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Phase equilibria and glass transition in colloidal systems with short-ranged attractive interactions:
Application to protein crystallization
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We have studied a model of a complex fluid consisting of particles interacting through a hard-core and
short-range attractive potential of both Yukawa and square-well form. Using a hybrid method, including a
self-consistent and quite accurate approximation for the liquid integral equation in the case of the Yukawa fluid,
perturbation theory to evaluate the crystal free energies, and mode-coupling theory of the glass transition, we
determine both the equilibrium phase diagram of the system and the lines of equilibrium between the super-
cooled fluid and the glass phases. For these potentials, we study the phase diagrams for different values of the
potential range, the ratio of the range of the interaction to the diameter of the repulsive core being the main
control parameter. Our arguments are relevant to a variety of systems, from dense colloidal systems with
depletion forces, through particle gels, nanoparticle aggregation, and globular protein crystallization.
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[. INTRODUCTION critical point, the total system free energy is optimized if the
system splits into two subsystems, and thereby a sum of two
Recently novel results in the statistical mechanics of théndependent free energies. One of these free energy terms is
fluid state have emerged from a series of studies of the phasiminated by the energfliquid) and the othefgasg by the
diagram of particles with a hard-core and short-ranged attragntropy. A homogeneous, unseparated system, maintained at
tive potential. At first sight, this type of interaction potential the average density of the two subsystems, would not be able
would have been expected to yield the well known phasdo fully optimize either energy or entropy. This, in essence, is
diagrams of simple solids, liquids and gases. Here we shathe cause of typical first-order phase transitions between a
see that a different scenario emerges. liquid and a gas. In the liquid, as the density increases, the
In many practical situations attractive forces, which areremaining diffusive motions of the particles are reduced and
short ranged compared to the size of the particles, arise béheir attendant(configurational entropy diminishes. Now,
cause the size of the particles itself is large, whilst the physithe random structure of a liquid is favored provided overall
cal forces retain their typical microscopic range. Thus, indiffusive particle motion is possible. When, at higher densi-
order to model large molecules, such as proteins, colloidgjes, diffusion is greatly limited, the free volume is better
and nanoparticles, one often works in a regime where thatilized by making a regular crystalline array, and the en-
ratio of the range of attraction to the size of the repulsivetropy of the system is increased by the vibrations of particles
core is small. This crucial issue is emerging in the literaturewithin the regular array of a crystal. This is the reason why
in such areas as protein crystallizatith2], dense colloids hard-sphere fluids begin to form a regular crystal at about
[3-6], nanoparticle assemblies, preceramic particle gelatior49% volume fraction, and above the freezing transition at
latex formation, Buckminster fullereng¢g], and many oth- 55% have a higher entropy than a liquidlike structure at the
ers. In some arenas its relevance begins to be recognizesgme volume fraction. Indeed, for hard spheres, at volume
while in others it still remains to be understood. fraction between 49% and 55% the system again phase sepa-
Atoms or molecules interacting via a potential with a re-rates to achieve the optimal value of entropy: a lower density
pulsive core and an attractive tail may form gases, liquidgluid of 49% volume fraction and a well-packed crystal at
and solids as a function of the temperature and density. ThB5%. Nevertheless, it is well known that in some experimen-
attraction is responsible for the liquid-gas transition, whiletal studies the system may be unable to access the crystalline
the solid is dominated by the repulsion. In the low-to- state rapidly enough, and the disordered supercooled liquid
medium range of densities, particle entropy and energy entestructurefreezesnto a glass. For hard-sphere fluids, this oc-
the free energy and compete to produce liquahergy- curs at a volume fraction higher than about 58%. The forma-
favored and gagentropy-favoregiphases. Thus, beneath the tion of the glass is a signal that equilibrium quantities, such
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as the free energy, may not be sufficient to describe the beéhese arguments we see that for particles with short-ranged
havior of the system, and that long-lived dynamically ar-attractions, the density and temperature window over which
rested states may be important under such conditions. the liquid state is stable, is greatly reduced since the configu-
It is possible to relate these qualitative comments to rerational entropy is reduced. The system separates into a low-
cent understanding acquired from experiments, simulationgjensity fluid state where there is sufficient free motion, and a
and theory. Thus, there is a separation of time scales in denskense state where there is, not in any case, sufficient configu-
systems, including supercooled liquids, in which particlesrational entropy to sustain a liquid, and the system freezes.
spend a long time trapped by a surrounding cage and therdhis state will be a crystal or a dynamically arrested state.
after they escape from it. In fact, dynamically slowed sys-Based on the developing views of others, and what we shall
tems begin to exhibit a plateau in the self-correlation funcpresent here, all these expectations are borne out from pre-
tion, reflecting the time spent in cages, and then a decaygise calculations and are increasingly found in experiments.
(a-relaxation reflecting escape from the cage and free con- From the above discussion, we may expect that when at-
figurational motion. This approach to the glass transition wasractions are short ranged the arrested glass is of different
formalized[8] with the idea that motions in dense fluids can nature than the typical repulsive one, since it is favored by
be divided into intrabasin and interbasin motions, where théyoth the energybecause the particles are not close enough to
basins refer to the multidimensional potential energy as aample mainly repulsive energyand the local entropy
function of the particles coordinates. This separation of timggiven that the density is yet relatively IowwWe have earlier
scales, and thereby type of motion, is reasonable for densealled this arrested state an attractive glds}11, and the
systems, and may be used to justify a conceptual partitioningrystal, previously found by a number of oth¢t2-14, we
of the entropy into two parts, a configurational and a localname the attractive crystal. This distinguishes it from the
contribution[9]. These ideas can be reexpressed by considypical face-centred-cubitfcc) crystal formed by repulsive
ering the system, at a fixed average density, composed dbrces and the analogous repulsive glassy state.
central particles trying to escape their cages of neighbors, Given the possibility that for short-ranged attractions,
which are themselves fluctuating and exchanging with theisolids—both crystals and glasses—can be formed by these
neighbors. Evidently, thex-relaxation process corresponds, two distinct mechanisms leading to cage rigidity, we may
in systems very close to arrest, to the escape of the centralippose that it is possible, in principle, for them to co-exist.
particles from their cages after some time. In the absence dfor fixed (shor)-ranged potential one way of changing the
attractive forces, or for relatively long-ranged ones, the mobalance of attraction and repulsion is to change the density,
tions of the cage are restricted by the packing forces. Thisand we comment that such coexistence has been previously
picture is relatively clear, at least in a phenomenologicakhown for crystal§12—-14, and glassefl0,11], and is also
manner, for hard-core spherical particles. For systems thatproduced here.
possess a strong repulsion, and a long-ranged attraction, In summation, we expect that, as the well width is nar-
there are no new special features. Thus both “central” andowed, the liquid state becomes progressively less favored,
“cage” particles remain in their mutual range of attraction and is replaced by a conventional repulsive crystal or its
while the structural rearrangement takes place. The resultingquivalent glass. An attractive crystal and its equivalent at-
cage breaking can be viewed as being almost the same &sictive glass should also be present at higher densities, both
that for hard spheres, but with changed zero of energy. Evetypes of solids coexist at some typical densities where attrac-
if we acknowledge that there are effects due to attractiongjons and repulsions compete. From the preceding consider-
they can still be considered to be weak perturbations of thations, we expect that these predictions should be general,
picture arising from the hard-core spherical particles. irrespective of the detailed shape of the potential, and reflect
Now let us turn from the scenario just described, typicalthe typical range of the potential.
of hard-sphere particles or particles where the attractions are We have studied two potential energy models typically
long-ranged compared to the core size, to situations wheresed to mimic colloidal interactions, the square wW&W)
attractions play a principal role. In this case, the freedom ofnd the hard-core Yukawa potential, using a variety of tech-
the cage particles is considerably reduced. Indeed, particlesques of condensed-matter theory. We have determined the
must remain within a certain distance from each other wherghase diagrams calculating the liquid free energy using per-
substantial attractive energies are still available, or they losturbation theory for the SW and the self-consistent Ornstein-
the advantages of being in the liquidlike structure. This beingZernike approximatiofSCOZA) for the Yukawa potential.
so, the cage around the central particle is much more rigidThe crystalline free energy has been calculated applying
since only smaller excursions from average positions osecond-order perturbation theory for both potentials. This
these cage particles are possible. In fact, for sufficiently nartechnique has been applied to short-ranged poteritldls
row wells, the time that a particle spends inside the cagd6], with quite remarkable success in reproducing the crys-
increases; a plateau regime results, and the system will evetalline free energy in comparison to Monte Carlo experi-
tually freeze. This “cage rigidity” was also the determining ments. However, it has been nofddl] that the same method
factor in hard-core particles at very high density, leading tois not so satisfactory in calculating the free energy of the
the typical colloidal “repulsive glass.” Here, though the liquid and gas states for very narrow attractive ranges, and
mechanism and detailed laws will be different, we see thathis affects the accuracy of the phase diagfdm,17]. To
short-ranged attractions are able to cause cage rigidity, araloid this problem in the case of the Yukawa potential, we
formation of a solid, either a glass, or a crystal. Followinghave modified the calculation so that the proven good fea-
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tures of the perturbation theory of the crystal are combinedOZ) equation for the pair correlation functidi(r) is

with the proven quality of the SCOZA for the liquid and gas

free energies to produce a phase diagram that is of uniformly

good quality. Currently there is no working SCOZA method

for the SW case, though there is no fundamental barrier to

develop one. whereg(r)=h(r)+1 is the radial distribution function and
In our work, the ideal mode coupling theofyICT) [18] c(r) the direct correlation function. Another important quan-

of supercooled liquids has been used in order to locate théty is the static structure factd,, which is the equal time

glass transition curves. For colloids, this method has alseorrelation function of the density variables in wave vector

been found to describe many elements of the transition to thgpace

arrested statgl9,20, though it does suffer from some limi-

tations, a matter to which we return later. In the MCT calcu- Sg={pP—q(D)pg())/N, 2

lations we have used the structure factors from Percus- ) o

Yevick approximation(PYA) for the case of SW and from Where the average - -) is perfo_rmet(j at equilibrium and the

SCOZA for the case of the Yukawa potential. These havélensity variables arp(t)==;e'4"i(", where the sum runs

proved to be quite accurate theories of the liquid and fluidPVer all N particles in the system. The Fourier transform of

states. In particular, the SCOZA method has been compardfi€ correlation functiorng is related to this quantity by the

to Monte Carlo simulations for a range of screening param!€lation S;=1+ph,. The OZ relation in the wave vector

eters (“well widths” ) of the Yukawa potential, and it has SPace reads

been showr 21,22 that the agreement for the phase dia-

grams is quantitative, at least for modest values of the S — 1

screening parameter. a 1—p6q'
By combining the results from the different methods de-

scribed above, we are able to give, for some regimes, what

s ‘ ; q being the Fourier transform of the direct correlation func-
we believe to be quite accurate phase diagrams. For the gefig,

eral case we believe that the results are at least qualitatively As it stands, Eq(1) is not closed and some type of ap-
correct, and provide us a coherent picture of the connectiop,oximation is needed in order to solve it. In what follows

between the well width and the arrangement of gas, liquidyye have chosen to calculate structural and thermodynamical
crystal, and glass phases. It is this overview of how the var

. . T 'properties using the PYA for the SW potential and the
ous phenomena fit together that is currently missing, and th%COZA [21,22,24 for the Yukawa potential. Both these

should prove usefl_JI in the various applic_ations a_IIuded Omodel potentials possess some fundamental properties that
above. We also point out that, from experiments, it has bémaye them good candidates for studying the properties of
come clear that the interaction between globular proteins, iRractive colloidal particles when the range of interaction is

the range where they may crystallize, is characterized bypqrt The use of SCOZA has been justified by the success of
short-range attractiongl]. In the case of proteins, a better . approach in predicting simulation data.
comprehension of the phenomena would imply the study of

anisotropic types of potentia]23], due to hydrophilic-
hydrophobic patching of the protein surface. The usual ap-
proach is, however, to use an effective isotropic interaction The application of SCOZA to a hard-core Yukawa fluid
obtained by averaging over the anisotropy. Thus, as disprovides a semianalytic calculation of the thermodynamic
cussed later, most of our conclusions will be also importanproperties of the fluid, liquid, and gas states of the system
to understand the process of protein crystallization. [21,22. SCOZA has been applied to Yukawa systems with
The paper is organized as follows. In Sec. Il we describeelatively large values of the range of the potential, with a
the approximate closures to the Ornstein-Zernike liquid intesatisfactory reproduction of the liquid-vapor binodal curves
gral equation that we have used for the Yukawa and SwWand a good description of the critical point region.
potentials. The methods employed to determine the equilib- The hard-core Yukawa fluid is described by the following
rium fluid and solid phases are described in Secs. Il and IMinterparticle potential:
Section V is devoted to a brief sketch of MCT applied to

h(f)=C(r)+pf dr'c([r=r"h(|r']), (D

©)

A. The SCOZA for the Yukawa potential

attractive potentials, while in Sec. VI the relevance of the ®, I<o

spinodal curve for colloidal systems is discussed. The com- v(r)= e b(r-0) (4)
plete phase diagram, including the structural arrest lines is Toe— r=o.

discussed in Sec. VII, while Sec. VIl is devoted to our

conclusions. The parametek defines the energy scale, while the pa-

rameterb, known as screening parameter, determines the
range of the potential. The larger the the shorter is the
range of the potential. In this paper, we set1 ande=1,
therefore the screening parameter is in units of the reciprocal

In this section we shall discuss the theory used in theof the hard-core diameter, and the temperature in units of the
investigation of the phase diagram. The Ornstein-Zernikevell depth.

II. APPROXIMATIONS TO THE OZ EQUATION FOR THE
YUKAWA AND SQUARE WELL MODELS
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SCOZA provides a closure relation for the OZ E#) by 1.3 - ' ' ——
expressing the direct correlation functiofr) in terms of the | b=1.8 -- spinodal
potentialv(r), as for other approximations such as the mean 1.2 o GEMCNo216
spherical approximationMSA), PYA, hypernetted chain L R
(HNC) approximation, etc., but introducing one or more state 1.1 = MHNC

dependent parameters that can be adjusted to force the sys,,
tem to satisfy various exact thermodynamic relations of the [:m 1k
system. In particular, the simplest SCOZA studied so far as- =< |

sumes 0.9

g(r)=0, r<o, (5)
0.8

while c(r) for r=0 is composed of two contributions, de-
scribing, respectively, the soft part of the potential and the 01 02 03 04
hard core, as )

e PHs(r—o) FIG. 1. Liquid-liquid phase diagram from SCOZA compared to
c(r)=—ApBv(r)+Kys r r=o. (6)  simulation data fob=1.8. The GEMC data are taken from Shukla
[28] (see text for details The estimation of the critical points are

The Yukawa function in Eq(6) takes into account the from GMSA, HNC, and HRT.
contribution toc(r) arising from the hard-core repulsion.
Thus, the two parameteks, s andby s can be determined by give the reader some sense of the accuracy of SCOZA in
settinguv (r)=0 in Eq. (6) and requiring that both the com- some of the regimes we will discuss later. We present in Figs.
pressibility and the virial route to thermodynamics lead tol and 2 the phase diagrams fo+ 1.8 andb=6 calculated
the Carnahan-Starling equation of state for a hard-sphenesing SCOZA, compared with Gibbs ensemble Monte Carlo
fluid [25]. This amounts to describing the hard-sphere corre{GEMC) studies[16,28. The data by Shukla are the largest
lations via the Waisman parametrizatif26]. The soft part system sizes with this potential yet to be studied by GEMC.
of the contribution in Eq(6) is assumed to be proportional to In all cases, the agreement with SCOZA is excellent, and we
v(r) and hence it has the same range of the potential. Thenay, in this regime ob values and in calculating the phase
proportionality constard is calculated by imposing the con- diagrams, consider SCOZA to be equal to the best simula-
dition that the compressibility and the energy routes yield thdions. The method is superior to the other simple closures,

same result. This corresponds to the condifi22] including, for example, MSA.
Having said this, we note that there is little real informa-
d 9% [Uex tion available about the detailed reliability of the closure
- @C(QZO)ZP(v) , () relation where the potential becomes much narrower than for
P b=9, though it is reasonable to suppose that many properties

are still satisfactory for somewhat largkervalues. Another
comment we may make is that, when the range of the poten-
tial narrows, Eq(6) may not be the optimal closure to ensure
Sthatc(r) is accurate. Both these points should be regarded as

where U®* is the excess internal ener27]. Equation(7)
implies a partial differential equatioi?DE) for A(p,8). The
Yukawa potential(4) lends itself particularly well to the
SCOZA scheme, because, for this kind of interaction, it i
possible by means of Eq&) and(6) to establish an analytic

relation betwee(q=0) andU®* which allows us to obtain 0.5 -5
straightforwardly a closed PDE from E(},) by usingU®* as i —_ binodal
the unknown quantity instead &(p,8) [21,24. Once the 0.45 o sﬁukmw i
internal energy has been obtained by numerical solution of

this PDE, the Helmholtz free energy is calculated by integra-

tion with respect tgB. w04 .
The reasons that led us to adopt SCOZA can be summa- B
. . B
rized as follows. The method uses a reasonable choice of
functional relationship betwees(r) andv(r) on the basis of 0.35 7
numerous calculations obtained over a number of years. Fur-
thermore, it has been shoW22] that the results obtained are osk \ |
in excellent agreement with computer simulations, at least ’ ] \
i i i ud 1 L 1 L 1 L I | L 1
for not too narrow ranges of the_poten'glal. In this sense, it 0 ol 02 03 0a 05 06
may be viewed as the best semianalytical method to study o
the Yukawa potential. Finally, it is simple and convenient to
obtain numerical solutions of Eq7), and this is helpful to FIG. 2. Liquid-liquid phase diagram from SCOZA compared to

make a survey of a problem in a large parameter windowsimulation data fob=6. The GEMC data are taken from Shukla for
rather than just in a small part of the parameter space. Tol=216[28] (see text for details
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words of caution and as potential directions to develop the Further applications of the method appear in Refs.
SCOZA method to better represent the structure in suchl4,16. For example, if14] the authors compared the re-
problems. Indeed this will be the subject of future work.  sults obtained for both phase diagrams and free energies of
the solid and liquid phases for an Asakura-Oosawa potential
B. The Percus-Yevick closure for the SW potential and made comparisons to Monte Carlo calculations. They
noted that the phase diagrams are overall reasonably satis-
factory, but that the crystal free energies are excellent, in
most regimes being essentially quantitative. It was concluded
that the potential limitations in accuracy of the phase dia-

We shall now briefly discuss the closure for a fluid of
colloidal particles interacting via a square well potential

o, <o . - :
grams arise from the use of perturbation theory to the fluid
v(r)=y —€ 0o<r<o+s (8 and liquid phases, rather than the crystal. Also, for the crystal
0, o+6<r, free energies there does not appear to be a significant loss of

accuracy when the range of the potential becomes narrow.
where, in the present discussion, we setoc=1 and we We have, therefore, applied perturbation theory to the crystal
define the square-well paramet&r=6/(o+ 5), which pa-  state of the Yukawa potential. Is opportune to note that there
rametrizes the attractive range of the potential. This modere other perturbative approaches in the literature, such as in
has been already the object of great interest in colloidal scif29].
ence[29,10. The state of the system is specified by three The method is summarized as follows. We separate out
control parameters, the packing fractign= mpo>/6 (where  explicitly the interaction potential as a hard-core contribution
p is the number density, i.eo,=N/V), the temperatur&gT, plus the attractive tail. The hard-core part of the potential is
and the square-well paramet&rof the attractive shell. used as a reference for the perturbation, and the attractive tail

The PYA forc(r) is g(r)=0 forr<o and is the perturbation itse[27]. In other words, we decompose

the potential as
c(r)=g(r)[1—e# 0] (©) P

outside the hard coif80]. We solve the OZ equation in PYA
using Baxter’s method of the Wiener-Hopf factorization
[27,31]. This corresponds to rewriting E€L) in terms of the
real factor functionQ(r), defined forr>0. For O<r
<R, R being the range of the potentiab{-¢§ in the
present cageone has

v(r)=vo(r)+vaur), (14

wherev(r) is the hard-core repulsive potential and expand
around the reference statgy(r). With this choice, the
zeroth-order term of the free-energy expansion coincides
with the hard-sphere free energy. Once the perturbation ex-
pansion is carried out to second order we have for the Helm-

R holtz free energy the following expressip2i7]:
rc(r)=—Q’(r)+2wpf dsQ'(s)Q(s—r) (10

r

BF _BFo Bp F,

B
as well as, for >0, N N 7f vatt(r)go(r)dr+T- (15

R
rh(r)= —Q'(I‘)-I—Z'npj ds(r—s)h(Jr—s|)Q(s). Here BF,/N is the second-order perturbation terfy and
0 go are, respectively, the Helmholtz free energy and the radial
1D distribution for the reference hard-sphere system.
We focus our attention on the second-order term in the
expansion in Eq(15). Indeed, its exact evaluation requires
Sfl:Q(q)Q(q)*, (12) the calculation of higher-order distribution functiofia7],
q which are very hard to compute or to approximate reason-

Q(r) determinesS, via its Fourier transform

ably. Barker and HendersdB2] proposed an approximation

Q(q)=l—27-rpj0 dre'd'Q(r). (13  toF,, based on the following observation. Since
The resulting equations, obtained implementing the PYA in ﬁ_Fz_ _ } 2 2
Egs.(10) and(11), are then solved numerically to calculate N 2'3(<WN>0 (Wn)o), (16)

the structure factos, (see Ref[10] for more details
where Wy=3={L vau(|ri—r;]), Barker and Henderson pro-

IIl. THE PERTURBATION THEORY APPLIED TO SOLID posed to divide the space into concentric spherical shells to
AND FLUID PHASES calculate averaged properties using the number of particles in
A. The crystal phase each shell. Following this route, they rewrote E@6) in

. . i terms of average numbers in the shells
In this section we shall discuss the method used to calcu-

late the solid free energy. The perturbative approach has pre- BF 1
viously been used by Gast al. [15] to construct the phase P2 — NN — (NN Moyl 1
diagram of a colloidal solution with depletion interactions. N 2'8; (NN = (N)(Np)vTol, - (A7)
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whereN; is the number of particles in the shelindv; isthe  with f(¢)=exp((72/6— ¢)[7.9-3.9(7\2/6— ¢)]). The
perturbation energy, considered constant, within the shelcompressibility can be derived by differentiating the com-
The first approximation consists of ignoring the correlationspressibility factorZ,5 as
between shells, i.e.,

£

p

N B
o Zustd(0Zyslid)”

(NiNj) —(N;}(N;)=0 (18 (23

for i#+j. Moreover, inside a given shell, a second approxi-

mation is made, In order to calculate the excess hard-sphere Helmholtz free

energyFg* from the compressibility factoZ,s, a thermo-
(Niz>—<Ni>2~<Ni>kBT(ap/(9P)_ (19 dynamic integration in the packing fractiop can be per-
formed, obtaining
The two approximation§l8) and(19) are equivalent to con-
sidering the volume of the shells to have the compressibility BF BFY ¢ dn’
properties of a macroscopic portion of spaéer more de- N (9= (¢*)+f (Zus=H)—-. (24
tails seg[32]). As a result, Barker and Henderson approxi- ¢ 7
mated the second-order term in the expansion as

BF2 _ pp

N 4

Since the zero-density limit of a fcc crystal cannot be repre-
sented as easily as the one for a gas, alternative routes to
) f v2,(r)go(r)dr. (200 perform the thermodynamic integration in E@4) have to
0 be devised34]. We have chosen to perform the integration

ap
P

) ) ) ) ) starting from a packing fraction value @f* =0.544 993, for
This approximation was found to be satisfactory in all calcu~yhich the value of the free energy has been calculated by

lations carried out so far. In our work the integrals in Eqs'computer simulation to bEE(¢* )N=5.918 89 39]. We re-
(15) and (20) have been performed by a five-point integra- oo that the excess Helmholtz free energy is defined as the
tion rule, while for differentiation a central-difference excess with respect to the ideal gas contribufi2.
scq_eme has bee':] us[ﬂlB].l . ire the Helmhol For the radial distribution functiogg(r), we have used

O carry out the calculation, we require the Heimholtz analytic formulation proposed by Kincaid and Weis that
free energy and radial dlstr!bunon f“’.‘c“f’” of the unper-gi Monte Carlo simulation for a hard-sphere fcc sgH@)].
turbed hard-sphere system in the solid phase. It has beef,iq tomyjation is known to provide a good estimate of the

shown by computer simulation that a hard-sphere fIUIdhard-sphere radial distribution function, at least in the range

shows a solid-fluid transition, for which the fluid phase alone :
) ; . ; 0.52< ¢<0.565 18. Equat 15 d (20 b
exists up to a packing fractiogp=0.49 and the solid fcc solved(% quation$15) and (20) can now be

phases exists fo>0.55[34]. In between, there is a two- Once the Helmholtz free energy is evaluated, following

phase coexistence of solid and fluid. These properties a® s route we have just described, the Gibbs free energy and
well studied and the information required in perturbationthe pressure can be calculated as

theory can be deduced from these studies. We note in passing

that recently a renewed interest has been shown in the equi- I(pBF)

librium structure of a hard-sphere crystal. Indeed it has been BG= EPa (25
believed for a long time that hard spheres crystallize with an P

fcc structure. Confocal microscopy observations, however,

have rather found a random hexagonal phase which consists BP= @_ ﬁ_ (26)
of a stack of fcc and hexagonal close packihgp layers N N

[35]. Simulation seems to explain the phenomenon in terms ) )
of the small free-energy difference between fcc and hcp We have earlier noted that the perturbation theory for the
structureg 36]. In this paper, we assume the crystal equilib-crystal is highly accurate. Indeed, the second-order perturba-
rium structure to be fcc since this is believed to be mordion term is useful, but it is interesting to note that the great
stable[37]. bulk of the free energy correction for narrow well problems
To provide continuity with previous authors we make theiS captured by the first-order term alone. To understand this,
choices described below. The state equation for a hard-spheffeiS worth reflecting on the fact that the free energy of the
fce solid has been proposed by Hg8B] who derived a phe-  crystal in the presence of short-ranged attractions is referred
nomenological expression based on computer simulation rd0 the hard-core crystal, and there is no question of the per-

sults, i.e., turbation theory having to determigpriori any gross struc-
tural information. The corrections from attractions arise by
PysV virtue of the small changes in local vibrations that the par-
HS:WBT (21 ticles make around their lattice positions, a portion of these

motions involving the particles being within their mutual at-
tractive range. In first-order perturbation theory, these contri-
2__ 3_ 44 5_ 6
= 1+¢+¢"—067825 "~ "~ 0.5°~6.028"1(¢) butions are treated as if the nature and distribution of the
1—3¢+3¢>—1.00430%° vibrations is unchanged, and the additional attractive energy
(22 contributions calculated essentially as an integral over the
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attractive potential multiplied by the zeroth-order hard-coreHere,g(r) is written as the sum of two terms. The first term
correlation function. The fact that second-order contributiongorresponds to the solution fgg(r) within PYA, but evalu-

are typically small is suggestive. In a heuristic manner, weated at a smaller packing fraction valge and a smaller
may argue that the intrinsic limitation on the extent and com-diameters’, while the second term is a short-ranged correc-
plexity of the phase space of the localized particles, imposetion 6g,(r). The parametes’ is then evaluated via a mini-
by their being in a crystalline state, means that even whemization of the difference between the simulation result for
attraction is incorporated, the changes in the nature and digy,(r) and the PYA analytical result, between &.and 3.
tributions of these vibrations are small. We note that thisThis contribution improves the long-range behavior of the
rationale is clearly inapplicable to the case of liquid, gas, andPYA result. The addition of the short-range tefig,(r) im-

fluid states, where the addition of attractions significantlyproves the value at=o¢. Analytical forms for ¢’ and
affects the distribution of particles motions. Possibly this issg, (r) are given by the authors of Rd#1]. The improved

the reason why perturbation theory works well for the crys-radial distribution is within 1% of the computer simulation
tal, indeed far outside its expected limitations, but is lessesult in the whole range of packing fractions. With this re-
successful for the other states. For completeness we note thailt, the Helmholtz free energy for the hard-sphere reference
for the crystal(Yukawa and SWthe errors, as estimated by system is calculated, and we may then proceed as we did in
the ratio of second-order to first-order terms are typically ofthe preceding section to calculate the Gibbs free en&gy
order 0.5%. For the liquid they can be larger. We have, howand pressur® using Eqs.(25) and (26).

ever, also studied a square-well fluid using perturbation

theory, and used these results along with those for the crystal

to generate a phase diagram. The perturbation theory of th&/. THE CONSTRUCTION OF PHASE DIAGRAM OF THE

square-well fluid is, therefore, briefly discussed below. YUKAWA MODEL BY A HYBRID METHOD
o _ In the case of the Yukawa potential we have modified the
B. Liquid phase for the SW fluid approach of previous researchers somewhat in order to ob-

In this section we shall discuss the method we adopted t&in the benefits of the best methods of condensed and liquid
calculate the thermodynamical properties of a fluid of colloi-State theory. We have used SCOZA to calculate the liquid,
dal particles interacting via a SW potential. gas, and fluid phases free energy, but applied pgrturbatlon

We chose the hard-sphere fluid as the reference systefi€ory for the crystal free energy. To mark the difference
and treated the attractive part as the perturbation. The natur@fith previous calculations, where phase equilibrium lines
choice to describe the thermodynamics of a hard-sphere fluigad been calculated by perturbation theory both for the crys-

is the Carnahan-StarlingCS equation of stat§25] tal z?]ndd for the fluid phase, we name our approach a hybrid
method.
BP 1+ np+72—73 Phase boundaries between two phaggs-liquid, fluid-
7 = W 27 solid, etc) are obtained by imposing the standard conditions
-7

The CS equation provides an accurate account of the ther- pH=pu®, (30
modynamic behavior of the hard-sphere fluid for the entire
region of the fluid phase. Its very simple analytical form
makes it possible to obtain a closed expression for the Helm-
holtz free energy by integrating over density, as in &4).

The zero-density limit of the free energy is the ideal gaswhereu is the chemical potential, i.e., the Gibbs free energy
value, so the thermodynamic integration starts from zerger particle,..=G/N.

p(l) = p(2), (31)

density. Thus, we obtain In those cases where SCOZA and perturbation theory are
quantitatively validated, the equilibrium phase diagram is
BF®  p(4—37) highly accurate. As noted above, and shown in Figs. 1 and 2,
N = 1—n? (28)  the SCOZA is well validated up to values bf=9. For val-

ues ofb less than or equal to 6, results are indistinguishable
o ) . in terms of phase equilibria from the best simulations that
The compressibility is evaluated as in Eg3) by differen-  paye peen carried o(i22,16,28. Similarly, as we shall dis-
tlat!on. For the radlgl distribution function we use a moc;hﬂ— cuss later, the perturbation theory rarely produces an error of
cation of the analytical PYAyo(r) for & hard-sphere fluid e than 0.5% in the free energy of the solid phase, al-
that was proposed by Verlet and W] to overcome cer-  ,qugh this analysis is based on certain assumptions about
tain limitations of this closure. Indeed, in PYRO], the con-  he perturbation series. Combining these observations, we
tact valuegy(r = o) of the radial _dlstrlbutlon function l'mder-' believe that our phase diagrams are quantitatively accurate
estimates the real value obtained by computer S|mulat|orl1Jp to at leastb=9. Beyond that, we make no particular
and, also, the oscillations of the tail are _slightly out of phas%laim, except that we expect that this hybrid method should
and too weakly damped. Verlet and Weis proposed still remain superior to the typical theoretical approximations

that have been applied previously. Simulations have not been

Yo(r/o,)=go(r/o’, ")+ 69a(r). (29 carried out beyondh=29.
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V. GLASS TRANSITION AND MODE COUPLING THEORY A good qualitySq is an important input for a good de-
scription of the MCT arrest transition, as for the equilibrium
phase diagram. In the earliest discussions of colloidal sys-
The study of the glass transition in colloidal systems hagems with short-ranged attractive interactions, the Baxter in-
been one of the most striking cases of verification of the(eraction[45,46ﬂ, a limiting case with an infinitely deep and
current theories of supercooled liquids. Early experimentakero_ranged SW attractive potential, was discussed by a
studies[42,43 involved colloidal particles that are very nymber of author§20,47,48. Subsequent studies indicated
closely represented by hard spheres where only excludegat the MCT equations are pathological for this interaction
volume effects are important at high concentrations. Moref49]. The calculations were, therefore, extended to a SW po-
over, in contrast to simple atomic liquids, it is possible totential both in the PYA and the MSELO]. Another solution
avoid the Crysta”ine phase beyond volume fractions of 490/(bf the MCT equations was obtained using the Yukawa poten_
for sufficiently long periods of time to study the glassy-typetig| and the MSA[19]. Some common aspects emerged in
dynamical processes, and_ ultimately the colloidal glas:;. Théhese works. However, the SW model at first appeared to
agreement between certain aspects of MCT and experiments,e 5 richer behavior for the arrest transition curve. Thus,
on colloids is quite satisfactorj44] and the details of the ., system was shown to possess a glass transition curve in
time correlation functions are quite well reproduced. It isthe parameter planed(ksT); the shape of this curve de-

il Deleved et i deeply Supercocln O I s on th vlue of ne SW parameefl, Fornarow
' Y b y Il widths, two branches of the glass curve have been iden-

processes than those described by MCT, and there the theoﬁ? . . .
becomes of more qualitative applicability. Thus, the case OE ied. These have been interpreted, respectively, as transition

colloidal particles is of some practical interest in applying 2€tween a fluid phase and repulsion dominated dl#ss is
this type of theory. the typlcql repuls_|ve gIa&_;sand between a liquid and.an

In fact, even for colloids, small discrepancies appear irgttractive-interaction dominated glagsamed the attractive
the comparison between experiments and MCT. The modilass. The two branches join and fak<4.11%, a glass-
important is the value of the critical volume fraction for the glass coexistence between the two different types of glass
hard-sphere arrest transition, the experimental value beingppears. This coexistence line terminates in an end point,
about 58%, while MCT predicts about 52%. This is of little beyond which the nonergodicity parameters become the
importance where the dynamical laws at the hard-sphereame for the two types of structures. The relevant singularity
transition are being compared between the experiment angbints, such as the end point or the point where the glass-
theory. Previous researchers have applied a shift to the tragdass transition line reduces to a single point, are identified
sition volume fraction, and then fitted the laws in this regionwith higher-order singularities of MCT equations and lead to
[43]. Since the only current information on arrest driven byunusual logarithmic dynamical relaxation laj&0,18. The
attractive interactions is that provided by MCIO], there is  mechanical properties of the system have been also studied
as yet no accepted manner in which we can correct the MCT11] and they reinforce this interpretation. Earlier studies of
curves. This is somewhat inconvenient in the current contexthe Yukawa potential did not locate this glass-glass phenom-
since for some parts of the parameter space the equilibriuranon[19], but it was subsequently realized that the screening
phase diagrams are quantitatively accurate, and it would bgarameters, which had been studied, were not large enough
very satisfying to be able to superimpose, without correction[50], and further calculations seem to give clear indications
the relevant MCT arrest curves. that both the SW and Yukawa potentials give the same typi-

We now briefly review the nature of MCT, and discuss thecal behavior{51], implying that this does not crucially de-
type of information it yields. The MCT of supercooled lig- pend either on the potential shape or on the approximation
uids describes the nonergodicity transition by a nonlineaused for calculating the structure factor. Thus, it is now be-
integrodifferential system of equations for the normalizedlieved that this glass-glass scenario and the attendant dy-
time correlation functions of density fluctuations(q,t). namical laws, are essentially a universal feature of the very
Apart from parameters entering from the microscopic mo-short-ranged attractive potential.
tion, the only input to the MCT equations is the equilibrium  We note in passing that the formation of two solid glass
wave-vector-dependent structure factor of the systgm, phases for very short-ranged potentials should not be too
The glass transition lines can be identified by studying thesurprising. In fact we have earlier alluded to the fact that
long-time limit of the MCT equations, which determine the there are two crystalline phases in the phase diagram of such
nonergodicity parameter of the systeig=Ilim,_..®(q,t). potentials. We may typically view glasses or arrested states
An ergodic state is characterized y=0. This value is as long-lived metastable states of the system that have not
always a solution of the MCT long-time limit equatiofis3]. been able to equilibrate to the nearby crystal and which are
Thus, the glass transition appears as an ergodic to nonergodiapped in a restricted portion of phase space. In this sense
transition for the system, wheffg# 0 solutions arise. These we may expect each crystal to have associated to it a particu-
points, thus, correspond to bifurcation singularities of thelar glass type. Since one of the crystals in our phase diagram
MCT equations, and, depending on the number of controls “attractive energy dominated” and the other “repulsive
parameters of the model, these can be of increasingly high@mergy dominated,” it is hardly surprising that there should
order, producing interesting features of the arrested statdse two types of glass, dominated by the two regimes of
diagrams. interaction.

A. Theory
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A further comment on the relevance of these glass curvethe principal phenomena, at least for reasonably high volume
is that we may see them as more than simply “transitionfractions, where it is possible to separate aging from dynami-
curves.” If we reflect more deeply on the nature of the equi-cal arrest in a reasonably clean manner.
librium phase diagram and the thermodynamic states present
in them, we recognize that at a deeper level they are reflect-  vI. ARE SPINODALS IN COLLOIDAL SYSTEMS
ing the fact that for those particular parameters, the phase MEANINGFUL?
space is dominated by a particular structure: a crystalline, ) ) o ) )
liquid, or gas structure. The arrest curves carry analogous Here we will take the liberty of raising a few issues in
information. Thus, in the vicinity of the arrest curve, we may relation to spinodal curves that are calculated via SCOZA, or

understand that most of phase space is becoming incregfideed many other typical liquid state theories. The reason

ingly inaccessible and breaks into smaller regions that arf1at we make these comments is that such curves should
disconnected. That this may occur even for states that appedfve @ particular status for these colloidal systems that are
to have static structures typical of liquids is the distinguish-1°t relevant generally for molecular systems. We note first
ing feature of glasses. Associated to this observation is thiat the spinodal curve is determined from the condition that
dynamical slowing and tendency to arrest during any phas@e c_urvatu_re of the free energy with respegt to the relevant
separation through which such a glass curve passes. We shdfnSity variable becomes zero, and that this corresponds to

argue in the conclusions that such phenomena are relevant {fié fluid phase becoming unstable as we lower the tempera-
protein crystallization ture. Between the binodal and the spinodal, the liquid and

gas states in coexistence may be the global free-energy
minima, but the fluid state remains metastable. Inside the
region bounded by the spinodal, only the liquid and gas
We now discuss some of the particular experimentallystates in coexistence are stable. Now it is well knd\@8]
determined features that are associated with dynamical arre$tat the free energy is a convex function, and it possesses
driven by attractive interactions. For example, Verduin andonly one minimum, and for some years now it has been
Dhont[4] determined a curve of structurally arrested statesunderstood that the spinodal curve determined from approxi-
in the phase diagram of a system with short-ranged attractivaate theoriege.g., mean-field theorigghat consider two
depletion interactions. This locus, in some cases, intersecteparate branches of the free energy and then connect them,
the binodal line and is referred to as transient gelation whehas no real scientific basis. Careful Monte Carlo simulations
observed in the spinodal region. The authors of REfwere  carried out in systems of increasing sjgd] have lead to the
the first to comment that MCT might also be applicable toconclusion that the spinodal curve shifts with the system
cases where attractive interactions are important. As wsize, merging with the binodal in the limit of infinite systems.
noted above, subsequent results of such calculations havéhere is some loosely defined kinetic phenomenon however
been most interestinf10,11,19. In addition a number of [64,65, though even there it is not possible to define a spin-
other experimental programs involving particles with deple-odal curve, but a cross-over regime where the kinetic mecha-
tion interactions have been published which offer many in-nisms begin to change from nucleation and growth to more
teresting insights for example [%2,53. In particular, Poon collective phenomena. Interestingly enough, when the par-
and co-worker$5] have studied the arrest transition for sys-ticle size becomes large, these more sophisticated expecta-
tems where the range of the interactions is short, and theiions are less relevant. Thus, it transpires that the relevant
more recent work on this topic involves detailed connectiorparameter in this story is the ratio of the particle diameter to
to the theory described aboy®4]. Other systems may have the correlation length of the fluid. For very large patrticles,
certain advantages over the depletion interaction system, bstich as high molecular weight polymers, colloidal and other
it is as yet too early to decide this iss(1&,55—-6(. The particles, the microscopic length is so large that one has to be
results are typically quite promising, with some of theseextremely close to the critical point to see fully developed
other systems also exhibiting some of the phenomena prdluctuations beyond the mean-field type ideas. Another con-
dicted by the theory. We may note in particular a more recensequence of this is that critical exponents in such systems as
set of experiments that are intriguing in that they make deproteins[66] and micelles/67] have often been measured
tailed predictions for the correlation functions in a particularwith mean-field values because experiments were not per-
(reentrant part of the phase diagram. Thus, concentrationformed in the true critical regime. Similarly, the normal scep-
time correlation functions have been observed in a polymeticism about the existence of a spinodal curve should be less
micelle system with a decay process much longer than theslevant here, and we may expect the colloidal systems to
usual stretched exponential, and the results have been wealkhibit quite reasonable spinodal behavior. We have, there-
fitted to a logarithmic time relaxatiof61] as predicted by fore, included the spinodal curve in our phase diagrams.
the theory[62]. In concluding this section on dynamically defined objects
The development of experimental understanding, andn the phase diagrams, it is commented that we have chosen
deepening of the theory of systems with short-ranged poterto plot the MCT curves through the metastable regions be-
tials is really just beginning, and many experimental pro-tween binodals and spinodals. Again, in colloidal systems,
grams have now been commenced or reoriented to makier the reasons given above, it is to be expected that such
progress. However, early information indicates that thecurves would have meaning, whereas they would not be
MCT-type theory may be able to describe main elements ofmeaningful in molecular systems.

B. Experimental studies
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FIG. 3. Phase diagram for the Yukawa fluid with screening pa- FIG. 5. As in Fig. 3 withb=7.5.

rameterb=5.0. The crosses represent the fluid-solid phase transi-

tion, the continuous line is the binodal, and the dashed one is the. .
spinodal. The filled circle is the critical point. The glass transitiong'ameterj We show res_ults for values_ &5 (Fig. 3)’. b
line as evaluated for mode coupling theory is also displaippen =6.05(Fig. 4), b=7.5 (Fig. 5), b=30 (Fig. 6), b=60 (F!g.
circles. The glass line shifted to obtain the asymptotic value for /), andb= 1(_)0 (Fig. 8). For comparison we algo shoiiig.
T—oo to be the experimental packing fractign=0.58 is presented 9 a calculatlon_ for the square well system with= 0-03-_
(stars. The subscripts and p refer to the critical point and the We begin with the largest well width, corresponding to

triple point, respectively. b=5, see Fig. 3. Here the well width, considered say as the
distance of half-amplitude of a Yukawa, is comparable to the
particle hard-core size. This is the typical situation that we
are familiar with in elementary phase diagrams of atoms and
molecules where van der Waals interactions predominate.
In this section we combine the results from the differentThus, we see the expected pattern of phase behavior. Below
techniques described above to exhibit the state of the systefRe critical temperature, the gas-liquid phase equilibrium oc-
for given well depth. cupies the greater part of the low and middle range of den-
sities, above the triple point. The crystal is favored at higher
density, and the liquid- and fluid-crystal boundary is nearly
_ ) ] _ vertical, that is at fixed density, reflecting the substantial ab-
In this sect_lon rgsults for the Yukawa potential with the gepce of any energy scale in the problem. The crystal is so
temperature in units of the well depttkdT/e) plotted  tignhtly packed, and the attractions are so spread out across
against the volume fraction of the systefnare presented. tne system that it is only the repulsive part of the potential
The values of the well width are determined via the screen-
ing parameter of the Yukawa The hard-core radius is fixed

VII. PHASE EQUILIBRIA AND DYNAMICAL
ARREST LINES

A. Yukawa potential

at unity, so all quoted lengths are in units of the hard-core b=b**=30 | N
1 — r 75 T 0.8 X %, -
b=b*=6.05 Peon X x
F o *: X X
0.8 x & ix 4
o .
W 6 1t
= * o §x 7
- g i
40,6
0.8

FIG. 6. As in Fig. 3 withb=30. For the point#\ andB see the
text. At this b value the glass line passes through the metastable
liquid-gas critical point. The labels 1, I, and Il are chosen by

FIG. 4. As in Fig. 3 withb=6.05. The fluid branch of the analogy with the proposition of Mushol and Rosenb@ See text
fluid-crystal coexistence line now passes through the liquid-gador details. The shifted glass line is not represented in this figure and

critical point. in Fig. 7-10.
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FIG. 7. As in Fig. 3 withb=60. The subscripts’ andp’ refer FIG. 9. Phase diagram for the SW model far=0.03. The

now to the critical and triple points of the solid-solid transition.  crosses represent the solid-fluid phase coexistence and the set of
open circles is the glass line. Note the solid-solid coexistence on the

that is fundamental for crystallization. Indeed this is one ofhigh density side of the phase diagram: its critical point is labeled
. . . " L by a filled circle. The position of the liquid-solid-solid triple point is

the important ideas in traditional liquid state theory that at—aISO displayed ¢, To)

tractions are not relevant to crystallization. Payed e Tp)-

The asymptotic limits of solidification and melting bound- . . .
aries of this coexistence at high temperatures reflect the har@—gge 'I(Eﬁir:embee;r?smtisétn:‘gtrassrt\i?tleevr\:(l)tEg;ﬁsggt(gr:t?atlhfaﬂgfs_s?rl:g
sphere limits, respectively, ab=0.49 and¢$=0.55, as ex- | =~ " ST ; 2=
pected from many simulations and theoretical observationg?gr']d'gl]%?sCﬂggaltvsgmr;;nhfgfsnegsj:ngggs?rssp?ggigeﬁe
[15,34]. The triple-point temperature is labeldd . Within j . = ' X )

; urve between the fluid and the solid is very broad, implying,
the crystal phase there is also the b o undary for t.he d_y nam or low temperatures, coexistence betwee);l a very Io?/vden—
cally arrested statéthe MCT transition ling again with sity fluid and a high’density solidfcc). Also, the critical
high-temperature asymptote @f=0.52 (circles, the hard- ) : : ' .
sphere volume fraction for the glass transition predicted b% g;g:er?fgo\r/nvzswﬁrll er';e;ztr?]bltﬁ ;Vo'::e rﬁf ?ﬁgtpgoss?ﬁz_?r?ﬁic?_
MCT. We recall that MCT underestimates the glass transitior), o . ) .
packing fraction by about 0.06. To call attention on this shift, tﬁgzg:tigﬂléﬁli;ﬁgrol? tLhee sﬂfggﬁiﬂgnﬁa\i\fmmst (\:fvirlﬁ;l]ated
we report the true MCT curvéeircles as well as the MCT " . i

. : . . . the critical point becomes metastable with respect to the low
curve shifted by_0.06 in packing fra_ct|on using * as SymbOI'density quig-gas equilibrium, to be* — 6.05 anF()j then pre-
This boundary is also almost vertical, again reflecting thesented the phase diaaram a’t that vl ' F'i 3 We note
fact that for wider wells the arrest transition is driven essen—hat inghtIy%ifferent v%lues have been previ%uslly reported in
tially, at high enough temperature by the repulsive part of thiwe literature. Thus. Hagen and Erenkel quote the vairies
potential. Thys, no attractive glass is obser_ved for this rang:7 4 using a‘ Monté Ca?lo perturbation thqeory and the value
of the potential. It has been shown theoreticéll,14], ex- b* ;6 based on GEMG16]. Their GEMC va‘lue is ver
perimentally[68], and by simulatior}16] that on decreasing ' y

the range of the attractive potential the fluid-fluid coexist-Close to the value we have found. H_oweverz a number of
other values have also been quoted in the literature. Men-

deros and Navascu@89] used a density functional approach
to determineb* =8.25, while Shukla[28] quotes a much

: higher value ofb* =13. This latter value, in particular, is
0.8 z f - much higher than previous ones and our value, and consid-

1 T
b=100

=i

: | I ering that it is based on more extensive simulations than
06k Xk % | previous research this might be a matter of concern. The
ST £ z issues in relation to the accuracy of SCOZA have been ad-
S dressed for modest values bfin Figs. 1 and 2, where the
0.4+ x : * 4 liquid-gas phase diagrams were shownlier1.8 andb=6.

} P However, if we examine Table IV and Fig. 4 [#8], we can
readily compare the simulations to the precise predictions
. % i} from SCOZA for selected values of the vapor and liquid
of l¢c oy | & | densities for a range of temperatures. Bdr=6, we find
o : 02 : 04 : 0.6 : 0.8 remarkable agreement between SCOZA and the Shukla gas-

o liquid equilibria. Also, whilst they are not quoted, we may
estimate the critical temperature for differing screening pa-
FIG. 8. As in Fig. 3, figures fob=100. rameters from these simulations, and interpolation of others,

=
[
T
8
8
8
%
1
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and again conclude that the discrepancy between what we Finally, we note that ten Wolde and Frenkel have made
find for b* and the Shukla result cannot arise due to a dif-some interesting comments in relation to the kinetic pro-
ference between the SCOZA and GEMC results for gaseesses that might be expected in this regji@.
liquid systems. The problem lies in the estimation of the In Fig. 5 the caséd=7.5 has been plotted. As noted by a
crystal free energy, or entropy, or estimation of the triplenumber of authors, the metastable gas-liquid phase equilib-
point; the other aspect of what we need to know to determingium curve has now flattened considerably, and the low-
b*. In [28] the freezing transition location is determined by density fluid-crystal coexistenden the fluid sidg¢has nearly
the so-called one-phase entropic conditj@d]. This condi- the same slope. Increase in curvature of the crystal side of
tion implies that the freezing density is essentially constanthe fluid-crystal equilibrium curve is observed, arising from
and almost unchanged for the rangelofalues 1.8 to 10 the increased influence of attractions on the crystal. The bin-
[28]. In fact, in Fig. 4, the phase diagram fof =6.05, we  odal line and the spinodal line in this case lie completely
do see rather significant deviation of the freezing density inyithin the region of fluid-solid phase separation, the triple
the vicinity of the critical temperature from its high- point has disappeared and the critical point is buried below
temperature limit. Indeed, comparing the other phase diathe flat part of coexistence curve between the low-density
grams, Figs. 5-8, we conclude that this variation is intrinsicfluid and the solid. As we mentioned earlier, this metastable
to the whole short-ranged scenario, since it is the prelude thehavior would normally not be observable due to fluctua-
the splitting of the solid phase into two crystalline phasestions, but for colloidal systems, globular proteins and other
The true underlying discrepancy arises because the entroparge particles, we may expect to observe such phenomena.
criterion implies that attractive forces are not important inThus, on quenching such a system, we might expect to see
the regime of crystallization currently under discussion,rather a rich pattern of behavior, depending on the density
whereas the perturbation theory implies that they are highlyhat we quench at, and the depth of the quench. In particular,
significant. Both approaches are approximations, but it ist is noted that we should be able to see a metastable gas and
possible to estimate the errors arising from the perturbatiom liquid; the latter arresting into a glass at sufficiently low
theory by considering the higher-order terms. temperature, because the glass curve crosses the binodal, and
Thus, for b*=6.05, (here kgT:/e=0.454 and ¢? spinodal at a finite temperature. We have earlier alluded to
=0.230) we can propose to bound the errors in the perturthe idea that critical fluctuations can play an important role
bation theory of the crystal by reporting the ratios of thein the formation of crystals, for example, protein crystals
second- to first-order terms in the perturbation series. In thg72]. The present screening parameter regime would exem-
regime where the low-density fluid and crystal are in equi-plify this type of phenomenon since here we have a meta-
librium, we find that the ratio of the second- to first-order stable liquid and gas that are critiogdbr large particles this
terms is approximately 0.0044, whilst the first-order term hashould have some observable lifetimelrhe equilibrium
an absolute value of 10[#1]. If this ratio represents a true phase diagram exhibits a fluid-crystal coexistence, so we
estimate of the errors, then the perturbation theory wouldhave the possibility of crystal nucleation and growth phe-
appear to be quite satisfactory. The curvature of the freezingomena in the presence of this metastable critical fluid, and it
curve appears genuine and the attendant flattening of this this matter that ten Wolde and Frenkel have discugg2d
fluid side of the coexistence also appears quite accurate. However, we also note the point that for this value of the
In general, by estimating the impact of such errors inscreening parameter, the glass curve has not begun to se-
perturbation theory, we can estimate the shift of the fluid sideverely interfere with the gas-solid equilibrium curve as yet
of coexistence, and thereby estimate errors. In doing so, wand this is an additional advantage in the formation of crys-
find that the typical error irb* will be less than 1% from tals. This is in distinction to subsequent phase diagrams
this source. If we accept this means of characterizing thavhere the glass curve extends across much of the space.
error in perturbation theory, a matter clearly based on the It is in fact worth reflecting on the shifted, more realistic
series being well behaved at successive orders, then waacement of the glass transition curigars. Thus, we see
might conclude that the value df* =6.05, in agreement that at high temperature, as expected, from 55% to 58%
with Frenkel’s original calculation, is a good approximation. volume fraction values, we have a crystalline state that is not
If this is confirmed, then the calculations reported here forinterrupted by a glass transition. However, as the temperature
the overall phase diagram are probably amongst the moss lowered, the increased importance of the attraction leads to
accurate for modest values of the range parameter, despitee glass curve crossing the low density fluid-crystal coexist-
the fact that simulation is never used. This is not the primaryence region, and beneath this, the crystal may never form
motivation of our paper, but it would be an interesting waywithout the glass being an alternative long-lived state. This
of approaching phase diagrams in future. Despite these optéomment is relevant also to the casebsf 6.05, but forb
mistic estimates, more careful evaluations are required by=7.5, the curvature of the solidification curve has increased
different methods to find a truly accurate value. greatly, so this effect is emphasized. This dramatic interrup-
We should not imply that the value bof is of such cru- tion of the crystallization scenario will become more and
cial importance in the overall picture offered here. Howevermore significant as the range of the potential narrows, and
it does provide a useful check between different researchetbis will be an important theme in our discussion.
and methods of approximating the phase behavior in that its Now we turn our investigation to the case of very narrow
accurate estimation requires some satisfactory and simultgotential ranges. In Fig. 6 we present the chse30. The
neous treatment of gas, liquid, and solid phases. two-phase coexistence of fluid and solid now occupies a
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much larger portion of the parameter space. The gas-liquidrafted coatings on latex particles where we can access much
critical point is hidden well below the fluid-solid coexistence narrower ranges of potentials.
line and on the crystal-fluid phase boundary the effects of In Figs. 7 and 8, we present the cades 60 andb
critical fluctuations will be much less. It is interesting to note = 100, respectively. For numerical reasons, it is difficult to
that the crystal side of the coexistence curve exhibits a strongxtend fluid-solid coexistence curves in the low-density re-
deviation towards higher densities. Thus the coexisting solidjion of the phase diagram. This is evident from the trunca-
will be much more dense that in the previous cases, since th@n of the phase diagrams, and has no fundamental signifi-
strong short-ranged attraction is pulling the particles closer atance. As already noted in this paper, SCOZA has not been
low temperatures. This phenomenon is the precursor of tested with simulations for such narrow ranges of the attrac-
solid-solid phase coexistence that in this case is still metative potential. On the other hand, the main phenomena ap-
stable and lies within the sublimation curve. pear using other methods, so at least these are expected to be
The glass transition curve is most interesting. Of courseleliable. We return to this point at the end of this section.
for T—c, the curve asymptotes to the hard-core value. The [N both figures we observe similar features. The spinodal

attractive forces at low temperatures now begin to stronglyn€ i now buried deep in the sublimation curve as is the
affect the curve so that it now turns sharply to the left, passgr't'calI point. The most St“k'”g feat_ure of 'Fhese phas_e d_|a-
rams is the presence of a solid-solid coexistence. This first-

ing very close to the submerged critical point. Thus, we ma)grder hase transiti read ¢ for |
tentatively assigrb** =30.0 as that value of the screening b stion was already present 1or 1ess narrow

arameter at which the submerged critical point becomeg J<> but there it was metastaigee, for example, the
b 9 P Shoulder in the phase diagram to+= 30). This phase bound-
submerged by the glass, as well as by the crystal-gas curvi

Sry represents the coexistence of two crystals with the same

The inherent inaccuracies in the MCT estimate, alluded attice structure but different lattice spacing and conse-

before, may mean that tHe™ value may not be very accu- g ently different densit§12]. It is terminated by a critical
rate. However, the phenomenon is interesting. It means thajsint of the solid-solid coexistence. The origin of this co-
the metastable critical fluid is now competing with a glassgyistence is interesting. The presence of short-ranged attrac-
transition. It will transpire that the nucleation rate of thesetive interactions causes Competition with the hard-core repu|_
fluid-crystal equilibria is very low, possibly due to the high sjve interaction. The fact that both have variations that occur
interfacial tension and, therefore, it is feasible that one mayn very short-length scales means that the system may be
be able to approach the liquid-gas equilibrium and its nearbyorced to “choose” between the attractive-dominated crystal
glass transition without significant interference of the crystaland the repulsive-dominated crystal.

The type of slowing that would arise from a combination of In the low-density crystal region, i.e$<0.65, the crys-
critical slowing down and glassy slowing down has not beertallization is dominated by entropic effect. In other words the
discussed in the literature previously. It would be an interestsystem chooses to optimize the entropy to form an fcc struc-
ing problem. However, the phenomenon discussed hertire. Increasing the density, the particles become closer and
would significantly affect the possibility to form high-quality at some density they are forced to remain in the attractive
crystals, perhaps rendering it essentially impossible. Eveshell of their nearest neighbors. When this happens, there is a
though the glass may eventually decay in favor of the crystaldecrease in energy, which leads to an “attractive” crystal. It
this will never lead to high quality crystals. Of course, anis the energy that stabilizes the phase. It is indeed clear that
alternative view of this situation is that under these condi-such a phenomenon can be present only if the range of the
tions it may be possible to make interesting materials thagttractive potential is short enough. We may note that an
have critical fluctuations frozen into the glassy phase. Proteiisostructural phase transition has been already discussed
scientists wish to make good quality crystal; materials scientheoretically for other kinds of potential characterized by a
tists often wish to make interesting materials. Our commentshort-range potentidl13] and indeed was also detected by
are applicable to both situations. simulation[12,14]. It is almost certainly a genuine phenom-

It is interesting also to note that in this case the glasenon. Here the isostructural phase transition is present for
curve passes close to the gas-liquid critical temperature, bitoth b=60 andb=100. Decreasing the range, moves the
then dips and intersects the binodal line below the criticakritical point of the transition to higher density and, indeed,
density, passing through the spinodal region. Such a scenaribis is also in agreement with the behavior in simulations
has been found by Verduin and Dhd#di in experiments on [12]. It is interesting to note that it is possible to find a triple
colloidal systems. We should stress that for low densities th@oint T, at which the two solids and the fluid coexist at the
glass curve itself may not be reliable, as was discussed isame temperature.

[11]. The situation in relation to this point is, as yet, not In Figs. 7 and 8 the glass lines have also been plotted.
settled. They both tend to the hard-sphere limit for high tempera-

We now discuss the case of extremely narrow wells. It istures, and bend towards low densities with decreasing tem-
worth noting that the previous two values of the screeningperature, as we have seen in the earlier cases. For short
parameters represent the typical range of values accessed @gyough interaction ranges the glass transition line does not
those studying depletion-induced attraction between colloipass close to the critical point. We note that ¢ 100 the
dal particles[5] or globular proteing1,73]. The next set of glass curve appears to break into two branches, with an ap-
phase diagramé&-igs. 7 and 8 represent the limit of these parent discontinuity at that point markd?}, in the figure.
types of interaction and may correspond to cases, such dhe low-density branch is called attractive glass, while the
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085 T T T range, and energy scaldas been recently propos¢d4],
0.7+ Ziﬁiﬂif_ﬂi'fj}“’" P o D and it is possible that this idea may have more general ap-
][22 Fid—olid Tag, Ooziz 1 plicability. We hope to return to this more general concept of
or PO 4 3 corresponding states at a later pdinb].
05F ¢ ousf I The glass line also has a very similar shape to the Yukawa
e b %A AAAAAAAAAAAAAAAAAAAAAAAA “o AZIO 5 ]'3 R 10] fluid. As noted above, and in earlier publications, we have a
2 T | glass-glass transition, terminating in a higher-order glass sin-
0.3 . gularity, theA3 transition[10]. We believe that the presence
i 1 of these two types of glass, the attractive and the repulsive
0.2 ) ;
L 4 glass, is the disordered analog of the presence of the two
0.1 . types of crystals discussed in some detail above. In this case
0' , . , ) . , . o we may draw also an analogy between the presence of the
0 20 40 60 80 100 isostructural critical point and the presence of this MCT sin-
b gularity Az end point at which the two glasses become iden-

FIG. 10. Critical temperaturd, plotted as a function of the tical. Also as the well width gets larger, the crystal-crystal
screening parametdr. The glass transition and the solid-fluid co- Critical point vanishes. We believe that the glass-glass analog
existence temperature at the critical packing fractignare also  of this is theA, point[10,18§].
displayed. For completeness, in the insetdhes a function ob is It is quite reasonable to suppose that for every crystal
also shown. there should be an analogous glass and for every critical

point of such a crystal-crystal equilibrium there should be
right-hand branch is called repulsive glass. For very shorkych an MCT singularity. It will be interesting to explore this
ranges, in other types of attractive potentials, we have 104eq in future. It has the appeal of a potential general joint
cated a glass-glass transition, a transition between two difs|5ssification of equilibrium and glass transitions.
ferent type of glasses originated either by repulsion or by
attraction[10]. For the Yukawa fluid such a phenomenon
also appears to be present, although it has not yet been in-
vestigated in detail50,51. We shall use the conclusions section of this paper for two

Both the results for the Yukawa potential considered hergyurposes. Thus we shall attempt to sum up the practical con-
and those for the square-well fluid that we present next fog|usions of our calculations, but, at the same time, try to
comparison, clearly show that the distinction between theonsiderably broaden the discussion to make contact with the
attractive solid and repulsive solid becomes sharper as thgain experimental situations where they might be useful. So
range of the potential becomes narrower. , far, we have focused the discussion quite strongly on the

To present in a coherent way, the role of the atfractions O.rﬁarrowly defined consequences of studying a short-ranged

the crystal, glass and liquid-gas coexistence line, we show i - : - :
. . hard-core attractive Yukawa potential, so we will begin b
Fig. 10 the dependence @f on b and both the glass transi- summing up that aspect of thz discussion gin by

tion temperature and the solid-fluid first-order transition tem- First, from the technical point of view, we have achieved

ﬁzgtu{ﬁea};;gfSﬂg\'/;gl(g?kmg fractiaf . For complete- a certain success combining a good liquid-state method of
’ e calculation with the perturbation theory. The resulting hybrid
method takes free energies from SCOZA for the gas and
liquid states, and from perturbation theory for the crystal. We
Finally we discuss a single example for the SW model. Byhave indicated, in broad terms, how this overall strategy
doing so, we wish to make the point that the main phenomeould be applied to phase diagrams, in general, and how it
ena that have been discussed above are independent of timay be qualified by checking of errors and relating these
details of the shape of the potential, and are essentially unerrors to shifts in the phase boundaries. Given the potential
versal. We note, however, that the SW phase diagram is nab exploit powerful methods of liquid-state theory and the
expected to be so quantitatively accurate as that of theemarkable success of perturbation theory for the ordered
Yukawa potential for reasons discussed in Sec. lII. state when one chooses the correct zeroth-order state, this
The SW model was solved as discussed in Sec. |l B. Wenay be a competitive manner in which to proceed for many
discuss a case where the range of the potential is very naproblems in future.
row, i.e.,A=0.03, and the result is presented in Fig. 9. Itis On the other hand, the methods to determine dynamical
clear that the situation is very similar to that for the Yukawaarrest(e.g., MCT) are not nearly so developed, despite their
fluid, i.e., a solid-fluid phase coexistence extends from highrelative success in colloidal science. In particular, the abso-
temperaturegwhere again it reaches the correct hard-spherdute values of the density and temperature at which the arrest
limit) expanding dramatically towards low and high densitiestakes place is not correct. This should not be surprising.
for low enough temperatures. An isostructural solid-solidEquilibrium theory has had the benefit of many more years
phase transition, with a critical point, is also present in thisof development, and much more effort devoted to bring it to
case. Indeed a limited correspondence between different pdhis level of achievement whereas for the dynamical arrest
tentials based on their general characteridi@ttective core, alternative routes or different approaches have been devel-

VIIl. CONCLUSIONS

B. Square-well potential
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oped only recently76]. However, this aspect is quite incon- so that particles mainly stay within the attractive well. The
venient. structure of this phase, that we named attractive crystal, is a
As we try to apply this theory to more realistic situations more compact fcc crystal that optimizes the free energy by
in colloids, materials and biology, we see increasingly thismeans of reducing the potential energy. The result at this
important motif of a competition between the equilibrium point is that the crystal structure may adopt two different
Boltzmann view of the matter and the dynamically arrestedstates. The situation is analogous to the case of a gas-liquid
aspects. So far, these two fields have developed somewhat jiinase separation where the glasv density phase optimizes
independent manner. However from the point of view ofthe entropy and the liquithigh density has a much lower
these practical topics in nature, there is no distinction, and ienergy.
is often not the separate behaviors, but the interplay and The implications of all this are profound for practical situ-
competition between them that is primary to the scientifications. For reasons given earlier, many systems such as col-
issue. This paper is one of the first attempts to make connedeids, globular proteins, fullerenes, nanoparticles, preceramic
tions between these phenomena, but one can clearly see tparticulates, and others have this property of a short-ranged
limitations. For greater insight into these topics, we will haveattraction. In all these cases “precipitation,” “gellation,”
to address the possibility to both improve systematically thé'glassification,” or solidification are frequently the com-
methods of studying arrest transitions, and also their consignonly observed outcomes. In cases where we consciously
tency with equilibrium transitions. This must represent oneseek to make such a state, this is satisfactory and it remains
of the important technical challenges in coming years. only to adjust the potential to have sufficiently short range to
From a broader perspective, we have shown that when thebtain the required properties of the solid. However, for
range of the potential becomes short in comparison to theases such as globular proteins, and nanoscale or mesoscale
core size, the subtle interplay between entropy and energgrdered materials with prescribed optical properties, the situ-
begins to change its character. The range of densities ovation is quite different. Here we seek to make a crystal. In
which configurational entropy is relevant is much reducedfact, reviewing the phase diagrams in Figs. 5—8, we can see
and one begins to lose the liquid state in favor of crystals owhy the crystal is hard to access. If we work to the right side
arrested glassy states. The reasons have been discussed ataththe glass curvépoint markedA in Fig. 6), universally we
beginning of the paper. In essence they amount to the faghay expect to fall into the glass state; there is essentially no
that to retain the benefits of short-ranged attractions, the pashoice. Since the glass curve moves to low density, this is a
ticles must not depart too much from their typical interpar-serious restriction. However, we may choose to work within
ticle distance, or they are no longer in their mutual attractivethe two-phase low-density fluid-crystal coexistence regime,
well. This loss of freedom of motion and restriction of favor- but to the left of the glass curv@oint markedB in Fig. 6).
able configurations leads to a lowered configurational enThe outcome is then a question of kinetic control and will
tropy. Another way of expressing the same idea is that theot be completely settled by diagrams, such as, we are draw-
short-ranged potential leads to the loss of easy fluctuationisg. However, we can make some educated comments. Thus,
that can open the cage of neighboring particles that trap &we work in the two-phase regime of gas soli)( we may
central particle. The probability of finding such an “open- nucleate and grow crystals. Whether the proximity to a meta-
ing” of the cage is much reduced, and the time during whichstable critical point is advantageous or not, as discussed by
a particle is localized by its neighbors increases, diverging atlagen and Frenkedl16] is not our primary concern here,
the arrest transition to form the “attractive glass” that we though this is an interesting proposition. The broader point is
have discussed. As the range of the potential narrows, thiaat by nucleating to the left of the glass curve one may enter
means of egress permitted to the particles is further limitedthe crystalline regiorithus form a macroscopic crystdly a
and the attractive glass becomes more favored. This glass igute not described by the “adiabatic” description here, and
therefore, an effective competitor to the liquid and crystallinethereby avoid some of the complications of the glass. This
phases of the system, and this is reflected in the fact that threnders the formation of crystal at least feasible, although
fluid phase is eventually erased by the glassy phase and thehere the glass curve runs through the two-phase region, it
critical point is submerged underneath the curve of arreswill remain difficult to form truly large high quality crystals.
transitions. This aspect should not be confused with the equicrom this region where it is possible to crystallize, one
librium phase diagram, although it is interesting that thereshould also exclude the two-phase region, whether it is meta-
are many parallels between the two. stable or not, since the parti@hicro-)phase separation, crys-
As we discussed before, when the range of the potentidhllization and glassification, all competing dynamically is
becomes very short, the competition between entropy andnlikely to produce a good crystal also. This leaves only the
energy is responsible for the formation of two distinct crystalregion bounded to the right by the glass curve, to the bottom
phases. Coming from the fluid side, a crystalline phase domiby phase separation, and to the top by the gas side of the
nated by repulsion is present. This state arises from the fagas-crystal phase-coexistence as a likely candidate for form-
that, at such densities, the entropy of a system made of paing good crystals. This is interesting. It leads us to suppose
ticles free to move only in their own Weigner-Seitz cell of a that for a fixed short range of the potential there is a “prac-
fce structure is larger then that of the metastable fluid. Weical crystallization region” in the temperature-density plane,
named this phase a repulsive crystal by analogy with thérrespective of the specific features of the equilibrium phase
glass. On increasing the density, this crystal becomes urdiagram. However, more importantly, there is also a limited
stable and makes a transition to a smaller Weigner-Seitz celtegime of interaction ranges where such a slot is significantly
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large enough to be accessed experimentally. We believe thatanding of kinetics is acquired in future. In particular, the
much of the discussion that has taken place in the last fe\glass analogy seems promising as a means to characterize the
years in the literature in relation to protein crystallization more confined phase space experienced by these systems.
[1,2,77 is almost certainly heading in the correct direction. Aging, and kinetic phenomena in general, is an arena that is
Thus, Mushol and Rosenbefg] show in their Fig. 12 the growing in importance[78-82 and may offer significant
typical situation for a globular protein phase diagram. Theyadvances. The traditional viewpoint of activated processes
exhibit a phase diagram that hés two metastable liquid @nd simple kinetic processes is without doubt incomplete in
phases in equilibrium, a more and less dilute phase of proteif€ limit where we approach the rather confined phase spaces
(gas-liquid in our language(b) a “gellation curve” that we characterized by approach to a glass transition. The realiza-

associate with the glass curves in our work, &ada fluid- tion that we are in a “glassy” scenario may well assist in

crystal coexistence regime. They name the “good” regimedevelopment _of new theories o_f kinetics of crystallization
more appropriate for such questions.

for crystallization zone |, and the others II, and Ill. We have In any case, one can hardly doubt the high degree of

also essentially partitioned our phase diagram into the same tical sianif that kinetic ph ~ted with
types of zones, and concluded that this gas-crystal regioRraC Ical signincance that Kinetic phénomena associated wi

hseport—ranged potential systems will have in the coming few
years. Given that we discuss a model potential that is only
fslightly different from those long considered in liquid-state

theory, we must be intrigued by the novelty in supposedly
simple situations.

coexistence boundaigone | in their languagaevould be the
most favorable for formation of crystals. For the sake o
comparison in one of our figure$ig. 6) that has a range
typical of globular proteins, we have marked regions I-lll in
analogy with Ref[2].
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