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Structure and freezing of fluids interacting via the Gay-Berne(n—6) potentials
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We have calculated the pair-correlation functions of a fluid interacting via the Gay-Barné)( pair
potentials using the Percus-Yevick integral equation theory and have shown how these correlations depend on
the value ofn that measures the sharpness of the repulsive core of the pair potential. These results have been
used in the density-functional theory to locate the freezing transitions of these fluids. We have used two
different versions of the theory known as the second order and the modified weighted-density-functional theory
and examined the freezing of these fluids fee8<30 and in the reduced temperature range lying between
0.65 and 1.25 into the nematic and the smeétighases. For none of these cases smécphase was found
to be stabilized though in some range of temperature for a giveappeared as a metastable state. We have
examined the variation of freezing parameters for the isotropic-nematic transition with temperataréand
have also compared our results with simulation results wherever they are available. While we find that the
density-functional theory is good to study the freezing transitions in such fluids the structural parameters found
from the Percus-Yevick theory need to be improved particularly at high temperatures and lower vaiues of

DOI: 10.1103/PhysRevE.65.031711 PACS nunier61.30~v, 61.25.Em, 61.20.Gy

[. INTRODUCTION model. All these are single site models and refer to rigid
molecules of cylindrical symmetry. Even for these simple
In the case of nonspherical molecules the anisotropic namodels calculating the complete phase diagram is difficult.
ture of the intermolecular interactions can give rise to phases The Gay-Berne potential, in particular, is proving to be a
(liquid crystal$ [1] that are absent when simple sphericalvaluable model with which to investigate the behavior of
molecules are considered. Depending upon the shape and th@uid crystals in recent years using computer simulation
size of molecules and upon the external paraméterspera-  techniqueg5-7]. In this paper we consider a general Gay-
ture, pressures, ejca system may show a wide variety of Berne(GB) model withn—6 dependence on the shifted and
phenomena and transitions in between the isotropic liquigcaled separatior}, between the uniaxial particles.
and the crystalline solid. All these phases including that of o o
the isotropic liquid and the crystalline solids are character- u(e,g,r)=4e(e,g D(RT"—R79), (1.1
ized by the average positions and orientations of molecules
and by the intermolecular spatial and orientational correlawhere
tions. The determination of phase diagram of such a system
from the intermolecular potential is one of the most challeng- r—o(g ,%,F) + o0y
ing problems of the statistical mechanics. R= :
The molecules of systems that exhibit liquid crystalline
phases are generally large and have group of atoms with their

own local features. In general it is _dlfflcult_to know the true metry axes of particlesandj, the orientation of the vector
nature of the potential energy of interaction between sucl]

molecules. Attempts have, however, been made to find thi9ining them is denoted by the unit vectarThe dependence
potential energy of interactions between two such molecule f the contact distance on the orientations of the particles and

using different approximations. One such method is to suniN€ interparticle vector is
the interatomic or site-site potentials between atoms or be- . . .

tween interaction sites. In another and more convenient apfr(Q 6 ,1)

proach one uses rigid molecules approximation in which it is
assumed that the intermolecular potential energy depends
only on the position of the center of mass and on their ori- =0p
entations. If, however, our interest is to relate the phases
formed and their properties to the essential molecular factor
responsible for the existence of liquid crystals, it is desirable 13

to use a phenomenological description, either as a straight- ] ) . .
forward model unrelated to any particular physical systemdVhereay is the contact distance for the cross configuration
or as a basis for describing by means of adjustable paran{e-g=¢-r=¢-r=0). The parametey is a function of the
eters between two molecules. Most commonly used modelgtio Xo(=0./0), which is defined in terms of the contact
are hard ellipsoids of revolution, hard spherocylindgty  distances when the particles are end to é&jdand side by
cut sphere, the Kihara core mod@8l, and the Gay-Berngt]  side (),

o (1.2

While unit vectorse & indicate the orientations of sym-

1-x

(é-F)ZJr(%-F)Z—ZX(é-?)(%-F)(é-%))]_1/2
1-x%(&-§)? ’
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x5—1 |
X= 5 (1.4 I
Xgt+1 I

This vanishes for a sphere and tends to the limiting value
of unity for an infinitely long rod. The orientational depen-
dence of the potential well depth is given by a product of two

functions,
€(8.§.N=€oc"(&,8)€ &,8.1), (1.5
> NP7
where the scaling parametey is the well depth for the cross G 7 1 /// ! ///
configuration. The first of these functions o 2/ ! v
) W
nA A ~n~ A _ i 1 [/ /
e(&,8)=[1-x*(&-§)°] *? (1.6 = -1f I\ / 1
(]
clearly favors the parallel alignment of the particles and so :\f’ /
aids liquid crystal formation. The second function has a form : |
analogous tar(g & ,r), i.e., ! /
P
A A r |1I
€'(&,§,r) !
f}
1y (&:1)%+(g-1)?—2x"(&-7)(§1)(&-§)
= _— y _3 Il Il L
__ran .A 2 0 1 2 3 4
1-x te-e) r/o,
1.7 FIG. 1. Comparision of the GB(—6) intermolecular potential

as a function of the particle seperatioho, for four molecular
where the parametgy’ is determined by the ratio of the well arrangements: parall¢turve 1, cross(curve 2, T shapedcurve
depthsk’(=¢€/€e), via 3), and end to endcurve 4. Solid lines are for th¢10—6) model
and dashed curves are for ti8—6) model.

k-1
x' = . (1.8  tigate the effect of variation af, i.e., variation of the range
k' Yeg 1 of repulsion on the properties of molecular liquids and on its
freezing transition.

determine the anisotropy in the repulsive and attractivén® solution of the Ornstein-Zernike equation using the
forces, in addition to two parameters, ¢;,) that scale the Perc.us—Yewck.cIosure relation for pglr—correlgnon functlons.
distance and energy, respectively. The ratio of the end-to-engection Il discusses the essential details of density-
and side-by-side contact distangg, is related to the anisot- functional formalism applied to study the freezing of mo-
ropy of the repulsive forces and it also determines the differl€cular fluids into ordered phases. The results are given and
ence in the depth of the attractive well between the side-bydiscussed in Sec. IV.
side and the cross configurations. The paramkteis the
ratio of the well depth for the side-by-side and end-to-end 1. PAIR-CORRELATION FUNCTIONS: SOLUTION OF
configurations. While, determines the ability of the system THE PERCUS-YEVICK EQUATION
to form an orientationally ordered phadé€, determines the
tendency of the system to form a smectic phfgg The
other two parameterg andv influence nematic and smectic
phase forming character of the anisotropic attractive forces in p(1)=p(r, Q)= E S(r—r)sQ-9)), (2.2
a more subtle way. i=1

In almost all of the simulation and theoretical studies
to date n has been taken equal to 12. The value rof wherer; and(}; give the position and the orientation idh
defines the nature of the repulsion; the higher the value of molecule, the angular bracket represents the ensemble aver-
the harder is the nature of the repulsion. In Fig. 1 we plotage, and theS the Dirac delta function, is constant indepen-
u*(r,Qq,Q5)[=u(r,Q4,0Q5)/ 9] as a function of separa- dent of position and orientation for an isotropic fluid. It
tion for some fixed orientations with=10 and 18. It shows therefore contains no information about the structure of the
that asn increases the importance of attractive interactionsystem. The structural information of an isotropic fluid is
increases for all orientations. In the present paper we invesontained in the two-particle density distributip(l,2) that

The single particle density distributigi(1) is defined as
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gives the probability of finding simultaneously a molecule in  Both the PY and HNC integral theories have been used to
a volume elemendr;dQ; centered atr(;,€2,) and a second find the pair-correlations functions of model fluids of non-
molecule in a volume elemedt ,d(2, centered atr,,(2,). spherical molecule$9,10]. It is found that while the PY

p(L1,2) is defined as theory underestimates the correlations, particularly the angu-
lar correlation the HNC theory overestimates them. In case
p(1,2)=p(ry,Q;r5,425) of hard-core fluids we proposed a “mixed” integral equation
that interpolates between the HNC and PY theories and is
=(> S(ri—1i) 8(Q— Q) 8(r,— 1)) 8(Qy— Q) ). thermodynamically consisteritl1]. Such an approach is
7

needed for the soft-core potential the one considered in this
(2.2  Ppaper also. We, however, defer this approach for the future
and confine ourselves here to solve the PY equation to get
The pair-correlation function(1,2) is related top(1,2) by  the pair correlation functions for the GBi{-6) potential.

the relation The angle dependent functiof(r,,€,,Q,) (where A
may be pair-correlation function or pair potentias ex-
p(1,2) panded in a basis set of rotational invariaf®$ in space
9(1.2)= p(L)p(2) 23 fixed (SP frame according to the equation
Since fpr the isotropic ﬂl.lldp(1)=p(2)=pf.=<N>/V A(r,Q,,0)=> 3 AT
where(N) is the average number of molecules in voluwe I1T5) mimym
p?g(r,Q,,9,)=p(r,Q;,Q,), (2.4 X Cy(l1lolmimem)Y, m, (24)

wherer=(r,—r,). In the isotropic phase(1,2) depends XY, m,(22) Yin(£2), 2.9

only on the distancg,—r,|=r, the orientation of molecules _ .
with respect to each other and on the direction of vectoiVhere Cgy(lalol;mym,m) are the Clebsch-Gordon coeffi-

r(F=r/1r is a unit vector along). The pair-distribution func- “€T%: | s also possible fo
tion g(1,2) of the isotropic fluid is of particular interest as it y sy P P

is the lowest-order microscopic quantity that contains infor-(':')(pand the function in products of spherical harmonics in

mations about the translational and the orientational :struct—)Ody fixed(BF) frame according to the equation.

tures of the system and also has direct contact with intermo-
lecular (as well as with intramoleculaiinteractions. For an A(rq5,Q24,Q,)= E A,1|2m(rlz)Y,lm(Ql)Y|2m(Qz),
ordered phase, on the other hand, most of the structural in- 11fam -
formations are contained ip(x) (see Sec. I\ (2.9

The values of the pair-correlation functions as a functionyherem=—m. Numerically it is easier to calculate the BF

of intermolecular separation and orientations at a given t€mMharmonic coefficients than the SF harmonic coefficients. The

perature and pressure are found either by computer simulgyo harmonic coefficients are related through a linear trans-
tions or by solving the Ornstein-ZerniK®Z) equation formation,

112
Al1,1(112) Cg(l1] 2l ;mmO)

h(1,2)—c(1,2)=¥(1,2) 21+1

A|1|2m(r12)22I (?

:pffc(l,3)[y(2,3)+c(2,3)]d3, (2.5
or
whered3=dr;dQ; andh(1,2)=g(1,2)—1 andc(1,2) are, A \ 12
res_pectlve_ly, the total and d_|rect pair-correlation functions, A|1|2|(r12)22 STl Alllzm(rlz)CgUl'z'?mTO)-
using a suitable closure relation. Most commonly used closer m
relations are the Percus-YevialRY) and the hypernetted (2.10
chain (HNC) relations. Approximations are introduced
through these closure relations. The PY and HNC integral
equation theories are given by the OZ equation coupled wit
the closure relatiofn8]

In any numerical calculation we can handle only a finite
umber of the spherical harmonic coefficients for each
orientation-dependent function. The accuracy of the results
depends on this number. As the anisotropy in the shape of

CPY(1,2)=f(1L,2)[1+ 1(1.2)] (2.6) molecules(or in interactiong and the value of fluid density
p; increases more harmonics are needed to get proper con-
and vergence. We have found that the series get converged if we
truncate the series at the value loindices equal to 6 for
CHNC(1,2)=h(1,2)—In[1+h(1,2)]-Bu(1,2), (2.7  molecules withxo=<3 [9]. Though it is desirable to include
higher-order harmonics, i.e., fdr>6 but it will increase
respectively. Here f(1,2)=exd—pBu(1,2)]—-1 and B  computational time manifold. Our interest is to use the data
=(kgT) L. of the harmonics of pair-correlation functions for freezing
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FIG. 2. Pair-corelation functions of the center of mg¢s) for FIG. 3. The angle averaged potentia{r) as a function of

Xo=3.0,k’=5.0, »=0.25, andT* =0.80. The solid, dash-dotted, intermolecular seperation fo,=3.0,k’ =5.0, andT* =0.80. The
dashed, and solid line with square curves are(1dr-6), (12-6),  solid, dash-dotted, dashed, and dotted curves are(¥0r-6),
(14-6), and(18-6) potentials, respectively. (12-6), (14—6), and(18—6) potentials, respectively.

transitions where only low-order harmonics are generally in{as well as on temperatyres weak. One may also note the
volved (see Sec. Ill beloyv The only effect the higher-order  shift to lower values of * of first minimum as is increased.
harmonics appear to have on these low-order harmonics is to Since the PY theory is known to be reasonably accurate
modify the finer structure of the harmonics at small values offor systems interacting via pair potential that has hard repul-
r whose contributions to the structural parametéssbe de-

fine below are negligible. T'=1.25

Using the numerical procedure outlined elsewH&iewe 0.3 l ' '
have solved the PY equation for the GB- 6) fluid having
nvalues 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30 for
Xo=3.0 and well-depth rati&’ =5 at reduced temperatures,
T*=kT/e,=0.65,0.80,0.95, and 1.25 for a wide range of
densities. The other two parametersand v are taken to be
2 and 1, respectively. The solutions could be found only upto
certain densityp’ the value of which depend upon the tem-
perature and the value of The value ofp’ is often close to
the isotropic-nematic transition. Because of this one faces
problems in locating other less symmetric phases of the sys
tem using the theory to be discussed in Sec. Ill.

In Fig. 2 we compare the values ofj(r)=1
+[hgo(r)/4m] in BF frame at T*=0.80 and density
n[E(ﬂ'/G)prgXO]=O.25 for four sets of f—6) combina-
tions. It is seen from this figure that the first peak becomes
sharper and attains its maximum value at smaller value of ;
r*(=rloy) as the hardness of the core increases. The caus g | A j
of this becomes clear if we look at Figs. 3 and 4 that depict
v(r)=—T* In[{exd — Bu(r £21,Q25) o, 0,] as a function of
interparticle separation at*=0.8 and 1.25, respectively.
v(r) may be regarded as an averaged pair potential and
therefore, helps us in understanding the featureg (o).

03 |

v(r)

v(r) seems to have two minimum; onerdt~1.25 and other 03 s > >3 3
atr*~2.25. The first minimum becomes deeper at higher r/c,

and at lower temperature and almost vanishes at lovesrd

higher temperatures. The second minimum dependence on FIG. 4. Same as Fig. 3 but far* =1.25.
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FIG. 5. The spherical harmonics coefficidm,r)/47 in BF

frame. Curves and state conditions are the same as in Fig. 2. FIG. 7. Pair-correlation function of the center of mas)

for =0.50 for the GB(10-6) model. The solid, dash-dotted,
sive core i—=) and weak attractiofil1], the values of the dashed, and solid line with square are for the temperatlifes
pair-correlation functions reported here are expected to be 0.65, 0.80, 0.95, and 1.25, respectively.

more accurate for higher values mfind lower values of*

compared to values corresponding to loweand higherT*. As has already been mentioned, the PY theory underesti-
In Figs. 5 and 6 we compare the two other projections ofmates the molecular correlations. This can be seen from the

pair-correlation function in BF frame at the same state conpressure calculated using the values of the direct pair-

ditions and observe similar behavior. In Fig. 7 we comparecorrelation function through the compressibility relation that

the value ofg(r) at »=0.5 for the GB (16-6) model at s found to be lower than the simulated value as shown in

four different temperatures. Here we see that the first peakig. 8.

gets sharper as the temperature decreases. Such behavior iFor a system consisting of axially symmetric nondipolar

also seer(see Fig. 2 whenn is increased at the same tem- molecules the static Kerr constattis given by[12,13

perature. This is due to increasing tendency of the molecules

to form parallel configurations.

’\O -1
] K=k T
] 5
0.50—
_ 4.0(-
< 1 3.0|-
~r
> 0.30 «°
S - S~
— “o -
§ ] o.b 2.0
£ . *c:-.
0104 1.0|-
[ 0.0
T I L 1
. 0.0 0.1 0.2 0.3 0.4
-0.104————T T T T T T T q*:g',,g
0.00 1.00 2.00 3.00 4.00 5.00
/o FIG. 8. Pressure as a function of fluid density for the GB

(12—6) fluid at T* =0.95. The solid curve is the present PY result
FIG. 6. The spherical harmonics coefficigmi,r)/4m in BF obtained using the compressibility equation. The open circles are
frame. Curves and state conditions are the same as in Fig. 2.  the MD result of Miguelet al. (Ref. [5]).
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FIG. 9. The reduced inverse Kerr const@#K ! as a function FIG. 10. Same as in Fig. 9 but far* =1.25.

of density# for x,=3.0,k’ =5.0, andT* =0.80. The values afiin
GB (n—6) models for the different curves are given on the plot. nient quantity to specify an arbitrary state of a system. One
may consider a variational thermodynamic potential as a

where C9, is structural parameter defined as in £g§.22  functional of p(x). The equilibrium state of the system at
andx is a constant dependent only upon single particle propgiven T and P is described by the densify(T,P,x) corre-
erties. The divergence & may signal the absolute stability sponding to the minimum of the thermodynamic potential
limit of the isotropic phase relative to orientationally orderedwith respect top(x). This forms the basis of the density-
phase[12]. Thus the isotropic phase becomes orientationallyfunctional theory.
unstable when the inverse Kerr constnt'— 0. It is, how- In this paper we investigate the freezing of the @B(
ever, important to emphasize that the conditiont —0 does ~ —6) fluid into the nematic and the smecAdSmA) phases
not determine the thermodynamic phase transition, but rathafsing density-functional theor§DFT). In the nematic phase
a point on the spinodal line. This means that the density athe full translational symmetry of the isotropic fluid phase
which K ~1=0 establishes a stability limit in the sense that at(denoted asR®) is maintained but the rotational symmetry
higher densities the isotropic phase cannot exist even as @(3) or SQ3) (depending upon the presence or absence of
metastable state. the center of symmetjyis broken. In the simplest form of

The reduced Kerr constan@AK ! as a function ofy for  the axially symmetric molecules the groug3p[or SQ3)] is
the variousn values are plotted in Figs. 9 and 10 &t  replaced by one of the uniaxial symmey.;, (or D..). The
=0.8 and 1.25. phase possessing tH§3/\Doch (denoting the semidirect
product of the translational grol®® and the rotational group
D..,) symmetry is known as uniaxial nematic phael4).

The smectic liquid crystals, in general, have a stratified

The structural informations of fluids at the pair-correlation structure with the long axes of molecules parallel to each
functions level obtained above can be used to obtain inforether in layers. This situation corresponds to partial break-
mation about their freezing. At the freezing point the spatialdown of translational invariance in addition to breaking of
and orientational configurations of molecules undergo dhe orientational invariance. Since a variety of molecular ar-
modification. Often abrupt change in the symmetries of theangement are possible within each layer, a number of smec-
system takes place on the freezing. In contrast to the isotrdic phases are possibjé]. The simplest among them is the
pic fluid, the molecular configurations of most orderedSmA phase. In it the center of mass of molecules in a layer
phases are adequately described by the single particle densdye distributed as in a two-dimensional fluid but the molecu-
(singled distribution p(x) - p(x) provides us with a conve- lar axes are on the average along a direction normal to the

Ill. THEORY FOR FREEZING
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smectic layer(i.e., the directom is normal to the smectic
layen. The symmetry of the SmA phase isD..,/\(R?X Z)
whereR? corresponds to a two-dimensional liquid structure
andZ for a one-dimensional periodic structure.

The order parameters that characterize the ordered stru
tures can be found from the singlet distributiefx). For this

we express it in the Fourier series and the Wigner rotation

matrices. Thus

p<x>=p(r,m=po§ ;ﬂ Qimn(Gq)eXpiGq-T)Djp(Q),
(3.2

where the expansion coefficients

2l+1 .
Qune(Gq)= | ot | d0p(r, )exp(~iG- 1D ()
(3.2
are the order parameterS, the reciprocal lattice vectorg,
the mean number density, ariﬂ'mn(ﬂ) the generalized
spherical harmonics or Wigner rotation matri¢és].
Since we are interested in uniaxial systems of cylindri-

cally symmetric moleculesn=n=0 in Egs.(3.1) and(3.2).
This leads to

p(r,m=p02I % Qi eXHiGy-1)Py(cosd) (3.3

and

21+1 .
qu:TJ drfdﬂp(r,ﬂ)exp(—lGr)P,(cose),
(3.9

whereP,(cosé) is the Legendre polynomial of degréand

0 is the angle between the cylindrical axis of a molecule and

the director.
Since in the nematic phase the centres of mass of mo

ecules are distributed as randomly as in the isotropic fluid

but the molecular axes are aligned along a particular dire

tion defined by the directon (a unit vectoy we haveG,
=0 and

Qio={((21+1)P[cos(h)])=(21+1)P;, (3.5

where angular bracket indicates the ensemble average. It
often enough to use two orientational order parameers

and54 to locate the isotropic-nematic transition as in almost
all known cases the transition is weak first-order transition

[1].

To characterize the SrA phase we need three different
class of order parameter§; orientational,(ii) positional,
(iii) mixed. These parameters are found from E32). For
the orientational order we take, and P, as in the case of
the nematic phase. For the positional order alongzth&is
we choose one order parameter correspon@ng 2«/d, d
being the layer spacing. Thus

C_

PHYSICAL REVIEW E 65031711

27z
M:Qoo(Gz):<COS(T > (3.6

The coupling between the positional and orientational order-
g is described by thénixed order parameter defined as

27z

d ) Pz(cosa)> . (3.7

T= %on(Gz)= < COS(

We therefore choose four order parameters to describe the
ordering in a SMA phase and two for the nematic ordering.
Another way of writing the trial singlet distribution corre-
sponding to the ordered phases of our interest is

p(r,Q)=Agpgexf — a(z—d)?>— a(z— d)?P,(cosh)

+A,P5(cosh) +\4P4(cosh)], (3.9
whereA, is a normalization constant and o' are associ-
ated with the formation of layer in the Si phase and\,
and\, with orientational ordering. Whea and «* are zero
but A, and\, are nonzero the phase is nematic. In case of
the isotropic fluid all the four parametess o, \,, andx,

are zero. If all the four parameters are nonzero the phase is
SmA. The four order parameters defined above can be found
taking the expression gf(r,Q) given by Eq.(3.8). Thus

Ao [ cod 27 [
n= dfodzcos( d )fodxexp(S), (3.9
T= %foddzcos(?) foldxexp(S)Pz(x), (3.10
—_ A [d 1
Pzszodzfodxexqswz(x), (3.11)
— Ap(d 1
Py=— dzf dxexp(S)P4(x), (3.12
dJo Jo

where S

—a(z—d)?—al(z—d)?P,(x) + N\ ,P5(X)
+N4P4(X).

A. Density-functional approach

In the usual density-functional theory approach one uses
the grand thermodynamic potential to locate the transition.
The grand thermodynamic potential is defined as

—W=/3'A—ﬂ,U«J dxp(x), (3.13

whereA is the Helmholtz free energy, the chemical poten-

tial, and p(x) is a singlet distribution function. Equation

(3.1 can be written as
AW=W-W;=AW;+AW,, (3.19

whereW; is the grand thermodynamic potential of the iso-
tropic fluid, and[14].
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AW,

1 p(r, Q)
_N = pf_Vf drdQ

p(r,Q)In

}—Ap(r,ﬂ)]

(3.195
and

AW, 1
N = — 2—pr dl’lzdﬂlszAP(rl vﬂl)

XC(ry,Q,Q,)Ap(r,,€2,). (3.16

Here Ap(X) =p(X) — p;, Wherep; is the density of the co-

PHYSICAL REVIEW E65 031711

&1 0= 21+ Lpy | dr 80500110, 0,,0)

X e'®q'"12P|(cosh,), (3.21)
Cl =@ +1)2 +1)pff dr,,dQ,dQ,
X e'Cal12c(r1,,0,,0,)
X P(cosb,)P,/(cosh,) (3.22

are the structural parameters related to the Fourier trans-
formed direct correlation function of the fluid phase. Equa-
tion (3.18 is the expression for the order parameters. This

existing liquid. The ordered phase density is found by mini-version of the density-functional theory is known as the
mizing AW with respect to arbitrary variations in the ordered second-order density functional theoif$ODFT) because it
phase density subject to the constraint that corresponds tnsiders only the pair-correlation functions and neglects the

some specific features of the ordered phase. Thus,

p(r, Q) )
|HT:)\L+ drodQ,c(r5,€2,Q5;p¢)Ap(r,,£5)

(3.17

higher-order correlations that might be present in the system
at the transition point.

B. Modified weighted-density approximation

In another version of the density-functional approach in
which higher-order correlations are included and known as

where) is Lagrange multiplier that appears in the equationmodified weighted-density approximati¢h6], one uses the

because of constraint imposed on the minimization.

One attempts to find a solution p{x) of Eq. (3.17) that

Helmholtz free energy to locate the transition. For the Helm-
holtz free energy we write

has the symmetry of the ordered phase. These solutions, in-

serted in Eq(3.14) give the grand thermodynamic potential

Alp(r,Q)]=Aiglp(r, Q)]+ Al p(r,Q)], (3.23

difference between the ordered and liquid phases. The phase . . .
with the lowest grand potential is taken as the stable phas#&vhere both terms in Eq3.23 are unique functionals of the

Phase coexistence occurs at the valueppfthat makes

one-particle density(r,€). The first term in the right-hand

—AW/N=0 for the ordered and liquid phases. Substitutingside of Eq.(3.23 is a nonuniform ideal gas contribution of
Eqg. (3.1, into Egs.(3.17 and(3.14) and integrating results the form

in, respectively

QI!q/ 1j .
819040+ ——=—| dr,dQ,e" G "1P,,(cosh
000t STy 1dQ 1( 1)
qu
Xexr{)\ﬁ—El % ST 1
X e~ 1Cq. rléﬁo( 91)} (3.18
and
AW o
N - At H+Ap*Cop
1 QLqQur -
+§E > g ? Cﬁ',_,,
e’ 9 (2L+1)(2L'+1)
(3.19
where
Qoo=A4p", (3.20

Aid[p(f,ﬂ)]=ﬂflfvdfdﬂp(hﬂ){ln[ﬂ(r,Q)k3]—1},
(3.29

where\ is the thermal de Broglie wavelength. The second
term in the right-hand side of E3.23 is the excess Helm-
holtz free energy of the nonuniform system.

In  the modified weighted-density approximation
(MWDA) the excess free energy of a uniform system, but

evaluated of a weighted densipy[16]

AVNPA p1=Ngo(p), (3.29

whereN is the number of particles in the systepg(p) is the
excess free energy per particle of a uniform system at density

p. The weighted density is constructed from the actual
inhomogeneous one-particle densitfx) and is defined by

~ 1 ~ -
p= vapr(x) Jvdx’p(x’)w(x—x’;p), (3.26

introducing thereby the weighted functias(x—x';p). It is
an essential ingredient of the MWDA that the weighted func-

tion w that is used to determine the weighted density, de-
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TABLE I. Values of order parameters and energy of sme&tamd nematic phases at = 0.8 for the GB
(12— 6) potential. While nematic is a stable phase, smektis metastable as its energy is higher than the

nematic.

p? Phase ,LLZ EZ 54 T2Z Ap* AW

0.293 SmA 0.674 0.891 0.719 0.687 0.098 —0.023
Nematic 0.000 0.843 0.562 0.000 0.058 —0.093

0.306 SmA 0.647 0.888 0.741 0.677 0.088 —0.157
Nematic 0.000 0.903 0.654 0.000 0.063 —0.243

0.312 SmA 0.629 0.887 0.750 0.667 0.083 —-0.234
Nematic 0.000 0.923 0.691 0.000 0.065 —0.333

pends itself on the sought functign thus Eq.(3.26 has to ct.,

viewed as a self-consistency condition for the determination P=po 2 2 QLQLg
of the weighted density. To ensure that the approximation in 05 %0 U2t D(2L+1)

the determination of> becomes exact in the uniform limit, 1 )
the weighted function has to be normalized, i.e., - _ _po;; CALS (3.30
2pBo(p) 2¢o(p)
f dxa(x—x';p)=1 (3.27 Having computedp, the next step in freezing analysis is

to substitutep into Eq. (3.25 to computeAM VP4 In terms
N o~ ) . of structural parameter, the excess free energy per particle of
for any p. The functionw can be the_n unlqvld[()aly sp_ecmed bY 4 uniform system at a densifyis given as
requiring that the approximate functlonfénl'X A p]is exact
upto second order in the functional expansion, namely,

52A MWDA[p]
8p()8p(X") |

Boolp)=— fdp” f Codp'ldp’.  (3.3D

IIZ
(3.28

C(x=x";pg)=—pBIim

p—po The ideal gas part is calculated using the ansatp{or{2)

given by Eq.(3.8). Thus

The conditiong Egs. (3.25—(3.28] result in a particularly

. . ~ QLq i

simple expression fow, namely, ,BAid[Po]Zpof drE E giGqr
V2L+1
o(x—x';p)=— —— {BlC(x—X"I)HEZ)%(ﬁ)} X | {In(Agpoh3) — 118, g— a(z— X )2%
2¢4(p) \Y 0Po Lo 0" %
N2SaL  Ngda
(329 \/g +T_al(Z_XO)25L0 . (333

whereV is the volume of the samplejo(p) is the excess 14 getermine the transition parameters, we first compute

free energy per particle of an isotropic fluid of dengityand . affective densmp from Eq. (3.30 and minimizing the
primes ond:o(p) indicate derivatives with respect to density. free energy from qu(g 23, (3.31), and(3.32 with respect
Using expansiofiEq. (3.1)] and[Eq. (2.8)], respectively for  to p,,a,\,,\4, andal. In order to determine the transition
p(x) andC(x—x’;p) we find for the ordered phase density of the coexisting isotropigp{) and anisotropic g)

TABLE II. Isotropic-nematic transition parameters for GB~{6) fluid at T* =0.65. The reduced units
areP* =Pol ey, u* = ul ey, andp* = pog.

Potential model Theory p¥ o Ap* P, P, p* u*
(8—6) DFT 0.428 0.431 0.006 0.69 0.40 9.48 26.79
MWDA 0.412 0.416 0.009 0.56 0.27 7.77 22.71
(10-6) DFT 0.29 0.301 0.038 0.72 0.41 1.30 3.96

MWDA 0.286 0.29 0.013 0.36 0.12 1.22 3.69
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TABLE Ill. Same as in Table Il but at* =0.80.

Potential model Theory pf pn Ap* P, P, p* u*
(10-6) DFT 0.341 0.346 0.015 0.68 0.37 3.81 12.44
MWDA 0.339 0.341 0.007 0.40 0.15 3.71 12.16
(12—-6) DFT 0.282 0.295 0.046 0.74 0.43 1.38 4.11
MWDA 0.277 0.281 0.015 0.36 0.12 1.27 3.69
(14-6) DFT 0.239 0.277 0.158 0.92 0.62 0.58 0.65

MWDA 0.237 0.241 0.019 0.27 0.08 0.55 0.54

phases it is necessary to equate the pressure and chemitia cutoff temperature is slightly abo¥& =0.8. Our results,

potentials(Maxwell construction of the two phases. however, show that the nematic phase exist&‘at 0.8. This
may be due to error in the structural parameters values found
IV. RESULTS AND DISCUSSION from the PY theory.

We have used both versions of the density-functional Both versions of thg .density-flunctiona.l theory give simi-
methods described above to locate the freezing transitior‘! r results for the trans_ltlon d.ensm}* but give Fhe valules of
and calculate the values of the freezing parameters. T N o.r(.:ler parameters including the change in density at the
structural parameters defined by E8.22 that appear in the transition that are different from each other. More surprising
density-functional theory as the input data are obtained froniS the way the values of the order paramefjsandP, vary
the harmonics of the direct pair-correlation functions evalu-With temperature and witn (see Tables I-¥ found from
ated using the PY integral equation theégjven in Sec. ).  the two version of the theory. While the SODFT predicts that
Using these values of the structural parameters and the fol?, and P, decrease as the transition temperature is in-
order parameter?zysmluq and = we have solved Eqs creased, the MWDA DTEdiCtS them to increase. The computer
(3.18 and (3.19 of the SODFT and Eq93.23—(3.32 of  simulation result§5,6] do not give any clear indication as
the MWDA for the GB (1—6) fluid with 8<n=30 for tem- how these parameters vary with transition temperature. Simi-
peratures lying between 0.65 to 1.25. All our results correlar difference in the variation of the values of the order pa-
spond tou=2, v=1, xo,=3, andk’ =5. rameters withn is also found.

Our results show that for none of the cases studied here In Tables II-V we give the values of the transition param-
SmA phase gets stabilized. In the low temperature region fofters found from the two theories. We also give the results
a givenn it, however, appeared as a metastable state havin%und from the computer simulations &t =0.95 and 1.25
free energy lower than that of the isotropic phase but highefor n=12. There is very good agreement between these re-
than the nemati¢see Table )l Since we have not included Sults atT*=0.95. The transition density found from the
SmB and Crysta”ine phases in our in\/estiga’[ion for the rea.theories are identical thOUgh somewhat hlgher than the value

son already given, we found only the isotropic-nematic tranfound from the simulation. The value dfp* found from
sition. these methods are also in good agreement, though MWDA

For eachn we found a lower cutoff of the temperature for predicts the value oA p* that is lower than the SODFT as
the existence of the nematic phase. The nematic phase waell as simulation value. Pressure and chemical potentials
not found to exist below this temperature. The lower cutoffare in good agreement. But there is difference in the value of
temperature for the nematic phase is found to increase witRP, and P,. At T* =1.25 both theories predict the transition
n. For example, where far=8 and 10 we found the nematic density that is high compared to the molecular dynamics
phase to exist at* =0.65 but not fom=12. The computer (MD) value. One of the possible reasons for this is, as
simulation results of Migueét al. [5] show that forn=12  pointed out in Sec. Il, the inaccuracy in the values dfar-

TABLE IV. Same as in Table Il but af* =0.95.

Potential model Theory p¥ ok Ap* P, P, p* u*

(10-6) DFT 0.381 0.385 0.009 0.68 0.38 8.26 25.63
MWDA 0.379 0.382 0.007 0.46 0.20 8.04 25.04

(12—6) MD 0.308 0.314 0.019 0.50 3.50 12.70
DFT 0.322 0.328 0.02 0.67 0.37 3.40 11.28

MWDA 0.322 0.325 0.008 0.37 0.13 3.40 11.28

(14-6) DFT 0.287 0.299 0.042 0.74 0.43 1.82 5.66
MWDA 0.283 0.288 0.017 0.37 0.12 1.69 5.21

(16—6) DFT 0.261 0.283 0.085 0.82 0.51 1.06 2.59

MWDA 0.245 0.251 0.027 0.36 0.12 0.82 1.64
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TABLE V. Same as in Table Il but af* =1.25.

Potential model Theory p¥ pn Ap* P, P, p* u*

(10-6)2 DFT 0.454 0.456 0.005 0.72 0.44 26.93 72.59
MWDA 0.435 0.437 0.005 0.62 0.30 21.26 59.84

(12-6) MD [5] 0.323 0.331 0.025 0.50 5.70 20.90
DFT 0.378 0.382 0.009 0.68 0.38 10.90 34.27

MWDA 0.375 0.378 0.007 0.47 0.21 10.42 32.99
(14-6) DFT 0.344 0.349 0.014 0.68 0.38 6.57 21.88
MWDA 0.343 0.346 0.009 0.44 0.20 6.52 21.71
(18-6) DFT 0.306 0.315 0.028 0.72 0.41 3.43 11.52
MWDA 0.303 0.307 0.014 0.41 0.18 3.25 10.95

(24—-6) DFT 0.273 0.291 0.065 0.79 0.49 1.81 5.35
MWDA 0.267 0.274 0.026 0.37 0.13 1.65 4.78

(30-6) DFT 0.249 0.283 0.137 0.90 0.61 1.11 2.38
MWDA 0.242 0.248 0.027 0.34 0.11 0.99 1.90

&The results have been found by extrapolating the data of the structural parameters to high densities. The
value of the transition parameters may, therefore, not be as accurate as for the other cases.

monics at higher temperature. The PY theory is known to We hope to combine the PY and HNC theories to generate
underestimate the angular correlations and this defect of theccurate values of the harmonics of the pair-correlation func-
PY theory becomes more pronounced as temperature is iions and with these values to compute the full phase dia-
creased for a given. This may be the reason why the theory gram.

predicts the transition at higher density than the MD value.
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