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Lamellar phases confined in quasicylindrical pores: Lattice model results
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A two-dimensional2D) vector lattice model of microemulsions is applied to study the structure of lamellar
phases confined in long rectangular pores. One-point distribution functions are calculated within mean field
approximation. The effects of pore geometry and surface fields are considered. A 2D analog of an onion phase
is favored by a pore with strongly hydrophilic walls. For neutral walls, far from the phase boundaries, the
lamellar phase is stable inside the pore. By contrast, close to the lamellar-tubular phase boundary a pore with
neutral walls favors a 2D tubular phase. This is the analog of capillary condensation. In all cases the excess
pressure is calculated as a function of the pore geometry.
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[. INTRODUCTION ther the structure nor the mechanical properties of confined
lamellar phases are easily predicted in this case. Therefore,
Amphiphilic molecules(surfactants, lipids, or block co- results based on simple model systems will give valuable
polymers consist of two distinct groups that differ signifi- insights and will help to interpret the results of future experi-
cantly in their solubility. For instance, the hydrophilic head ments.
of a surfactant molecule prefers to dissolve in water, whereas In previous workg4—6] the effects of the confinement on
the hydrophobic tail prefers to dissolve in oil. Consequently,the structural and mechanical properties of ternary surfactant
in mixtures with water and oil, surfactant molecules self-mixtures in slitlike pores have been studied within the lattice
assemble into monolayers that form a rich variety of mesosCiach-Htye-Stell (CHS) model [11]. The result{4] are in
tructureq 1—3]. Spontaneous structure formation may be rel-good agreement with experimenf40]. Since the CHS
evant technologically, for example, in the manufacture ofmodel has been proved useful in the analysis of self-
very small devices. However, in small systems self-assemblgssembly into various simple structurfgs-6], we will ex-
is influenced significantly by the geometry, chemistry, andtend it here to more complex confining geometries, such as
the size of the confining walls. Confinement plays a majorquasicylindrical pores.
role when the size of the system is comparable to the length The thermodynamic and mechanical properties of con-
characterizing the structure of the confined fluid. In micro-fined lamellar phases are summarized in the following sec-
emulsions and lamellar phases the typical lengtlcorre- tion. The model is described briefly in Sec. Ill., and the re-
sponds to the size of correlated domaifr example, the sults are presented in Sec. IV. The final section contains a
size of micelles or the period of lamellar phasasd may be summary and discussion.
up to two orders of magnitude larger than molecular dimen-

sions. Finite size effects are thus expected to occur on me-
soscopic scales. Il. PHENOMENOLOGY

In lamellar phases, that consist of oil- and water-rich lay- \\e start with a brief description of the thermodynamic
ers(lamellas separated by monolayers of the surfactant, thgyroperties of a system confined in a box. We assume that the
translational and rotational symmetries are broken. Thus, thgystem is in equilibrium with a reservoir, and that the tem-
geometry of the confining walls may have significant effectsyeratureT and the chemical potentiajs; are fixed. For a

on the self-assembly of these structures. In this work W&ystem with identical parallel walls, the variation in the

consider a pore modeled by a baxXLyXL,. Previous grand termodynamic potential can be written as
theoretical studie$4—8] were restricted to slit geometries,

i.e., toLy,L,—c with finite L,. A capillarylike or quasicy-

lindrical pore corresponds th,— with both L, andL, dQ=wpd(LyLyL,) +20d(LyL,) +20,d(LyL,)
finite. The structural and mechanical properties of lamellar
phases confined in quasicylindrical pores with a base of size F200(Luly) Fbybdb L odLy

~10n may be significantly different from those of lamellar +f,LLydL,, 1)
phases confined in slits of similar widths, under the same

thermodynamic conditions. In slits with strongly hydrophilic ) _ _ _

walls the lamellas are expected to be parallel to the wallsWherewy, is the bulk thermodynamic potential densiby,
Theory[4,6,8] and experimentgllo] confirm this. By con- gy and g, are’\ th\e Wa”:ﬂl,”d surface tensions for walls per-
trast, for long square base pores with hydrophilic walls, ongoendicular tox, y, andz respectively, whilef,, f,, andf,

pair of (paralle) walls favors an orientation of the lamellas at are related to the excess pressure in the direction denoted by
right angles to the orientation favored by the other pair. Neithe subscripts. For fixed,>L,,L,, the above simplifies to
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N>1, Li=Ly—\/2, with \ the period of the bulk lamellar

Y phase. The period of the lamellar phase in the slit is different
from N\, except wherL,=Ly; thus,Ly,;—Ly=\. We as-
sume that for finite_, = const, the elastic contribution o is
similar to that for a slit. Then considering lamellas parallel to
the (y,z) wall, we write

A B L, Bj(L,—Ly)?
X I\Ex N
L. (LN<Ly<Li1), (6)

C whereo,=o| andoy,=o0, . It follows that the excess pres-

X L, surell, contains a background contribution20, /L, that

is independent ot . At fixed L, the strength and sign of
FIG. 1. Schematic representation of the structures formed by ththis term are determined hy, , that depends in turn on the

lamellar phase in a long pore with a square or rectangular base. Aature of the confining walls and on the period of the lamel-

cross sectiorz= const is shown fofa) lamellas parallel to one pair |gr phasq6].

of walls, (b) quasionion structure fdr,=L,, (c) quasionion struc- At Ly=L}, the number of layers in the pore increases

ture forL,<L,. from N—1—N. Therefore, [,—Ly)? andB,/2Ly in Eq. (6)

may be written as

dQ/L,= wpd(LyLy)+20,dL,+ 20y d L+ f,L,dL,
+f,L,dL,. ) Lfﬁsz[{L%+k > aa«—Lh} @)

N=Ng+1

The excess pressure in tRealirection is defined as
1 (aﬂex>

LyL,\ aLy )’

1 1

Bl B
2Ly 2

1

L, N—No+1(LN Ln-1

Fy)
HX:_( N

whereV is the volume, and the excess grand thermodynami
potential of the system confined in the box is

) O(L— Lk)},

()
Wwhere we assumed that the system is elastid\forNo, i.e.,
Eq. (6) is valid forL,> Ln,- Note that the unit step functions
6(L,—Ly) in the previous equations yield functions
Qex=Q—wplyLyL,. 4 Zn=n and(Lx—Ly) in the excess pressure. Experimentally
theses functions correspond to instabilities at the transitions
N—1—N that take place wheh,=Ly.

Let us consider square base pores and deformations that
conserve this symmetry. The excess presgbiréor the con-

(0Qex> 1 (aQex) fined lamellar phase is then
II=- = .
I‘Z

=- ©)
N 2L,L\ oL Bi(L—Ly)(, , L-Ly
2L 2L

3

Ly.L,

I1, is defined in a similar way. For a square base pbg,
=Ly=L, symmetry conserving compressions or expansion
are associated with an excess pressure given by

1
(L)=={(o+a)—
Q., and consequently the excess pressure, depend signifi-
cantly on the structure of the confined fluid. Different bound- t t
ary conditions may lead to the stability or metastability of (Ly<L<Ln+1). (€)
different structures. As we are not capable of determining, For L, >\ the above may be expanded as
priori, the stable structure under a particular set of condi-
tions, we will consider the properties of the confined lamellar 1 B, | .. B, 4
phases in a number of different structures, shown in Fig. 1. II(L)+ - (o)+0,)=—=ZXx= x4+ X"+ O(X"),

A. Lamellar structure (LN<L<L},q), (10

The structure shown in Fig.(d) exhibits lamellas parallel
to one pair of walls, and was studied in Ré#] for slit
geometries| L ,—o. For wide slitsL,>\, with N lamel- o
las, the excess grand potentfal, contains an elastic con- B. Quasionion structure
tribution Q¢ (L,)/LyL,=By(L,—Ly)?*2Ly, whereB, is the In square base pores with identical walls the directions
modulus of elasticityly is the width of the slit under zero andy are equivalent. Since lamellas tend to be parallel to
stress.Ly<L,<Ly,, with L} the width of the slit where strongly hydrophilic walls we consider the mechanical prop-
the transition fromN—1 to N confined layers occurs. For erties of the stable or metastable structures, with lamellas

wherex=(L—Ly)/Ly.
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parallel to neighboring walls with domain walls, along the 1. MODEL
diagonals of the square, separating perpendicularly aligned
lamellas[see Fig. 1b)].

The domain walls meet at the center of the square. Wi
refer to this structure as “quasionion.” The domain walls are
associated with additional contributions &,,, which are ST ] 2.
present even in the absence of compression or expansion W@ter, or an amphiphile in an orientatiomy,, m

The CHS mode[11] is a generic model for a mixture of
olar and nonpolar components and amphiphiles. In general,

orientations of amphiphiles are considered. On a simple
cubic lattice every lattice sit& is occupied by either oil,

the layers(i.e., whenL=Ly). For a system with. =L, we = 1,... M, ang thus there are 2M microscopic states
assume for the elastic quasionion excess grand potential p;(X) at eachx. p;(x) =1(0) if thesitex is (is no occupied
by the state, wherei=1,2, ... ,2+ M denotes water, oil and
Qex(Ly)/L,=4Lyoy+2\2Lyy+ 3, (11)  surfactant in different orientations, respectively. In the case

of close-packing and oil-water symmetry only one chemical
where y is the surface tension associated with the domairpotential is relevant, namelyt=u;— us=ur— ps, With
walls andé the line tension along the axis of the pore where = y; fori>2. The Hamiltonian in the presence of external
the domain walls intersect. If, in addition, we assume that théields h;(x) is written as
elastic contribution Qg /L,=By(L—Ly)2L/2Ly is also
present, we obtain for the quasionion structure

Bo(L—Ln) I—_LN)

1 - - ~
H=5 2 2 pi00U;(x=x)pi(x)+ 2 2 hi(x)pi(x)
1
TI(L)=— [ (20)+V2y)— T (1+ oL

x£x' 1l X

—@ (p1(X)+ pa(X)). (15)

(Lh<L<LK.y), (12)

The lattice constana=1 is identified with the size of the
whereB, is the modulus of elasticity of the onion structure. amphiphiles (-2 nm). Nearest-neighbor interactions are as-
Instabilities atl =L}, associated with terms i (L) of the ~ sumed andJ;;(x—x") vanishes foifx—x'|#1. In the case
form EN>N0bN5(|——|—h), are also present. of oil-water symmetry the water-water and oil-oil interac-

The quasionion structure bears some resemblance to cfjons have the same strengtb, and the water-oil interac-

lindrical membranes separating concentric oil- and watert'on €nergy is set to zero. The interaction between an am-

rich layers in cylindrical pores. The elastic properties of thePhiphile in an orientatioro atx and a water molecule at
latter may be determined from the Helfrich mol&P], with is proportional to the scalar produe- Ax, where Ax=x
an excess pressure given by —x’. The same strength and the opposite sign is assumed
for the interaction between an amphiphile in orientatioat
x and an oil molecule ax’, i.e., opposite orientations of
amphiphiles are preferred by the water and the oil, as in real
systems. Two amphiphiles with orientatioasand &’ at x
wherea is related to the surface tension ands the bending  4ng ', respectively, contribute- g(@X Ax)- (@' X Ax) to
rigidity. Note that the two geometries exhibit a similar de- ¢ system energgwhen|Ax| = 1). g describes the tendency
pendence ofl onL [Eq. (12)] andR[Eq. (13)]. for avoiding the unfavorable contacts between the polar and
For rectangular base pores we expect stable or metastallgynolar parts of two amphiphiles and supports formation of
structures of the type shown in Fig(cl. In the absence of janar monolayers with amphiphiles parallel to each other

1 K
My(R=— =| a+ 5

Ra—l—

: 13

stress, i.e., foL,=Ly, andL,<L, we assume and perpendicular to the plane of the monolayer. Formal ex-
pressions for Y(x—x") can be found in Ref.4].
Qe Ly, L)/L,=2(L,+Ly)o+2\2L,y+5. (14 We assume now that,—o and that the structure in the

pore is translationally invariant in tredirection. In this case
Note that the stability or metastability of the lamellar or the projection of the orientation of the amphiphiles onto the
quasionion structures is determined by the minimurflef,  (x,y) plane is sufficient to describe the structure of the sys-
which depends owr, o, , v, 6, B, By, and\. Assuming  tem. Density distributions and excess pressures in the pore
that the above description is correct, we need to determingan thus be calculated in the 2D version of the CHS model,

the values of these parameters to establish the stability Qfpare & lies in the &.y) plane. Following Ref[6] we
each structure. In addition, the stability of other, more com-_ . - A .
roject w onto the unit lattice vectors in thexfy) plane,

plex structures cannot be ruled out. Consequently, the phé’— ) s )
nomenological theory is not sufficient to describe lamellar&, =12 and we distinguish four different states, that
phases confined in pores with rectangular bases. In the fomay be described by e, i=1,2. We consider three types
lowing, we will determine the stable structures in long poresof boundary conditions(i) The walls are water-covered or
for different types of walls, by explicit calculations based onstrongly hydrophilic; the interactions with boundary sites are
the CHS model. We will also check, for this model, the va-the same as with the water-occupied sites in the Kiilkthe
lidity of the phenomenological description for the mechani-walls are neutral—the interaction with the the boundary sites
cal properties of the structures discussed in this section. is zero; and finally (i) one pair of parallel walls is
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3.5F T T T T T ™ lattice are compatible with the orientation of lamellas in the
3 0- disordered/ — [1,1,0]-L ] short period but not in swollen lamellar phases. In real sys-
! /tubular:'\% - tems, lamellas are parallel to the str_ongly hydrophilic Wa]ls,
Q2.5_ . ] and to model this in the swollen regime one has to consider
& 2.0 . walls that are perpendicular fu)=(t1,i 1,0) etc. This ge-
«1 5- lamellar | water/oil | ometry is somewhat more complicated and in this study we
~1 A=d. 6 ] restrict ourselves to short period lamellar phases;6,
1.0 ] which are stable in the middle of the phase diagram.
0.5 -
1 1
-5 0 5
M/b IV. RESULTS

_ _ ) The stable configuration in the pore is the global mini-
FIG._ 2. (k_T/b,,u/b) phase diagram for the S|x_-state model with mum of QMF Eq. (16). We find the local minima numerically
four tor'?;fa.t'o?hs Otf S“rfaCttam m.OIet‘;]meZ:ﬁHéms Bk?lttzma”” tsh by solving the self-consistent set of equations for the densi-
constant, T 1s e temperaturex IS the ditterence between the o o [4]. As initial configurations we use 4 classes of density

chemical potent_|al of water and surfactg(ntl-water symmetry IS jistributions corresponding to lamellar, tubular, 2D quasion-
assumey] andb is the parameter controlling the water-water inter- .

action. The coupling constants acéo=25g/b=1. ¢ measures ion and 2.D quasicigar struc.tures. The quasicigar structure
the interaction of the watefoil) with the surfactant head or tail could be imaging as fOHOWSf‘ near the yvalls the surfactqnt
group andg is the surfactant-surfactant spinlike coupling constant.momlalyer followed by the oil-rich layer is for.med, and_ th|§
S denotes the region where the surfactant-rich smectic phase QUter shell enc!oses a Igmellar structure, as is shown 'n_ Fig.
stable. Solid and dashed lines represent first- and second-ordafP- Cross section of this structure resembles parallel cigars
phase boundaries, respectively, as obtained in the MF approxima&nd we term this phase “quasicigar” to distinguish it from
tion. Lamellar phases oriented in (1,1,0) directions are stable in &€ lamellar phase shown in Fig(al
region close to the Lifshitz poirfopen circlg. We consider a single system, specified dip=2.5 and
g/b=1. The correspondingk(T/b,u/b) phase diagram is
hydrophilic and the other is neutral. It is straightforward toShown in Fig. 2. In most cases we choose a thermodynamic
write down the expressions for the external fieligéx) cor-  state corresponding to a stable period-6 lamellar phase, far

responding to these boundary conditions. from coexistence with the tubular phase, and study the ef-
The structure of the stable configuration is obtained byfects of different boundary conditions and pore geometries
minimizing the mean-field grand potential (square and rectangular bases

On the latticeL, does not change continuously, and the
1 derivative d/ dL, is replaced by the lattice first-order differ-
OMF(T )= X pi(X)[kT'”[pi(X)]+§¢i(X)+hi(X) ence operator. The excess press{Beis thus obtained by
! calculating the difference i), for two consecutive values
of L,. Also, the transitionN—N+1 occurs between two
. (16)  values ofL, that differ by 1 and thus the unit step functions
in Q. lead to Kronecke® functions in the excess pressure
on the lattice.
The numerical value8.,, I1,, andIl are compared with
- o ) ) the phenomenological predictions of the Sec. Il. In all cases
pi(x). We minimize Eq(16) numerically by solving a set of e insert into the phenomenological expressions the surface
self-consistent algebraic equatioj for the one-point dis-  tgnsions determined by independent calculations. Namely,

tribution functionsp;(x). the wall-fluid surface energy is calculated from
The MF bulk phase diagram of the 2D model was foundQeX(|_X)/|_y|_Z with L,,L,—, and Ly=Ly sufficiently

in Ref.[6]. In Fig. 2 the kT/b, u/b) phase diagram is shown large, so that),(L,)/L,L, is independent of., .
for fixed interactionsc/b=2.5 and g/b=1. The stable ’ ey X
phases are: microemulsion, oil-rich, water-rich, a phase with
2D density oscillationgtubular phasg surfactant-rich phase A. Free boundary conditions
with smectic order and finally lamellar phases. In continuum
models all orientations of the bulk lamellas are equivalen
but on a lattice this rotational symmetry is broken. Therefore
the lattice lamellar phases are characterized by the densi
profiles in the direction of the oscillations and in addition by

thedo??r:ltatlrc:n tOf thednorr]mal to t}?:; flsayems Iﬂ thetCI_-ISd perpendicular orientation of short period lamellar phdéés
model the Short period phases, w , are characterizeéd  Tha reason is the translational entropy loss in the parallel

by n=(1,0,0) OfﬁZ(AO,l,O), 0fﬁ=(0l0,1), while swollen  orientation, when the oil- or water-rich layer is pinned at the
phases,A\>6, have n=(*1,=1,0), n=(*1,0+1), etc. wall[6]. Inthe rectangular base pore the lamellas are parallel
Walls that are perpendicular to the principal directions of theto the walls with the shortest separation.

— (611 5i2)

Here ¢;(x) ==, 2;Uj;(x—x") p;(x") is the mean fieldMF)
acting on speciesat sitex and p;(x) is the MF average of

If (kT/b,u/b) is far from the phase boundary with the
ubular phasea long pore with neutral walls favors the
{ mellar structure At kT/b=2.1u/b=23.1 and for neutral

alls, the surface tensions were found todye= 0.26%/a?
and o, =0.24%/a%. Note thato> o, ; neutral walls favor
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~
-0 : : : : ; S B R 2N R R\ o
N IR \ \ 9
o 0.02————————— = 005k 0% 0% \/ 59\ 50"
= 1Y Q 3 é o) ] ) k
2 0.01f ? Q@ & R oI . ! ! ! L
?  of ¢Y o} ¢ 99 7Y Y ¢ 20 25 30 _ 35 40 45
= | i ! ! ] i i i
Y y 9 g Lia
= -0.025 T T ST w— 20 FIG. 4. (a) Surface excess grand potentfd},/L, and (b) the

L/a excess pressurd for the square base pore with sidleand height
L,, as functions oL. The walls are neutrdkurface fieldsh;=0).

FIG. 3. (a) Surface excess grand potentia,/L,, (b) the ex-  The thermodynamic variabldeT/b=2.56, w/b=1.0 and mate-
cess pressurdl=—(1/2L,L)dQ,/dL, (c) TI(L)+(oy+oy)/L rial constantsc/b=2.5, g/b=1 correspond to a stable lamellar
[see Eqs(9) and (10)] for the square base pore with sileand  phase with period =4. For any value of the square pore favors
heightL, as functions ofl. The walls are neutralsurface fields  he tubular phase. Lengths are measured in units of the lattice con-

hj=0). The solid lines ir(c) are given by the first term on the rhs gianta andb is the water-water interaction strength.
of Eq. (10 for L such that|L—Ly|=<1. The surface tensions are

0=0.26D/a” ando, =0.24%/a?. The optimal value of the fitting
parameterB, is B,=0.35(kT/a’. The thermodynamic variables eyant for experiments, where a small droplet is confined be-
kT/b=2.1u/b=3.1 and material constantsb=2.5g/b=1 cor-  yyeen parallel hydrophilic plates, and free surfaces develop
respond to a stable lamellar phase with pedcd6. For any value  j, g girection perpendicular to the plates. We find a stable
of L the square _base pore fa_tvors the Iamellar_structure. Lengths A& mellar phase withlamellas parallel to the hydrophilic
ir:fe"’;zztr;‘:] 'gn‘g'ts of the lattice constanandb is the water-water o115 parallel orientation of the lamellas is strongly favored
9y- by the hydrophilic walls; the surface tension is=
Numerical results fof)e,(L)/L, andII(L) of the square —0.58&/a% Qe (Ly)/LyL, is shown in Fig. ) for L,
base pore are shown in Fig. 3. In order to compHi@.) <Ly, deep into the stability region of the=6 lamellar
with Eq. (9) for elastic systems, we plofI(L)+ (o phase. The surface tension is positive for neutral wallgin
+0,)/L in Fig. 3(c) [see Eq.(10)]. B, is used as a fitting our case o, =0.244/a?) and thus Qex/L L, increases
parameter. Since E@L0) is an approximation valid for small monotonically as a function of ,. The excess pressure
deformationsx=(L—Ly)/Ly, and deviations are expected [I(L,) has an attractive background in addition to the oscil-
for large x, we used three values affor the fit, namelyx

=—-1/L\,0,1Ly. The best fit corresponds toB, - a
=0.35T/a3. Note that in the present work we do not study NS 1.2 T T T T
the swollen phases, which are much softer. For exantjle, = -1.3539669%96666
is two orders of magnitude smaller for swollen lamellar = _1.“(599996@ SeCRse0000,
phases, withh =~ 15 (in units ofa) in the CHS mode[4]. The »q” sk Seo06g
high stiffness of the short period lamellar phases of the CHS w3™ "} L,=100 Seoseg
model is consistent with the results for a stack of parallel g ~1-6[ Secose,
elastic membranefl2], where B<\/(\—2a)*. The wall- a % : ) : m .
fluid surface tensions are also different for swollen phases L /a
[6]; in particular,o <o, . Therefore the above results are b x
restricted to short period, stiff lamellar phases, and may nofyg 1F y T T T T T 3
hold for swollen phases. = - O]

In Fig. 4 we plotQ,(L) andII(L) at (KT/b,u/b) close 2 “LOSF _e___o——“e' ]
to the lamellar-tubular phase boundary. In this case a tubula g™ -1.1}- L SR P ST , &
phase is formed inside the pore. This is the analog of capil- > . 15'_8:___9_-——0--"9""0 L =400 ]
lary condensation. The tubular phase is compatible with the ~, ~ [ Y ]
simple cubic lattice. In real systems capillary condensation (° 20 : 3'0 : 4'0 : 5'0 t 50
of a hexagonal phase is expected close to the phase boun L /a =LN/“

X

ary.
FIG. 5. Rectangular base poresks<L,, 1sys<L,, andL,

<Ly. Qe /LyL, as a function ofL, for fixed L, is shown for(a)
We assume that two parallel walls are hydrophilic while hydrophilic walls;(b) two hydrophylic walls at a distande, and

the other two are neutral. These boundary conditions are rethe other two neutrakT/b=2.1, u/b=3.1,c/b=2.5,g/b=1.

B. Mixed boundary conditions
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FIG. 7. Q¢,/L,— (4L +242Ly) as a function of the side of
the square base pore of height, for c/b=2.1, g/b=1, kT/b
=2.1, andu/b=3.1.

FIG. 6. (Qex/L,—4Lya))/2y2 (open circle as a function of
the side of the square bake=L, that is commensurate with/a
=6. The dashed line is a linear interpolation with slope
=0.03%/a?, yielding the energy density of the domain wall be-
tween two lamellar domains, with density oscillations in the (1,0,0). . . .
and (0,1,0) directions, respectively. The energy scale is skt e It')e'l’ it should t;e parabpllcl: arolurlld= II:th InthFlgl. 7 thedsyr.‘n-t.
interaction energy between two neighboring water-wédewil-oil) 0's represent numerical vaues. ote the farge deviations
molecules. from'elasnc behavior. In an glastlc system, such as a ste}ck of

elastic membranes, the width & confined lamellas is

smaller or larger than in bulk when the system Witk Ly is
lations resulting from the elastic contribution @,,. If ~ compressed or expanded, respectively. However, the defor-
20, IL,>B\/2Ly thenII(L,)<O for allL,. Similar behay- ~mations of the onion structure are quite different. In Fig) 8
ior (oscillations superimposed on an attractive backgrpunde Plot the expanded structure before the insertion of a new
has been observed experimentally in surface force aparatl@yer, and in Fig. &) the compressed structure, after the
measurementf9,13,14. insertion of that layer. The deformation of the structure in
both cases is localized in the central region of the pore, while
the outer layers are undeformed. It turns out that swelling or
shrinking the core aloné.e., the central tubecosts a lower
If the walls are water covered, or strongly hydrophilic, free energy than a uniform change of the period over the
and the lamellar phase wittYa= 6 is deeply stable, thethe  whole system. In Fig. 9 we plot the corresponding excess
quasionion structure is favored by the pore for all pore sizespressure. Note the discontinuities that occur when the new
In Fig. 6 we pIot[Qex(LN)/LZ—4LNcr||]/2\/§ as a function central tube is inserted into the system. The excess pressure
of the Ly for the square base pore akdl/b=2.1u/b=3.1. in this case is similar to the excess pressure in a cylindrical
The numerical values are in good agreement with the lineapore given by Eq(13) and shown in Fig. 9 as a solid line, for
behavior predicted by Eq11). The slope of the straight line o=—1.14%/a? and x=1.23M/a. Note that this result ap-
gives the domain-wall free-energy density=0.034/a®> plies to short period, stiff lamellar phases; it is unclear if the
=0.016&kT/a%. Note that this domain-wall energy is low swollen phases respond in a similar fashion or if they re-
compared withkT/a® meaning that deformations of the
structure controlled by these energies are thermally excited.
In fact a lamellar phase with a large number of this type of
defects was observed in systems of copolymers Réfs-
20]. In our systemy<|o|, the latter being negativer=
—0.58%/a?. Both, the low value ofy and the large, nega-
tive value ofoy contribute to the stability of the quasionion
structure in pores with hydrophilic walls.

In Fig. 7 we plotQe,/L,— (4Loy+2\2Ly) as a function
of theL, in order to study the contribution to the free energy (a) (b)
asso_c:lated with the |ncompat|b|'llty betweErandA. For an FIG. 8. Cross section of the pore at fixef(x.y) pland for
elastic response to compression or expansion, the abm&er

; /b=2.1, u/b=3.1, c/b=2.5, g/b=1 and hydrophilic walls.
quantity should have the form postulated above €4), Shaded regions represent the oil-rich domains and white regions

represent the water-rich domains. Thick lines represent the local
L—L interfacesp1(X,Y) — p»(X,y) =0, wherep,,p, are the MF averaged
— N)

C. Hydrophilic walls

B,(L—Ly)?
Qo /L= ol L =L (1+

(17) densities of water and oil, respectivel§) L =26 and(b) L=28 (in
units of the lattice constar).
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N | L 1 . L
% 20 80 80 100
L/a
FIG. 9. Excess pressurd=—(1/2L,L)dQ../JL for a pore
with a square base of sideand height_,, as a function of.. The

walls of the pore are hydrophilic. The thermodynamic variables
kT/b=2.1u4/b=3.1 and the material constantsh=2.1, g/b=1

FIG. 10. Cross section of the pore at fixgldx,y) plandg for
kT/b=2.55, u/b=1, c/b=2.5, g/b=1 and hydrophilic walls.
Shaded regions represent the oil-rich domains and white regions

correspond to a stable lamellar phase with pericd6. For an represent the water-rich domains. Thick lines represent the local
P P P . any interfacesp,(X,y) — p»o(X,y) =0, wherep,,p, are the MF averaged

value ofL, the square pore favors the 2D onion configuration. The - : . . . )
S . A . densities of water and oil, respectively= 23 (in units of the lattice

solid line is the excess pressure in a cylindrical pore given by eqonstanla)

(13) for a=—1.14%/a? and k=1.23M/a. The leading contribu- '

tion to IT scales withL as — (207 + JV2y)L~! [see Eq.(12)], and

from the previous results one has(20+ \/Ey)=1.128)/a2.

Lengths are measured in units of the lattice constant V. SUMMARY

Lamellar phases confined to long pores with a rectangular
base are studied within the 2D CHS lattice model of micro-
emulsions. We restrict ourselves to that part of phase dia-

spond elastically, i.e., by shrinking or swelling the layersgram where lamellar phases oriented in (1,0,0) or (0,1,0)
uniformly over the whole system. Finally, note that the lead-djrections are stable. These are short period stiff lamellar
ing behavior ofIT is determined by the surface tension, phases. However, the numerical excess pressures obtained
rather than by the elastic or inelastic response to compressiqgar different boundary conditions and pore geometries are in
and expansion. good agreement with those predicted for elastic systems.
For the rectangular base pore we confirm the stability of For square pores with hydrophilic walls, the 2D onion
the structure shown in Fig.(d). In this case the lamellas are structure is stable in the pore. The excess pressure in this
parallel to the nearest walls, and singe= —0.588, a strong  case is positive and falls off asL ~*, whereL is the pore
repulsive background appears in the excess pressure. In Figize. Square pores with neutral walls stabilize the tubular
5(@) Qey(Ly) is shown atkT/b=2.1, wu/b=3.1, and two phase if the bulk lamellar phase is close to that phase bound-
values ofL, . ary; otherwise the lamellar phase is stable. When the tubular
The quasicigar phase mentioned at the beginning of thighase is stabilized in the square base pore the excess pressure
section is not stable for the period-6 lamellar phase, for any
type of the boundary conditions considered here. However,
when kT/b,u/b correspond to a stable period-4 lamellar
phase and the pore sizg=L,=L is commensurate with the
period, the quasicigar phase, shown in Fig. 10, becomes
stable.
Finally, we describe the metastable structures that may
form in long pores for soft, large period lamellar phases.
Consider a pore with surface normals in the direction of the

unit lattice vectors;(,)A/, respectively. The direction of the (a) (b)

.denflé?é E’SCI.Llﬁt;ﬁns in thel St?blg.lamellartﬁh?wvz/\/EI’ f FIG. 11. Cross section of the pore at fixgdx,y) plang for
IS a with the normals. in this case the lowest value ok ryy_5 5 /b=4.01, c/b=2.5 g/b=1 and hydrophilic

(e, corresponds to the structure shown in Fig. 11. As aly 5. For this set of thermodynamic variables a bulk lamellar phase
ready noted, hydrophilic walls favor a parallel orientation of i density oscillations in the (1,1,0) direction is stable. The walls
the lamellas and thus this structure is not stable in (@@h-  are normal to the unit lattice vectors. Shaded regions represent the
tinuum) systems but it could be metastable. If a long capil-gjl-rich domains and white regions represent the water-rich do-
lary is inserted into a bulk lamellar phase, with the walls atmains. Thick lines represent the local interfaggéx,y) — pa(X,y)

45° with the lamellas, similar structures may form at short=0 wherep,,p, are the MF averaged densities of water and oil,
or intermediate time scales, if the viscosity of the system igespectively.(a) L=40 and(b) L=60 (in units of the lattice con-
high. stanta).
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TI(L) oscillates about const0. When the lamellar phase is L, walls shifts the excess pressuilgL ) above(hydrophilic
stabilized in the pore, the excess presdilfg) is negative Ly walls) or below (neutralL, walls) zero.

i -1
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