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Dislocation loops in overheated free-standing smectic films
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Static and dynamic phenomena in overheated free-standing smefitins are studied theoretically. The
work is based on a generalization, introduced recently by the authors, of de Gennes’ theory for a confined
presmectic liquid. In this approach, smectic ordering in an overheated film is caused by an intrinsic surface
contribution to the film free energy and vanishes at some temperature depending on the number of layers. Here
the theory is further generalized to study the dynamics of films with planar inhomogeneities. A static applica-
tion is to determine the profile of the film meniscus and the meniscus contact angle, the results being compared
with those of a recent study employing de Gennes’ original theory. The dynamical generalization of the theory
is based on a time-dependent Ginzburg-Landau approach. This is used to compare two modes for layer-
thinning transitions in overheated free-standing films, namely, “uniform thinning” versus nucleation of dislo-
cation loops. It is concluded that the nucleation mechanism dominates provided there is a sufficiently large
pressure difference arising from meniscus curvature. Properties such as the line tension and velocity of a
moving dislocation line are evaluated self-consistently by the theory.
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[. INTRODUCTION smectic ordering to an external-field-like coupling term of
constant magnitude, which is more appropriate for a film
Free-standing films of several smecfidiquid-crystalline  confined between solid walls. This has the consequence that
compounds can be heated above the bulk smectic disorderirgweak degree of smectic ordering in a thin film is predicted
temperature without immediately rupturing, and instead ar¢o persist up to arbitrarily high temperatures. In order to in-
found to undergo successive layer-by-layer thinning transiduce layer thinning, recent studies based on this theory have
tions as the temperature is increagéd 6]. The persistence included the effects of a pressure differentP associated
of smectic layering in an overheated thin film is usually at-with curvature of the meniscus at the film bordé0,14.
tributed to enhanced ordering associated with the free succording to the latter studies\P must be of a sufficient
faces of the film, as is known to occur in other contdts  magnitude to cause layer thinning, although the layer-
There is not yet, however, a clear consensus on the mech#iinning transition temperatures are predicted to depend only
nisms by which layer thinning occurs. According to one setlogarithmically onAP. The modified version of de Gennes’
of theories[8—11], thinning takes place when the smectic theory proposed by the present authidrs| utilizes a differ-
layer structure throughout the middle of a film vanishes. Inent form of the surface contribution to the free enefsyg-
an alternative theor}12], supported by experimental studies gested by older theories of wetting6]), which is quadratic
[13], layer thinning occurs by spontaneous nucleation of disrather than linear in the surface order parameter and which
location loops prior to the melting of the layer structure inrestores smectic melting at high temperatures without requir-
the film interior. ing the pressure term.
One of the key experimental observables is the variation According to the theory of Refi11], reviewed here in
of layer-thinning transition temperaturég.(N) with the  Sec. Il, the free energy per unit area of an overheated smectic
number of film layersN, which is found to be well fit by the film exhibits a discrete sequence of metastable local minima,
power-law relationN«t™”, wheret=(T.(N)—Ty)/Ty, »  whose depths decrease with increasing number of layers up
~0.70+0.10, andTy is close to the bulk transition tempera- to some finite maximunN;, depending on temperature. At
ture. Alternative mathematical relatioi40,12,14 and an or slightly below the temperature for which the free-energy
upper bound11] for T.(N) have been derived from the dif- well atN,, vanishes, it was assumed in Rgf1] that the film
ferent theories. With appropriate fitting parameters, these alwould spontaneously thin down to a smaller thickness. This
ternative relations all turn out to agree well with the power-assumption makes no statement on “how” layer thinning
law expression and, thus, are not able to distinguish betweewnccurs, which is the question addressed in this paper. We
the various mechanisms. proceed by generalizing the theory to allow for inhomogene-
In this paper, we examine further the connections betweeities in the film thicknesgSec. Ill) as well as the dynamical
the different proposed mechanisms of layer-thinning transievolution of the film, using a time-dependent Ginzburg-
tions. As in several recent work40,12,14, our analysis is Landau approactiSec. 1V). In the static limit, the theory
based on de Genngs5] phenomenological Landau theory provides a description of the contact angle between the film
for a “presmectic” film of a fluid exhibiting asecond-order and meniscus, which we compare with the recent experimen-
bulk smecticA to nematic (N) transition. More precisely, tal and theoretical studies of Picamt al. [14]. Using the
we employ a generalization of that theory recently proposedlynamical theory, we investigate the nucleation of disloca-
by the present authorsll]. One drawback of de Gennes’ tion loops between film domains of different thicknesses and
original model stems from attributing surface-enhancedhe subsequent growth of the thinner region of the film,
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for the film to achieve a state of lower free energy. The
results are mapped onto the conventional nucleation picture
in which the activation free-energy barrier to nucleation de-
pends on both the difference in well depths of the homoge-
neous film regions and the line tensi&nof the dislocation 03
loop. Here we calculate the line tensiBnactivation energy, @
and velocity of a growing loop self-consistently in the dy- 5-&4
namical model, and evaluate their dependence on tempera=
ture and number of layers. It is found that thinning via nucle-
ation of dislocation loops preempts the uniform-thinning
mechanism provided the pressure differedd®, due to the
meniscus, is sufficiently large. Further discussion of our find- 7
ings, their relation to those of previous studies, and the fact
that they are restricted to smectic systems with continuous a  -08 5 . P . 0 "
opposed to first-order bulk transitions, are discussed in L/d

Sec. V.

which is contrasted with the “uniform-thinning” mechanism 0.0 \/ \/ VY

-0.1

-0.2

-0.6

FIG. 1. Dimensionless free energy per unit afd&C vs thick-
ness L/d calculated using scaled parametdng=0, r,d/C=
—-0.2, gd¥C=0.01, andrd?/C=0.05.

In this section, we review the generalized de Gennes
theory in the case of a uniform planar free-standing smectiordering solely to the surface field , with r,=0[10,12,14.
film: further details can be found in Refll]. The film is  These studies have also set the paramgte®, thereby re-
modeled by a thin liquid slab bounded by two parallel sur-stricting consideration to the overheated regifeT*. Un-
faces located at=*L/2, whereL is the film thickness. The der the conditiorg=0, an analytic solution of the theory is
degree of smectic order in the film is represented by theasily obtained15]. It is found that the smectic amplitude
complex order parameteW(z), where the real part of (z) decays exponentially with distance from the surfaces at
W (2)exp(go2) describes spatial modulation of the density. z= + /2 and tends toward a small value in the middle of the
Here qo=27/d, with d being the unstressed smectic layer film. The phasep(z) is nonzero when the film thickness

Il. THEORY OF UNIFORM FILMS

spacing. The order parameter is parametrized as differs from an integral multiple ofl, and exhibits its largest
_ gradient|V,¢| in the middle of the film. One drawback of
W(z)=y(z)exd —id(2)], (1) this model, a consequence of neglecting the quartic tpgth

in Eq. (2), is that the resulting equilibrium free energt)

and the order parameté#(z) throughout the film diverge on
approaching the bulk transition temperatiiig, as is shown

by the expressions for these quantities given in previous

where ¢(z) is the amplitude andb(z)=qyu(z) is a phase
proportional to the layer displacememtz).
The Landau free energy per unit area of the filb7] is

taken to be work [10,12,14,1%

1 (L2 1 Ir1 Ref. [11], smectic ordering in.an overheated film is
f= —f dZ ry?+ 5gy*+ C(V )2+ CyA(V ) attributed to a nonzero valug<0, with h;=0. In the fol-

2) -1 2 lowing, we refer to this as thes model. In this case, the

1 Euler-Lagrange equations following from E@) always ad-
+ 1 JYA(LI2) + 2~ LI2) ] hJ ¢(LI2)+ y(—L/2)], ~ Mita trivial solutionys(z) =0, representing a nematic state of
2 the film, which is the only solution existing at sufficiently
(2) high temperature. The numerical solution of those equations
is described in Refl11] for the general casg+ 0. The varia-
whereC is an elastic constant artt,,r are coupling con- tion of the equilibrium free energy(L) typical for this
stants associated with surface interactions. The bulk freenodel is depicted in Fig. 1. The free energy exhibits a set of
energy density (?°+gy?/2)/2 in Eq. (2), with g>0, is  Wwells with centers situated approximately at=Nd and
strictly applicable only to a system exhibiting a second-ordedepths diminishing wittN, while f(L) vanishes over wide
smectic-nematic transition. We exprassa(T—T*), where ranges ofL between the wells. In the latter ranges lof
T* denotes the bulk mean-field transition temperature. Eulewheref(L)=0, the order parametef(z) is identically zero.
Lagrange equations determinigigz) and ¢(z) are obtained Although not discernable in the figure, the slope of the free
by functional minimization of Eq(2) [11]. In addition, itis  energy smoothly approaches zero at the limits wHete)
assumed that the film contains an integral number of layers+0. In the temperature rangd@<Tg, where T=T*
N, which fixes[15] the surface value of the phaggL/2) +r§/(Ca), f(Nd) for all N is smaller than some negative
=a(L/d—N). threshold depending oM. On the other hand, for tempera-
Following the original work of de Genndd45], several turesT>T,, wells with nonzero depths occur only fot
previous studies of surface-enhanced ordering of free=N,,, whereN, is finite and depends oh This in the case
standing smectic films using this theory have attributed sucln Fig. 1, whereN.,=11. It was argued in Ref11] that the
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temperature at which the free-energy well fo=N.,d dis-  terms, consistent with de Gennes’ more general theory of the
appears, which we will call the “maximum temperature” for N-A transition[23], and expanding the solutions of the cor-

an N¢-layer film, is an upper limit for the layer-thinning responding Euler-Lagrange equations ¥orandn in powers
transition temperatur€.(N,). Films of allN<N, can still  of the gradients of.. These elastic effects, however, are also
exist as metastable states and, in principle, thinning couléxpected to be small compared with those frprim the case
then occur to any one of these states. In contrast, we note thgf an overheated film due to the weak degree of smectic
the original version of de Gennes’ presmectic modelprdering in the middle of a film. This is also consistent with
[10,12,14,1% with rg=0, predicts that a weakly ordered arguments given in Ref10]. (We note that the model free
smectic state of the film exists and is more stable than thenergy considered in Ref14], following earlier work in
disordered state at all temperatuies T*. Ref. [21], included an additional term attributed to the en-
The following scaling of the's model free energy is used ergy of edge dislocations, but this contribution was found to
in Fig. 1 and in subsequent analyses. On expressing distancggnish under integration and plays no role in film statics
in units of the layer spacind, the free energy in Eq2) can  [22]) Finally, higher-order gradient terms (i.e.,
be expressed &§L,r,g,rs,C)=(C/d)f(L/d,r,g,rs), where (VL)% (V2L)? etc) should also occur in the free en-
r=rd?C, g=gd?C, andrs=r.d/C. While an additional €rgy F, but these will be omitted here on assuming that the
scaling transformation of the order parametercould be ~ gradient and curvature df are small20].
applied to factor out the paramet@ifrom f, we have found The functionf(L) may differ fromf(L) of Eq.(2) due to
it convenient for numerical analysis to set this at taebi-  the existence of a positive pressure differentB =P,
trary) value g=0.01 and leave the scaling 6fin the form  __ Pliquia 8Cross the surface of the meniscus surrounding the
indicated. film. Such a pressure difference would produce a ghjitin
the chemical potential of the film molecules from their value
at coexistence with the vapor phase across a planar interface

III. NONUNIFORM FILMS: STATICS [24,25. This leads to

In order to study the growth of dislocation loops and as- ~
sociated phenomena in free-standing films, the theory of Sec. f(L)=f(L)+APL. (4)
[l should be generalized to account for inhomogeneities in . . ,
the film thicknesd.. Here we treat this problem by a Landau ' N€ main effect of the\P term is to shift the depths and to
approach of expanding the film free energy in powers of® slight extent the Qg)smons of the smectic minima of the
gradients ofl, yielding an “effective interface” theory19].  effective free energyf(L) with respect to those of(L),
We will assume that the film is symmetrical about its mid- Possibly eliminating minima occurring at large{10].

~ 1
f(L)+5D(V,L)2), ®

plane atz=0, so that its top and bottom surfaces do not vary Here we will use the static free enerffyqg. (3)] with T(L)
independently. To lowest order in gradients lgfthe total given by Eq.(4), to analyze the mensiscus shape. This
film free energy is then given by closely follows the analysis of Ref14], although the latter
work was based on de Gennes’ original model fgL),
F:f d2r while here we will employ the g model with g#0. The
L profile of the meniscus is found by minimizing E@) with
respect td_, subject to the boundary condition that the bulk
where the horizontal or in-plane direction is denoted of the film has a thickneds=H~Nd. Assuming that. var-
having Cartesian components,y), V, =(V,,V,), andL ies only in thex direction andD is independent of, the
=L (r,) is the spatially varying film thickness. The function resulting Euler-Lagrange equation is
F(L) is the equilibrium free energy per unit area of a film of

uniform thicknessL: as discussed shortly, this may differ Dﬂ—ﬁ—?zo 5)
slightly from the equilibrium free energiy(L) obtained from dx¢2 dL
Eqg. (2).

One contribution to the coefficie® in Eq. (3) is given  The first integral of this equation, with the boundary condi-
by y/2, resulting from the liquid-air interfacial tensiopof  tion L(—«~)=H, is
the free surfaces bounding the film. While this surface con-
tribution could vary withL due to changes in the degree of D/(dL\? . ~
smectic ordering, such effects should be small compared 21 dx =f(L)—f(H), ©
with that due to the liquid-air density difference across the
interfaces. On settindd = y/2, the free energy in Eq3)  which has the implicit solution
agrees with the small{, L) limit [20] of that used in Ref.
[14] to analyze the shape of the meniscus at the edge of a B \F L T
free-standing film. In addition, contributions @ arising X= Eﬁ_(o)dL [FLD)=F(H)]
from horizontal gradients of the order parameteand nem-
atic directorn in the film interior may be present. In prin- Here both the originx=0 and the corresponding value
ciple, the latter contributions could be determined by genert (0)>H are arbitrary. Related considerations have been ap-
alizing the free energy of Eq2) to include such gradient plied to describe the shape of liquid droplets on a solid sub-

(7)
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FIG. 2. Thickness of the meniscus vs scaled in-plane distance F!C- 3- Squared meniscus contact angfgin units of C/yd as

x/Rq., Using thef (L) function of Fig. 1. The solid line corresponds @ function of dimensionless temperature variatelé/Co: (T—T*)
to AP=0 while the dotted line correspondsAd® = 0.05C/d2. The for various number of layer, calculated in theg model with the

origin x=0 is such that, for both curvek(x=0)=6.000 01. same parameters as in Fig. 1.

strate[26,27]. However, the description based on the abovederived some time ago in the case of soap fil@%28. Note
equations is only valid for smalV , L|; deep in the menis- also that Eq(8) predicts growth off with increasingL for
cus, higher-order terms iW, L [20] may be needed for an AP>0. The meniscus curvatureis found to be
accurate treatment.

Figure 2 shows the solutions to E) for the rg model do dedL de* AP
using the same parameters as in Fig. 1. Two cases are shown, K=dx _dLdx _dL _ 7 (10
the solid line corresponding tAP=0 while the dotted line
corresponds ta\ P=0.05C/d?. The reduced unit foAP is o
consistent with that forf discussed at the end of Sec. II. Which is just the Laplace law.
Following from that scaling and Eq7), the horizontal dis- Using the original de Gennes modg<rs=0) free en-
tance x is expressed in units oR..=dyDd/C.) In both eigy, we find that the contact anglg divergesTapproaches
cases, the meniscus profile is seen to be fairly smooth, rathdr  [fom above, whereas the experimental results of Refl
than exhibiting the clear separation of distinct steps of heightdicaté regular behavior in this region. The calculations of
~d expected 21,25 at low temperatures when the smectic- Ref-[14], based on the same model but fixiggL./2) instead
A phase is stable in bulk. The smoothness of the mensisc( s, Predicted a different anomaly in the contact angle,

profiles in Fig. 2 is a consequence of being in the overheateBaMely, thahy, vanishes ag —T* for all N. The divergence
regime. of the contact angle near the bulk second-order transition in

For T<T,, the functionf(L) tends to a nonzero value the original de Gennes model is removed by setirg0.
f () with increasing_. The latter represents the contribution HEré we present results @, using ther; model, although
of surface-induced smectic ordering to twice the interfaciadualitatively similar results are ngt.ameq using=0 with
tensiony of the liquid-vapor interface of a semi-infinite lig- Ns#0 a”dgip- Figure 3 showdy,, in units ofC/(dy), as
uid. Neglecting small oscillations of(L) aboutf(=) and a function ofro(T—T*) for various number of layers|,
defining the meniscus slope anglé2dL/dx, Egs.(6) and  using the free energf(L) depicted in Fig. 1. It is seen that
(4) lead to 0., remains nonzero on approaching the bulk transition tem-
perature and increases with decreasihgn agreement with
experimen{14]. We also find that the contact angle vanishes
above the maximum temperature for a given number of lay-
ers. This is in contrast with the model of R¢l4], which
On assuming thald = y/2 and extrapolating the function in Yyields a small but nonzero contact angle for arbitrarily large
Eq. (8) down toL=H, we obtain for the contact angle,,  temperature and film thickness. However, as seen in Fig. 3,
between the meniscus and film, the maximum iné,, as a function of temperature is fairly
insensitive to the number of layers, which does not accord
, 1 with the experimental results.
em:;[f(w)_f(H)]' ©) Comparison of Fig. 3 with the experimental data] for
0§1 indicates that the scaling uni@/(dvy) should be of the
independent ofAP. This result agrees with that derived in order of 10 2. TakingD = y/2, we then estimate the in-plane
Ref.[14]; we note that essentially equivalent relations weredistance scale unit to bd&s.=dDd/C~(10//2)d~2

1
02=5[f(oc)—f(H)+AP(L—H)]. (8)
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X108 m, where we have used the valde=3x10 ° m 7
[22]. This estimate will be utilized in calculations described
in the following section.

IV. DYNAMICS OF NONUNIFORM FILMS 6 -

A. Time-dependent Ginzburg-Landau equation

L/

Now we extend the theory of the preceding section to
account for the dynamics of thickness variations. We will
focus on dynamical processes with large enough characteris
tic times to neglect inertial effects. Although the details of
relaxation are undoubtedly quite complicated, here we will
proceed by assuming the simplest possible dissipative dy-
namics forL, based on a time-dependent Ginzburg-Landau 4
(TDGL) equation[29]. This equation is appropriate for de- Xorr  (arbitrary units)
scribing the dynamics of a nonconserved variable, wiich

can be regarded in the case of a film open to the exchange of FIG. 4. Schematic picture of the film thickness variation for a
molecules with the meniscus. The TDGL equation is step separating five-layer and six-layer domains. The horizontal co-
ordinate is eitherx or r, , corresponding to one-dimensional or

two-dimensional motion of the kink, respectively. The width of the

i

2 L

L— —|. 11 kink is represented b R.
Sy (1) p 'y

oL oF
Ui

Here 6F/ 5L is the functional derivative of the film free en- P(=)=L2, (14D
ergyF, given by Eq(3), providing the thermodynamic force \yhere the prime symbols’) denote derivatives o> with

that drives the system toward equilibriutrs time, andz is  respect to its argument. The thicknessgsand L, are at
a kinetic coefficient that we will assume to be constant. As i, .1 inima off(L). Usually, we will take these to be ad-

the preceding section, we have assurbet be independent | . i ~
of L. jacent minima, withL,;~(N—1)d, L,~Nd, and f(L,)

Two opposing mechanisms for thinning of an overheated<f(L>).
smectic film are “uniform thinning”(i.e., with V, L=0 for Equation (13) has a well-known mechanical analogy
all r,) and via nucleation of dislocation loops. If the initial [31,32. It can be considered as the dynamical equation de-
film thicknessLo=L(t=0)~Nd is uniform and at a local scribing movement of a particle of “mas® in a medium

minimum of the shifted free enerdy then it will remain so with “frictign coefficient” 7v.. and subject to a “potential

indefinitely according to Eq11). (This picture neglects pos- energy” —f(L). That equation has no stationary solution

sible disruption due to thermal fluctuations, which we ne-(v..=0) unless the depths of the minimaT{fL) atL, and

glect in this papey.Under small displacements of the thick- L, are equal. This follows by considering the first integral of

ness from the initial valug, the film will be restored to that Eq. (13), namely,

initial thickness. Hence uniform thinning can only occur at

the maximum temperature of @&ftlayer film, and then only

if AP>0 [30]. dx
To examine the growth of dislocation loops, for simplicity

we first consider a one-dimensional solution of Etfl), in  whereX=x—uv..t is the argument of. Integrating Eq(15)

the form of an infinite straight-line kink parallel to tlyeaxis ~ over X using the boundary conditions E(.4) yields

separating domains of thicknesdesandL, and moving in

the x direction, illustrated in Fig. 4,

1 ~
§D(¢’)2—f(q’) == v (P')?, (15

D . ~
U:X::E[f(l-z)_f(l—l)]a (16)
L=®d(X—v.t), (12
where the quantitf is defined as
where the functiond and kink velocityv ., are to be deter-
mined. Substituting Eq12) into Eq.(11) yields the ordinary EEwa dX(d')?=D de¢)q), (17)
differential equation e Ly '

’ af (D) Equation (16) shows thatv.. is proportional to the free-
De"+ .. @' — —7—=0, (13 energy differencd (L,)—F(L,) and, hence, vanishes if that
difference is zero. As discussed in the following sectién,
with boundary conditions can be identified with the line tension of the dislocation loop.
For any functionf(L) characterized by two unequal ad-
d(—)=L4, (149 jacent minima, as is the case here, there should be a unique
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solution of Eq.(13) for the velocityv..>0 and function® sociated with a unique “critical” value of the loop radits

describing the profile of the kink, which moves toward the We have found it more expedient, and of more general rel-

region of thicknesd., in order to eliminate the domain of evance, to solve the full time-dependent partial differential

higher free energy. Under conditions where the higher miniequation(18), using a standard subroutif®AG FORTRAN

mum of T(L) at L, vanishes and becomes a point of zeroDO3F’_Cl?- Our results reported below in Sec. IV C have been

curvature, as happens in the present model at the maximu@ptained from this numerical analysis. However, we have

temperatures, the velocity,. and kink shape may become found that those results are very well reproduced using the

nonunique. In other contexf81,33,34, this is called a state following ansatz forl(r, ,t), having the form of a moving

of marginal stability. Here, we always finGec. IV O that ~ Kink:

uniform thinning occurs under these conditions wheR

>0 [30]. L(r.,)=®[r, —R(t)]. (21)
The solutions of the one-dimensional equation ELB)

turn out to be relevant in the more general two-dimensionaf\s discussed some time ago in a general context by Chan

case, as discussed in the following subsection. [35], this form is not an exact solution of the two-
dimensional equatiofil8) but should be a good approxima-

tion if the kink radiusR is much larger than its widtAR. On
substituting Eq(21) into Eqg.(18) and approximating &/ by

_If a dislocation loop separatiny- and (N—1)-layer re-  1/R we arrive again at thene-dimensionagquation(13),
gions is nucleated, initially it will be of finite size. According pyt with v, defined ag35]

to the conventional nucleation picturésee, e.g., Refs.

[12,21,23 for the case of smectic filmsthe loop then will dR D1

either expand or collapse depending on whether its initial vx=a+ TR
radius is greater or smaller than some “critical” value. Here K
we are interested in determining the critical radius, the assao- . . .
ciated activation free energy, and the subsequent dynami::)glhe constant., is the asymptotlc[ R(t) —oe] velocity Of. a
evolution of the loop. oop, and dependgor given D and ) only on the function

We assume that the dislocation loop is a circle, as obf(L) and its chosen pair of minima.

B. Nucleation of dislocation loops

(22)

served in recent experimeni$2,13. Using in-plane polar Our numerical analyses of the original two-dimensional
coordinates, with origin at the center of the loop and radiaequation(18), starting from initial trial profiles mimicking
distance denoted, , Eq.(11) becomes the expected kink structure, show that both the kink shibpe
in the moving coordinate frame and the right-hand side of
aL 1 9 JL ot Eq. (22) remain practically constant as the kink moves. Thus,
Ui DE E( re E) —o0l (18 while the results to be reported in Sec. IV C are all obtained

from the numerical solution of Eq18), the one-dimensional

The associated boundary conditions are mapping described above usually is an excellent approxima-
tion and provides, as discussed next, a useful framework for

aL(r,) interpreting the results.
ar, =0, (199 The critical loop radiusk. corresponds to that value &f
r =0 for which dR/dt=0. From Eq.(22), this yields the relation-
hip betweerR; andv.,,
L(2¢)=L,~Nd. (195 ship betweerR; andv
The film thickness in the center of the loop rgt=0 will R.= D _ (23)
usually be close to the value;~(N—1)d. The change in MV

free energy due to formation of the loop is ) )
Using Eq.(16), this becomes

1 - ~
AF= §J d?r,[2f(L) = 2f(Lo) +D(V,L)’]

> oL \?
=17 er_rJ_ (97 .
0 + One recognizes that this relation is consistent with standard
In the case of a stationary solution of E@8), corresponding arguments of nucleation theory. On approximating the inte-

to a “critical” nucleus, AF is the activation free energy. ~ 9rand in Eq.(20) by the constantf(L,)—f(L;) inside a
The profile ofL(r,) describing a dislocation loop should Circle of radiusR—AR/2, neglecting the integrand far,
have a kink structure, as in Fig. 4, widL/dr, ~0 every- >R+AR/2, and using Eq(15) within the kink region of
where except within a narrow region of widftR centered Width AR, one finds forAR<R that the free-energy change

around some value, = R. Numerical solution of the station- IS given by the standard parabolic foffi23]
ary limit of Eq. (18), with (dL/dt)=0 and the boundary _ 5
conditions Eq.(19) is difficult, precisely because this is as- AF=—7Rf(Ly) —f(L,)]+27RE. (25

E

=. 24)
f(Ly)—f(La) (

Rc

2f(L)—2f(L,)+D (20)
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The first term in Eq(25) is the decrease in film free energy 10

due to the differencd(L,)—T(L,) [36] while the second
term is the free energy that has to be overcome due to the

line tension of the loop. Maximizing\F with respect toR 0
yields the critical radiusR; given by Eq.(24). The corre-

sponding activation free enerdy,.;=AF(R.) is 7
=

wE? %'10
Factes———=——=7R:E. (26) <

f(L2)—f(Ly) 1

The expression foE given earlier in Eq(17) agrees with 20

a familar mean-field relation for the tension of a stationary
interface in terms of its profile shap@7]. Here that relation
also applies to a moving kink of sufficiently large radius, 3
under the assumptiotsupported by our numerical studjes o2 4 6 SR/R 01z 1416 18
that the profile shape is preserved during its motion. %

One final point to note concerns the physical interpreta- F|G. 5. Free energF (reduced byDd?) of a dislocation loop
tion of the equation of motion Eq22) for R(t). This equa- in a 6-layer film vs radiusR/R,. Crosses: numerical results ob-
tion is equivalent to the balance of thermodynamic and distained from Eq(20) and the solution of the dynamical equation Eq.
sipative forces per unit length of the dislocation line, (18) for the samef (L) andrsmodel parameters as in Fig. 1, with

AP=0. Solid line: fit of AF with the parabolic function in Eq25).
L(dA_F) . ,]E(d_R The best fit yield€E = 0.54/DCd andF(L,) —F(L,) = 0.098/d.
27R\ dR D\ dt

=0. (27

value v.,,=0.18/(7Rs). This numerical calculation sup-
This yields Eq.(22) on using Eqs(16) and(25), and agrees ports the ansatz Ed21) for a two-dimensional kink with
with the model of dislocation-loop dynamics described byconstant., related toR(t) by Eq.(22). Analogous fittings to
Geminardet al. [21], on identifying the mobilityu used by ~ EGs.(25 and(22) of the numerically determinedF (R) and
these authors with the quantifyd/( »E). Note that ifv.. is kink radius have been carried out for all our calculations,
known, thenR(t) at an arbitrary time can be found by solv- showing comparable precision except very close to the maxi-

ing Eq. (22) [35], which gives the relation mum temperature of aN-layer film, where uniform thinning
is found to occur. As a further check, we find very close
1 (R R’ 1 -R, agreement between the values of the line ten&abtained
t=to=—- dR,R’ - U—( R=Ro+ReInig—2" ) from the fitting to Eq.(25) and by direct evaluation of Eq.
=7 Ro c 77 0 C(28) (17) using the numerically determined kink profiles.

Only recently, in Ref[13], have the dynamics of disloca-
where R, is the radius at an arbitrary initial timg,. The tion .Ioops in overheateq .fillms peen studied experimentally,
study of dislocation-loop dynamics in RéR1], performed ~ @lPeit for a system exhibiting &irst-order bulk A-isotropic
belowthe bulkA-N transition temperature, showed that Eq. ) transmc_)n.(Th|s difference W|I_I be discussed in Sec) V.
(28) very well fits experimental data. Performing our own fit | "€ magnitude of the loop velocity was found to bé 100

of Eq. (29) to the data reported in R21] yields the values times larger than that reported for the smeetiphase in
v,=2.59 um/s andR.=42.6 um, to be contrasted with Ref.[21], which we will comment on further below. We note

results described below for overheated films. that the data in Ref.13] show a purely linear dependence of
R on time, suggesting tha®/R.>1 in the experimentally
accessible range and that the measured velocity corresponds
to v,, of the present theory. The data reported in R&8]
Figure 5 illustrates the dependence of the free endfgy  also show that the dislocation-loop velocity slightly increases
on radiusR due to a growing dislocation loop in a six-layer with increasing number of layers. To check the dependence
film, for the case off(L) shown in Fig. 1 andiP=0. The of v, on thickness in our theory we toakto be independent
in-plane distance is expressed in unitsRaf=d\Dd/C, as  of N. Figure 6 shows the results of calculations using the
in Fig. 2, while the free energy is plotted in units Bd?,  f(L) function employed in Fig. 1. It is seen that in some
which follows by scaling of Eq(20). The crosses are ob- range of thickness the velocity slightly increases viitpro-
tained by evaluating Eq20) while monitoring the numerical vided thatAP>0. We do not rule out thaty depends on
solution of Eq.(18) for a dynamically stable kink as it thickness and diminishes wit, as suggested in Ref13],
evolves with time, where the loop radilsis defined such but a detailed analysis of is beyond the scope of this paper.
that L(R)=[L(0)+L(%)]/2. It is seen thaAF(R) is very  Figure 7 shows, in the case of a five-layer film, that is
well fit by Eq. (25): the fitted value off(L,) —f(L,) agrees predicted to increase with temperature, in agreement with
with that obtained directly from the static theory with a pre- experimenf13]. The rate of increase is enhanced in the pres-
cision of 0.5%. We also verified that the right-hand side ofence of a nonzera P. The upper temperature limits of the
Eqg. (22) remains constant within the same precision, giving acurves in Fig. 7 are slightly less than the maximum tempera-

C. Numerical results
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FIG. 6. Velocityu.. [reduced byD/(7Rs)] for N-layer films vs FIG. 8. Activation free energyF,. (reduced byDd?) for
the number of layers, calculated using th(&) depicted in Fig. 1. N-layer films vs the number of layers calculated using fi)
Circles:AP=0. Triangles:AP=0.05C/d” (as in Fig. 2. function shown in Fig. 1. Circles:AP=0, triangles: AP
=0.05C/d%.

tures for the given values & andAP. Beyond these limits,
we find that dislocation-loop growth is superceded by uni-
form thinning.

Using Eq.(23) and the velocity data in Fig. 6, the critical
radiusR. can be determined. Referring only to the points for
N=11 in the figure, we find thaR.=14.R,. and 1.4R
for AP=0 and AP=0.05C/d?, respectively. These values

bracket the range d®; values obtained for other valueséf X :
Using the estimate foR,. described at the end of Sec. lll, the argyment descrlbeq n R@L.Z]' baged on the frequgncy
per unit area of forming a dislocation loop of radi&s

we thus findR, to be in the range 10 to 10 2 um, several : o n .
orders of magnitude lesser than the value deduced at the en>q1R°' Th|s frgquency IS given k,)}éf ‘fge"p( Fac/keT),

. - ) wheref is estimated to be 20 cm™2 s71[23]. As shown
of the preceding subsection in the bulk smetiphase. In in Ref. [12], this gives that the condition for a dislocation
view of Eq. (23), these results are consistent with the re- ' ' 9

ported differences in loop velocity,, below and above the loop o0 nuclgate in0.1s In a 1_-8n‘||m IS F.act/kBTQGO' To
bulk transition temperature. compare this number W|th2F|g. 8 requires a value for the
The key quantity that determines whether spontaneou imensioniess paramet@d”/(kgT). Taking D= y/2~1.5

—2 — —21 — —9
nucleation of a dislocation loop in an overheated film aCtu_es%i?nateN{rrgt;(ng—/; A_'I_'EXS%)O The‘]s’ea:l?rigeari )1/% q tr;:é V(\:Ifite
. . . _ B!~ . -
ally occurs s the activation free enery,,. The depen rion that F,../(Dd?) must become about 2 or smaller for

dence of the reduceld,; for a single-layer dislocation loop
on the number of layer in the initial uniform film, is
shown in Fig. 8. Again, the calculations were done using the
f(L) function depicted in Fig. 1. Note that the temperature in
this case is slightly below the maximum temperature for an
11-layer film. To judge whether nucleation occurs, we use

0.55 spontaneous nucleation to occur. Figure 8 shows that, for the
chosen set of parameters, this can be achieved provided that

0.5 A AP>0 is sufficiently large.

Figure 9 shows the variation of the line tensiBrwith
initial number of layersN for the same cases shown in Figs.
6 and 8. Except for the last two points in the figure
(N=10,11),E is seen to be essentially independent\d?.

It follows from Eq. (26) that it is the decreasing magnitude
of E on approachingN,, for a givenT that is mainly respon-
sible for the decrease iR, in Fig. 8 nearN., and, simi-
larly, for the increase ob.,, when AP>0 in Fig. 6. The
difference between the two cases shown in Figs. 6 and 8, for
AP=0 and AP>0, is due to the fact thaf(L,)—T(L,)
~f(L,)—f(L,)+APdis dominated by the termPd in the

00 001 002 003 004 005 006 007 003 009 latter case for the value afP used.

rd”/C

V. CONCLUSIONS
FIG. 7. Reduced velocity for a five-layer film wsi?/Coc(T

—T*). Parameters of the, model are the same as in Fig. 1. Lower ~ The present theory, a modification of de Gennd$]
curve (solid: AP=0. Upper curve(dashedt AP=0.05C/d?. theory of presmectic films, is based on the generally ac-
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1.0

ergyf(L) and via possible elastic effects contairede Sec.
@ lII') in the coefficientD. In contrast, previous related works
[10,12,14,2] have evaluated nucleation properties using es-

o8t timates for the line tensioE obtained from independent
a analyses, rather than being related self-consistently to the
o o6l | kink shape.
T s It is important to emphasize that the present paper is re-
= . . . . . .
LQ) stricted to smecti& liquids undergoing continuou#\-N
I 04t 2 ] transitions in bulk. For this reason we do not attempt to make

quantitative comparisons with the experimental results of
Ref.[13] for dislocation-loop dynamics, since the latter per-
02} ] tain to a system with a first-ordek-l transition. Such a
system can be treated using the present Landau-de Gennes
theory (albeit with considerably greater complexitgy ap-
0.0 propriately modifying the bulk free-energy density in E).
One significant difference that is expected concerns contri-
butions to the AP” term in the resulting uniform-film free

FIG. 9. Line tensiorE (reduced by/DCd) for N-layer fims vs  energy. In a system with a first-order bulk transition, such a
the number of layers, calculated usifigL) depicted in Fig. 1. term arises even in the absence of meniscus effects, due to
Circles:AP=0, triangles:AP=0.05C/d?. the grand-canonicdll7] free-energy difference between a
metastablebulk smecticA phase and the isotropic phase
[9,18]. This effect was recognized in the nucleation theory of
ef. [12], although the latter work otherwise employed de
ennes’ theory for a second-order bulk transition. Clearly, to
rcompare the present dynamical predictions with experiment,
it would be of interest to perform measurements on the dy-
namics of layer thinning in systems such as that studied in

&0

Z=

cepted view[12] that the occurrence of overheated free-
standing films is due to surface-enhanced smectic orderin@
[7]. In the case of a uniform planar film, our thedrid]

predicts that there is a maximum temperature for whic
smectic ordering in amN-layer film can occur. We associate
this with an upper bound for the true layer-thinning transition ) L o
temperatureT(N). Employing a dynamical generalization Ref. [14]'. wh|ch.exh|b|t s.econd.—order b.UW('N transitions.

of the theory based on a TDGL equation, we have shown that Our picture is that dislocation-mediated thinning of an

thinning via nucleation of dislocation loops, the mechanismPVerheated free-standing smectic film may preempt the

indicated by recent experimenf42—14, is possible pro- uniform-thinning mechanism and thus, for giverand fixed
vided the pressure differeneeP resulting from curvature of values of the model parameters such@,sqccur ata Iower
the surrounding meniscus is sufficiently large. Otherwise, th empgrature 'than predlgtéﬂil] by considering a p“Te'y uni-
film would undergo either “uniform thinning” or, possibly, orm film. This is conceivable becausd free-standing film
rupturing by a process analogous to spinodal dewef&0g states are metasta_b[[sz]. Here we _hav_e presented s_eyeral
The requirement for a nonzeroP to promote nucleation of qualitative results in support of this picture. An additional

dislocation loops is consistent with other recent studiessfteD would be tc;_evhalllufate thr? shift |ndllayer—t1h|fnn|ng trgnsr
[10,14), although we emphasize here that the condithd® tion temperature3¢(N) from those predictefiL] for a uni-

: - . form film, and attempt a refitting with experimental data, a
#0 is not essential fosometype of thinning process to ' . . L
oceur yp gp task left for future study. Further studies will also be directed
In .the present paper, all nucleation propertiée to evaluating the kinetic coefficienj and, as already men-
R.,Faci,0-,E) are interrelated within the framework of so- tioned, extending the present theory to smectic films with

lutions to the TDGL equation. In particular, the line tensionf'rSt'order bulk ransitions.
E of the dislocation loop is expressed in terms of the kink
profile, see Eq(17). From this equationE depends self-
consistently on the elastic behavior of the system through the This study was supported by the Natural Sciences and
dependence of the kink shape on the uniform-film free enEngineering Research Coun¢lanada
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