equilibria-connecting perturbations led us,
rather unexpectedly, to theidentities, Eq(37), from which
+O(a?). (69) a geometrical construc;ion qf tr(eonst_raineid elastic_loop
followed. In turn, these identities permit the expression of an

21 1
_ T2 4N2.2
F R 1+ 2(h 1)«

1
Aszz[l— E(nz—l)a2
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APPENDIX A: SOME USEFUL FORMULAS

Under an infinitesimal deformation of the loop along the
normal, X— X+ 8§ X=X+ ¢(1)f, we find

14
nR2

FIG. 14. Bending energf vs areaA/wR? for n=2,3,4,5(in-
terpolation. All curves touch at the point on the right, which cor-
responds to a circular configuration, giving rise to bifurcation. The
vertical asymptotes are at1/(n—1).

equilibrium-connecting normal deformation in terms of the
curvature and the appropriate perturbations of the para
eters.

In future work, we plan to address the important issue o
the stability of the equilibrium configurations. In light of the
complicated structure of the fourth-order differential operator
appearing in Eq(29), this appears to be a nontrivial task in
the general case. It is indicative of the intrinsic complexity of
the question that even the relatively simple case of the figure
eight configuration requires the elaborate analysigshf

Another interesting issue is the analysis of thermal fluc-
tuations in this model, which would provide an analytical
counterpart to the study of Ref22] of two-dimensional
vesicles, using Monte Carlo techniques. In particular, there is
a similarity between some of the configurations of Fig. 2 of
the above work and the configuration of FigaBin this
paper. It is also interesting to note that the shapes of Fig. 8
closely resemble a top view of the starfish vesicles of Ref.
[23], which are almost planar. Finally, configurations similar
to ours appear irf24], where our problem has been ap-
proached from a functional analytic point of view and impor-
tant existence results have been derived, as well §25h

After the completion of this paper, we set out to study its
most natural extension: geometric models for loops in space.
We became aware of a large body of literature that explores
the interconnections among hierarchies of functionals of the
geometry of a curve, their corresponding generators of rigid
motion and integrable systems, such as the KdV equation.
We have found Ref[26] an excellent point of entry to the
subject. We also realized that oatidentities can be obtained
by adapting the cylindrical coordinates used by Langer and
Singer[27] in the analysis of buckled rings. We expect that
these explorations, apart from their intrinsic interest, will
contribute to a deeper understanding of two-dimensional
membranes.
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3, L Referring back to Fig. 1, we notice that the ai®an-
K"=- KK+ 5K, closed by the orbit of the phase point, for some given,
3 10 15 5 E, is given by
m_ —k5_ "~ 3_ "7~ 2 M__ E Kmax
APPENDIX B: AVERAGES Differentiating with respect ter and using the fact that the
integrand vanishes at the endpoints, we find
Consider the quantitied/,, defined by 9S
L K dK Op=2—. (B6)
Wn=J 0K“d|=2J’ "k (B1) do
0 Kmin Length and bending energy per full oscillation also follow by
L, here is the length along the loop corresponding to one fulkimple differentiation
oscillation of the particléwe will useF later with a similar S S
meaning. W, is then (proportional t9 the average oK" Lo=2E: Fo=4£- (B7)

along the loop. Starting from
Notice that these quantities are defined whether or not the

K
f maxdiK(K“K’)=O, (B2) closur_e condition is sa_tisfied, i.e., they are _functions of the
Krmin three independent variables u, E. Combining (B5) and
one may derive the recursion relatif@g] (B4) above, we get
1 w o 4 1 1
—g(n+2)Wn+3+ Z(n+1)Wn+1+ Z(2n+1)Wn S:§EL+ E,U,F‘f‘ EO’@. (B8)
+EnW, ,=0, n=0,12..., (83) One may regard,, Oy, andF, as new coordinates in the

. o _ space of(not necessarily closgaonfigurations—the change
which permits, in principle, the calculation of the average ofof coordinates is nonsingular, except for some special points,
any power series iK, for a given equilibrium configuration. and is given by a Legendre transform. Then the closure con-
In particular, dition, Eq.(11), is restricted to the configurations that lie on

Wy=uW;+ oWy, W,=3W,+20W;+5EW,. (B4) thely-F, plane, with®,=27/n.
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