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Scaling laws in adsorption on bivariate surfaces

F. Bulnes, A. J. Ramirez-Pastor, and G. Zgrablich*
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~Received 2 October 2001; published 13 February 2002!

The adsorption of particles with nearest-neighbor attractive and repulsive interactions is studied through
Monte Carlo simulation on bivariate surfaces characterized by patches of weak and strong adsorbing sites of
size l. Patches are considered to have either a square or a strip geometry and they can be either arranged in a
deterministic ordered structure or in a random way. Quantities are identified that scale obeying power laws as
a function of the scale lengthl. The consequences of this finding are discussed for the determination of the
energetic topography of the surface from adsorption measurements.
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I. INTRODUCTION

The role of the adsorptive surface characteristics in m
processes of practical importance is a topic of increas
interest in surface science. Adsorption, surface diffusion,
reactions on catalysts are some of the phenomena tha
strongly dependent upon surface structure. Most mate
have heterogeneous surfaces which, when interacting
gas molecules, present a complex spatial dependence o
adsorptive energy. It is of substantial interest to attemp
complete characterization of such heterogeneity.

Through the last 50 years adsorption has been used
determining energetic properties of heterogeneous substr
but this still remains an open problem in many aspects@1–4#.
For a very long time in the history of the studies of hete
geneous adsorbents, the adsorptive energy distribution
considered as the only important characteristic to be kno
in order to describe the behavior of adsorbed particles,
much effort was dedicated to the development of meth
for its determination from experimental adsorption data@5#.
More recently @6–9# it became clear that many gas-sol
surface processes are strongly affected, not only by the
sorptive energy distribution, but also by the way these en
gies are spatially distributed~energetic topography!. It is
then a challenge in the field of gas-solid interactions to
visage methods for the determination of the energetic top
raphy of heterogeneous substrates from adsorption ex
ments~characterization problem!.

Unfortunately, the characterization problem for a gene
heterogeneous surface, represented, for example, by a m
variate distribution function with spatial correlations, h
been shown to be a formidable problem far from be
solved@10,11#. A more modest goal would be to attempt th
characterization of simpler topographies, like those arisin
bivariate surfaces, i.e., surfaces composed by two kind
sites, say weak and strong sites with adsorptive energie«1
and «2 , respectively, arranged in patches of sizel. Recent
developments in the theory of adsorption on heterogene
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surfaces, like the supersite approach@12#, and experimental
advances in the tailoring of nanostructured adsorba
@13,14#, encourage this kind of study. Bivariate surfaces m
also mimic, to a rough approximation, more general hete
geneous adsorbates. Just to give a few examples, we
mention the surfaces with energetic topography arising fr
a continuous distribution of adsorptive energy with spa
correlations, like those described by the dual site-bond mo
@8#, or that arising from a solid where a small amount
randomly distributed impurity~strongly adsorptive! atoms
are added@9#. In both cases the energetic topography co
be roughly represented by a random spatial distribution
irregular patches~with a characteristic size! of weak and
strong sites.

Adsorption on bivariate surfaces with square-patches
pography has recently been studied for the case of parti
with nearest-neighbor repulsive interaction energy@15#. It
was found that both adsorption isotherms and isostheric
of adsorption follow scaling laws involving the patch sizel
and that this characteristic length defining the topograp
could, in principle, be obtained from the analysis of expe
mental results. It is of interest to determine if such prope
is a general one or if it is due to the particularity arisin
either from the geometry of patches or from the repuls
lateral interactions between adsorbed particles.

Accordingly, the scope of the present work is to det
mine, via Monte Carlo simulation, the general properties
the adsorption of particles with repulsive and attract
nearest-neighbor interaction on model bivariate surfaces w
square and strip patches geometry with a characteristic
relation lengthl, and find out to what extent the scaling law
are preserved and if the length scale could be determ
from adsorption measurements. In Sec. II we present the
sorption model and simulation method. The behavior of r
evant quantities, such as adsorption isotherms and isos
heat of adsorption, is discussed in Sec. III. Section IV
dedicated to the determination of general scaling proper
leading to power-law behavior and to the discussion of
implications in the determination ofl from experimental
measurements. General conclusions are given in Sec. V.

II. MODEL AND SIMULATION METHOD

We assume that the substrate is represented by a
dimensional square lattice ofM5L3L adsorption sites,

a.
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with periodic boundary conditions. Each adsorption site c
be either a ‘‘weak’’ site, with adsorptive energy«1 , or a
‘‘strong’’ site, with adsorptive energy«2(«1,«2). Weak and
strong sites form patches of different geometry:~1! Square
patches of sizel ( l 51,2,3, . . . ), which are spatially distrib-
uted either in a deterministic alternate way~chessboard to-
pography!, Fig. 1~a!, or in a nonoverlapping random wa
~random topography!, Fig. 1~b!; ~2! Strips of transversal size
l ( l 51,2,3, . . . ), which are spatially distributed either in a
ordered alternate way, Fig. 1~c!, or in a nonoverlapping ran
dom way~random topography!, Fig. 1~d!.

In order to easily identify a given topography, we intr
duce the notationl C for a chessboard topography of sizel
and, similarly,l R for random square patches,l OS for ordered
strips, andl RS for random strips. Then, in Figs. 1~a! to 1~d!,
the topographies are 4C , 4R , 4OS, and 4RS, respectively.
We also use the notation ‘‘bp’’ to refer to the extreme case
big patches topography (l→`), i.e., a surface with one-hal
of weak sites and one-half of strong sites.

The substrate is exposed to an ideal gas phase at tem
tureT and chemical potentialm. Particles can be adsorbed o
the substrate with the restriction of at most one adsor
particle per site and we consider a nearest-neighbor~NN!
interaction energyw among them~we use the convention
w.0 for repulsive andw,0 for attractive interactions!.
Then the adsorbed phase is characterized by the Hamilto

H52M @~«1u11«2u2!2mu#1
1

2
w(

~ l , j !
ninj , ~1!

FIG. 1. Schematic representation of heterogeneous bivariate
faces with chessboard~a!, random square patches~b!, ordered strips
~c!, and random strips~d! topography. The patch size in this figur
is l 54.
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whereu5u11u2 is the total surface coverage~summing the
coverages on weak and strong sites!, ni is the site occupation
number~50 if empty or51 if occupied!, and the sum runs
over all pairs of NN sites~i, j!. Without any loss of general
ity, we can consider that all energies are measured in unit
kBT, and that«150 and «25DE in such a way that the
adsorptive energy is characterized by the single adimensi
parameterDE.

The adsorption process is simulated through a grand
nonical ensemble Monte Carlo~GCEMC! method@16#.

For a given value of the temperatureT and chemical po-
tential m, an initial configuration withN5M /2 particles ad-
sorbed at random positions is generated. Then an adsorp
desorption process is started, where a site is chose
random and an attempt is made to change its occupancy
with probability given by the Metropolis rule

P5minF1, expS 2
DH

kBTD G , ~2!

whereDH5H f2Hi is the difference between the Hamilto
nians of the final and initial states. A Monte Carlo st
~MCS! is achieved whenM sites have been tested to chan
its occupancy state. The approximation to thermodynam
equilibrium is monitored through the fluctuations in the nu
ber N of adsorbed particles; this is usually reached in 104 to
105 MCS. After that, mean values of thermodynamic qua
tities, such as the surface coverageu and the internal energy
U, are obtained by simple averages overm configurations:

u5
^N&
M

, U5^H&2m^N&, ~3!

where the brackets denote averages over statistically un
related configurations.

By changing the value ofm, the adsorption isotherm at
given temperature can be obtained. Furthermore, from
simulation results, the differential heat of adsorptionqd as a
function of the coverage is calculated as@17#

qd~u!5F]U

]u G
T

. ~4!

In our calculations we have usedL'100, M'104, and
m5105. With this size of the lattice~L'100, in such a way
that it is a multiple ofl! we verified that finite size effects
which affect the isotherms in the case of repulsive inter
tions at much smaller sizes, are negligible.

III. ADSORPTION RESULTS

We treat separately the cases of repulsive and attrac
interactions.

A. Repulsive interactions

Given that all energies are being measured in units
kBT, all results will be independent of the temperature a
furthermore, since the critical temperature for the appeara
of a c(232) ordered phase in a zero-field Ising model

ur-
3-2
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given by kBTC50.567w @18#, there will be a critical NN
interactionwC51.763 668, above which the formation of th
ordered phase is possible atu50.5.

Figure 2 shows the behavior of adsorption isotherm
@Fig. 2~a!#, and qd(u), @Fig. 2~b!#, for different square
patches topographies forw54 andDE524. It can be seen
that all curves are contained between two limit ones: the
corresponding to 1C and the one corresponding to bp. F
chessboard topographies, four different adsorption proce
can be visualized, separated by shoulders in the adsorp
isotherm and by steps inqd : ~i! strong site patches are fille
first up tou50.25, where ac(232) structure is formed on
them ~in this regionqd524!; ~ii ! since 4w,DE, the filling
of strong site patches is completed up tou50.5 ~in this
region qd decreases continuously from 24, zero occup
NN, to 8, four occupied NN!; processes~iii ! and~iv!, corre-
sponding to the regions 0.5,u,0.75 and 0.75,u,1, re-
spectively, are equivalent to processes~i! and ~ii ! for weak
site patches. Random topographies are seen to behave
similar way with a particularly interesting feature: the beha
ior of a random topography of sizel seems to approach tha
of a chessboard topography with an effective sizel eff.l. As
it can be easily understood, as long as the conditionw/DE
<1/4 is satisfied, the adsorption process is similar to the
described above, i.e., strong site patches are filled first
weak site patches are filled after. We call this feature ‘‘R
gime I.’’

Figure 3 shows the behavior of adsorption isotherm
@Fig. 3~a!#, and qd(u), @Fig. 3~b!#, for different square
patches topographies forw54 and DE512. In this case,
wherew/DE<1/3, the adsorption process follows a differe
regime, which we call ‘‘Regime II’’@19#: ~i! the strong site

FIG. 2. Adsorption isotherm~a! and differential heat of adsorp
tion ~b! for different topographies and repulsive interactions
Regime I.
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patches are filled until thec(232) ordered phase is forme
on them, ~ii ! the weak site patches are filled until th
c(232) ordered phase is formed on them,~iii ! the filling of
the strong site patches is completed, and~iv! the filling of the
weak site patches is completed.

It should be noticed that Regimes I and II are disco
nected. In between, i.e., 1/4,w/DE,1/3, the system be-
haves in a mixed transition regime changing continuou
from one to another.

Strip topography presents a similar behavior as squ
patches topography, with the feature that ordered strips
have like chessboard square patches with a higherl eff and
random strips behave like random square patches also w
higher l eff . Results are shown in Fig. 4, for ordered strip
and in Fig. 5 for random strips, corresponding to Regim
(DE512,w53). Figure 6 shows a comparison of adsorpti
isotherms between strips and square patches topographie
Regime I. The behavior for Regime II, not shown, follow
the same pattern, with obvious modifications, as that
square patches.

B. Attractive interactions

In the case of attractive interactions only Regime I is p
sible, i.e., for all values ofDE andw strong patches fill first
and weak patches fill last.

Figures 7 and 8 show the typical behavior for squa
patches and for strips, respectively. In the last case only
ordered strips topography has been represented, since
density of curves is already high. The plateau in the i
therms and the corresponding abrupt drop in the differen
heat of adsorption are indicating that the strong patches
being filled before adsorption starts on the weak patches

FIG. 3. Adsorption isotherm~a! and differential heat of adsorp
tion ~b! for different topographies and repulsive interactions
Regime II.
3-3
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Again we observe that all curves vary between the
topography and the 1C topography and that random topogr
phies behave like the ordered ones with a larger effec
size.

FIG. 4. Adsorption isotherm~a! and differential heat of adsorp
tion ~b! for ordered strips topography and repulsive interactions
Regime I.

FIG. 5. Adsorption isotherm~a! and differential heat of adsorp
tion ~b! for random strips topography and repulsive interactions
Regime I.
03160
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IV. SCALING AND POWER-LAW BEHAVIOR

The fact that both adsorption isotherm and heat of adso
tion curves for different topographies, characterized by
length scalel, vary between two extreme curves, sugge
that we should search for some appropriate quantity to m
sure the deviation among these curves and study the beh
of such quantity as the length scale is varied.

The quantity we found most suitable is the area betwee
given curve and a reference curve. For adsorption isothe
this quantityxa is defined as

xa5E
2`

`

uu~m!2uR~m!udm, ~5!

whereuR(m) is the reference adsorption isotherm. A simil
quantity xh can be defined for adsorption heat curves.
taking as a reference curve the one corresponding to th
topography, we obtain the plot ofxa as a function ofl for
different topographies corresponding to Regime I as sho
in Fig. 9. Here we can see thatxa behaves as a power law i
l with an exponenta'22. Exactly the same behavior is als
found for xh .

It is interesting to note that the exponenta is the same for
repulsive~corresponding to Regime I! and attractive interac-
tions and for all topographies, i.e., chessboard, rand
square patches, ordered strips, and random strips, since
rithmic plots are parallel. Straightforward calculations~see
Appendix! demonstrate that the curves forx ~eitherxa or xh!

n

n

FIG. 6. Comparison between adsorption isotherms correspo
ing to square patches and strips geometry for repulsive interact
in Regime I:~a! ordered topography;~b! random topography.
3-4
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corresponding to the different topographies should colla
on the same curve as a function of an effective length s
~representing an effective patch size! l eff given by

l eff5sl, ~6!

where s51 for chessboard topography,s52 for random
square patches and for ordered strips, ands54 for random
strips. The insets in Figs. 9~a! and 9~b! show that this is
indeed what happens.

For repulsive interactions and for values ofDE and w
corresponding to Regime II, we find similar results, exc
that the exponent has now a different value,a'23.

As we have already mentioned, Regimes I and II are d
connected. What happens in between? By changingw and
DE we have also found a power law for intermediate
gimes, obtaining for exponenta the general behavior in th
adimensional variablew/DE represented in Fig. 10. We fin
that this can be expressed as

a5a1521.95260.053 for w/DE<1/4,

a5a21@12~1/32w/DE!#b~a12a2!

for 1/4<w/DE<1/3, ~7!

a5a2523.04960.065 for w/DE>1/3,

with b50.4260.04, for repulsive interactions, while

a5a1521.95260.053 ~8!

for attractive interactions.

FIG. 7. Adsorption isotherm~a! and differential heat of adsorp
tion ~b! for square patches topographies and attractive interacti
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Up to now it is clear that this behavior of exponenta is
universal in the sense that it is unique for all values ofDE,
for all topographies considered here, for repulsive and att
tive interactions and for bothxa andxh . However, we have
found that this universality goes far beyond. In fact, exac
the same behavior is found by taking as a reference curve
the calculation ofx any curve~either adsorption isotherm o
heat of adsorption! corresponding to a system with the a
propriate values ofw andDE. Even more, a suitable refer
ence curve can be any theoretical approximation reflec
the appropriate values ofw and DE, like, for example, the
mean field approximation for bp topography, whose adso
tion isotherm is given by

u i5
exp~« i24wu i1m!

11exp~« i24wu i1m!
, i 5~1,2!, u5

1

2
~u11u2!.

~9!

The corresponding reference curve forqd can be found by
numerical differentiation through the general thermodyna
cal relation

qd5F dm

d ln~T!G
u

2kBT. ~10!

Then, as a result of the above findings, we can estab
with great generality that the quantityx, calculated either for
the adsorption isotherm or for the differential heat of adso

FIG. 8. Adsorption isotherm~a! and differential heat of adsorp
tion ~b! for strips topographies and attractive interactions.

s.
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tion by using any suitable reference curve, behaves a
power law in the effective length scale given by Eq.~6!, like

ln~x!5const2a ln~ l eff!, ~11!

where the exponenta has a universal behavior given by Eq
~7! and~8!. These results suggest a method to solve the p
lem of the characterization of the energetic topography
heterogeneous substrates, which can be approximated b
variate surfaces, through adsorption measurements. For

FIG. 9. Power-law behavior of the quantityxa showing the
collapse of data for different topographies on a single curve w
the effective length scalel eff is used:~a! repulsive interactions in
Regime I;~b! attractive interactions.

FIG. 10. Universal behavior of exponenta as a function of the
adimensional variablew/DE.
03160
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it is necessary to obtain first an estimation of the adsorb
adsorbate interaction energy,w. This energy can be obtaine
in the case of repulsive interactions by LEED or STM me
surements at different temperatures to determine the cri
temperature for the formation of the orderedc(232) struc-
ture. In the case of attractive interactionsw can be estimated
from adsorption measurements at very low pressure. W
this, and sinceqd(0)5«2 andqd(1)5«114w, it is possible
to determine«1 , «2 , and DE from calorimetric measure
ments of the differential heat of adsorption as a function
coverage. Then, given the value ofw/DE, the value ofa can
be obtained from Eq.~7! or ~8!. Finally, by choosing an
appropriate theoretical approximation as a reference cu
for u~m! or qd(u), like, for example, Eq.~9!, the value ofxa
or xh can be calculated allowingl eff to be obtained from Eq.
~11!. Note that the measurement of adsorption isotherm
not necessary in the case of repulsive interactions, thoug
would be convenient to get an alternative value ofl eff to
check the accuracy of the result.

V. CONCLUSIONS

We have studied by Monte Carlo simulations the adso
tion of particles, interacting through a NN interactionw, on
heterogeneous bivariate surfaces characterized by diffe
energetic topographies. The heterogeneity is determined
two parameters: the difference of adsorptive energy betw
strong and weak sitesDE, and an effective correlation lengt
l eff , representing the length scale for homogeneous ads
tive patches.

Unique scaling properties and power-law behavior ha
been established for relevant adsorption quantities, suc
the adsorption isotherm and the differential heat of adso
tion. The exponenta as a function ofw/DE is found to
follow a universal behavior. Present results extend those
tained in Ref.@15#, which were restricted to the case of r
pulsive interactions and square patches geometry.

These findings provide for the first time a method to ch
acterize the energetic topography~i.e., obtain the parameter
from experimental measurements! of a class of heteroge
neous surfaces that can be approximately represented a
variate surfaces.
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APPENDIX

We introduce the following general notation: letf i j be the
fraction of NN pairs of sites of type~i, j! ~i or j takes the
values 1, 2!, nk

i j be the number of NN pairs of sites of typ
~i, j! on patches~either square patches or strips! of typek, nci

ii

be the number of NN pairs of type~i,i! corresponding to the
contact between two patches of typei, n be the total number
of NN pairs,Ni be the number of patches of typei, andNci
be the mean number of contacting patches of typei.

n
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1. Chessboard

For a square lattice of sizeL with a chessboard topogra
phy of patches of sites 1 and 2, each of size 2l , the fraction
of pairs of NN sites of type 11,f 11, is given by

f 115
n1

11N1

n
. ~A1!

Now, in our model

n1
1152~2l 22!212~2l 22!314, N15

1

2 F L

2l G
2

5
L2

8l 2 ,

n52L2

so that we obtain

f 115
2l 21

4l
. ~A2!

2. Random square patches

On the other hand, for a random topography of squ
patches of sizel, we have

f 115
n1

11N11nC1
11 NC1

n
. ~A3!

In this case
es

-

-

u
.

h

a
ic

A

ng

J

03160
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n1
112~ l 22!212~ l 22!314, N15

1

2 FL

l G2

, NC15
1

2 FL

l G2

,

so that, replacing in Eq.~A3!, we again obtain forf 11 the
same value as given in Eq.~A2!. Since similar results are
valid for f 22 and f 12, we conclude that random squa
patches of sizel behave like chessboard patches of size 2l .

3. Strips

For an ordered strips topography, with strips of sizel , we
have

f 115
n1

11N1

n
, ~A4!

with n1
1153L12(l 22)L; N15L/2l ; n52L2. Hence we ob-

tain

f 115
2l 21

4l
, ~A5!

which is identical to Eq.~A2!. We then conclude that ordere
strips of sizel behave like chessboards of size 2l ~i.e., or-
dered strips behave like random square patches of the s
size!.

The analysis for random strips can be carried out as
obvious extension of that for random square patches, w
the result that random strips of sizel behave like chessboard
of size 4l .
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