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Texture formation in carbonaceous mesophase fibers
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Carbonaceous mesophases are discotic nematic liquid crystals that are spun into high performance carbon
fibers using the melt spinning process. The spinning process produces a wide range of different fiber textures.
Planar polar(PP and planar radialPR) textures are two ubiquitous ones. This paper presents theory and
simulation of the texture formation process using the Landau-de Gennes mesoscopic theory for discotic liquid
crystals. The computed PP and PR textures phase diagram, given in terms of temperature and fiber radius, is
presented to establish the processing conditions and geometric factors that lead to the selection of these
textures. Thin fibers adopt the PR texture, while thicker fibers and higher temperatures adopt the PP texture.
The influence of elastic anisotropy to the formation of textures and structure is thoroughly characterized.
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[. INTRODUCTION K,,, andKs3, known as Frank elasticity constaritg. The
bulk free energy density is given by
Carbonaceous mesophases, such as coal tar and petroleum . - - 5
pitches, are used in the industrial manufacturing of high per- fn=2K11(V-n)+3Kz5(n- VxXn)2+ 3Kggn X (VX n)[*.
formance carbon fibers. This relatively new carbon fiber is @
more competitive than the conventional one made from the

acrylic precursors in several application argak The ther- Thermodynamic stability requires,

modynamic phase that describes carbonaceous mesophases Ko>0 Kow>0' Koo 2
is the discotic nematic liquid cryst4DNLC) state[2]. Lig- 11707 Keo= 05 Kge=0. @
uid crystals are intermediatée., mesophasephases, typi- In contrast to rodlike nematics, for disclike nematics the

cally found for anisodiametric organic molecules, which €x-penging disc’s trajectories give rise to a splay deformation,
ist between the higher temperature isotropic liquid state and,q the splaying disc’s trajectories give rise to a bend defor-
the lower temperature crystalline state. Carbonaceous M@Aation; by disc trajectory it means the curve locally orthogo-

sophases are composed of disklike molecules. Figure 1o 't5 the director. For DNLCs, the following inequalities
shows the molecular geometry, positional disorder, ang,gq [5]:

uniaxial orientational order of discotic nematic liquid crys-
tals. The partial orientational order of the molecular unit nor- Koo>Kip:  Kop>Kas, (3)
mal u is along the average orientation or director(n-n
=1). The name discotic distinguishes the molecular geomwhich indicates that planar deformations are favored.
etry and the name nematic identifies the type of liquid crys- |t is known[3,6] that the observed cross-section fiber tex-
talline orientational order. tures belong to a numbers of families, such as onion, radial,
The industrial fabrication of mesophase carbon fiber usingnixed, PAN-AM, to name a few. Figure 3 shows the sche-
the conventional melt spinning process typically producesnatics of two cross-sectional textures most commonly seen
micrometer-sized cylindrical filaments whose cross-sectionah mesophase carbon fibers. The dashed line indicates the
area displays a variety of transverse textisthat is, dif-  trajectories of the molecular planes, Figa3shows the pla-
ferent spatial arrangements of the average orientatiam
the plane perpendicular to the fiber axis. The selection
mechanisms that drive the texture formation pattern are at n
present not well understood, but due to the strong structure-
properties correlations, they are essential for product optimi-
zation[1,3]. ¢ u
A question of fundamental importance to the melt spin- Qj; &
ning of carbonaceous mesophases is to determine how elastic u %
and viscous mechanisms affects the fiber process-induced & @
structuring and cross-sectional fiber textures's selection. .
When considering elastic mechanisms, it is necessary to '
identify the three fundamental elastic modes of these mate-
rials. Figure 2 shows the three types of elastic deformations,
splay, twist, and bend, and the corresponding modKlys FIG. 1. Definition of director orientation of a uniaxial discotic
nematic liquid crystalline material. The directaris the average
orientation of the unit normals to the disklike molecules in a dis-
*Corresponding author. Email address: alejandro.rey@mcgill.ca cotic nematic phase.
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FIG. 2. Schematics of the elastic spldgft), twist (centej, and
bend (right) deformation for uniaxial discotic nematics. Note that
the splay(bend mode involves bendingsplaying of the disk’s
trajectories, in contrast to the case of uniaxial rodlike nematics. A
disk trajectory is a curve locally orthogonal to the director. Adapted
from Ref.[6].

nar radial(PR) texture, in which only the pure bend mode
exists with one defect in the center of strength+1, and

Fig. 3b) shows the_ planar polPP texture, " .WhICh two FIG. 3. Schematics of two cross-sectional textures most com-
modes of deformation, Sp_lay and bend, exist with two defeCt?nonly seen in mesophase carbon fibers. The dashed line indicates
of the strengtrs= + 1/2. Figures &) and 3d) are the corre- e trajectories of the molecular planéa) shows the planar radial
sponding director fields’s schematics of the PP and PR teXpR) texture, in which only the pure bend mode exists with one
tures. The defects arise due to the constraints of tangentigkfect in the center of streng®= + 1, and(b) shows the planar
boundary conditions and a planar two dimensid2&) ori-  polar (PP texture, with splay and bend, and two defects of the
entation field. Defects are singularities in the director fieldstrengthS= + 1/2. (c) and(d) are the corresponding director field’s
and are characterized by strendth2,1, . . .) and sign(=*) schematics of the PP and PR textures. The defects arise due to the
[4]. The strength of a disclination determines the amount otonstraints of tangential boundary conditions and a planar 2D ori-
orientation distortion and the sign corresponds to the sensantation field.

(i.e., clockwise or anticlockwigeof orientation rotation . .

while circling the defects. Since the energy of a defect scales (2) To characterize the mechanisms of PR and PP texture

with the square of the defect strend#h], the planar polar selescu_lc_m n DNI;CS'I ¢ h di . int f
texture would seem to emerge, so as to minimize the elastic (3) To compute a texture phase diagram, given in terms o

energy associated with orientation distortions. In addition €mpPerature and fiber radius, and to establish the geometric

defects of equal sign repel each other, while defects of Olif_and operating conditions that lead to the characteristic tex-
ferent sign attract. As shown below, in the PP texture, defect-urej' To di he infl ¢ olasti .
defect interaction plays a critical role in the geometry of the (4 TO discuss the influence of elastic anisotropi¢,{

texture. For discussions and references on rodlike nematics K22.¢ Ks3) on the for_matlon of fiber teXt“Fe-
This paper is organized as follows. Section Il presents the

in cylindrical geometries, see for examglg8]. The phase . .
diagram of nematic textures in cylindrical geometries as a{heory and the Landau—de Gennes governing equations. Sec-

function of temperature and fiber radius in the absence ofon !l discusses the computational methods to solve the

elastic anisotropy has been given by Sonnet, Kilian, andnodel. Section IV_shows the numencal_splutlons of our
Hess[9]. model, and also, discusses the characteristics of the texture

Theory and simulation of liquid crystalline materials con- Phase diagram and the effect of elastic anisotropy. Finally

tinues to be performed using macroscopic, mesoscopic, arfgPnclusions are presented.
molecular modelg4]. Macroscopic models based on the
Leslie-Ericksen director equations are unsuitable to simulate
texture formation because defects are singularities in the ori- ) )
entation field. On the other hand, mesoscopic models based !N this section, we present the Landau—de Gennes theory
on the second moment of the orientation distribution funcfor nematic liquid crystals, and the parametric equations used
tion is well suited to capture the formation of liquid crystal- to describe mesop_hase flbe_r texturg formation. As ment|o_ned
line textures, because defects are nonsingular solutions to tff@0Ve; the theory is well suited to simulate texture formation
governing equations. A very well established mesoscopié'nce_defeCtS are nonsingular solutions to the governing
model in liquid crystaline materials is based on the®&duations.
Landau—de Gennes free enefgyand is used in this paper.

The objectives of this paper are:

(1) To simulate the transient formation of the PR and PP The microstructure of DNLCs is characterized by a
texture that is commonly observed during the melt spinningsecond-order symmetric and traceless tensor, known gener-
of carbonaceous mesophase. ally as tensor order paramet@r[10],

Il. THEORY AND GOVERNING EQUATIONS

A. Definition of orientation and alignment
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(4)

B ( 1 1
Q=S nn—§I +§P(mm—ll),

where the following restrictions apply:

Q=Q"; tr(Q)=0; —3<S<1; —-3<P<%i, (5

1 0 O
n-n=m-m=I-1=1; nn+mm+Ill=I=|0 1 O0f.
0 0 1

(6)

The uniaxial directon corresponds to the maximum eigen-
valueu,=2S, the biaxial directom corresponds the second
largest eigenvalug.,= 3(S—P), and the second biaxial di-
rectorl(=nxm) corresponds to the smallest eigenvajue
=—1(S+P). The orientation is defined completely by the
orthogonal director triad(n,m,l). The magnitude of the
uniaxial scalar order paramet®8is a measure of the molecu-
lar alignment along the uniaxial director and is given as
S=32(n-Q-n). The magnitude of the biaxial scalar order pa-
rameterP is a measure of the molecular alignment in a plan
perpendicular to the direction of uniaxial director and is
given asP=3(m-Q-m—1-Q-1). On the principal axes, the
tensor order paramet€} is represented as

-3(S-P) 0 0
Q= 0 —3(S+pP) O (7)
0 0 2s

Both S and P are positive for normal DNLCs. The
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for the nematic-isotropic phase transitiofj, is the long-
range energyf,, is the second-order long-range free energy
density, andf,; is the third-order contribution to the long-
range free energy density. By assuming tais uniaxial
and comparingf;, with f, [Eq. (1)] it is found thatK;;
=K33. To remove this restrictio;; must be nonzero. It is
known that there are six different third-order expressions.
For rodlike nematics it was shown that representative experi-
mental{K;;}; (ii=11,22,33) data is well captured by retain-
ing only the termL3Q,;5Q,s.Q,s, In the fi3 expression
[13]. The same approach will be used in this paper. Using the
one parameter Doi model fdg, [14], the dimensionless free
energy densities are given by

3
=5 [3(1-5U)QQ-5UQi(Q-Q)+5U(Q:Q)%,
(9a)

e VQIHTQT 2 (¥.Q)-(V-Q)
127 2ckT* R? : 2ckT*R? '
(9b)

L ~ ~
=5z [ (VQVQI, (99
whereU is the nematic potential, which is inversely propor-
tional to the temperature in a thermotropic liquid crystal, and
¢, k, T* are the number density of discs, the Boltzmann’s
constant, and an absolute reference temperature just below
the isotropic-nematic phase transition temperature, respec-
tively. Comparing Eq(1) the Landau coefficientd.C) {L;},
i=1,2,3 are related to the Frank’s constant of uniaxial LCs

Landau—de Gennes model uses the tensor order parameterifiothe following way[12,15,16:

describe nematic ordering. According to E@), the model is
able to describe biaxialS#0, P#0), uniaxial §#0, P
=0), and isotropic $=0, P=0) states.

B. Landau—de Gennes mesoscopic model for liquid crystalline
materials

According to the Landau—de Gennes model, the bulk en
ergy density of nematic liquid crysta(sILC) in the absence
of external fields is given bj11,12]

fo=fo+fetf), (8a)
fi=f+f3, (8b)
fs=AQ:Q+BQ:(Q-Q)+C(Q:Q)?, (80)
fla=L1VQ:(VQ)T+Lo(V-Q)-(V-Q), (8d)
fla=L3Q:(VQ:VQ)+---, (8¢

where AB,CL,,L,,L5,... arecoefficients of the specified

3K Kyt Kag

e v (109

Kll_ K22
L2:_82_. (1Ob)

K33_ Kll
LS_T, (100)
Ky=S%(2L1+L,~3SLy), (113
K,p=S?(2L,— 3SLy), (11b
Kas=S%(2L,+L,+2SLy). (119

Using Eqgs.(11) and inequalitieg2) the following restric-
tions have to be obeyed under uniaxial ordering:

terms.f is the free energy density of the isotropic state. The
term is related to the conventional thermodynamic param-
eters, such as temperature and pressure, and independent to
Q. fs is the short-range energy density, which is responsible
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In addition, since twist is the highest elastic constant in DN-

LCs, the Landau coefficiernt, is negativeg 10,17,

L,<O0. (13

Using the classical gradient flow model, the time-
dependent equation in terms@fandV Q is found to b 14]

|

where[s] indicates the symmetric and traceleg$Q) is the
rotational viscosity coefficient, andF/8Q is the functional
derivative of the total energly. Substituting Eq(9) into Eq.
(14) yields the following governing equations Qf(x,t):

afy afy

:‘GD{%‘ Vo
—U(Q-Q-3(Q:Q)H+U(Q:Q)Q]

oty oty
aQ ' avQ

dQ oF

[s]
—Y(Q)E—%— ) , (14

dQ [s]

dt

— 3
= —6Dr:U[(1—%U)Q

L
+ 5o [(VQVQ) — 3(VQVQ)I]

+6D_( ! V2Q+ L2 V(V-Q+[V(V-Q)T"
"\ ckT* 2ckT*

2 Ls
~SUV(V- QI+ 5 [(V-Q)-VQ)]

Ls _
T [Q.<VVQ>]), (153
D_ND ; D —ir 15b)
~Dii—Groo? PTE,r 1Y

whereD, is the microstructure dependent rotational diffusiv-
ity, D, is the preaveraged rotational diffusivity or isotropic
diffusivity, which is independent o®, and » is a viscosity.
The relation betwee®, and y(Q) can be read off by com-
paring Eq.(14) and(15a. Nondimensioning Eq(15) yields

dQ

—=S+1L, (163
S_ 1 3 1 3 . -2
——UU[ —3(Q:Q)]
X[(1-3U)Q-U(Q-Q—3(Q:Q)I)
+U(Q:Q)Q], (16b)
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&1

L= U[l—%(Q:Q)]‘z

v2 E v(Vv. V(V.
x|V Q+2{V(V Q) +[V(V-Q)]

—24[V(V-Q) I +L5[(V-Q)-VQ]
£ 11,

+IS[Q:(9\”7Q>]) — 2y 1 HQiQ1?

X[(VQVQ) - 3tr(VQ:VQ)I], (169
wheret=t3ckT*/# is dimensionless timel=3T*/T is
dimensionless temperaturé=(L,/ckT*)Y? is molecular

length scalel,=L,/L; andLz=L/L, are ratios of elastic
coefficients, andR is geometry length scalé.e., the fiber
radiug, Sis the short-range contribution, ahdis the long-
range distribution.

The dimensionless parameters of the model dreR

=R/&, L,, andLs. The nematic potentidll is a dimension-
less temperature that controls the equilibrium order param-
eter Sy, at the phase transition. According to the Doi model
of the short-range energy, the temperature dependergatof
equilibrium is[14]

8 1/2
_1 3
Seq_ 7+31- m) ) (179
U= 3T 17b
- ?l ( )

whereT* is a reference temperature just below the isotropic-
nematic phase transition temperature such as we defined be-
fore. For U<8/3 the stable phase is isotropic, for &8

<3 there is biphasic equilibrium, and for higher valuedJof

the phase is uniaxial nematic. In this paper, we have used
2.7=U=6.55. The parameteR=R/¢ is the ratio of the fi-

ber radius to the internal length scaleThe internal length
scale represents the characteristic size of a defect core and is
usually much smaller than the system siReln this paper,

we have used € R<250. WhenR<1, long-range energy
dominates, spatial gradients are costly and homogeneous
states are selected. On the other hand, wRen1, long-
range elasticity is insignificant with respect to short-range
elasticity and defects proliferate, since spatially, nonhomoge-
neous states are energetically not costly. The elastic constants

ratiosL,=L, /L, andLy=L4/L, are two measures of elastic

anisotropy. Whertz,t3 are equal to zero, all elastic modes
(K11,K25,K33) have the same elastic modulus. To satisfy the

thermodynamic restrictions Eq$12) and (13), we settz
=-0.5 throughout and limit the range a&f; to —1.125

<Sl3=2.25. The governing Eq16) is solved in the circle
(T=0.5) with the following boundary conditions:

>0, T=0.5 Q=Qqq

031713-4
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Qeq™ Se aa— 15), (18 The selected adaptive time integration scheme is able to ef-
ficiently take into account the stiffness that rises due to the
whereT is the dimensionless radial distan@g=r/R), and disparity between time scalge<,.
T=0 is the center of the computational domaire., fiber

axis). The Dirichlet boundary condition sets the eigenvalues IV. RESULTS AND DISCUSSION
of uniaxial tensor order parameter equal to its equilibrium
value (S: SEO)! and the distinct eigenvectorperpendic[ﬂar To visualize the fiber textures we use the solution tensor

to the azimuthale direction of the cylindrical coordinates Q. and represent the discotic mesophase by a culid
system T,a). The symbola represents the unit vector along Whose axes are normal to the directénsm,|) and sides are

the azimuthak direction. The initial conditions are proportional to its eigenvalues. SinGehas negative eigen-
values, we usé =Q+ 3! instead ofQ.
1 1
t*=0, Qini=Sini(NiniNini— 5 6) + 5 Pini(MiniMini — linilini)»
. epresentatlve planar radial and planar polar textures
(19 A. R ive pl dial and pl |

whereS;, andP;,; are infinitesimally small random numbers,  Figures 4 and 5 show visualizations of representative PP
andn;,;, My, , andl;, are corresponding three random eigen-and PR obtained by solving Eg4.6). Figures 4a) and 3a)
vectors. The initial conditions represent an isotropic stateshows the computed texture phase diagram, given in terms of
(S=0, P=0) with thermal fluctuations in ordefSP) and nematic potential J=T/3T* as a function of dimension-

orientation(n,m,l). less fiber radiusk =R/ ¢, with the auxiliary conditiong18)
and(19) and 2.<U=<6.55, 0<R=<300,L,=—0.5,L;=0.
lll. COMPUTATIONAL METHODS The phase diagram identifies the stability of the textures as a

function of temperature and fiber radius. Nanofibers favors
the PR texture while lower temperature and larger fiber fa-

bolic partial differential equations, solved in the circle, sub- T
: . L k § vors the PP texture. The full line indicates the PP and PR
jected the auxiliary conditionsee Eqs(18) and (19)]. The texture transition line, defined by critical values of the tem-

equations are solved using Galerkin finite elements with

Lagrangean linear basis functions for spatial discretization erature and fiber size (A¢,R). For the parameters used

and a fifth-order Runge-Kutta-Cash-Karp time adaptivehere a good fit to the transition line is

The model Eq(16) is a set of six coupled nonlinear para-

method. Convergence and mesh-independence were estab- -1
lished in all cases using standard methods. Spatial discreti- ﬁ:(R—RC)”; n=0.65 R.=37. (23
zation was judiciously selected taking into account the length —_Z
scale of our model. As mentioned above, the Landau-de u 8
Gennes model for nematic liquid crystals has an external o
length scald_, and an internal length scalg as follows: For largeU, the transition is effected bi (long range, and
for large R, the transition is effected by (short rangg At
L=R, (208  large U the long-range effects at the transition include
changes of director distortions and biaxiality. At larBethe
L, \? short range effects on the transition include changes in the
i=&= (ck_T*) ! (20D scalar order parameter and defect core size. The dots on the

diagrams represent the parametric conditions applied in ob-
whereR is the fiber radius, and where in the length scaletaining the solution shown in Figs.(# and 3b). For U
obeysL.>L,;. If defects are present, the mesh size has to be<8/3, the fiber is isotropic.
commensurate with;. It should be noted that the external ~ Figure 4b) is a representative typical steady state visual-
length scale governs the direction’s orientatiagm,|) while  ization of M corresponding to the PP texture for=6.55,
the internal length scale governs the scalar order parametgg=67, [2= -0.5, Eg=0. It clearly shows the molecular
(SP). In addition, care should be taken to select an appropriorientation of planar polar texture, with the tves= + 1/2
ate time integration technique to overcome the intrinsic stiff-defects collinear with the fiber axis. The orientation of the
ness of the system. The model equations contain an interngkfect-defect axis is arbitrary since the system evolves from
time scaler; and an external time scatg. The internal time  an isotropic state that contains no texture information. The
scale governs the evolution of the scalar order parameteiimulations show the bending distortions close to the two

(SP) and is given by defects and an aligned region between the two defects. Fig-
ures 4c), and 4d) shows a gray-scale plot and a surface plot
T:L 21) of the uniaxial scalar order paramet8ras a function of
' ockTH dimensionless positionxt ,y*). In the gray-scale plot a low

) ) order parameter§~0) is black and high order parameter
A much longer external time scalg controls the evolution (s~1) is white. The dark dots in the figure correspond to the
of the directors and is given by two s= + 1/2 defects. The narrow peaks in the surface plots
2 indicate the difference in scale between defect cores and fi-
- ke _ (22) ber radius. At the core of defe@ is small, as expected.
Ly Figures 4e) and 4f) show the corresponding gray-scale and

Te
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FIG. 4. (a) Computed texture phase diagram, given in terms of nematic poteritial I/3T* as a function of dimensionless fiber radius
R=R/¢, with the auxiliary condition$18) and(19) and 2. U<6.55, 0SR< 300,12= —0.5,I3=0. The full line indicates the PP and PR
texture transition line, defined by critical values of the temperature and fiber side ,(2{). The dot on the diagrams represents the
parametric conditions applied in obtaining the solution showbjn(b) Representative steady state visualizatioMatorresponding to the
PP texture fol=6.55R=67,L,= 70.5,E3=0. (c),(d) Gray-scale plot and a surface plot of the uniaxial scalar order para®@eteia
function of dimensionless positiorx{,y*). In the gray-scale plot a low order paramet&<0) is black and high order parametes (

~1) is white.(e),(f) Gray scale and surface plots of the biaxial order paramé&eas a function of dimensionless positiox*(y*). In the
gray-scale plotP~0 corresponds to black arRi=1 to white.
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FIG. 5. (a) Computed texture phase diagram, given in terms of nematic poteritial I/3T* as a function of dimensionless fiber radius
R=R/¢, with the auxiliary condition$18) and(19) and 2. U<6.55, 0SR< 300,12= —0.5,I3=O. The full line indicates the PP and PR
texture transition line, defined by critical values of the temperature and fiber side ,(2{). The dot on the diagrams represents the

parametric conditions applied in obtaining the solution showtbjn(b) Representative steady state visualization of tensor order parameter

M corresponding to the PR texture for=2.80,R=67,L,= 70.5,E3=O. (c),(d) Gray-scale plot and a surface plot of the uniaxial scalar
order paramete® as a function of dimensionless positiox*(y*). In the gray-scale plot a low order paramet&/0) is black and high
order parameterd~1) is white.(e),(f) Gray-scale and surface plots of the biaxial order parametassa function of dimensionless position
(x*,y*). In the gray-scale plo?~0 corresponds to black arR=1 to white.
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surface plots of the biaxial order parametBras a function of U (i.e., vertical ling. Since at lowR the transition is

of dimensionless positionxt,y*). In the gray-scale plot, sensitive to long-range elasticity, and the main difference in
P~0 corresponds to black and~1 to white. The figure the PR and PP textures is the difference between splay and
clearly shows the biaxial eigenvalues@fat the two defect bend deformations, no significant effect is detected because

cores. The corresponding surface plot shows that at the d§-, does not introduce splay-bend anisotropy. On the other
fects coreP~0.4. Far from the disclination the state is hand, at highR the transition line asymptotes to nematic-
uniaxial. Biaxiality arises because it reduces long range elassotropic transition line and the texture transition is indepen-
ticity. Figure 5b) shows a representative typical steady stateyont o long range in general, including the contribution.
visualization of the tensor order parameliércorresponding . . ' ~

Figure 8 shows the influence &f, on the defect core

to the PR texture foU=2.80, R=67, L,=—0.5,L3=0. g cture for the PR and PP textures, in terms of the three
There is only one defect in the center, with the strergth ojgenvalues of) as a function of distance. The PR has azi-
=+1. The only deformation mode exist in PR texture is nthal symmetry in the orientation field and the PP has mir-

bend Ks9), because the average molecular trajectoriessr symmetry with respect to the line connecting the svo
shown on the visualization denote splay. Figurés) @nd  _ 15 gefects. Thus for the PR we show the eigenvalues

5(d) shows a gray-scale plot and 3surfa}ce Bas a func- 5100 the radial direction while for the PP texture we show
tion of dimensionless positiorx{,y*). It is shown that in 0 gigenvalues as a function of dimensionless distéitce

the center of the fibeBis small. Figures @)—5(f) show that 551473 |ine that is perpendicular to the line connecting the
P increases at the center of fiber. At the disclination centef, ;<= +1/2 defects and goes through one of the two

the state is almost negatively uniaxial, and the core is biaxialyq iy alent defects. Figuresa and 8b) show the three ei-
Far from the disclination the state is uniaxial.

genvalues of the tensor order paramefens a function of
dimensionless distanck* for U=6.55, R=67, L;=0.0,
L,=0.0 (a), andU=6.55,R=67, L3=0.0, L,=—0.5 (),

In this section we sdf,=0 and characterize the effect of corresponding to the PP textures. In both cases the state at
T, on fiber texture selection. The magnitude lof deter- ~ defect center is uniaxial witju,= wm>0, 1, <0. The main
mines the difference between twist modk,§) and the effect ofL; is the decrease in defect core size. Figurés-8
equivalent splay-bend modeX {;=Ksz). The thermody- 8(d) show the three eigenvalues of the tensor order parameter

namically consistent range &f, is found from Eqs(12) and Qasa funct|o~n of d|m~en5|onless radial distancefor U
(13). To characterize the role of twist elastic anisotropy on=2-8, R=67, L;=0.0, Ls=0.0 (b), and U=2.8, R=67,
texture selection mechanisms the following dimensionles$,= —0.5,L3=0.0(d), corresponding to the PR textures. In
total energyF* per unit length is analyzed, both cases the state at defect center is uniaxial with
=um>0, ©1<0. The main effect oL, is the decrease in
_ A* :J (F% 4+ £%)dA* (24) defect core size. To analyze the computed defect core fea-
ckT* axs St ' tures, the long-range and short-range energies given in Egs.
(8) are expressed in terms of eigenvalues and eigenvectors.
where A* is the area of the computational domdgircle: ~ For brevity we only discuss the following expression for the
r*=0.5), F is the total energy density. Figure 6 shows thePR texture:
dimensionless short-range ener@pp), long-range energy
(middle) and total energybottom) as a function of dimen-
sionless fiber radiusk, for U=3.05,[2=0 (left column
andU =3.05,L,= — 0.5 (right column. The discontinuity at +AC(ph+ wnsm+ ), (2539
R="TR. corresponds to the texture BHPR transition. Since
we perform transient simulations only stable solutions are 2t 1)
captured. The left branch of each plot corresponds to the PR :_1[ 2 2 2 n_~m~m
texture, and the right bottom branch corresponds to the PP f=g | A Mine * (B )™+ =7
texture. The main effect of decreasig is an horizontal L,
shift of the energy profiles towards small® values and + >
henceR.(L,=0)>R.(L,=—0.5). Increasingk decreases
short- and long-range energy in the PR textures, but only
long range in the PP textures. The rate of these changeshereu; (i=m,n) are two independent eigenvalues of the
increases with decreasifg. tensorQ, and u; ,=du;/dr (i=m,n). At the defect center

Figure 7 shows the corresponding texture phase diagrafhe state is uniaxigl9], with u,=um>0, 1, <0, since oth-
for 12:0 andtzz —0.5. The phase transition line d~n‘2 erwise the long range energy diverges. In addition the com-

— mon term betweeh ; andL
= —0.5 shifts left and up in comparison to the=0 case. ! 2

The figure shows that significant influencelof on the tex-
ture transition only exists for intermediate valueslbfand
R. At low R the transition line diverges and is independent

B. Effect of twist-driven anisotropy on fiber texture selection

F*

fs=—3Bunsm(snt um + ZA(,U«%"_ MnMm™T /-ern)

2

(n—Mm) , (25h)

r

Mn,r+

(n— ) 2

r

Lo

L,+ 5

(26)

[:U’n,r"'
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FIG. 6. Dimensionless short-range eneftyp), long-range energymiddle), and total energybottom) as a function of dimensionless
fiber radiusR, for U=3.05,L,=0 (left column andU=3.05,L,= —0.5 (right column). The discontinuity af =R, corresponds to the
texture PR>PR transition.

shows that whek , is negative sharper gradients and smallershows the texture phase diagram in terms &f ahd R, for

defect core sizes can be accommodated, as observed wht r}ee values ofs. The figure shows that d£3| increases

comparing Figs. &) and §c). the texture transition line shifts up and left in the phase dia-
gram. The texture transition lines retain the same features
regardless of the value df 4|, such that at lowefR the

In this section we characterize the effect of splay-bendransition lines diverges and at higR the transition line
elastic anisotropy, usind.,=—0.5 andL;#0. Figure 9 asymptotes towards the nematic-isotropic transition line. As

C. Effect of splay-bend anisotropy on fiber texture selection

031713-9
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1N
~
o

whereg,,,= d%¢l da. Analytical limiting defect solutions to
isotropic Eq. (28) for wedges=+1/2, +1 disclinations can then be
0.40 used to estimatd(e).

(i) Negligible bend Kg3—0, e—+1. A solution where
the director field trajectories are all circles or parallel lines
around thes= +1/2 defect is

0.35

0.30 A

T T 0 d7T 3 _ T
—§<a<§, o= an E<a<7, (p—oz—§

(29

0.25

0.20 1

Dimensionless temperature, /U

and a pair of these solutions cannot satisfy the boundary
015 ; A e o o - o conditions. On the other hand, tlee=+1 solution: O<«
R <2w, ¢=a+ /2, satisfies the boundary conditions and
Dimensionless fiber radius, X =— hence in a DNLC fiber geometry thés= + 1 solution corre-
4 sponds to the PR texture and the defect separation distance is

FIG. 7. Computed texture phase diagram, given in terms ofd(s..: +1)=0. . - .
nematic potential 1J=T/3T* as a function of dimensionless fiber (ii) Splay-bend isotropy Kq;=Kgz, &=0. Suffl(_:lent n-
radius R=R/¢, with the auxiliary conditiong18) and (19) and crease ok produce§ the decay of th?: +1 defect into two
2.7<U<6.55, 0<R=300, [4=0, T,=0, andL,=—0.5. The s= +_1/2 defects, since some bend is replace_d by splay. The

hase transition line df ,= —0.5 shifts left and up in comparison location of the defects can be found by using the known
phase 2 ' o P ) parl boundary conditions and performing a disclination force bal-
to theL,=0 case. The figure shpws thfit S|gn|f|gant influence of ance between the twe= +1/2 defects and the two images
;)zn the texture transition only exists for intermediate valued ahd lying outside the fibef4]. If | is the distance between each

' s=+1/2 defect and its image, then to satisfy the director
boundary conditions at=R, the distancex between each
defect and the fiber center is

before, at highR long range is insignificant and hence the
transition lines coalesce. On the other hand, at ®&whe
figure shows that the diverging transition lines do not coa-

lesce and the effect df; persists. The reason is that planar
uniaxial textures are sensitive to the splay-bend anlsotrop}/n addition a force balance between each defect and the im-

xR=12. (30)

that is created wheh;#0. ages gives
D. Effect of splay-bend anisotropy on planar polar textures 1 1 1
The geometry of the PP textures is defined by the defect 2x  1+x 1+ x’ (3Y)

separation distanad Using simple arguments and the Frank

energy of uniaxial NLCgsee Eq.(1)] we can establish the which gives the following defect-defect distande: 2x:
dependence of defect separation distati@s a function of

splay-bend anisotropg=d(K;—Kszg) for certain limiting d 1
conditions of the vector model, which is then be tested by the d*=5==. (32
numerical solutions to tensor modé&igs. (16)]. In this tex- 2R 45

ture the director is tangential to the boundary.
(iii) Negligible splay K;{1—0, e——1. A defect s=
1. Predictions of the vector model +1/2 solution consists of straight lines director field trajec-

The effect of splay-bend anisotropy on isolated wedgd©'es
disclination has been characterizEt8]. The free energy

i i T T T 37 T
densityf,, around a defect may be written Bk3] B E<a<§’ o=a and E<a<7’ b=
fo=K ¢i[1+ecosAp—a)] (33

A pair of such solutions can only satisfy the boundary con-
where ¢,a are the orientation angle and the polar angle at alitions at two points when the defects lie next to the fiber
point in polar cylindrical coordinatesy,=de/da, K rim. Thus some bending is necessary. In addition to mini-
=3(Kp1+Ksg), ande=(Ky;—Kgg)/ (K11 +Kgg) is the elas-  mize the necessary bending to join straight lines the defects

tic anisotropy. Minimization off , leads to should be as far as possible. In a DNLC fiber geometry the
. solution that best avoids bending corresponds to the PP tex-
Paa= €[ 0aaCOSA@—a)+ ¢, (2—¢,)SiN2A¢—a)], ture andd(e— —1)=R—r.. In summary, the inequalities

(28 driven by splay-bend elastic anisotropy are

031713-10



TEXTURE FORMATION IN CARBONACEOUS MESOPHASE . ..

PFSICAL REVIEW E 65031713

0.6 03
0.4 0.2
7]
§ 0.2 E 0.1
-t—& [
:
?n 0.0 - & 0.0
i} 5|
-0.2 -0.1
-0.4 y g - -0.2 . . . T
-0.10 -0.05 0.00 0.05 0.10 0.0 0.1 0.2 0.3 0.4 05
Dimensionless distance, b* Dimensionless radial distance, »*
(@ (b)
0.6 0.3 T e e
0.4 1 0.2
w v
2 e
S 02 g o1 ®
=] g .
5 5 W
B 00 M 00 A
A
0.2 -0.1
0.4 . : - 0.2 : . . .
-0.10 -0.05 0.00 0.05 0.10 0.0 0.1 0.2 0.3 0.4 05
Dimensionless distance, b* Dimensionless radial distance, »*
(© (d)

FIG. 8. Eigenvalues of the tensor order param&eas a function of dimensionless distarigeé for U=6.55, R=67, I3=O.O,Ez
=0.0(a), andU=6.55,R=67,L;=0.0,L,= — 0.5 (b), corresponding to the PP textures. In both cases the state at defect center is uniaxial
with u,= un>0, u1<0. The main effect of., is the decrease in defect core sid®—(d) show the three eigenvalues of the tensor order
parameterQ as a function of dimensionless radial distance for U=2.8, R=67, L,=0.0, L3;=0.0 (b), and U=2.8, R=67, L,
—0.5,L3=0.0(d), corresponding to the PR textures.

>(1+c?)Kss3, the system will try to avoid the bend mode,

d*(aﬂ—1)=1>d*(s=0)=%5*((9:4-1):0.
(34)

and the prefered fiber texture is PP with two defects on the
rim collinear with the fiber axis.
Figure 10 shows the dimensionless defect distalfcas

Splay avoidance leads to the PR texture and bend avoidandefunction ofL for R=67,1,=—0.5, andu =6.55 (top),
to the PP textures. The vector model cannot predict th&.55(middle), and 4.55(bottom). The dots forL;<L 5. cor-
elastic-anisotropy driven texture transitions because the deespond to the PR texture and the full line corresponds to the

fect reactions= + 1+ 2s=+ 1/2 takes place.

2. Numerical solutions to the tensor model

As mentioned abové ; defines thek ;;— K 55 difference,

Ky~ Kgg=—2L35S". (35

WhenLs<Ls, K;3>(1+c?)Kss, the system will avoid the
splay mode, and the preferred fiber texture is PRenotes a

constant. On the other hand, whehs>Lgz, Ky

PP texture. Note that in Fig. 10 the minimum valueLgfis

set by the thermodynamic stability restriction1.125
<Sl;. The horizontal line indicates the caselaf=0, when

d* =1/4/5 [19,20. The numerical solutions confirm the the-
oretical result for all values dfl. The computations confirm
the expected inequalitie®4). When'L; increases, the dis-
tance of two defects also increases and eventually asymp-
totes to the edge of the fiber. Since the boundary conditions
are fixed the location of defects cannot be right on the edge.

The critical value ofl;=T15,~—1.2 and is within our com-
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FIG. 9. Computed texture phase diagram, given in terms of § 0.50
nematic potential J=T/3T* as a function of dimensionless fiber ‘f_g ’
radius R=R/¢, with the auxiliary conditiong18) and (19) and 2 0.25
2.7<U<6.55, 0<R<300,L,=—0.5. For three values df;, the e Ums.55
figure shows that all_ ;| increases the texture transition line shifts 8 0.00 - ’
up and left in the phase diagram. .g . ,
. . -2 -1 0 1 2
putational scheme nearly independentbfin terms of the
vector model, usings=0.8, the critical splay-bend anisot- Dimensionless elastic constant, Z3=£
ropy ise=—0.75. L
Figure 11a) shows the visualization of tHd tensor order
parameter forL;<0 (U=6.55, R=67, L,=—0.5, L, 1.00

=—1.3), corresponding to the PR texture with only bend
present. Figure Xb) shows the visualization of tHd tensor

order parameter foL ;>0 (U=6.55, R=67, L,=—0.5,

L;=1.5) corresponding to the PP texture with an aligned
center region and strong splay next to g + 1/2 defects,

0.75 | l/dg\ /_-
0.50 /

Dimensionless defects separation, d*

, . 0.25
now located next to the fiber rim. U=4.55
In contrast to the texture transitions driven ly,R) dis- 000] ow
cussed above, the transition here is driven by splay-bend
elastic anisotropyl(;#0). Figure 12 shows the second or- 2 -1 0 1 2
der long-range enerdyf, (VQ)] profile in terms ofL; with L

: < . Dimensionless elasti tant, L, =—2
the same parametric conditions of Fig. 10. The dots corre- rmensioniess elashe constatl, & =7

spond to PR and the curve to the PP texture. The dramatic l

change of long-range energylaj= — 1.2 corresponds to the

texture transition point due to splay-bend eIaEtic anisotropy. FiGg. 10. Dimensionless defect distand® as a function of 5

The minimum long-range energy happens whenis close  for R=67,1T,=—0.5, andU=6.55 (top), 5.55 (middle), and 4.55

to0 0. (bottom). The dots forl ;<L 5. correspond to the PR texture and the

full line corresponds to the PP texture. Note that in the figure the

minimum value ofl_ 5 is set by the thermodynamic stability restric-
A model to describe the texture formation in mesophaseion —1.125<SL;. The horizontal line indicates the case iof

carbon fibers has been developed, implemented, and show0, whend* =1/4y5 [19]. The numerical solutions confirm the

to replicate commonly observed cross-sectional carbon fibeheoretical result for all values ¢f. The computations confirm the

textures of industrial relevance. The model is based on thexpected inequalitie€33). WhenL ; increases, the distance of two

classical Landau—de Gennes theory for liquid crystals andefects also increases and eventually asymptotes to the edge of the

has been adapted to describe discotic carbonaceous niiser. Since the boundary conditions are fixed, the defects’ location

sophases. The model is able to predict the formation of placannot be right on the edge. The critical valuelgf=T 3.~ —1.2

nar radial and planar polar textures. The parametric condiand is within our computational scheme nearly independebt drf

tions of their stability in terms of temperature and fiberterms of the vector model, usin§=0.8, the critical splay-bend

radius have been anisotropy ise=—0.75.

V. CONCLUSIONS
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FIG. 11. (a) Computed visualization of th® tensor order pa-
rameter forl ;<0 (U=6.55,R=67,L,=—0.5,L;=—1.3), cor-
responding to the PR texture with only bend preséstComputed
visualization of theM tensor order parameter fd13>0 (8]
=6.55,R=67,L,=—0.5,L;=1.5) corresponding to the PP tex-
ture with an aligned center region and strong splay next tosthe

= +1/2 defects, now located next to the fiber rim.
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Dimensionless elastic anisotropy, I,
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Dimensionless long-range energy, f,
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=L

Dimensionless elastic anisotropy, L, 7

FIG. 12. Second-order long-range ener@y (VQ)] profile as a
function oft3 with the same parametric conditions of Fig. 10. The
dots correspond to PR and the curve to the PP texture. The dramatic
change of long-range energy la= —1.2 corresponds to the tex-
ture transition point due to splay-bend elastic anisotropy. The mini-
mum long-range energy happens whepis close to 0.

texture, in agreement with Rdi]. The influence of elastic
anisotropy to the fiber texture formation is thoroughly dis-
cussed. It is found that splay-bend anisotropy influences the
fiber texture much more than the twist term. Splégnd
avoidance leads to the planar radipblan texture. The im-
portance of splay-bend anisotropy is completely explained
by the Frank elastic theory. The results presented in this pa-
per contribute towards a better understanding of the prin-
ciples that control the cross-section texture selection during
the melt spinning of mesophase carbon.
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