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Scaling laws in adsorption on bivariate surfaces

F. Bulnes, A. J. Ramirez-Pastor, and G. Zgralilich
Laboratorio de Ciencias de Superficies y Medios Porosos, Universidad Nacional de San Luis—CONICET, Chacabuco 917,
5700 San Luis, Argentina
(Received 2 October 2001; published 13 February 2002

The adsorption of particles with nearest-neighbor attractive and repulsive interactions is studied through
Monte Carlo simulation on bivariate surfaces characterized by patches of weak and strong adsorbing sites of
sizel. Patches are considered to have either a square or a strip geometry and they can be either arranged in a
deterministic ordered structure or in a random way. Quantities are identified that scale obeying power laws as
a function of the scale length The consequences of this finding are discussed for the determination of the
energetic topography of the surface from adsorption measurements.
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I. INTRODUCTION surfaces, like the supersite approddR], and experimental
advances in the tailoring of nanostructured adsorbates

The role of the adsorptive surface characteristics in many13,14, encourage this kind of study. Bivariate surfaces may
processes of practical importance is a topic of increasinglSO mimic, to a rough approximation, more general hetero-

interest in surface science. Adsorption, surface diffusion, ang€neous adsorbates. Just to give a few examples, we may

reactions on catalysts are some of the phenomena that aféention the surfaces with energetic topography arising from
continuous distribution of adsorptive energy with spatial

strongly dependent upon surface structure. Most material@ ; . . ;
haveghyeter(?geneous gurfaces which, when interacting Witﬂgrrelatlons, like those described by the dual site-bond model

. or that arising from a solid where a small amount of
gas molecules, present a complex spatial dependence on t (; P . . .
adsorptive energy. It is of substantial interest to attempt fahdomly distributed impuritystrongly adsorptive atoms

o . Are added?9]. In both cases the energetic topography could
complete characterization of such heterogeneity. be roughly represented by a random spatial distribution of

Through the last 50 years adsorption has been used fqfaqjar patchegwith a characteristic sizeof weak and
determining energetic properties of heterogeneous substrates'irong sites.

but this still remains an open problem in many aspgttsd]. Adsorption on bivariate surfaces with square-patches to-
For a very long time in the history of the studies of hetero-pography has recently been studied for the case of particles
geneous adsorbents, the adsorptive energy distribution wagith nearest-neighbor repulsive interaction enefgg]. It
considered as the only important characteristic to be knowiyas found that both adsorption isotherms and isostheric heat
in order to describe the behavior of adsorbed particles, andf adsorption follow scaling laws involving the patch size
much effort was dedicated to the development of methodand that this characteristic length defining the topography
for its determination from experimental adsorption dd&h  could, in principle, be obtained from the analysis of experi-
More recently[6—9] it became clear that many gas-solid mental results. It is of interest to determine if such property
surface processes are strongly affected, not only by the ads a general one or if it is due to the particularity arising
sorptive energy distribution, but also by the way these enereither from the geometry of patches or from the repulsive
gies are spatia”y distribute(bnergetic topography It is lateral mtgractlons between adsorbed partlcles. .

then a challenge in the field of gas-solid interactions to en- Accordingly, the scope of the present work is to deter-
visage methods for the determination of the energetic topogMine. via Monte Carlo simulation, the general properties of

raphy of heterogeneous substrates from adsorption expefi?® adsorption of particles with repulsive and attractive
ments(characterization problem nearest-neighbor interaction on model bivariate surfaces with

Unfortunately, the characterization problem for a generafduare and strip paiches geometry with a characteristic cor-
heterogeneous surface, represented, for example, by a mulfglation lengthl, and find out to what extent the scaling laws
variate distribution function with spatial correlations, has@€ Preserved and if the length scale could be determined
been shown to be a formidable problem far from beingfrom gdsorptmn measurements. In Sec. Il we present the ad-
solved[10,11). A more modest goal would be to attempt the sorption modgl and simulation me_thoq. The behawor_ of reI—_
characterization of simpler topographies, like those arising iffVant quantities, such as adsorption isotherms and isosteric

bivariate surfaces, i.e., surfaces composed by two kinds djeat of adsorption, is discussed in Sec. lll. Section IV is
sites, say weak and strong sites with adsorptive energies dedicated to the determination of general scaling properties

and ¢,, respectively, arranged in patches of siz&Recent leading to power-law behavior and to the discussion of its

developments in the theory of adsorption on heterogeneodd'Plications in the determination of from experimental
measurements. General conclusions are given in Sec. V.

. - . . Il. MODEL AND SIMULATION METHOD
*Corresponding author. Departamento dsida, Universidad Na-

cional de San Luis, Chacabuco 917, 5700 San Luis, Argentina. We assume that the substrate is represented by a two-
FAX: +54-2652-430224. Email address: giorgio@unsl.edu.ar dimensional square lattice dfi=L XL adsorption sites,
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where 6= 6, + 0, is the total surface coveraggumming the
coverages on weak and strong sifes is the site occupation
lllllllllll number(=0 if empty or=1 if occupied, and the sum runs
s over all pairs of NN sitesi, j). Without any loss of general-
ity, we can consider that all energies are measured in units of
kgT, and thate;=0 ande,=AE in such a way that the
adsorptive energy is characterized by the single adimensional
s parameteAE.
The adsorption process is simulated through a grand ca-
dEasiEd nonical ensemble Monte Carl[GCEMC) method[16].
For a given value of the temperatufeand chemical po-
b) tential u, an initial configuration witiN=M/2 particles ad-
sorbed at random positions is generated. Then an adsorption-
desorption process is started, where a site is chosen at
random and an attempt is made to change its occupancy state
with probability given by the Metropolis rule

! [{ AH
R et

P=min

, )

whereAH=H;—H; is the difference between the Hamilto-

nians of the final and initial states. A Monte Carlo step

(MCYS) is achieved whemM sites have been tested to change

its occupancy state. The approximation to thermodynamical

equilibrium is monitored through the fluctuations in the num-

c) d) berN of adsorbed particles; this is usually reached ifi t0
10° MCS. After that, mean values of thermodynamic quan-

FIG. 1. Schematic representation of heterogeneous bivariate sufities, such as the surface coveragand the internal energy

faces with chessboasd), random square patchés), ordered strips | are obtained by simple averages oweconfigurations:

(c), and random strip&d) topography. The patch size in this figure

isl=4. (N)

0=—=, U=(H)—u(N), 3
with periodic boundary conditions. Each adsorption site can M (H)=u(N)

be either a “weak” site, with adsorptive energy,, or a L

“strong” site, with adsorptive energy,(s,<e,). Weak and where the brackets denote averages over statistically uncor-
strong sites form patches of different geometty; Square  related configurations. o

patches of sizé (1=1,2,3 .. .), which are spatially distrib- By changing the value of, the adsorption isotherm at a
uted either in a deterministic alternate wéshessboard to- given temperature can be obtained. Furthermore, from the
pography, Fig. 1(a), or in a nonoverlapping random way Simulation results, the differential heat of adsorpteppas a
(random topography Fig. 1(b); (2) Strips of transversal size function of the coverage is calculated [45]

I (I=1,2,3...), which are spatially distributed either in an

ordered alternate way, Fig(d, or in a nonoverlapping ran- )= ﬂ 4

dom way(random topography Fig. 1(d). Qu(O)=|—5 (4)
In order to easily identify a given topography, we intro- T

duce the notation: for a chessboard topography of sike In our calculations we have uséd~100, M~10*, and

and, similarly,|z for random square patchdsg, for ordered  m=10°. With this size of the latticéL ~ 100, in such a way
strips, and gs for random strips. Then, in Figs(d to 1(d),  that it is a multiple ofl) we verified that finite size effects,

the topographies arec4 4g, 40s, and 4s, respectively.  which affect the isotherms in the case of repulsive interac-
We also use the notation “bp” to refer to the extreme case otjyns at much smaller sizes. are negligible.

big patches topography-&«), i.e., a surface with one-half
of weak sites and one-half of strong sites.

The substrate is exposed to an ideal gas phase at tempera-
tureT and chemical potentigh. Particles can be adsorbed on e treat separately the cases of repulsive and attractive
the substrate with the restriction of at most one adsorbethteractions.
particle per site and we consider a nearest-neigthidt)
interaction energyw among them(we use the convention
w>0 for repulsive andw<0 for attractive interactions
Then the adsorbed phase is characterized by the Hamiltonian Given that all energies are being measured in units of
kgT, all results will be independent of the temperature and,
furthermore, since the critical temperature for the appearance
of a c(2%X2) ordered phase in a zero-field Ising model is

IIl. ADSORPTION RESULTS

A. Repulsive interactions

1
H:_M[(8161+8202)_M9]+ EW(IE) ninj, (1)
)]
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FIG. 2. Adsorption isothernta) and differential heat of adsorp- FIG. 3. Adsorption isothernta) and differential heat of adsorp-
tion (b) for different topographies and repulsive interactions intion (b) for different topographies and repulsive interactions in
Regime |. Regime II.

given by keTe=0.567v [18], there will be a critical NN patches are filled until the(2x2) ordered phase is formed

int i ~1.763668, ab hich the f ti fthe ON them, (ii) the weak site patches are filled until the
g\rsé?é:dwpnr\:\;%e is possible?&t:()(\)/eSW eh fhe formation 0T the c(2x2) ordered phase is formed on thefii,) the filling of

Figure 2 shows the behavior of adsorption isotherms€ Strong site patches is completed, &mdlthe filling of the

Fiq. .~ and 9). [Fig. 2b)], for diff ¢ weak site patches i§ completed. . _
E)alt%hiagnpc?gragﬁi(es) fQEZI% a2r(1d)iE2r24lltecm?1 bséqzzrei It should be noticed that Regimes | and Il are discon-
that all curves are contained between two limit ones: the on ected._ In be;ween, 1€, 1{4N/A.E<1/3’ th_e system be-
corresponding to d and the one corresponding to bp. For aves in a mixed transition regime changing continuously
chessboard topographies, four different adsorption processggm one to another.

can be visualized, separated by shoulders in the adsorption Strip topography prgsents a similar behavior as square
isotherm and by steps iy : (i) strong site patches are filled patches topography, with the feature that ordered strips be-

first up to 6=0.25, where a(2X2) structure is formed on have like qhessboard square patches with a higheand .
them (in this regiongy=24): (i) since A<AE, the filling random strips behave like random square patches also with a

of strong site patches is completed up @e-0.5 (in this higher | .. Results are shown in Fig. 4, for ordered strips,

. : ._and in Fig. 5 for random strips, corresponding to Regime |
region g4 decreases continuously from 24, zero occup|eoa - B . . .
NN, to 8, four occupied NI processesiii) and (iv), corre- (AE=12w=23). Figure 6 shows a comparison of adsorption

sponding to the regions 0:56<0.75 and 0.75 <1, re- isotherms between strips and square patches topographies for

. : : - Regime I. The behavior for Regime I, not shown, follows

spectively, are equivalent to procesggsand (ii) for weak ; . L
site patches. Random topographies are seen to behave inthée same pattem, with obvious modifications, as that of
similar way with a particularly interesting feature: the behay->d4ar€ patches.
ior of a random topography of sizeseems to approach that o .
of a chessboard topography with an effective dize-l. As B. Attractive interactions
it can be easily understood, as long as the conditibi E In the case of attractive interactions only Regime | is pos-
=<1/4 is satisfied, the adsorption process is similar to the onsible, i.e., for all values oAE andw strong patches fill first
described above, i.e., strong site patches are filled first angnd weak patches fill last.
weak site patches are filled after. We call this feature “Re- Figures 7 and 8 show the typical behavior for square
gime .” patches and for strips, respectively. In the last case only the

Figure 3 shows the behavior of adsorption isothermsprdered strips topography has been represented, since the
[Fig. 3@], and qq(6), [Fig. 3b)], for different square density of curves is already high. The plateau in the iso-
patches topographies fav=4 and AE=12. In this case, therms and the corresponding abrupt drop in the differential
wherew/AE=<1/3, the adsorption process follows a different heat of adsorption are indicating that the strong patches are
regime, which we call “Regime II119]: (i) the strong site being filled before adsorption starts on the weak patches.
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FIG. 4. Adsorption isothernta) and differential heat of adsorp- FIG. 6. Comparison between adsorption isotherms correspond-
tion (b) for ordered strips topography and repulsive interactions ining to square patches and strips geometry for repulsive interactions
Regime I. in Regime 1:(a) ordered topography(p) random topography.

Again we observe that all curves vary between the bp

topography and thegltopography and that random topogra- o
phies behave like the ordered ones with a larger effective The fact that both adsorption isotherm and heat of adsorp-

IV. SCALING AND POWER-LAW BEHAVIOR

size.

tion curves for different topographies, characterized by a
length scaldl, vary between two extreme curves, suggests
that we should search for some appropriate quantity to mea-

L ) sure the deviation among these curves and study the behavior
0.8 of such quantity as the length scale is varied.
1 The quantity we found most suitable is the area between a
0.6 given curve and a reference curve. For adsorption isotherms,
0 04_' this quantityy, is defined as
0.2 1
0.0 Xa:f |6(w)—6%(w)|du, 5
20 -
124 random strips . where 6R(w) is the reference adsorption isotherm. A similar
] quantity y,, can be defined for adsorption heat curves. By
6'_ w=3 4 taking as a reference curve the one corresponding to the bp
g. o AE=12 1 topography, we obtain the plot gf, as a function ofl for
d | —=—6, different topographies corresponding to Regime | as shown
-6 O _ in Fig. 9. Here we can see thgt behaves as a power law in
1 3 | with an exponente~ — 2. Exactly the same behavior is also
124b) T s found for y;, .
00 02 o4 06 o8 1o It is interesting to note that the exponents the same for

0

repulsive(corresponding to Regime &nd attractive interac-
tions and for all topographies, i.e., chessboard, random

FIG. 5. Adsorption isotherni) and differential heat of adsorp- Square patches, ordered strips, and random strips, since loga-
tion (b) for random strips topography and repulsive interactions infithmic plots are parallel. Straightforward calculatiofsee

Regime I.

Appendi¥ demonstrate that the curves fpfeithery, or xy,)
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FIG. 8. Adsorption isothernta) and differential heat of adsorp-
0 tion (b) for strips topographies and attractive interactions.

FIG. 7. Adsorption isothernta) and differential heat of adsorp-

tion (b) for square patches topographies and attractive interactions. .Up to "?OW it is clear that. t,h's bghawor of exponents
universal in the sense that it is unique for all value\&,

corresponding to the different topographies should collapséor all topographies considered here, for repulsive and attrac-
on the same curve as a function of an effective length scalgve interactions and for botf, andy;. However, we have
(representing an effective patch sizgy given by found that this universality goes far beyond. In fact, exactly
6) the same behavior is found by taking as a reference curve for
the calculation ofy any curve(either adsorption isotherm or
where s=1 for chessboard topography=2 for random heat of adsorptioncorresponding to a system with the ap-
square patches and for ordered strips, asdt for random  propriate values ofv and AE. Even more, a suitable refer-
strips. The insets in Figs.(® and 9b) show that this is ence curve can be any theoretical approximation reflecting
indeed what happens. the appropriate values of and AE, like, for example, the
For repulsive interactions and for values A€ andw  mean field approximation for bp topography, whose adsorp-
corresponding to Regime I, we find similar results, exception isotherm is given by
that the exponent has now a different valuey — 3.
As we have already mentioned, Regimes | and Il are dis-

leﬁ:SIY

connected. What happens in between? By changirand _ eXplei—Awoi+u) i—(12), o= 1(0 o))
AE we have also found a power law for intermediate re- ~' 1+expe;—4wé,+u) '’ ” 2\
gimes, obtaining for exponemnt the general behavior in the 9)

adimensional variable//AE represented in Fig. 10. We find

that this can be expressed as ,
The corresponding reference curve égrcan be found by

a=a;=—1.952-0.053 forw/AE=<1/4, numerical differentiation through the general thermodynami-

cal relation

for 1/4<w/AE<1/3, (7)

du
= —kgT. 10
a=a,=—3.049-0.065 for w/AE=1/3, 9= din(m) , (10
with 8=0.42+0.04, for repulsive interactions, while
a=a;=—1.952+0.053 8) .Then, as a reSI_JIt of the above findings, we can establish
with great generality that the quantigy calculated either for
for attractive interactions. the adsorption isotherm or for the differential heat of adsorp-
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10° ¥ it is necessary to obtain first an estimation of the adsorbate-
ja) X 100 R adsorbate interaction energy, This energy can be obtained
101‘; AE=12 1071 i in the case of repulsive interactions by LEED or STM mea-
o] w=1 0] surements at different temperatures to determine the critical
10 ’ . D } ; temperature for the formation of the ordere(®x 2) struc-
X 1071 0 D'g e o ture. In the case of attractive interactionsan be estimated
I e T [ from adsorption measurements at very low pressure. With
10‘2uE o chessbwd(S;]')"--...__.A""--... __.!"‘ this, and since)y(0)=¢, andqqy(1)=¢e,+4w, it is possible
514 orderedstrips (s=2) T T to determines,, £,, and AE from calorimetric measure-
1073 m  random square patches (s=2) A ments of the differential heat of adsorption as a function of
S — coverage. Then, given the valuewfAE, the value ofx can
10° 10' be obtained from Eq(7) or (8). Finally, by choosing an
l appropriate theoretical approximation as a reference curve
10° 3 — for 6(w) or qq(0), like, for example, Eq(9), the value ofy,
10115 b) AB=12 4 1~ - or x, can be calculated allowing to be obtained from Eq.
W= o' s (11). Note that the measurement of adsorption isotherms is
10° g . " not necessary in the case of repulsive interactions, though it
- g, 1075 s would be convenient to get an alternative valuel gf to
)4 1009 . e g / 10" check the accuracy of the result.
| e e
1073 u] chessboard(s=~1-)‘-""-~_A. é! V. CONCLUSIONS
;5 ﬁ ord;red strips (s=2)h , T AL ) ’
U BN random stioe (ot 2 We have studied by Monte Carlo simulations the adsorp-
— T - —— tion of particles, interacting through a NN interactian on
10° 10' heterogeneous bivariate surfaces characterized by different
l energetic topographies. The heterogeneity is determined by

) _ ) two parameters: the difference of adsorptive energy between
FIG. 9. Power-law behavior of the quantily, showing the  strong and weak siteSE, and an effective correlation length
collapse of data for different topographies on a single curve wherpeﬁ' representing the length scale for homogeneous adsorp-
the effective length scalky is used:(a) repulsive interactions in tive patches.
Regime ;(b) attractive interactions. Unique scaling properties and power-law behavior have

been established for relevant adsorption quantities, such as

tion by using any suitable reference curve, behaves as @q adsorption isotherm and the differential heat of adsorp-
power law in the effective length scale given by E8), like {5, The exponeni as a function ofw/AE is found to

follow a universal behavior. Present results extend those ob-
tained in Ref[15], which were restricted to the case of re-

, o pulsive interactions and square patches geometry.
where the exponent has a universal behavior given by EGs. *  Thege findings provide for the first time a method to char-

(7) and(8). These results suggest a method to solve the prob;erize the energetic topographiye., obtain the parameters
lem of the characterization of the energetic topography Ofrom experimental measurementsf a class of heteroge-

heterogeneous substrates, which can be approximated by Bjaqys surfaces that can be approximately represented as bi-
variate surfaces, through adsorption measurements. For this riate surfaces.

In(x)=const-«a In(l o), (11

-1.0 T T T T " T T T

151 REGIME 1 — i— REGIMEN —|
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4 A strips, w<0 4
-3.5 1 AB=tw . | AF=3w We introduce the following general notation: fejt be the
0 1 \ e 1 fraction of NN pairs of sites of typéi,j) (i or j takes the
4. LB e e B S B —

values 1, 2, nikj be the number of NN pairs of sites of type
(i,j) on patchegeither square patches or strijs typek, n;
|W|/AE be the number of NN pairs of typ@i) corresponding to the
contact between two patches of typ@ be the total number
FIG. 10. Universal behavior of exponentas a function of the ~ of NN pairs,N; be the number of patches of typeandN;
adimensional variable/AE. be the mean number of contacting patches of tiype

0.1 0.2 0.3 0.4 0.5
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2 1L 2

, N01:§[|—} ,
so that, replacing in EqA3), we again obtain foif;; the
same value as given in EGA2). Since similar results are

n’2(1-2)2+2(1-2)3+4, N1=5 1

1. Chessboard 1 [ L
2

For a square lattice of siZe with a chessboard topogra-
phy of patches of sites 1 and 2, each of sitethe fraction
of pairs of NN sites of type 11f,,, is given by

11 valid for f,, and fi,, we conclude that random square
NNy
fi1= o (Al)  patches of sizé behave like chessboard patches of size 2
Now, in our model 3. Strips
For an ordered strips topography, with strips of dizeve
11 2 1[L]? L2 have
Ny =2(21-2)°+2(21-2)3+4, lei iR
11
Ny N
n=2L2 n= 5 (A4)
so that we obtain with n}*=3L+2(1—2)L; N;=L/2l; n=2L2. Hence we ob-
tain
21-1
f=— (A2) 21-1
fllzTy (A5)

2. Random square patches which is identical to Eq(A2). We then conclude that ordered

On the other hand, for a random topography of squarétrips of sizel behave like chessboards of size @e., or-
patches of sizé, we have dered strips behave like random square patches of the same

size.
NN, +ngNeg, The analysis for random strips can be carried out as an
n=T : (A3)  obvious extension of that for random square patches, with

the result that random strips of sizbehave like chesshoards

In this case

of size 4.
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