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Lamellar phases confined in quasicylindrical pores: Lattice model results
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A two-dimensional~2D! vector lattice model of microemulsions is applied to study the structure of lamellar
phases confined in long rectangular pores. One-point distribution functions are calculated within mean field
approximation. The effects of pore geometry and surface fields are considered. A 2D analog of an onion phase
is favored by a pore with strongly hydrophilic walls. For neutral walls, far from the phase boundaries, the
lamellar phase is stable inside the pore. By contrast, close to the lamellar-tubular phase boundary a pore with
neutral walls favors a 2D tubular phase. This is the analog of capillary condensation. In all cases the excess
pressure is calculated as a function of the pore geometry.
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I. INTRODUCTION

Amphiphilic molecules~surfactants, lipids, or block co
polymers! consist of two distinct groups that differ signifi
cantly in their solubility. For instance, the hydrophilic he
of a surfactant molecule prefers to dissolve in water, wher
the hydrophobic tail prefers to dissolve in oil. Consequen
in mixtures with water and oil, surfactant molecules se
assemble into monolayers that form a rich variety of mes
tructures@1–3#. Spontaneous structure formation may be r
evant technologically, for example, in the manufacture
very small devices. However, in small systems self-assem
is influenced significantly by the geometry, chemistry, a
the size of the confining walls. Confinement plays a ma
role when the size of the system is comparable to the len
characterizing the structure of the confined fluid. In mic
emulsions and lamellar phases the typical lengthl corre-
sponds to the size of correlated domains~for example, the
size of micelles or the period of lamellar phases! and may be
up to two orders of magnitude larger than molecular dim
sions. Finite size effects are thus expected to occur on
soscopic scales.

In lamellar phases, that consist of oil- and water-rich la
ers~lamellas! separated by monolayers of the surfactant,
translational and rotational symmetries are broken. Thus,
geometry of the confining walls may have significant effe
on the self-assembly of these structures. In this work
consider a pore modeled by a boxLx3Ly3Lz . Previous
theoretical studies@4–8# were restricted to slit geometries
i.e., toLy ,Lz→` with finite Lx . A capillarylike or quasicy-
lindrical pore corresponds toLz→` with both Lx and Ly
finite. The structural and mechanical properties of lame
phases confined in quasicylindrical pores with a base of
;10l may be significantly different from those of lamella
phases confined in slits of similar widths, under the sa
thermodynamic conditions. In slits with strongly hydrophil
walls the lamellas are expected to be parallel to the wa
Theory @4,6,8# and experiment@9,10# confirm this. By con-
trast, for long square base pores with hydrophilic walls, o
pair of ~parallel! walls favors an orientation of the lamellas
right angles to the orientation favored by the other pair. N
1063-651X/2002/65~3!/031707~8!/$20.00 65 0317
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ther the structure nor the mechanical properties of confi
lamellar phases are easily predicted in this case. There
results based on simple model systems will give valua
insights and will help to interpret the results of future expe
ments.

In previous works@4–6# the effects of the confinement o
the structural and mechanical properties of ternary surfac
mixtures in slitlike pores have been studied within the latt
Ciach-Ho”ye-Stell ~CHS! model @11#. The results@4# are in
good agreement with experiments@10#. Since the CHS
model has been proved useful in the analysis of s
assembly into various simple structures@4–6#, we will ex-
tend it here to more complex confining geometries, such
quasicylindrical pores.

The thermodynamic and mechanical properties of c
fined lamellar phases are summarized in the following s
tion. The model is described briefly in Sec. III., and the
sults are presented in Sec. IV. The final section contain
summary and discussion.

II. PHENOMENOLOGY

We start with a brief description of the thermodynam
properties of a system confined in a box. We assume tha
system is in equilibrium with a reservoir, and that the te
peratureT and the chemical potentialsm i are fixed. For a
system with identical parallel walls, the variation in th
grand termodynamic potential can be written as

dV5vbd~LxLyLz!12sxd~LyLz!12syd~LxLz!

12szd~LxLy!1 f xLyLzdLx1 f yLxLzdLy

1 f zLxLydLz , ~1!

wherevb is the bulk thermodynamic potential density,sx ,
sy and sz are the wall-fluid surface tensions for walls pe
pendicular tox̂, ŷ, and ẑ respectively, whilef x , f y, and f z
are related to the excess pressure in the direction denote
the subscripts. For fixedLz@Lx ,Ly , the above simplifies to
©2002 The American Physical Society07-1
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dV/Lz5vbd~LxLy!12sxdLy12sydLx1 f xLydLx

1 f yLxdLy . ~2!

The excess pressure in thex direction is defined as

Px52S ]Vex

]V D
Ly ,Lz

52
1

LyLz
S ]Vex

]Lx
D , ~3!

whereV is the volume, and the excess grand thermodyna
potential of the system confined in the box is

Vex5V2vbLxLyLz . ~4!

Py is defined in a similar way. For a square base pore,Lx
5Ly5L, symmetry conserving compressions or expansi
are associated with an excess pressure given by

P52S ]Vex

]V D
Lz

52
1

2LzL
S ]Vex

]L D . ~5!

Vex , and consequently the excess pressure, depend sig
cantly on the structure of the confined fluid. Different boun
ary conditions may lead to the stability or metastability
different structures. As we are not capable of determininga
priori , the stable structure under a particular set of con
tions, we will consider the properties of the confined lame
phases in a number of different structures, shown in Fig

A. Lamellar structure

The structure shown in Fig. 1~a! exhibits lamellas paralle
to one pair of walls, and was studied in Ref.@4# for slit
geometries,Ly ,Lz→`. For wide slits,Lx@l, with N lamel-
las, the excess grand potentialVex contains an elastic con
tribution Vel(Lx)/LyLz5Bl(Lx2LN)2/2LN , whereBl is the
modulus of elasticity,LN is the width of the slit under zero
stress.LN

t ,Lx,LN11
t , with LN

t the width of the slit where
the transition fromN21 to N confined layers occurs. Fo

FIG. 1. Schematic representation of the structures formed by
lamellar phase in a long pore with a square or rectangular bas
cross sectionz5const is shown for~a! lamellas parallel to one pai
of walls, ~b! quasionion structure forLx5Ly , ~c! quasionion struc-
ture for Lx,Ly .
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N@1, LN
t 'LN2l/2, with l the period of the bulk lamellar

phase. The period of the lamellar phase in the slit is differ
from l, except whenLx5LN ; thus,LN112LN5l. We as-
sume that for finiteLy5const, the elastic contribution toV is
similar to that for a slit. Then considering lamellas parallel
the (y,z) wall, we write

Vex /LyLz'2s i12s'

Lx

Ly
1

Bl~Lx2LN!2

2LN

~LN
t ,Lx,LN11

t !, ~6!

wheresx[s i andsy[s' . It follows that the excess pres
surePx contains a background contribution,22s' /Ly , that
is independent ofLx . At fixed Ly the strength and sign o
this term are determined bys' , that depends in turn on th
nature of the confining walls and on the period of the lam
lar phase@6#.

At Lx5LN
t the number of layers in the pore increas

from N21→N. Therefore, (Lx2LN)2 andBl /2LN in Eq. ~6!
may be written as

Lx2LN5Lx2FLN0
1l (

N5N011
u~Lx2LN

t !G , ~7!

Bl

2LN
5

Bl

2 F 1

LN0

1 (
N5N011

S 1

LN
2

1

LN21
D u~Lx2LN

t !G ,

~8!

where we assumed that the system is elastic forN.N0, i.e.,
Eq. ~6! is valid for Lx.LN0

. Note that the unit step function

u(Lx2LN
t ) in the previous equations yieldd functions

(N.N0
aNd(Lx2LN

t ) in the excess pressure. Experimenta

thesed functions correspond to instabilities at the transitio
N21→N that take place whenLx5LN

t .
Let us consider square base pores and deformations

conserve this symmetry. The excess pressure~5! for the con-
fined lamellar phase is then

P~L !52
1

L
~s i1s'!2

Bl~L2LN!

2LN
S 11

L2LN

2L D
~LN

t ,L,LN11
t !. ~9!

For LN@l the above may be expanded as

P~L !1
1

L
~s i1s'!52

Bl

2
x2

Bl

4
x21

Bl

4
x31O~x4!,

~LN
t ,L,LN11

t !, ~10!

wherex5(L2LN)/LN .

B. Quasionion structure

In square base pores with identical walls the directionx
and y are equivalent. Since lamellas tend to be parallel
strongly hydrophilic walls we consider the mechanical pro
erties of the stable or metastable structures, with lame

e
A
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LAMELLAR PHASES CONFINED IN . . . PHYSICAL REVIEW E65 031707
parallel to neighboring walls with domain walls, along th
diagonals of the square, separating perpendicularly alig
lamellas@see Fig. 1~b!#.

The domain walls meet at the center of the square.
refer to this structure as ‘‘quasionion.’’ The domain walls a
associated with additional contributions toVex , which are
present even in the absence of compression or expansio
the layers~i.e., whenL5LN!. For a system withL5LN , we
assume for the elastic quasionion excess grand potentia

Vex~LN!/Lz54LNs i12A2LNg1d, ~11!

whereg is the surface tension associated with the dom
walls andd the line tension along the axis of the pore whe
the domain walls intersect. If, in addition, we assume that
elastic contribution Vel /Lz5Bo(L2LN)2L/2LN is also
present, we obtain for the quasionion structure

P~L !52
1

L
~2s i1A2g!2

Bo~L2LN!

2LN
S 11

L2LN

2L D
~LN

t ,L,LN11
t !, ~12!

whereBo is the modulus of elasticity of the onion structur
Instabilities atL5LN

t , associated with terms inP(L) of the
form (N.N0

bNd(L2LN
t ), are also present.

The quasionion structure bears some resemblance to
lindrical membranes separating concentric oil- and wa
rich layers in cylindrical pores. The elastic properties of t
latter may be determined from the Helfrich model@12#, with
an excess pressure given by

PH~R!52
1

R S a1
k

2RD , ~13!

wherea is related to the surface tension andk is the bending
rigidity. Note that the two geometries exhibit a similar d
pendence ofP on L @Eq. ~12!# andR @Eq. ~13!#.

For rectangular base pores we expect stable or metas
structures of the type shown in Fig. 1~c!. In the absence o
stress, i.e., forLx5LN , andLx,Ly we assume

Vex~Lx ,Ly!/Lz52~Lx1Ly!s i12A2Lxg1d. ~14!

Note that the stability or metastability of the lamellar
quasionion structures is determined by the minimum ofVex ,
which depends ons i , s' , g, d, Bl , Bo , andl. Assuming
that the above description is correct, we need to determ
the values of these parameters to establish the stabilit
each structure. In addition, the stability of other, more co
plex structures cannot be ruled out. Consequently, the p
nomenological theory is not sufficient to describe lame
phases confined in pores with rectangular bases. In the
lowing, we will determine the stable structures in long po
for different types of walls, by explicit calculations based
the CHS model. We will also check, for this model, the v
lidity of the phenomenological description for the mecha
cal properties of the structures discussed in this section.
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III. MODEL

The CHS model@11# is a generic model for a mixture o
polar and nonpolar components and amphiphiles. In gene
M orientations of amphiphiles are considered. On a sim
cubic lattice every lattice sitex is occupied by either oil,
water, or an amphiphile in an orientationv̂m , m
51, . . . ,M , and thus there are 21M microscopic states
r̂ i(x) at eachx. r̂ i(x)51(0) if thesitex is ~is not! occupied
by the statei, wherei 51,2, . . . ,21M denotes water, oil and
surfactant in different orientations, respectively. In the ca
of close-packing and oil-water symmetry only one chemi
potential is relevant, namelym5m12ms5m22ms , with
ms5m i for i .2. The Hamiltonian in the presence of extern
fields hi(x) is written as

H5
1

2 (
x5” x8

(
i , j

r̂ i~x!Ui j ~x2x8!r̂ j~x8!1(
x

(
i

hi~x!r̂ i~x!

2m(
x

~ r̂1~x!1 r̂2~x!!. ~15!

The lattice constanta[1 is identified with the size of the
amphiphiles (;2 nm). Nearest-neighbor interactions are a
sumed andUi j (x2x8) vanishes forux2x8u5” 1. In the case
of oil-water symmetry the water-water and oil-oil intera
tions have the same strength2b, and the water-oil interac-
tion energy is set to zero. The interaction between an a
phiphile in an orientationv̂ at x and a water molecule atx8

is proportional to the scalar productv̂•Dx, where Dx5x
2x8. The same strengthc and the opposite sign is assume
for the interaction between an amphiphile in orientationv̂ at
x and an oil molecule atx8, i.e., opposite orientations o
amphiphiles are preferred by the water and the oil, as in
systems. Two amphiphiles with orientationsv̂ and v̂8 at x
and x8, respectively, contribute2g(v̂3Dx)•(v̂83Dx) to
the system energy~whenuDxu51). g describes the tendenc
for avoiding the unfavorable contacts between the polar
nonpolar parts of two amphiphiles and supports formation
planar monolayers with amphiphiles parallel to each ot
and perpendicular to the plane of the monolayer. Formal
pressions for Ui j (x2x8) can be found in Ref.@4#.

We assume now thatLz→` and that the structure in th
pore is translationally invariant in thez direction. In this case
the projection of the orientation of the amphiphiles onto t
(x,y) plane is sufficient to describe the structure of the s
tem. Density distributions and excess pressures in the p
can thus be calculated in the 2D version of the CHS mod
where v̂ lies in the (x,y) plane. Following Ref.@6# we
project v̂ onto the unit lattice vectors in the (x,y) plane,
êi , i 51,2 and we distinguish four different states, th
may be described by6êi , i 51,2. We consider three type
of boundary conditions:~i! The walls are water-covered o
strongly hydrophilic; the interactions with boundary sites a
the same as with the water-occupied sites in the bulk;~ii ! the
walls are neutral–the interaction with the the boundary s
is zero; and finally ~iii ! one pair of parallel walls is
7-3



to

b

f

nd
n

i

um
en
re
s

by

th

he
ys-
lls,
ider

we

ni-

nsi-
ity
n-

ture
ant
is
Fig.
ars

m

mic
, far
ef-
ies

he
-

s
re

ses
face
ely,
m

e

llel
he
llel

th

e

r-

il
nt
e
rd

im
in

M. TASINKEVYCH, A. CIACH, AND M. M. TELO da GAMA PHYSICAL REVIEW E 65 031707
hydrophilic and the other is neutral. It is straightforward
write down the expressions for the external fieldshi(x) cor-
responding to these boundary conditions.

The structure of the stable configuration is obtained
minimizing the mean-field grand potential

VMF~T,m,L !5(
x

(
i

r i~x!H kT ln@r i~x!#1
1

2
f i~x!1hi~x!

2m~d i11d i2!J . ~16!

Heref i(x)5(x8( jUi j (x2x8)r j (x8) is the mean field~MF!
acting on speciesi at sitex andr i(x) is the MF average of
r̂ i(x). We minimize Eq.~16! numerically by solving a set o
self-consistent algebraic equations@4# for the one-point dis-
tribution functionsr i(x).

The MF bulk phase diagram of the 2D model was fou
in Ref. @6#. In Fig. 2 the (kT/b,m/b) phase diagram is show
for fixed interactionsc/b52.5 and g/b51. The stable
phases are: microemulsion, oil-rich, water-rich, a phase w
2D density oscillations~tubular phase!, surfactant-rich phase
with smectic order and finally lamellar phases. In continu
models all orientations of the bulk lamellas are equival
but on a lattice this rotational symmetry is broken. Therefo
the lattice lamellar phases are characterized by the den
profiles in the direction of the oscillations and in addition
the orientation of the normal to the layersn̂. In the CHS
model the short period phases, withl<6, are characterized
by n̂5(1,0,0) or n̂5(0,1,0), or n̂5(0,0,1), while swollen
phases,l.6, have n̂5(61,61,0), n̂5(61,0,61), etc.
Walls that are perpendicular to the principal directions of

FIG. 2. (kT/b,m/b) phase diagram for the six-state model wi
four orientations of surfactant molecules. Herek is Boltzmann’s
constant,T is the temperature,m is the difference between th
chemical potential of water and surfactant~oil-water symmetry is
assumed!, andb is the parameter controlling the water-water inte
action. The coupling constants arec/b52.5,g/b51. c measures
the interaction of the water~oil! with the surfactant head or ta
group andg is the surfactant-surfactant spinlike coupling consta
S denotes the region where the surfactant-rich smectic phas
stable. Solid and dashed lines represent first- and second-o
phase boundaries, respectively, as obtained in the MF approx
tion. Lamellar phases oriented in (1,1,0) directions are stable
region close to the Lifshitz point~open circle!.
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lattice are compatible with the orientation of lamellas in t
short period but not in swollen lamellar phases. In real s
tems, lamellas are parallel to the strongly hydrophilic wa
and to model this in the swollen regime one has to cons
walls that are perpendicular ton̂5(61,61,0) etc. This ge-
ometry is somewhat more complicated and in this study
restrict ourselves to short period lamellar phases,l<6,
which are stable in the middle of the phase diagram.

IV. RESULTS

The stable configuration in the pore is the global mi
mum ofVMF Eq. ~16!. We find the local minima numerically
by solving the self-consistent set of equations for the de
ties @4#. As initial configurations we use 4 classes of dens
distributions corresponding to lamellar, tubular, 2D quasio
ion and 2D quasicigar structures. The quasicigar struc
could be imaging as follows: near the walls the surfact
monolayer followed by the oil-rich layer is formed, and th
outer shell encloses a lamellar structure, as is shown in
10. Cross section of this structure resembles parallel cig
and we term this phase ‘‘quasicigar’’ to distinguish it fro
the lamellar phase shown in Fig. 1~a!.

We consider a single system, specified byc/b52.5 and
g/b51. The corresponding (kT/b,m/b) phase diagram is
shown in Fig. 2. In most cases we choose a thermodyna
state corresponding to a stable period-6 lamellar phase
from coexistence with the tubular phase, and study the
fects of different boundary conditions and pore geometr
~square and rectangular bases!.

On the latticeLx does not change continuously, and t
derivative]/]Lx is replaced by the lattice first-order differ
ence operator. The excess pressure~3! is thus obtained by
calculating the difference inVex for two consecutive values
of Lx . Also, the transitionN→N11 occurs between two
values ofLx that differ by 1 and thus the unit step function
in Vex lead to Kroneckerd functions in the excess pressu
on the lattice.

The numerical valuesVex , Px , andP are compared with
the phenomenological predictions of the Sec. II. In all ca
we insert into the phenomenological expressions the sur
tensions determined by independent calculations. Nam
the wall-fluid surface energy is calculated fro
Vex(Lx)/LyLz with Ly ,Lz→`, and Lx5LN sufficiently
large, so thatVex(Lx)/LyLz is independent ofLx .

A. Free boundary conditions

If ( kT/b,m/b) is far from the phase boundary with th
tubular phase,a long pore with neutral walls favors the
lamellar structure. At kT/b52.1,m/b53.1 and for neutral
walls, the surface tensions were found to bes i50.263b/a2

ands'50.244b/a2. Note thats i.s' ; neutral walls favor
perpendicular orientation of short period lamellar phases@6#.
The reason is the translational entropy loss in the para
orientation, when the oil- or water-rich layer is pinned at t
wall @6#. In the rectangular base pore the lamellas are para
to the walls with the shortest separation.

.
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Numerical results forVex(L)/L2 andP(L) of the square
base pore are shown in Fig. 3. In order to compareP(L)
with Eq. ~9! for elastic systems, we plotP(L)1(s i
1s')/L in Fig. 3~c! @see Eq.~10!#. Bl is used as a fitting
parameter. Since Eq.~10! is an approximation valid for smal
deformationsx5(L2LN)/LN , and deviations are expecte
for large x, we used three values ofx for the fit, namely,x
521/LN,0,1/LN . The best fit corresponds toBl
50.350kT/a3. Note that in the present work we do not stu
the swollen phases, which are much softer. For exampleBl
is two orders of magnitude smaller for swollen lamel
phases, withl'15 ~in units ofa) in the CHS model@4#. The
high stiffness of the short period lamellar phases of the C
model is consistent with the results for a stack of para
elastic membranes@12#, where B}l/(l22a)4. The wall-
fluid surface tensions are also different for swollen pha
@6#; in particular,s i,s' . Therefore the above results a
restricted to short period, stiff lamellar phases, and may
hold for swollen phases.

In Fig. 4 we plotVex(L) andP(L) at (kT/b,m/b) close
to the lamellar-tubular phase boundary. In this case a tub
phase is formed inside the pore. This is the analog of ca
lary condensation. The tubular phase is compatible with
simple cubic lattice. In real systems capillary condensat
of a hexagonal phase is expected close to the phase bo
ary.

B. Mixed boundary conditions

We assume that two parallel walls are hydrophilic wh
the other two are neutral. These boundary conditions are

FIG. 3. ~a! Surface excess grand potentialVex /Lz , ~b! the ex-
cess pressureP52(1/2LzL)]Vex /]L, ~c! P(L)1(s i1s')/L
@see Eqs.~9! and ~10!# for the square base pore with sideL and
height Lz as functions ofL. The walls are neutral~surface fields
hi50). The solid lines in~c! are given by the first term on the rh
of Eq. ~10! for L such thatuL2LNu<1. The surface tensions ar
s i50.263b/a2 ands'50.244b/a2. The optimal value of the fitting
parameterBl is Bl50.350kT/a3. The thermodynamic variable
kT/b52.1,m/b53.1 and material constantsc/b52.5,g/b51 cor-
respond to a stable lamellar phase with periodl56. For any value
of L the square base pore favors the lamellar structure. Length
measured in units of the lattice constanta, andb is the water-water
interaction energy.
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evant for experiments, where a small droplet is confined
tween parallel hydrophilic plates, and free surfaces deve
in a direction perpendicular to the plates. We find a sta
lamellar phase withlamellas parallel to the hydrophilic
walls. Parallel orientation of the lamellas is strongly favor
by the hydrophilic walls; the surface tension iss i5
20.588b/a2. Vex(Lx)/LyLz is shown in Fig. 5~b! for Lx
!Ly , deep into the stability region of thel56 lamellar
phase. The surface tensions' is positive for neutral walls~in
our case s'50.244b/a2) and thus Vex /LyLz increases
monotonically as a function ofLx . The excess pressur
P(Lx) has an attractive background in addition to the os

re

FIG. 4. ~a! Surface excess grand potentialVex /Lz and ~b! the
excess pressureP for the square base pore with sideL and height
Lz , as functions ofL. The walls are neutral~surface fieldshi50!.
The thermodynamic variableskT/b52.56, m/b51.0 and mate-
rial constantsc/b52.5, g/b51 correspond to a stable lamella
phase with periodl54. For any value ofL the square pore favors
the tubular phase. Lengths are measured in units of the lattice
stanta, andb is the water-water interaction strength.

FIG. 5. Rectangular base pore, 1<x<Lx , 1<y<Ly , and Lx

!Ly . Vex /LyLz as a function ofLx for fixed Ly is shown for~a!
hydrophilic walls; ~b! two hydrophylic walls at a distanceLx and
the other two neutral.kT/b52.1, m/b53.1, c/b52.5, g/b51.
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M. TASINKEVYCH, A. CIACH, AND M. M. TELO da GAMA PHYSICAL REVIEW E 65 031707
lations resulting from the elastic contribution toVex . If
2s' /Ly.Bl/2LN thenP(Lx),0 for all Lx . Similar behav-
ior ~oscillations superimposed on an attractive backgrou!
has been observed experimentally in surface force apar
measurements@9,13,14#.

C. Hydrophilic walls

If the walls are water covered, or strongly hydrophil
and the lamellar phase withl/a56 is deeply stable, thenthe
quasionion structure is favored by the pore for all pore siz
In Fig. 6 we plot@Vex(LN)/Lz24LNs i#/2A2 as a function
of the LN for the square base pore andkT/b52.1,m/b53.1.
The numerical values are in good agreement with the lin
behavior predicted by Eq.~11!. The slope of the straight line
gives the domain-wall free-energy density,g50.034b/a2

50.016kT/a2. Note that this domain-wall energy is low
compared withkT/a2 meaning that deformations of th
structure controlled by these energies are thermally exci
In fact a lamellar phase with a large number of this type
defects was observed in systems of copolymers Refs.@15–
20#. In our systemg!us iu, the latter being negative,s i5
20.588b/a2. Both, the low value ofg and the large, nega
tive value ofs i contribute to the stability of the quasionio
structure in pores with hydrophilic walls.

In Fig. 7 we plotVex /Lz2(4Ls i12A2Lg) as a function
of theL, in order to study the contribution to the free ener
associated with the incompatibility betweenL andl. For an
elastic response to compression or expansion, the ab
quantity should have the form postulated above Eq.~12!,

Vel /Lz5
Bo~L2LN!2

2 S 11
L2LN

LN
D , ~17!

FIG. 6. (Vex /Lz24LNs i)/2A2 ~open circles! as a function of
the side of the square baseL5LN that is commensurate withl/a
56. The dashed line is a linear interpolation with slopeg
50.034b/a2, yielding the energy density of the domain wall b
tween two lamellar domains, with density oscillations in the (1,0
and (0,1,0) directions, respectively. The energy scale is set byb, the
interaction energy between two neighboring water-water~or oil-oil!
molecules.
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i.e., it should be parabolic aroundL5LN . In Fig. 7 the sym-
bols represent numerical values. Note the large deviati
from elastic behavior. In an elastic system, such as a stac
elastic membranes, the width ofN confined lamellas is
smaller or larger than in bulk when the system withL5LN is
compressed or expanded, respectively. However, the de
mations of the onion structure are quite different. In Fig. 8~a!
we plot the expanded structure before the insertion of a n
layer, and in Fig. 8~b! the compressed structure, after th
insertion of that layer. The deformation of the structure
both cases is localized in the central region of the pore, w
the outer layers are undeformed. It turns out that swelling
shrinking the core alone~i.e., the central tube! costs a lower
free energy than a uniform change of the period over
whole system. In Fig. 9 we plot the corresponding exc
pressure. Note the discontinuities that occur when the n
central tube is inserted into the system. The excess pres
in this case is similar to the excess pressure in a cylindr
pore given by Eq.~13! and shown in Fig. 9 as a solid line, fo
a521.143b/a2 andk51.230b/a. Note that this result ap-
plies to short period, stiff lamellar phases; it is unclear if t
swollen phases respond in a similar fashion or if they

)

FIG. 7. Vex /Lz2(4Ls i12A2Lg) as a function of the sideL of
the square base pore of heightLz , for c/b52.1, g/b51, kT/b
52.1, andm/b53.1.

FIG. 8. Cross section of the pore at fixedz@(x,y) plane# for
kT/b52.1, m/b53.1, c/b52.5, g/b51 and hydrophilic walls.
Shaded regions represent the oil-rich domains and white reg
represent the water-rich domains. Thick lines represent the l
interfacesr1(x,y)2r2(x,y)50, wherer1 ,r2 are the MF averaged
densities of water and oil, respectively.~a! L526 and~b! L528 ~in
units of the lattice constanta).
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spond elastically, i.e., by shrinking or swelling the laye
uniformly over the whole system. Finally, note that the lea
ing behavior ofP is determined by the surface tensio
rather than by the elastic or inelastic response to compres
and expansion.

For the rectangular base pore we confirm the stability
the structure shown in Fig. 1~c!. In this case the lamellas ar
parallel to the nearest walls, and sinces i520.588, a strong
repulsive background appears in the excess pressure. In
5~a! Vex(Lx) is shown atkT/b52.1, m/b53.1, and two
values ofLy .

The quasicigar phase mentioned at the beginning of
section is not stable for the period-6 lamellar phase, for
type of the boundary conditions considered here. Howe
when kT/b,m/b correspond to a stable period-4 lamell
phase and the pore sizeLx5Ly5L is commensurate with the
period, the quasicigar phase, shown in Fig. 10, beco
stable.

Finally, we describe the metastable structures that m
form in long pores for soft, large period lamellar phas
Consider a pore with surface normals in the direction of
unit lattice vectorsx̂,ŷ, respectively. The direction of th
density oscillations in the stable lamellar phase, (x̂1 ŷ)/A2,
is at 45 ° with the normals. In this case the lowest value
Vex corresponds to the structure shown in Fig. 11. As
ready noted, hydrophilic walls favor a parallel orientation
the lamellas and thus this structure is not stable in real~con-
tinuum! systems but it could be metastable. If a long cap
lary is inserted into a bulk lamellar phase, with the walls
45 ° with the lamellas, similar structures may form at sh
or intermediate time scales, if the viscosity of the system
high.

FIG. 9. Excess pressureP52(1/2LzL)]Vex /]L for a pore
with a square base of sideL and heightLz , as a function ofL. The
walls of the pore are hydrophilic. The thermodynamic variab
kT/b52.1,m/b53.1 and the material constantsc/b52.1, g/b51
correspond to a stable lamellar phase with periodl56. For any
value ofL, the square pore favors the 2D onion configuration. T
solid line is the excess pressure in a cylindrical pore given by
~13! for a521.143b/a2 and k51.230b/a. The leading contribu-
tion to P scales withL as 2(2s i1A2g)L21 @see Eq.~12!#, and
from the previous results one has2(2s i1A2g)51.128b/a2.
Lengths are measured in units of the lattice constanta.
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V. SUMMARY

Lamellar phases confined to long pores with a rectang
base are studied within the 2D CHS lattice model of mic
emulsions. We restrict ourselves to that part of phase
gram where lamellar phases oriented in (1,0,0) or (0,1
directions are stable. These are short period stiff lame
phases. However, the numerical excess pressures obta
for different boundary conditions and pore geometries are
good agreement with those predicted for elastic systems

For square pores with hydrophilic walls, the 2D onio
structure is stable in the pore. The excess pressure in
case is positive and falls off as;L21, whereL is the pore
size. Square pores with neutral walls stabilize the tubu
phase if the bulk lamellar phase is close to that phase bou
ary; otherwise the lamellar phase is stable. When the tub
phase is stabilized in the square base pore the excess pre

s

e
.

FIG. 10. Cross section of the pore at fixedz@(x,y) plane# for
kT/b52.55, m/b51, c/b52.5, g/b51 and hydrophilic walls.
Shaded regions represent the oil-rich domains and white reg
represent the water-rich domains. Thick lines represent the l
interfacesr1(x,y)2r2(x,y)50, wherer1 ,r2 are the MF averaged
densities of water and oil, respectively.L523 ~in units of the lattice
constanta).

FIG. 11. Cross section of the pore at fixedz@(x,y) plane# for
kT/b52.5, m/b54.01, c/b52.5, g/b51 and hydrophilic
walls. For this set of thermodynamic variables a bulk lamellar ph
with density oscillations in the (1,1,0) direction is stable. The wa
are normal to the unit lattice vectors. Shaded regions represen
oil-rich domains and white regions represent the water-rich
mains. Thick lines represent the local interfacesr1(x,y)2r2(x,y)
50 wherer1 ,r2 are the MF averaged densities of water and o
respectively.~a! L540 and~b! L560 ~in units of the lattice con-
stanta).
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P(L) oscillates about const,0. When the lamellar phase i
stabilized in the pore, the excess pressureP(L) is negative
and oscillates aboutL21.

The results obtained for the rectangular geometry may
compared with those calculated for the slit geometry@4#. In
the slit the solvation force oscillates around zero as a fu
tion of the distance between the walls. By contrast, for fix
Ly (Ly.Lx) , the surface contribution associated with t
ev

-
Vo

-

03170
e

c-
d

Ly walls shifts the excess pressureP(Ly) above~hydrophilic
Ly walls! or below ~neutralLy walls! zero.
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