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Structure and freezing of fluids interacting via the Gay-Berne„nÀ6… potentials
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We have calculated the pair-correlation functions of a fluid interacting via the Gay-Berne (n26) pair
potentials using the Percus-Yevick integral equation theory and have shown how these correlations depend on
the value ofn that measures the sharpness of the repulsive core of the pair potential. These results have been
used in the density-functional theory to locate the freezing transitions of these fluids. We have used two
different versions of the theory known as the second order and the modified weighted-density-functional theory
and examined the freezing of these fluids for 8<n<30 and in the reduced temperature range lying between
0.65 and 1.25 into the nematic and the smecticA phases. For none of these cases smecticA phase was found
to be stabilized though in some range of temperature for a givenn it appeared as a metastable state. We have
examined the variation of freezing parameters for the isotropic-nematic transition with temperature andn. We
have also compared our results with simulation results wherever they are available. While we find that the
density-functional theory is good to study the freezing transitions in such fluids the structural parameters found
from the Percus-Yevick theory need to be improved particularly at high temperatures and lower values ofn.
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I. INTRODUCTION

In the case of nonspherical molecules the anisotropic
ture of the intermolecular interactions can give rise to pha
~liquid crystals! @1# that are absent when simple spheric
molecules are considered. Depending upon the shape an
size of molecules and upon the external parameters~tempera-
ture, pressures, etc.! a system may show a wide variety o
phenomena and transitions in between the isotropic liq
and the crystalline solid. All these phases including that
the isotropic liquid and the crystalline solids are charac
ized by the average positions and orientations of molec
and by the intermolecular spatial and orientational corre
tions. The determination of phase diagram of such a sys
from the intermolecular potential is one of the most challe
ing problems of the statistical mechanics.

The molecules of systems that exhibit liquid crystalli
phases are generally large and have group of atoms with
own local features. In general it is difficult to know the tru
nature of the potential energy of interaction between s
molecules. Attempts have, however, been made to find
potential energy of interactions between two such molecu
using different approximations. One such method is to s
the interatomic or site-site potentials between atoms or
tween interaction sites. In another and more convenient
proach one uses rigid molecules approximation in which i
assumed that the intermolecular potential energy depe
only on the position of the center of mass and on their o
entations. If, however, our interest is to relate the pha
formed and their properties to the essential molecular fa
responsible for the existence of liquid crystals, it is desira
to use a phenomenological description, either as a strai
forward model unrelated to any particular physical syste
or as a basis for describing by means of adjustable par
eters between two molecules. Most commonly used mo
are hard ellipsoids of revolution, hard spherocylinders@2#,
cut sphere, the Kihara core model@3#, and the Gay-Berne@4#
1063-651X/2002/65~3!/031711~11!/$20.00 65 0317
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model. All these are single site models and refer to rig
molecules of cylindrical symmetry. Even for these simp
models calculating the complete phase diagram is difficu

The Gay-Berne potential, in particular, is proving to be
valuable model with which to investigate the behavior
liquid crystals in recent years using computer simulat
techniques@5–7#. In this paper we consider a general Ga
Berne~GB! model withn26 dependence on the shifted an
scaled separation,R, between the uniaxial particles.

u~ êi ,êj , r̂ !54e~ êi ,êj , r̂ !~R2n2R26!, ~1.1!

where

R5
r 2s~ êi ,eĵ, r̂ !1s0

s0
. ~1.2!

While unit vectorsêi ,êj indicate the orientations of sym
metry axes of particlesi and j, the orientation of the vecto
joining them is denoted by the unit vectorr̂ . The dependence
of the contact distance on the orientations of the particles
the interparticle vector is

s~ êi ,êj , r̂ !

5s0F12xS~êi• r̂ !21~ êj• r̂ !222x~ êi• r̂ !~ êj• r̂ !~ êi•êj !

12x2~ êi•êj !
2 D G21/2

,

~1.3!

wheres0 is the contact distance for the cross configurat
(êi•êj5êi• r̂5êj• r̂50). The parameterx is a function of the
ratio x0([se /ss), which is defined in terms of the contac
distances when the particles are end to end~e! and side by
side (s),
©2002 The American Physical Society11-1
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x5
x0

221

x0
211

. ~1.4!

This vanishes for a sphere and tends to the limiting va
of unity for an infinitely long rod. The orientational depe
dence of the potential well depth is given by a product of t
functions,

e~ êi ,êj , r̂ !5e0en~ êi ,êj !e8m~ êi ,êj , r̂ !, ~1.5!

where the scaling parametere0 is the well depth for the cros
configuration. The first of these functions

e~ êi ,êj !5@12x2~ êi•êj !
2#21/2 ~1.6!

clearly favors the parallel alignment of the particles and
aids liquid crystal formation. The second function has a fo
analogous tos(êi ,êj , r̂ ), i.e.,

e8~ êi ,êj , r̂ !

5F 12x8S ~ êi• r̂ !21~ êj• r̂ !222x8~ êi• r̂ !~ êj• r̂ !~ êi•êj !

12x82~ êi•êj !
2

D G ,

~1.7!

where the parameterx8 is determined by the ratio of the we
depths,k8([es /ee), via

x85
k81/m21

k81/m11
. ~1.8!

The potential contains four parameters (x0 ,k8,m,n) that
determine the anisotropy in the repulsive and attrac
forces, in addition to two parameters (s0 ,e0) that scale the
distance and energy, respectively. The ratio of the end-to-
and side-by-side contact distance,x0, is related to the anisot
ropy of the repulsive forces and it also determines the dif
ence in the depth of the attractive well between the side-
side and the cross configurations. The parameterk8 is the
ratio of the well depth for the side-by-side and end-to-e
configurations. Whilex0 determines the ability of the system
to form an orientationally ordered phase,k8 determines the
tendency of the system to form a smectic phase@7#. The
other two parametersm andn influence nematic and smect
phase forming character of the anisotropic attractive force
a more subtle way.

In almost all of the simulation and theoretical studi
to date n has been taken equal to 12. The value ofn
defines the nature of the repulsion; the higher the valuen
the harder is the nature of the repulsion. In Fig. 1 we p
u* (r ,V1 ,V2)@5u(r ,V1 ,V2)/e0# as a function of separa
tion for some fixed orientations withn510 and 18. It shows
that asn increases the importance of attractive interact
increases for all orientations. In the present paper we inv
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tigate the effect of variation ofn, i.e., variation of the range
of repulsion on the properties of molecular liquids and on
freezing transition.

The paper is organized as follows. In Sec. II, we descr
the solution of the Ornstein-Zernike equation using t
Percus-Yevick closure relation for pair-correlation function
Section III discusses the essential details of dens
functional formalism applied to study the freezing of m
lecular fluids into ordered phases. The results are given
discussed in Sec. IV.

II. PAIR-CORRELATION FUNCTIONS: SOLUTION OF
THE PERCUS-YEVICK EQUATION

The single particle density distributionr(1) is defined as

r~1!5r~r ,V!5K (
i 51

d~r2r i !d~V2Vi !L , ~2.1!

wherer i andVi give the position and the orientation ofi th
molecule, the angular bracket represents the ensemble
age, and thed the Dirac delta function, is constant indepe
dent of position and orientation for an isotropic fluid.
therefore contains no information about the structure of
system. The structural information of an isotropic fluid
contained in the two-particle density distributionr(1,2) that

FIG. 1. Comparision of the GB(n26) intermolecular potential
as a function of the particle seperationr /s0 for four molecular
arrangements: parallel~curve 1!, cross~curve 2!, T shaped~curve
3!, and end to end~curve 4!. Solid lines are for the~1026! model
and dashed curves are for the~1826! model.
1-2
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gives the probability of finding simultaneously a molecule
a volume elementdr1dV1 centered at (r1 ,V1) and a second
molecule in a volume elementdr2dV2 centered at (r2 ,V2).
r(1,2) is defined as

r~1,2![r~r1 ,V1 ;r2 ,V2!

5K (
iÞ j

d~r12r i !d~V12Vi !d~r22r j !d~V22Vj !L .

~2.2!

The pair-correlation functiong(1,2) is related tor(1,2) by
the relation

g~1,2!5
r~1,2!

r~1!r~2!
. ~2.3!

Since for the isotropic fluidr(1)5r(2)5r f5^N&/V
where^N& is the average number of molecules in volumeV,

r f
2g~r ,V1 ,V2!5r~r ,V1 ,V2!, ~2.4!

where r5(r22r1). In the isotropic phaser(1,2) depends
only on the distanceur22r1u5r , the orientation of molecules
with respect to each other and on the direction of vec
r ( r̂5r /r is a unit vector alongr ). The pair-distribution func-
tion g(1,2) of the isotropic fluid is of particular interest as
is the lowest-order microscopic quantity that contains inf
mations about the translational and the orientational st
tures of the system and also has direct contact with inter
lecular ~as well as with intramolecular! interactions. For an
ordered phase, on the other hand, most of the structura
formations are contained inr(x) ~see Sec. III!.

The values of the pair-correlation functions as a funct
of intermolecular separation and orientations at a given t
perature and pressure are found either by computer sim
tions or by solving the Ornstein-Zernike~OZ! equation

h~1,2!2c~1,2!5g~1,2!

5r fE c~1,3!@g~2,3!1c~2,3!#d3, ~2.5!

whered35dr3dV3 andh(1,2)5g(1,2)21 andc(1,2) are,
respectively, the total and direct pair-correlation functio
using a suitable closure relation. Most commonly used clo
relations are the Percus-Yevick~PY! and the hypernetted
chain ~HNC! relations. Approximations are introduce
through these closure relations. The PY and HNC integ
equation theories are given by the OZ equation coupled w
the closure relation@8#

CPY~1,2!5 f ~1,2!@11g~1,2!# ~2.6!

and

CHNC~1,2!5h~1,2!2 ln@11h~1,2!#2bu~1,2!, ~2.7!

respectively. Here f (1,2)5exp@2bu(1,2)#21 and b
5(kBT)21.
03171
r

-
c-
o-

n-

n
-

la-

,
er

al
th

Both the PY and HNC integral theories have been use
find the pair-correlations functions of model fluids of no
spherical molecules@9,10#. It is found that while the PY
theory underestimates the correlations, particularly the an
lar correlation the HNC theory overestimates them. In c
of hard-core fluids we proposed a ‘‘mixed’’ integral equatio
that interpolates between the HNC and PY theories an
thermodynamically consistent@11#. Such an approach is
needed for the soft-core potential the one considered in
paper also. We, however, defer this approach for the fut
and confine ourselves here to solve the PY equation to
the pair correlation functions for the GB (n26) potential.

The angle dependent functionA(r12,V1 ,V2) ~where A
may be pair-correlation function or pair potential! is ex-
panded in a basis set of rotational invariants@8# in space
fixed ~SF! frame according to the equation

A~r12,V1 ,V2!5 (
l 1l 2l

(
m1m2m

Al 1l 2l~r 12!

3Cg~ l 1l 2l ;m1m2m!Yl 1m1
~V1!

3Yl 2m2
~V2!Ylm* ~V!, ~2.8!

where Cg( l 1l 2l ;m1m2m) are the Clebsch-Gordon coeffi
cients.

For fully axially symmetric particles it is also possible
expand the function in products of spherical harmonics
body fixed~BF! frame according to the equation.

A~r12,V1 ,V2!5 (
l 1l 2m

Al 1l 2m~r 12!Yl 1m~V1!Yl 2m~V2!,

~2.9!

wheremI [2m. Numerically it is easier to calculate the B
harmonic coefficients than the SF harmonic coefficients. T
two harmonic coefficients are related through a linear tra
formation,

Al 1l 2m~r 12!5(
l

S 2l 11

4p D 1/2

Al 1l 2l~r 12!Cg~ l 1l 2l ;mm0!

or

Al 1l 2l~r 12!5(
m

S 4p

2l 11D 1/2

Al 1l 2m~r 12!Cg~ l 1l 2l ;mm0!.

~2.10!

In any numerical calculation we can handle only a fin
number of the spherical harmonic coefficients for ea
orientation-dependent function. The accuracy of the res
depends on this number. As the anisotropy in the shap
molecules~or in interactions! and the value of fluid density
r f increases more harmonics are needed to get proper
vergence. We have found that the series get converged i
truncate the series at the value ofl indices equal to 6 for
molecules withx0<3 @9#. Though it is desirable to include
higher-order harmonics, i.e., forl .6 but it will increase
computational time manifold. Our interest is to use the d
of the harmonics of pair-correlation functions for freezin
1-3
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transitions where only low-order harmonics are generally
volved ~see Sec. III below!. The only effect the higher-orde
harmonics appear to have on these low-order harmonics
modify the finer structure of the harmonics at small values
r whose contributions to the structural parameters~to be de-
fine below! are negligible.

Using the numerical procedure outlined elsewhere@9#, we
have solved the PY equation for the GB (n26) fluid having
n values 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30
x053.0 and well-depth ratiok855 at reduced temperature
T* 5kT/e050.65,0.80,0.95, and 1.25 for a wide range
densities. The other two parametersm andn are taken to be
2 and 1, respectively. The solutions could be found only u
certain densityr8 the value of which depend upon the tem
perature and the value ofn. The value ofr8 is often close to
the isotropic-nematic transition. Because of this one fa
problems in locating other less symmetric phases of the
tem using the theory to be discussed in Sec. III.

In Fig. 2 we compare the values ofg(r )51
1@h000(r )/4p# in BF frame at T* 50.80 and density
h@[(p/6)r fs0

3x0#50.25 for four sets of (n26) combina-
tions. It is seen from this figure that the first peak becom
sharper and attains its maximum value at smaller value
r * (5r /s0) as the hardness of the core increases. The ca
of this becomes clear if we look at Figs. 3 and 4 that dep
v(r )52T* ln@^exp@2bu(r,V1,V2)#&V1,V2

# as a function of

interparticle separation atT* 50.8 and 1.25, respectively
v(r ) may be regarded as an averaged pair potential a
therefore, helps us in understanding the features ofg(r ).
v(r ) seems to have two minimum; one atr * '1.25 and other
at r * '2.25. The first minimum becomes deeper at highen
and at lower temperature and almost vanishes at lowern and
higher temperatures. The second minimum dependencen

FIG. 2. Pair-corelation functions of the center of massg(r ) for
x053.0, k855.0, h50.25, andT* 50.80. The solid, dash-dotted
dashed, and solid line with square curves are for~1026!, ~1226!,
~1426!, and~1826! potentials, respectively.
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~as well as on temperature! is weak. One may also note th
shift to lower values ofr * of first minimum asn is increased.

Since the PY theory is known to be reasonably accur
for systems interacting via pair potential that has hard rep

FIG. 3. The angle averaged potentialv(r ) as a function of
intermolecular seperation forx053.0, k855.0, andT* 50.80. The
solid, dash-dotted, dashed, and dotted curves are for~1026!,
~1226!, ~1426!, and~1826! potentials, respectively.

FIG. 4. Same as Fig. 3 but forT* 51.25.
1-4



b

o
on
ar

ea
vio

-
ul

sti-
the

air-
at
in

lar

,

B
ult
are

STRUCTURE AND FREEZING OF FLUIDS . . . PHYSICAL REVIEW E 65 031711
sive core (n→`) and weak attraction@11#, the values of the
pair-correlation functions reported here are expected to
more accurate for higher values ofn and lower values ofT*
compared to values corresponding to lowern and higherT* .

In Figs. 5 and 6 we compare the two other projections
pair-correlation function in BF frame at the same state c
ditions and observe similar behavior. In Fig. 7 we comp
the value ofg(r ) at h50.5 for the GB (1026) model at
four different temperatures. Here we see that the first p
gets sharper as the temperature decreases. Such beha
also seen~see Fig. 2! whenn is increased at the same tem
perature. This is due to increasing tendency of the molec
to form parallel configurations.

FIG. 5. The spherical harmonics coefficienth220(r )/4p in BF
frame. Curves and state conditions are the same as in Fig. 2.

FIG. 6. The spherical harmonics coefficienth440(r )/4p in BF
frame. Curves and state conditions are the same as in Fig. 2.
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As has already been mentioned, the PY theory undere
mates the molecular correlations. This can be seen from
pressure calculated using the values of the direct p
correlation function through the compressibility relation th
is found to be lower than the simulated value as shown
Fig. 8.

For a system consisting of axially symmetric nondipo
molecules the static Kerr constantK is given by@12,13#

K5bkF12
Ĉ22

0

5
G21

,

FIG. 7. Pair-correlation function of the center of massg(r )
for h50.50 for the GB ~1026! model. The solid, dash-dotted
dashed, and solid line with square are for the temperaturesT*
50.65, 0.80, 0.95, and 1.25, respectively.

FIG. 8. Pressure as a function of fluid density for the G
~1226! fluid at T* 50.95. The solid curve is the present PY res
obtained using the compressibility equation. The open circles
the MD result of Miguelet al. ~Ref. @5#!.
1-5
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where Ĉ22
0 is structural parameter defined as in Eq.~3.22!

andk is a constant dependent only upon single particle pr
erties. The divergence ofK may signal the absolute stabilit
limit of the isotropic phase relative to orientationally order
phase@12#. Thus the isotropic phase becomes orientationa
unstable when the inverse Kerr constantK21→0. It is, how-
ever, important to emphasize that the conditionK21→0 does
not determine the thermodynamic phase transition, but ra
a point on the spinodal line. This means that the densit
which K2150 establishes a stability limit in the sense that
higher densities the isotropic phase cannot exist even
metastable state.

The reduced Kerr constantsbAK21 as a function ofh for
the variousn values are plotted in Figs. 9 and 10 atT*
50.8 and 1.25.

III. THEORY FOR FREEZING

The structural informations of fluids at the pair-correlati
functions level obtained above can be used to obtain in
mation about their freezing. At the freezing point the spa
and orientational configurations of molecules undergo
modification. Often abrupt change in the symmetries of
system takes place on the freezing. In contrast to the iso
pic fluid, the molecular configurations of most order
phases are adequately described by the single particle de
~singlet! distribution r(x)•r(x) provides us with a conve

FIG. 9. The reduced inverse Kerr constantbAK21 as a function
of densityh for x053.0, k855.0, andT* 50.80. The values ofn in
GB (n26) models for the different curves are given on the plo
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nient quantity to specify an arbitrary state of a system. O
may consider a variational thermodynamic potential as
functional of r(x). The equilibrium state of the system a
given T and P is described by the densityr(T,P,x) corre-
sponding to the minimum of the thermodynamic potent
with respect tor(x). This forms the basis of the density
functional theory.

In this paper we investigate the freezing of the GBn
26) fluid into the nematic and the smecticA ~SmA) phases
using density-functional theory~DFT!. In the nematic phase
the full translational symmetry of the isotropic fluid pha
~denoted asR3) is maintained but the rotational symmet
O~3! or SO~3! ~depending upon the presence or absence
the center of symmetry! is broken. In the simplest form o
the axially symmetric molecules the group O~3! @or SO~3!# is
replaced by one of the uniaxial symmetryD`h ~or D`). The
phase possessing theR3`D`h ~denoting the semidirec
product of the translational groupR3 and the rotational group
D`h) symmetry is known as uniaxial nematic phase@1,14#.

The smectic liquid crystals, in general, have a stratifi
structure with the long axes of molecules parallel to ea
other in layers. This situation corresponds to partial bre
down of translational invariance in addition to breaking
the orientational invariance. Since a variety of molecular
rangement are possible within each layer, a number of sm
tic phases are possible@1#. The simplest among them is th
Sm A phase. In it the center of mass of molecules in a la
are distributed as in a two-dimensional fluid but the mole
lar axes are on the average along a direction normal to

FIG. 10. Same as in Fig. 9 but forT* 51.25.
1-6
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smectic layer~i.e., the directorn̂ is normal to the smectic
layer!. The symmetry of the SmA phase isD`h`(R23Z)
whereR2 corresponds to a two-dimensional liquid structu
andZ for a one-dimensional periodic structure.

The order parameters that characterize the ordered s
tures can be found from the singlet distributionr(x). For this
we express it in the Fourier series and the Wigner rota
matrices. Thus

r~x!5r~r ,V!5r0(
q

(
lmn

Qlmn~Gq!exp~ iGq•r !Dmn
l ~V!,

~3.1!

where the expansion coefficients

Qlmn~Gq!5
2l 11

N E drE dVr~r ,V!exp~2 iG•r !Dmn
l* ~V!

~3.2!

are the order parameters,Gq the reciprocal lattice vectors,r0

the mean number density, andDmn
l (V) the generalized

spherical harmonics or Wigner rotation matrices@15#.
Since we are interested in uniaxial systems of cylind

cally symmetric molecules,m5n50 in Eqs.~3.1! and~3.2!.
This leads to

r~r ,V!5r0(
l

(
q

Qlq exp~ iGq•r !Pl~cosu! ~3.3!

and

Qlq5
2l 11

N E drE dVr~r ,V!exp~2 iG•r !Pl~cosu!,

~3.4!

wherePl(cosu) is the Legendre polynomial of degreel and
u is the angle between the cylindrical axis of a molecule a
the director.

Since in the nematic phase the centres of mass of m
ecules are distributed as randomly as in the isotropic fl
but the molecular axes are aligned along a particular di
tion defined by the directorn̂ ~a unit vector! we haveGq
50 and

Ql05^~2l 11!Pl@cos~u!#&5~2l 11!P̄l , ~3.5!

where angular bracket indicates the ensemble average.
often enough to use two orientational order parametersP̄2

andP̄4 to locate the isotropic-nematic transition as in alm
all known cases the transition is weak first-order transit
@1#.

To characterize the SmA phase we need three differe
class of order parameters;~i! orientational,~ii ! positional,
~iii ! mixed. These parameters are found from Eq.~3.2!. For
the orientational order we takeP̄2 and P̄4 as in the case o
the nematic phase. For the positional order along thez axis
we choose one order parameter correspondingGz52p/d, d
being the layer spacing. Thus
03171
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m5Q00~Gz!5 K cosS 2pz

d D L . ~3.6!

The coupling between the positional and orientational ord
ing is described by the~mixed! order parametert defined as

t5
1

5
Q20~Gz!5 K cosS 2pz

d D P2~cosu!L . ~3.7!

We therefore choose four order parameters to describe
ordering in a SmA phase and two for the nematic orderin
Another way of writing the trial singlet distribution corre
sponding to the ordered phases of our interest is

r~r ,V!5A0r0 exp@2a~z2d!22a1~z2d!2P2~cosu!

1l2P2~cosu!1l4P4~cosu!#, ~3.8!

whereA0 is a normalization constant,a anda1 are associ-
ated with the formation of layer in the SmA phase andl2
andl4 with orientational ordering. Whena anda1 are zero
but l2 and l4 are nonzero the phase is nematic. In case
the isotropic fluid all the four parametersa, a1, l2, andl4
are zero. If all the four parameters are nonzero the phas
SmA. The four order parameters defined above can be fo
taking the expression ofr(r ,V) given by Eq.~3.8!. Thus

m5
A0

d E
0

d

dzcosS 2pz

d D E
0

1

dx exp~S!, ~3.9!

t5
A0

d E
0

d

dzcosS 2pz

d D E
0

1

dx exp~S!P2~x!, ~3.10!

P̄25
A0

d E
0

d

dzE
0

1

dx exp~S!P2~x!, ~3.11!

P̄45
A0

d E
0

d

dzE
0

1

dx exp~S!P4~x!, ~3.12!

where S52a(z2d)22a1(z2d)2P2(x)1l2P2(x)
1l4P4(x).

A. Density-functional approach

In the usual density-functional theory approach one u
the grand thermodynamic potential to locate the transiti
The grand thermodynamic potential is defined as

2W5bA2bmE dxr~x!, ~3.13!

whereA is the Helmholtz free energy,m the chemical poten-
tial, and r(x) is a singlet distribution function. Equatio
~3.1! can be written as

DW5W2Wf5DW11DW2 , ~3.14!

whereWf is the grand thermodynamic potential of the is
tropic fluid, and@14#.
1-7
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DW1

N
5

1

r fV
E drdVH r~r ,V!lnFr~r ,V!

r f
G2Dr~r ,V!J

~3.15!

and

DW2

N
52

1

2r f
E dr12dV1dV2Dr~r1 ,V1!

3c~r12,V1 ,V2!Dr~r2 ,V2!. ~3.16!

Here Dr(x)5r(x)2r f , wherer f is the density of the co-
existing liquid. The ordered phase density is found by mi
mizing DW with respect to arbitrary variations in the order
phase density subject to the constraint that correspond
some specific features of the ordered phase. Thus,

ln
r~r1 ,V1!

r f
5lL1E dr2dV2c~r12,V1 ,V2 ;r f !Dr~r2 ,V2!

~3.17!

wherelL is Lagrange multiplier that appears in the equat
because of constraint imposed on the minimization.

One attempts to find a solution ofr(x) of Eq. ~3.17! that
has the symmetry of the ordered phase. These solutions
serted in Eq.~3.14! give the grand thermodynamic potenti
difference between the ordered and liquid phases. The p
with the lowest grand potential is taken as the stable ph
Phase coexistence occurs at the value ofr f that makes
2DW/N50 for the ordered and liquid phases. Substituti
Eq. ~3.1!, into Eqs.~3.17! and ~3.14! and integrating results
in, respectively

d l 80dq801
Ql 8q8

2l 811
5

1

VE dr1dV1e2 iGq8•r1Pl 8~cosu1!

3expFlL1(
l

(
q

Qlq

2l 11

3e2 iGq
•r1Ĉl ,0

q ~u1!G ~3.18!

and

2
DW

N
52Dr* 1Dr* Ĉ0,0

0

1
1

2 (
LL8

(
q

QLqQL8q

~2L11!~2L811!
ĈL,L8

q ,

~3.19!

where

Q0,05Dr* , ~3.20!
03171
-

to
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Ĉl ,0
q ~u1!5~2l 11!r fE dr12dV2c~r12,V1 ,V2!

3eiGq•r12Pl~cosu2!, ~3.21!

Ĉl ,l 8
q

5~2l 11!~2l 811!r fE dr12dV1dV2

3eiGqr12c~r12,V1 ,V2!

3Pl~cosu1!Pl 8~cosu2! ~3.22!

are the structural parameters related to the Fourier tra
formed direct correlation function of the fluid phase. Equ
tion ~3.18! is the expression for the order parameters. T
version of the density-functional theory is known as t
second-order density functional theory~SODFT! because it
considers only the pair-correlation functions and neglects
higher-order correlations that might be present in the sys
at the transition point.

B. Modified weighted-density approximation

In another version of the density-functional approach
which higher-order correlations are included and known
modified weighted-density approximation@16#, one uses the
Helmholtz free energy to locate the transition. For the Hel
holtz free energy we write

A@r~r ,V!#5Aid@r~r ,V!#1Aex@r~r ,V!#, ~3.23!

where both terms in Eq.~3.23! are unique functionals of the
one-particle densityr(r ,V). The first term in the right-hand
side of Eq.~3.23! is a nonuniform ideal gas contribution o
the form

Aid@r~r ,V!#5b21E
V
drdVr~r ,V!$ ln@r~r ,V!l3#21%,

~3.24!

wherel is the thermal de Broglie wavelength. The seco
term in the right-hand side of Eq.~3.23! is the excess Helm-
holtz free energy of the nonuniform system.

In the modified weighted-density approximatio
~MWDA ! the excess free energy of a uniform system, b
evaluated of a weighted densityr̂ @16#

Aex
MWDA@r#5Nf0~ r̂ !, ~3.25!

whereN is the number of particles in the systemf0(r) is the
excess free energy per particle of a uniform system at den
r. The weighted densityr̂ is constructed from the actua
inhomogeneous one-particle densityr(x) and is defined by

r̂5
1

NEV
dxr~x!E

V
dx8r~x8!ṽ~x2x8; r̂ ! , ~3.26!

introducing thereby the weighted functionṽ(x2x8; r̂). It is
an essential ingredient of the MWDA that the weighted fun
tion ṽ that is used to determine the weighted density,
1-8
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TABLE I. Values of order parameters and energy of smecticA and nematic phases atT* 50.8 for the GB
(1226) potential. While nematic is a stable phase, smecticA is metastable as its energy is higher than t
nematic.

r f* Phase mz P̄2 P̄4
t2z Dr* DW

0.293 SmA 0.674 0.891 0.719 0.687 0.098 20.023
Nematic 0.000 0.843 0.562 0.000 0.058 20.093

0.306 SmA 0.647 0.888 0.741 0.677 0.088 20.157
Nematic 0.000 0.903 0.654 0.000 0.063 20.243

0.312 SmA 0.629 0.887 0.750 0.667 0.083 20.234
Nematic 0.000 0.923 0.691 0.000 0.065 20.333
tio

,

y

y.

is

le of

ute

n

pends itself on the sought functionr̂; thus Eq.~3.26! has to
viewed as a self-consistency condition for the determina
of the weighted density. To ensure that the approximation
the determination ofr̂ becomes exact in the uniform limit
the weighted function has to be normalized, i.e.,

E dxṽ~x2x8; r̂ !51 ~3.27!

for any r̂. The functionṽ can be then uniquely specified b
requiring that the approximate functionalAex

MWDA@r# is exact
upto second order in the functional expansion, namely,

C~x2x8;r0!52b lim
r→r0

F d2Aex
MWDA@r#

dr~x!dr~x8!
G . ~3.28!

The conditions@Eqs. ~3.25!–~3.28!# result in a particularly
simple expression forṽ, namely,

ṽ~x2x8; r̂ !52
1

2f08~ r̂ !
Fb21C~x2x8; r̂ !1

1

V
r̂f09~ r̂ !G ,

~3.29!

whereV is the volume of the sample,f0( r̂) is the excess
free energy per particle of an isotropic fluid of densityr̂, and
primes onf0( r̂) indicate derivatives with respect to densit
Using expansion@Eq. ~3.1!# and@Eq. ~2.8!#, respectively for
r(x) andC(x2x8; r̂) we find for the ordered phase
03171
n
in

r̂5r0(
L1

(
L2

(
q

QL1qQL2q

ĉL1L2

q

~2L111!~2L211!

3F2
1

2r̂bf08~ r̂ !
G2r0r̂

f09~ r̂ !

2f08~ r̂ !
. ~3.30!

Having computedr̂, the next step in freezing analysis
to substituter̂ into Eq. ~3.25! to computeAex

MWDA . In terms
of structural parameter, the excess free energy per partic
a uniform system at a densityr is given as

bf0~r!52E
0

r

dr9
1

r92
E

0

r9
Ĉ00

0 @r8#dr8. ~3.31!

The ideal gas part is calculated using the ansatz forr(r ,V)
given by Eq.~3.8!. Thus

bAid@r0#5r0E dr(
L

(
q

QLq

A2L11
eiGq•r

3F $ ln~A0r0l3!21%dL02a~z2x0!2
d2L

A5

1
l2d2L

A5
1

l4d4L

3
2a1~z2x0!2dL0G . ~3.32!

To determine the transition parameters, we first comp
the effective densityr̂ from Eq. ~3.30! and minimizing the
free energy from Eqs.~3.23!, ~3.31!, and~3.32! with respect
to r0 ,a,l2 ,l4, anda1. In order to determine the transitio
density of the coexisting isotropic (r f) and anisotropic (r0)
TABLE II. Isotropic-nematic transition parameters for GB (n26) fluid at T* 50.65. The reduced units
areP* 5Ps0

3/e0 , m* 5m/e0, andr* 5rs0
3.

Potential model Theory r f* rn* Dr* P̄2 P̄4
P* m*

(826) DFT 0.428 0.431 0.006 0.69 0.40 9.48 26.79
MWDA 0.412 0.416 0.009 0.56 0.27 7.77 22.71

(1026) DFT 0.29 0.301 0.038 0.72 0.41 1.30 3.96
MWDA 0.286 0.29 0.013 0.36 0.12 1.22 3.69
1-9
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TABLE III. Same as in Table II but atT* 50.80.

Potential model Theory r f* rn* Dr* P̄2 P̄4
P* m*

(1026) DFT 0.341 0.346 0.015 0.68 0.37 3.81 12.4
MWDA 0.339 0.341 0.007 0.40 0.15 3.71 12.1

(1226) DFT 0.282 0.295 0.046 0.74 0.43 1.38 4.1
MWDA 0.277 0.281 0.015 0.36 0.12 1.27 3.6

(1426) DFT 0.239 0.277 0.158 0.92 0.62 0.58 0.6
MWDA 0.237 0.241 0.019 0.27 0.08 0.55 0.5
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phases it is necessary to equate the pressure and che
potentials~Maxwell construction! of the two phases.

IV. RESULTS AND DISCUSSION

We have used both versions of the density-functio
methods described above to locate the freezing transit
and calculate the values of the freezing parameters.
structural parameters defined by Eq.~3.22! that appear in the
density-functional theory as the input data are obtained fr
the harmonics of the direct pair-correlation functions eva
ated using the PY integral equation theory~given in Sec. II!.
Using these values of the structural parameters and the
order parametersP̄2 ,P̄4 ,m, and t we have solved Eqs
~3.18! and ~3.19! of the SODFT and Eqs.~3.23!–~3.32! of
the MWDA for the GB (n26) fluid with 8<n<30 for tem-
peratures lying between 0.65 to 1.25. All our results cor
spond tom52, n51, x053, andk855.

Our results show that for none of the cases studied h
SmA phase gets stabilized. In the low temperature region
a givenn it, however, appeared as a metastable state ha
free energy lower than that of the isotropic phase but hig
than the nematic~see Table I!. Since we have not include
Sm B and crystalline phases in our investigation for the r
son already given, we found only the isotropic-nematic tr
sition.

For eachn we found a lower cutoff of the temperature fo
the existence of the nematic phase. The nematic phase
not found to exist below this temperature. The lower cut
temperature for the nematic phase is found to increase
n. For example, where forn58 and 10 we found the nemati
phase to exist atT* 50.65 but not forn>12. The computer
simulation results of Miguelet al. @5# show that forn512
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the cutoff temperature is slightly aboveT* 50.8. Our results,
however, show that the nematic phase exists atT* 50.8. This
may be due to error in the structural parameters values fo
from the PY theory.

Both versions of the density-functional theory give sim
lar results for the transition densityr f* but give the values of
the order parameters including the change in density at
transition that are different from each other. More surpris
is the way the values of the order parametersP̄2 andP̄4 vary
with temperature and withn ~see Tables II–V! found from
the two version of the theory. While the SODFT predicts th
P̄2 and P̄4 decrease as the transition temperature is
creased, the MWDA predicts them to increase. The comp
simulation results@5,6# do not give any clear indication a
how these parameters vary with transition temperature. S
lar difference in the variation of the values of the order p
rameters withn is also found.

In Tables II–V we give the values of the transition para
eters found from the two theories. We also give the res
found from the computer simulations atT* 50.95 and 1.25
for n512. There is very good agreement between these
sults at T* 50.95. The transition density found from th
theories are identical though somewhat higher than the v
found from the simulation. The value ofDr* found from
these methods are also in good agreement, though MW
predicts the value ofDr* that is lower than the SODFT a
well as simulation value. Pressure and chemical potent
are in good agreement. But there is difference in the value
P̄2 and P̄4. At T* 51.25 both theories predict the transitio
density that is high compared to the molecular dynam
~MD! value. One of the possible reasons for this is,
pointed out in Sec. II, the inaccuracy in the values ofc har-
3
4
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8
8
6
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4

TABLE IV. Same as in Table II but atT* 50.95.

Potential model Theory r f* rn* Dr* P̄2 P̄4
P* m*

(1026) DFT 0.381 0.385 0.009 0.68 0.38 8.26 25.6
MWDA 0.379 0.382 0.007 0.46 0.20 8.04 25.0

(1226) MD 0.308 0.314 0.019 0.50 3.50 12.7
DFT 0.322 0.328 0.02 0.67 0.37 3.40 11.2

MWDA 0.322 0.325 0.008 0.37 0.13 3.40 11.2
(1426) DFT 0.287 0.299 0.042 0.74 0.43 1.82 5.6

MWDA 0.283 0.288 0.017 0.37 0.12 1.69 5.2
(1626) DFT 0.261 0.283 0.085 0.82 0.51 1.06 2.5

MWDA 0.245 0.251 0.027 0.36 0.12 0.82 1.6
1-10
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TABLE V. Same as in Table II but atT* 51.25.

Potential model Theory r f* rn* Dr* P̄2 P̄4
P* m*

(1026) a DFT 0.454 0.456 0.005 0.72 0.44 26.93 72.5
MWDA 0.435 0.437 0.005 0.62 0.30 21.26 59.8

(1226) MD @5# 0.323 0.331 0.025 0.50 5.70 20.9
DFT 0.378 0.382 0.009 0.68 0.38 10.90 34.2

MWDA 0.375 0.378 0.007 0.47 0.21 10.42 32.9
(1426) DFT 0.344 0.349 0.014 0.68 0.38 6.57 21.8

MWDA 0.343 0.346 0.009 0.44 0.20 6.52 21.7
(1826) DFT 0.306 0.315 0.028 0.72 0.41 3.43 11.5

MWDA 0.303 0.307 0.014 0.41 0.18 3.25 10.9
(2426) DFT 0.273 0.291 0.065 0.79 0.49 1.81 5.3

MWDA 0.267 0.274 0.026 0.37 0.13 1.65 4.7
(3026) DFT 0.249 0.283 0.137 0.90 0.61 1.11 2.3

MWDA 0.242 0.248 0.027 0.34 0.11 0.99 1.9

aThe results have been found by extrapolating the data of the structural parameters to high densiti
value of the transition parameters may, therefore, not be as accurate as for the other cases.
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monics at higher temperature. The PY theory is known
underestimate the angular correlations and this defect of
PY theory becomes more pronounced as temperature i
creased for a givenn. This may be the reason why the theo
predicts the transition at higher density than the MD val
As a consequence of this the transition pressure and
chemical potential are also substantially higher than the
values. This comparison atT* 50.95 and 1.25 show tha
while the DFT is good to predict the freezing parameters,
PY values of structural parameters at higher temperature
lower than the actual values.
.
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We hope to combine the PY and HNC theories to gene
accurate values of the harmonics of the pair-correlation fu
tions and with these values to compute the full phase d
gram.
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