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Phase equilibria and glass transition in colloidal systems with short-ranged attractive interactions:
Application to protein crystallization
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We have studied a model of a complex fluid consisting of particles interacting through a hard-core and
short-range attractive potential of both Yukawa and square-well form. Using a hybrid method, including a
self-consistent and quite accurate approximation for the liquid integral equation in the case of the Yukawa fluid,
perturbation theory to evaluate the crystal free energies, and mode-coupling theory of the glass transition, we
determine both the equilibrium phase diagram of the system and the lines of equilibrium between the super-
cooled fluid and the glass phases. For these potentials, we study the phase diagrams for different values of the
potential range, the ratio of the range of the interaction to the diameter of the repulsive core being the main
control parameter. Our arguments are relevant to a variety of systems, from dense colloidal systems with
depletion forces, through particle gels, nanoparticle aggregation, and globular protein crystallization.
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I. INTRODUCTION

Recently novel results in the statistical mechanics of
fluid state have emerged from a series of studies of the p
diagram of particles with a hard-core and short-ranged att
tive potential. At first sight, this type of interaction potenti
would have been expected to yield the well known ph
diagrams of simple solids, liquids and gases. Here we s
see that a different scenario emerges.

In many practical situations attractive forces, which a
short ranged compared to the size of the particles, arise
cause the size of the particles itself is large, whilst the ph
cal forces retain their typical microscopic range. Thus,
order to model large molecules, such as proteins, collo
and nanoparticles, one often works in a regime where
ratio of the range of attraction to the size of the repuls
core is small. This crucial issue is emerging in the literat
in such areas as protein crystallization@1,2#, dense colloids
@3–6#, nanoparticle assemblies, preceramic particle gelat
latex formation, Buckminster fullerenes@7#, and many oth-
ers. In some arenas its relevance begins to be recogn
while in others it still remains to be understood.

Atoms or molecules interacting via a potential with a r
pulsive core and an attractive tail may form gases, liqu
and solids as a function of the temperature and density.
attraction is responsible for the liquid-gas transition, wh
the solid is dominated by the repulsion. In the low-t
medium range of densities, particle entropy and energy e
the free energy and compete to produce liquid~energy-
favored! and gas~entropy-favored! phases. Thus, beneath th
1063-651X/2002/65~3!/031407~17!/$20.00 65 0314
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critical point, the total system free energy is optimized if t
system splits into two subsystems, and thereby a sum of
independent free energies. One of these free energy term
dominated by the energy~liquid! and the other~gas! by the
entropy. A homogeneous, unseparated system, maintaine
the average density of the two subsystems, would not be
to fully optimize either energy or entropy. This, in essence
the cause of typical first-order phase transitions betwee
liquid and a gas. In the liquid, as the density increases,
remaining diffusive motions of the particles are reduced a
their attendant~configurational! entropy diminishes. Now,
the random structure of a liquid is favored provided over
diffusive particle motion is possible. When, at higher den
ties, diffusion is greatly limited, the free volume is bett
utilized by making a regular crystalline array, and the e
tropy of the system is increased by the vibrations of partic
within the regular array of a crystal. This is the reason w
hard-sphere fluids begin to form a regular crystal at ab
49% volume fraction, and above the freezing transition
55% have a higher entropy than a liquidlike structure at
same volume fraction. Indeed, for hard spheres, at volu
fraction between 49% and 55% the system again phase s
rates to achieve the optimal value of entropy: a lower den
fluid of 49% volume fraction and a well-packed crystal
55%. Nevertheless, it is well known that in some experim
tal studies the system may be unable to access the crysta
state rapidly enough, and the disordered supercooled liq
structurefreezesinto a glass. For hard-sphere fluids, this o
curs at a volume fraction higher than about 58%. The form
tion of the glass is a signal that equilibrium quantities, su
©2002 The American Physical Society07-1
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as the free energy, may not be sufficient to describe the
havior of the system, and that long-lived dynamically
rested states may be important under such conditions.

It is possible to relate these qualitative comments to
cent understanding acquired from experiments, simulatio
and theory. Thus, there is a separation of time scales in d
systems, including supercooled liquids, in which partic
spend a long time trapped by a surrounding cage and th
after they escape from it. In fact, dynamically slowed s
tems begin to exhibit a plateau in the self-correlation fu
tion, reflecting the time spent in cages, and then a de
(a-relaxation! reflecting escape from the cage and free c
figurational motion. This approach to the glass transition w
formalized@8# with the idea that motions in dense fluids c
be divided into intrabasin and interbasin motions, where
basins refer to the multidimensional potential energy a
function of the particles coordinates. This separation of ti
scales, and thereby type of motion, is reasonable for de
systems, and may be used to justify a conceptual partition
of the entropy into two parts, a configurational and a lo
contribution@9#. These ideas can be reexpressed by con
ering the system, at a fixed average density, compose
central particles trying to escape their cages of neighb
which are themselves fluctuating and exchanging with th
neighbors. Evidently, thea-relaxation process correspond
in systems very close to arrest, to the escape of the ce
particles from their cages after some time. In the absenc
attractive forces, or for relatively long-ranged ones, the m
tions of the cage are restricted by the packing forces. T
picture is relatively clear, at least in a phenomenologi
manner, for hard-core spherical particles. For systems
possess a strong repulsion, and a long-ranged attrac
there are no new special features. Thus both ‘‘central’’ a
‘‘cage’’ particles remain in their mutual range of attractio
while the structural rearrangement takes place. The resu
cage breaking can be viewed as being almost the sam
that for hard spheres, but with changed zero of energy. E
if we acknowledge that there are effects due to attractio
they can still be considered to be weak perturbations of
picture arising from the hard-core spherical particles.

Now let us turn from the scenario just described, typi
of hard-sphere particles or particles where the attractions
long-ranged compared to the core size, to situations wh
attractions play a principal role. In this case, the freedom
the cage particles is considerably reduced. Indeed, part
must remain within a certain distance from each other wh
substantial attractive energies are still available, or they l
the advantages of being in the liquidlike structure. This be
so, the cage around the central particle is much more ri
since only smaller excursions from average positions
these cage particles are possible. In fact, for sufficiently n
row wells, the time that a particle spends inside the c
increases; a plateau regime results, and the system will e
tually freeze. This ‘‘cage rigidity’’ was also the determinin
factor in hard-core particles at very high density, leading
the typical colloidal ‘‘repulsive glass.’’ Here, though th
mechanism and detailed laws will be different, we see t
short-ranged attractions are able to cause cage rigidity,
formation of a solid, either a glass, or a crystal. Followi
03140
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these arguments we see that for particles with short-ran
attractions, the density and temperature window over wh
the liquid state is stable, is greatly reduced since the confi
rational entropy is reduced. The system separates into a
density fluid state where there is sufficient free motion, an
dense state where there is, not in any case, sufficient con
rational entropy to sustain a liquid, and the system freez
This state will be a crystal or a dynamically arrested sta
Based on the developing views of others, and what we s
present here, all these expectations are borne out from
cise calculations and are increasingly found in experimen

From the above discussion, we may expect that when
tractions are short ranged the arrested glass is of diffe
nature than the typical repulsive one, since it is favored
both the energy~because the particles are not close enough
sample mainly repulsive energy!, and the local entropy
~given that the density is yet relatively low!. We have earlier
called this arrested state an attractive glass@10,11#, and the
crystal, previously found by a number of others@12–14#, we
name the attractive crystal. This distinguishes it from t
typical face-centred-cubic~fcc! crystal formed by repulsive
forces and the analogous repulsive glassy state.

Given the possibility that for short-ranged attraction
solids—both crystals and glasses—can be formed by th
two distinct mechanisms leading to cage rigidity, we m
suppose that it is possible, in principle, for them to co-ex
For fixed ~short!-ranged potential one way of changing th
balance of attraction and repulsion is to change the den
and we comment that such coexistence has been previo
shown for crystals@12–14#, and glasses@10,11#, and is also
reproduced here.

In summation, we expect that, as the well width is n
rowed, the liquid state becomes progressively less favo
and is replaced by a conventional repulsive crystal or
equivalent glass. An attractive crystal and its equivalent
tractive glass should also be present at higher densities,
types of solids coexist at some typical densities where att
tions and repulsions compete. From the preceding consi
ations, we expect that these predictions should be gen
irrespective of the detailed shape of the potential, and refl
the typical range of the potential.

We have studied two potential energy models typica
used to mimic colloidal interactions, the square well~SW!
and the hard-core Yukawa potential, using a variety of te
niques of condensed-matter theory. We have determined
phase diagrams calculating the liquid free energy using p
turbation theory for the SW and the self-consistent Ornste
Zernike approximation~SCOZA! for the Yukawa potential.
The crystalline free energy has been calculated apply
second-order perturbation theory for both potentials. T
technique has been applied to short-ranged potentials@14–
16#, with quite remarkable success in reproducing the cr
talline free energy in comparison to Monte Carlo expe
ments. However, it has been noted@14# that the same method
is not so satisfactory in calculating the free energy of
liquid and gas states for very narrow attractive ranges,
this affects the accuracy of the phase diagram@14,17#. To
avoid this problem in the case of the Yukawa potential,
have modified the calculation so that the proven good f
7-2
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PHASE EQUILIBRIA AND GLASS TRANSITION IN . . . PHYSICAL REVIEW E65 031407
tures of the perturbation theory of the crystal are combin
with the proven quality of the SCOZA for the liquid and g
free energies to produce a phase diagram that is of unifor
good quality. Currently there is no working SCOZA meth
for the SW case, though there is no fundamental barrie
develop one.

In our work, the ideal mode coupling theory~MCT! @18#
of supercooled liquids has been used in order to locate
glass transition curves. For colloids, this method has a
been found to describe many elements of the transition to
arrested state@19,20#, though it does suffer from some limi
tations, a matter to which we return later. In the MCT calc
lations we have used the structure factors from Perc
Yevick approximation~PYA! for the case of SW and from
SCOZA for the case of the Yukawa potential. These ha
proved to be quite accurate theories of the liquid and fl
states. In particular, the SCOZA method has been comp
to Monte Carlo simulations for a range of screening para
eters ~‘‘well widths’’ ! of the Yukawa potential, and it ha
been shown@21,22# that the agreement for the phase d
grams is quantitative, at least for modest values of
screening parameter.

By combining the results from the different methods d
scribed above, we are able to give, for some regimes, w
we believe to be quite accurate phase diagrams. For the
eral case we believe that the results are at least qualitati
correct, and provide us a coherent picture of the connec
between the well width and the arrangement of gas, liqu
crystal, and glass phases. It is this overview of how the v
ous phenomena fit together that is currently missing, and
should prove useful in the various applications alluded
above. We also point out that, from experiments, it has
come clear that the interaction between globular proteins
the range where they may crystallize, is characterized
short-range attractions@1#. In the case of proteins, a bette
comprehension of the phenomena would imply the study
anisotropic types of potential@23#, due to hydrophilic-
hydrophobic patching of the protein surface. The usual
proach is, however, to use an effective isotropic interact
obtained by averaging over the anisotropy. Thus, as
cussed later, most of our conclusions will be also import
to understand the process of protein crystallization.

The paper is organized as follows. In Sec. II we descr
the approximate closures to the Ornstein-Zernike liquid in
gral equation that we have used for the Yukawa and
potentials. The methods employed to determine the equ
rium fluid and solid phases are described in Secs. III and
Section V is devoted to a brief sketch of MCT applied
attractive potentials, while in Sec. VI the relevance of t
spinodal curve for colloidal systems is discussed. The co
plete phase diagram, including the structural arrest line
discussed in Sec. VII, while Sec. VIII is devoted to o
conclusions.

II. APPROXIMATIONS TO THE OZ EQUATION FOR THE
YUKAWA AND SQUARE WELL MODELS

In this section we shall discuss the theory used in
investigation of the phase diagram. The Ornstein-Zern
03140
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~OZ! equation for the pair correlation functionh(r ) is

h~r !5c~r !1rE dr 8c~ ur2r 8u!h~ ur 8u!, ~1!

whereg(r )5h(r )11 is the radial distribution function and
c(r ) the direct correlation function. Another important qua
tity is the static structure factorSq , which is the equal time
correlation function of the density variables in wave vec
space

Sq5^r2q~ t !rq~ t !&/N, ~2!

where the averagê•••& is performed at equilibrium and th
density variables arerq(t)5( ie

iq•r i (t), where the sum runs
over all N particles in the system. The Fourier transform
the correlation functionhq is related to this quantity by the
relation Sq511rhq . The OZ relation in the wave vecto
space reads

Sq5
1

12r ĉq

, ~3!

ĉq being the Fourier transform of the direct correlation fun
tion.

As it stands, Eq.~1! is not closed and some type of ap
proximation is needed in order to solve it. In what follow
we have chosen to calculate structural and thermodynam
properties using the PYA for the SW potential and t
SCOZA @21,22,24# for the Yukawa potential. Both thes
model potentials possess some fundamental properties
make them good candidates for studying the properties
attractive colloidal particles when the range of interaction
short. The use of SCOZA has been justified by the succes
such approach in predicting simulation data.

A. The SCOZA for the Yukawa potential

The application of SCOZA to a hard-core Yukawa flu
provides a semianalytic calculation of the thermodynam
properties of the fluid, liquid, and gas states of the syst
@21,22#. SCOZA has been applied to Yukawa systems w
relatively large values of the range of the potential, with
satisfactory reproduction of the liquid-vapor binodal curv
and a good description of the critical point region.

The hard-core Yukawa fluid is described by the followin
interparticle potential:

v~r !5H `, r ,s

2se
e2b(r 2s)

r
, r>s.

~4!

The parametere defines the energy scale, while the p
rameterb, known as screening parameter, determines
range of the potential. The larger theb, the shorter is the
range of the potential. In this paper, we sets51 ande51,
therefore the screening parameter is in units of the recipro
of the hard-core diameter, and the temperature in units of
well depth.
7-3
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SCOZA provides a closure relation for the OZ Eq.~1! by
expressing the direct correlation functionc(r ) in terms of the
potentialv(r ), as for other approximations such as the me
spherical approximation~MSA!, PYA, hypernetted chain
~HNC! approximation, etc., but introducing one or more st
dependent parameters that can be adjusted to force the
tem to satisfy various exact thermodynamic relations of
system. In particular, the simplest SCOZA studied so far
sumes

g~r !50, r<s, ~5!

while c(r ) for r>s is composed of two contributions, de
scribing, respectively, the soft part of the potential and
hard core, as

c~r !52Abv~r !1KHS

e2bHS(r 2s)

r
r>s. ~6!

The Yukawa function in Eq.~6! takes into account the
contribution to c(r ) arising from the hard-core repulsion
Thus, the two parametersKHS andbHS can be determined by
settingv(r )50 in Eq. ~6! and requiring that both the com
pressibility and the virial route to thermodynamics lead
the Carnahan-Starling equation of state for a hard-sph
fluid @25#. This amounts to describing the hard-sphere co
lations via the Waisman parametrization@26#. The soft part
of the contribution in Eq.~6! is assumed to be proportional t
v(r ) and hence it has the same range of the potential.
proportionality constantA is calculated by imposing the con
dition that the compressibility and the energy routes yield
same result. This corresponds to the condition@22#

2
]

]b
ĉ~q50!5

]2

]r2 S Uex

V D
T

, ~7!

whereUex is the excess internal energy@27#. Equation~7!
implies a partial differential equation~PDE! for A(r,b). The
Yukawa potential~4! lends itself particularly well to the
SCOZA scheme, because, for this kind of interaction, it
possible by means of Eqs.~5! and~6! to establish an analytic
relation betweenĉ(q50) andUex, which allows us to obtain
straightforwardly a closed PDE from Eq.~7! by usingUex as
the unknown quantity instead ofA(r,b) @21,24#. Once the
internal energy has been obtained by numerical solution
this PDE, the Helmholtz free energy is calculated by integ
tion with respect tob.

The reasons that led us to adopt SCOZA can be sum
rized as follows. The method uses a reasonable choic
functional relationship betweenc(r ) andv(r ) on the basis of
numerous calculations obtained over a number of years.
thermore, it has been shown@22# that the results obtained ar
in excellent agreement with computer simulations, at le
for not too narrow ranges of the potential. In this sense
may be viewed as the best semianalytical method to st
the Yukawa potential. Finally, it is simple and convenient
obtain numerical solutions of Eq.~7!, and this is helpful to
make a survey of a problem in a large parameter wind
rather than just in a small part of the parameter space
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give the reader some sense of the accuracy of SCOZA
some of the regimes we will discuss later. We present in F
1 and 2 the phase diagrams forb51.8 andb56 calculated
using SCOZA, compared with Gibbs ensemble Monte Ca
~GEMC! studies@16,28#. The data by Shukla are the large
system sizes with this potential yet to be studied by GEM
In all cases, the agreement with SCOZA is excellent, and
may, in this regime ofb values and in calculating the phas
diagrams, consider SCOZA to be equal to the best sim
tions. The method is superior to the other simple closu
including, for example, MSA.

Having said this, we note that there is little real inform
tion available about the detailed reliability of the closu
relation where the potential becomes much narrower than
b59, though it is reasonable to suppose that many prope
are still satisfactory for somewhat largerb values. Another
comment we may make is that, when the range of the po
tial narrows, Eq.~6! may not be the optimal closure to ensu
thatc(r ) is accurate. Both these points should be regarde

FIG. 1. Liquid-liquid phase diagram from SCOZA compared
simulation data forb51.8. The GEMC data are taken from Shuk
@28# ~see text for details!. The estimation of the critical points ar
from GMSA, HNC, and HRT.

FIG. 2. Liquid-liquid phase diagram from SCOZA compared
simulation data forb56. The GEMC data are taken from Shukla fo
N5216 @28# ~see text for details!.
7-4
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PHASE EQUILIBRIA AND GLASS TRANSITION IN . . . PHYSICAL REVIEW E65 031407
words of caution and as potential directions to develop
SCOZA method to better represent the structure in s
problems. Indeed this will be the subject of future work.

B. The Percus-Yevick closure for the SW potential

We shall now briefly discuss the closure for a fluid
colloidal particles interacting via a square well potential

v~r !5H `, r ,s

2e, s,r ,s1d

0, s1d,r ,

~8!

where, in the present discussion, we sete5s51 and we
define the square-well parameterD5d/(s1d), which pa-
rametrizes the attractive range of the potential. This mo
has been already the object of great interest in colloidal
ence@29,10#. The state of the system is specified by thr
control parameters, the packing fractionf5prs3/6 ~where
r is the number density, i.e.,r5N/V), the temperaturekBT,
and the square-well parameterD of the attractive shell.

The PYA for c(r ) is g(r )50 for r ,s and

c~r !5g~r !@12ebv(r )# ~9!

outside the hard core@30#. We solve the OZ equation in PYA
using Baxter’s method of the Wiener-Hopf factorizatio
@27,31#. This corresponds to rewriting Eq.~1! in terms of the
real factor function Q(r ), defined for r .0. For 0<r
<R, R being the range of the potential (s1d in the
present case!, one has

rc~r !52Q8~r !12prE
r

R

dsQ8~s!Q~s2r ! ~10!

as well as, forr .0,

rh~r !52Q8~r !12prE
0

R

ds~r 2s!h~ ur 2su!Q~s!.

~11!

Q(r ) determinesSq via its Fourier transform

Sq
215Q̂~q!Q̂~q!* , ~12!

Q̂~q!5122prE
0

`

dreiqrQ~r !. ~13!

The resulting equations, obtained implementing the PYA
Eqs. ~10! and ~11!, are then solved numerically to calcula
the structure factorSq ~see Ref.@10# for more details!.

III. THE PERTURBATION THEORY APPLIED TO SOLID
AND FLUID PHASES

A. The crystal phase

In this section we shall discuss the method used to ca
late the solid free energy. The perturbative approach has
viously been used by Gastet al. @15# to construct the phas
diagram of a colloidal solution with depletion interactions
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Further applications of the method appear in Re
@14,16#. For example, in@14# the authors compared the re
sults obtained for both phase diagrams and free energie
the solid and liquid phases for an Asakura-Oosawa poten
and made comparisons to Monte Carlo calculations. T
noted that the phase diagrams are overall reasonably s
factory, but that the crystal free energies are excellent
most regimes being essentially quantitative. It was conclu
that the potential limitations in accuracy of the phase d
grams arise from the use of perturbation theory to the fl
and liquid phases, rather than the crystal. Also, for the cry
free energies there does not appear to be a significant lo
accuracy when the range of the potential becomes nar
We have, therefore, applied perturbation theory to the cry
state of the Yukawa potential. Is opportune to note that th
are other perturbative approaches in the literature, such a
@29#.

The method is summarized as follows. We separate
explicitly the interaction potential as a hard-core contributi
plus the attractive tail. The hard-core part of the potentia
used as a reference for the perturbation, and the attractive
is the perturbation itself@27#. In other words, we decompos
the potential as

v~r !5v0~r !1vatt~r !, ~14!

wherev0(r ) is the hard-core repulsive potential and expa
around the reference statev0(r ). With this choice, the
zeroth-order term of the free-energy expansion coinci
with the hard-sphere free energy. Once the perturbation
pansion is carried out to second order we have for the He
holtz free energy the following expression@27#:

bF

N
5

bF0

N
1

br

2 E vatt~r !g0~r !dr1
bF2

N
. ~15!

Here bF2 /N is the second-order perturbation term.F0 and
g0 are, respectively, the Helmholtz free energy and the ra
distribution for the reference hard-sphere system.

We focus our attention on the second-order term in
expansion in Eq.~15!. Indeed, its exact evaluation require
the calculation of higher-order distribution functions@27#,
which are very hard to compute or to approximate reas
ably. Barker and Henderson@32# proposed an approximatio
to F2, based on the following observation. Since

bF2

N
52

1

2
b~^WN

2 &02^WN&0
2!, ~16!

where WN5( i , j
N vatt(ur i2r j u), Barker and Henderson pro

posed to divide the space into concentric spherical shell
calculate averaged properties using the number of particle
each shell. Following this route, they rewrote Eq.~16! in
terms of average numbers in the shells

bF2

N
52

1

2
b(

i j
~^NiNj&2^Ni&^Nj&!v iv j , ~17!
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whereNi is the number of particles in the shelli andv i is the
perturbation energy, considered constant, within the sh
The first approximation consists of ignoring the correlatio
between shells, i.e.,

^NiNj&2^Ni&^Nj&50 ~18!

for i 5” j . Moreover, inside a given shell, a second appro
mation is made,

^Ni
2&2^Ni&

2'^Ni&kBT~]r/]P!. ~19!

The two approximations~18! and~19! are equivalent to con
sidering the volume of the shells to have the compressib
properties of a macroscopic portion of space~for more de-
tails see@32#!. As a result, Barker and Henderson appro
mated the second-order term in the expansion as

bF2

N
52

br

4 S ]r

]PD
0
E vatt

2 ~r !g0~r !dr . ~20!

This approximation was found to be satisfactory in all calc
lations carried out so far. In our work the integrals in Eq
~15! and ~20! have been performed by a five-point integr
tion rule, while for differentiation a central-differenc
scheme has been used@33#.

To carry out the calculation, we require the Helmho
free energy and radial distribution function of the unp
turbed hard-sphere system in the solid phase. It has b
shown by computer simulation that a hard-sphere fl
shows a solid-fluid transition, for which the fluid phase alo
exists up to a packing fractionf50.49 and the solid fcc
phases exists forf.0.55 @34#. In between, there is a two
phase coexistence of solid and fluid. These properties
well studied and the information required in perturbati
theory can be deduced from these studies. We note in pas
that recently a renewed interest has been shown in the e
librium structure of a hard-sphere crystal. Indeed it has b
believed for a long time that hard spheres crystallize with
fcc structure. Confocal microscopy observations, howe
have rather found a random hexagonal phase which con
of a stack of fcc and hexagonal close packing~hcp! layers
@35#. Simulation seems to explain the phenomenon in te
of the small free-energy difference between fcc and h
structures@36#. In this paper, we assume the crystal equil
rium structure to be fcc since this is believed to be m
stable@37#.

To provide continuity with previous authors we make t
choices described below. The state equation for a hard-sp
fcc solid has been proposed by Hall@38# who derived a phe-
nomenological expression based on computer simulation
sults, i.e.,

ZHS5
PHSV

NkBT
~21!

5
11f1f220.67825f32f420.5f526.028f6f ~f!

123f13f221.004305f3

~22!
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with f (f)5exp„(pA2/62f)@7.923.9(pA2/62f)#…. The
compressibility can be derived by differentiating the co
pressibility factorZHS as

S ]r

]pD
0

5
b

ZHS1f~]ZHS /]f!
. ~23!

In order to calculate the excess hard-sphere Helmholtz
energyF0

ex from the compressibility factorZHS , a thermo-
dynamic integration in the packing fractionf can be per-
formed, obtaining

bF0
ex

N
~f!5

bF0
ex

N
~f* !1E

f*

f

~ZHS21!
dh8

h8
. ~24!

Since the zero-density limit of a fcc crystal cannot be rep
sented as easily as the one for a gas, alternative route
perform the thermodynamic integration in Eq.~24! have to
be devised@34#. We have chosen to perform the integratio
starting from a packing fraction value off* 50.544 993, for
which the value of the free energy has been calculated
computer simulation to beF0

ex(f* )N55.918 89@39#. We re-
call that the excess Helmholtz free energy is defined as
excess with respect to the ideal gas contribution@27#.

For the radial distribution functiong0(r ), we have used
an analytic formulation proposed by Kincaid and Weis th
fits Monte Carlo simulation for a hard-sphere fcc solid@40#.
This formulation is known to provide a good estimate of t
hard-sphere radial distribution function, at least in the ran
0.52<f<0.565 18. Equations~15! and ~20! can now be
solved.

Once the Helmholtz free energy is evaluated, followi
the route we have just described, the Gibbs free energy
the pressure can be calculated as

bG5
]~rbF !

]r
, ~25!

bP5
rbG

N
2

rbF

N
. ~26!

We have earlier noted that the perturbation theory for
crystal is highly accurate. Indeed, the second-order pertu
tion term is useful, but it is interesting to note that the gre
bulk of the free energy correction for narrow well problem
is captured by the first-order term alone. To understand t
it is worth reflecting on the fact that the free energy of t
crystal in the presence of short-ranged attractions is refe
to the hard-core crystal, and there is no question of the
turbation theory having to determinea priori any gross struc-
tural information. The corrections from attractions arise
virtue of the small changes in local vibrations that the p
ticles make around their lattice positions, a portion of the
motions involving the particles being within their mutual a
tractive range. In first-order perturbation theory, these con
butions are treated as if the nature and distribution of
vibrations is unchanged, and the additional attractive ene
contributions calculated essentially as an integral over
7-6
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PHASE EQUILIBRIA AND GLASS TRANSITION IN . . . PHYSICAL REVIEW E65 031407
attractive potential multiplied by the zeroth-order hard-co
correlation function. The fact that second-order contributio
are typically small is suggestive. In a heuristic manner,
may argue that the intrinsic limitation on the extent and co
plexity of the phase space of the localized particles, impo
by their being in a crystalline state, means that even w
attraction is incorporated, the changes in the nature and
tributions of these vibrations are small. We note that t
rationale is clearly inapplicable to the case of liquid, gas, a
fluid states, where the addition of attractions significan
affects the distribution of particles motions. Possibly this
the reason why perturbation theory works well for the cr
tal, indeed far outside its expected limitations, but is le
successful for the other states. For completeness we note
for the crystal~Yukawa and SW! the errors, as estimated b
the ratio of second-order to first-order terms are typically
order 0.5%. For the liquid they can be larger. We have, ho
ever, also studied a square-well fluid using perturbat
theory, and used these results along with those for the cry
to generate a phase diagram. The perturbation theory o
square-well fluid is, therefore, briefly discussed below.

B. Liquid phase for the SW fluid

In this section we shall discuss the method we adopte
calculate the thermodynamical properties of a fluid of coll
dal particles interacting via a SW potential.

We chose the hard-sphere fluid as the reference sys
and treated the attractive part as the perturbation. The na
choice to describe the thermodynamics of a hard-sphere
is the Carnahan-Starling~CS! equation of state@25#

bP

r
5

11h1h22h3

~12h!3
. ~27!

The CS equation provides an accurate account of the t
modynamic behavior of the hard-sphere fluid for the en
region of the fluid phase. Its very simple analytical for
makes it possible to obtain a closed expression for the He
holtz free energy by integrating over density, as in Eq.~24!.
The zero-density limit of the free energy is the ideal g
value, so the thermodynamic integration starts from z
density. Thus, we obtain

bFex

N
5

h~423h!

~12h!2
. ~28!

The compressibility is evaluated as in Eq.~23! by differen-
tiation. For the radial distribution function we use a modi
cation of the analytical PYAg0(r ) for a hard-sphere fluid
that was proposed by Verlet and Weis@41# to overcome cer-
tain limitations of this closure. Indeed, in PYA@30#, the con-
tact valueg0(r 5s) of the radial distribution function under
estimates the real value obtained by computer simula
and, also, the oscillations of the tail are slightly out of pha
and too weakly damped. Verlet and Weis proposed

g0~r /s,f!5g08~r /s8,f8!1dg1~r !. ~29!
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Here,g(r ) is written as the sum of two terms. The first ter
corresponds to the solution forg0(r ) within PYA, but evalu-
ated at a smaller packing fraction valuef8 and a smaller
diameters8, while the second term is a short-ranged corre
tion dg1(r ). The parameters8 is then evaluated via a mini
mization of the difference between the simulation result
g0(r ) and the PYA analytical result, between 1.6s and 3s.
This contribution improves the long-range behavior of t
PYA result. The addition of the short-range termdg1(r ) im-
proves the value atr 5s. Analytical forms for f8 and
dg1(r ) are given by the authors of Ref.@41#. The improved
radial distribution is within 1% of the computer simulatio
result in the whole range of packing fractions. With this r
sult, the Helmholtz free energy for the hard-sphere refere
system is calculated, and we may then proceed as we d
the preceding section to calculate the Gibbs free energG
and pressureP using Eqs.~25! and ~26!.

IV. THE CONSTRUCTION OF PHASE DIAGRAM OF THE
YUKAWA MODEL BY A HYBRID METHOD

In the case of the Yukawa potential we have modified
approach of previous researchers somewhat in order to
tain the benefits of the best methods of condensed and li
state theory. We have used SCOZA to calculate the liqu
gas, and fluid phases free energy, but applied perturba
theory for the crystal free energy. To mark the differen
with previous calculations, where phase equilibrium lin
had been calculated by perturbation theory both for the c
tal and for the fluid phase, we name our approach a hyb
method.

Phase boundaries between two phases~gas-liquid, fluid-
solid, etc.! are obtained by imposing the standard conditio

m (1)5m (2), ~30!

P(1)5P(2), ~31!

wherem is the chemical potential, i.e., the Gibbs free ener
per particle,m5G/N.

In those cases where SCOZA and perturbation theory
quantitatively validated, the equilibrium phase diagram
highly accurate. As noted above, and shown in Figs. 1 an
the SCOZA is well validated up to values ofb59. For val-
ues ofb less than or equal to 6, results are indistinguisha
in terms of phase equilibria from the best simulations t
have been carried out@22,16,28#. Similarly, as we shall dis-
cuss later, the perturbation theory rarely produces an erro
more than 0.5% in the free energy of the solid phase,
though this analysis is based on certain assumptions a
the perturbation series. Combining these observations,
believe that our phase diagrams are quantitatively accu
up to at leastb59. Beyond that, we make no particula
claim, except that we expect that this hybrid method sho
still remain superior to the typical theoretical approximatio
that have been applied previously. Simulations have not b
carried out beyondb59.
7-7



a
th
ta

y
d
re
to

9%
pe
Th
e

is
iq
ca
e
o

ng

i
o
e

ei
le
e
a
ra
on
by

C
ex
iu

on

he
-

ea
ed

o
m

th
e

o
e
th
tro
h

at

-
m
ys-
in-

d
y a
d

ion
po-

en-
in
to

us,
ve in
-

en-
ition

n

lass
int,
the
rity
ss-
ed
to

died
of

om-
ing
ugh
ns
pi-
-
tion
e-
dy-

ery

ss
too
at
uch
tes
not

are
nse

ticu-
ram
e
ld
of

GIUSEPPE FOFFIet al. PHYSICAL REVIEW E 65 031407
V. GLASS TRANSITION AND MODE COUPLING THEORY

A. Theory

The study of the glass transition in colloidal systems h
been one of the most striking cases of verification of
current theories of supercooled liquids. Early experimen
studies @42,43# involved colloidal particles that are ver
closely represented by hard spheres where only exclu
volume effects are important at high concentrations. Mo
over, in contrast to simple atomic liquids, it is possible
avoid the crystalline phase beyond volume fractions of 4
for sufficiently long periods of time to study the glassy-ty
dynamical processes, and ultimately the colloidal glass.
agreement between certain aspects of MCT and experim
on colloids is quite satisfactory@44# and the details of the
time correlation functions are quite well reproduced. It
widely believed that, in deeply supercooled molecular l
uids, the slow dynamics involves more complex dynami
processes than those described by MCT, and there the th
becomes of more qualitative applicability. Thus, the case
colloidal particles is of some practical interest in applyi
this type of theory.

In fact, even for colloids, small discrepancies appear
the comparison between experiments and MCT. The m
important is the value of the critical volume fraction for th
hard-sphere arrest transition, the experimental value b
about 58%, while MCT predicts about 52%. This is of litt
importance where the dynamical laws at the hard-sph
transition are being compared between the experiment
theory. Previous researchers have applied a shift to the t
sition volume fraction, and then fitted the laws in this regi
@43#. Since the only current information on arrest driven
attractive interactions is that provided by MCT@10#, there is
as yet no accepted manner in which we can correct the M
curves. This is somewhat inconvenient in the current cont
since for some parts of the parameter space the equilibr
phase diagrams are quantitatively accurate, and it would
very satisfying to be able to superimpose, without correcti
the relevant MCT arrest curves.

We now briefly review the nature of MCT, and discuss t
type of information it yields. The MCT of supercooled liq
uids describes the nonergodicity transition by a nonlin
integrodifferential system of equations for the normaliz
time correlation functions of density fluctuationsF(q,t).
Apart from parameters entering from the microscopic m
tion, the only input to the MCT equations is the equilibriu
wave-vector-dependent structure factor of the system,Sq .
The glass transition lines can be identified by studying
long-time limit of the MCT equations, which determine th
nonergodicity parameter of the systemf q5 limt→`F(q,t).
An ergodic state is characterized byf q50. This value is
always a solution of the MCT long-time limit equations@18#.
Thus, the glass transition appears as an ergodic to nonerg
transition for the system, wheref q5” 0 solutions arise. Thes
points, thus, correspond to bifurcation singularities of
MCT equations, and, depending on the number of con
parameters of the model, these can be of increasingly hig
order, producing interesting features of the arrested st
diagrams.
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A good qualitySq is an important input for a good de
scription of the MCT arrest transition, as for the equilibriu
phase diagram. In the earliest discussions of colloidal s
tems with short-ranged attractive interactions, the Baxter
teraction@45,46#, a limiting case with an infinitely deep an
zero-ranged SW attractive potential, was discussed b
number of authors@20,47,48#. Subsequent studies indicate
that the MCT equations are pathological for this interact
@49#. The calculations were, therefore, extended to a SW
tential both in the PYA and the MSA@10#. Another solution
of the MCT equations was obtained using the Yukawa pot
tial and the MSA@19#. Some common aspects emerged
these works. However, the SW model at first appeared
give a richer behavior for the arrest transition curve. Th
the system was shown to possess a glass transition cur
the parameter plane (f,kBT); the shape of this curve de
pends on the value of the SW parameterD @10#. For narrow
well widths, two branches of the glass curve have been id
tified. These have been interpreted, respectively, as trans
between a fluid phase and repulsion dominated glass~this is
the typical repulsive glass! and between a liquid and a
attractive-interaction dominated glass~named the attractive
glass!. The two branches join and forD<4.11%, a glass-
glass coexistence between the two different types of g
appears. This coexistence line terminates in an end po
beyond which the nonergodicity parameters become
same for the two types of structures. The relevant singula
points, such as the end point or the point where the gla
glass transition line reduces to a single point, are identifi
with higher-order singularities of MCT equations and lead
unusual logarithmic dynamical relaxation laws@10,18#. The
mechanical properties of the system have been also stu
@11# and they reinforce this interpretation. Earlier studies
the Yukawa potential did not locate this glass-glass phen
enon@19#, but it was subsequently realized that the screen
parameters, which had been studied, were not large eno
@50#, and further calculations seem to give clear indicatio
that both the SW and Yukawa potentials give the same ty
cal behavior@51#, implying that this does not crucially de
pend either on the potential shape or on the approxima
used for calculating the structure factor. Thus, it is now b
lieved that this glass-glass scenario and the attendant
namical laws, are essentially a universal feature of the v
short-ranged attractive potential.

We note in passing that the formation of two solid gla
phases for very short-ranged potentials should not be
surprising. In fact we have earlier alluded to the fact th
there are two crystalline phases in the phase diagram of s
potentials. We may typically view glasses or arrested sta
as long-lived metastable states of the system that have
been able to equilibrate to the nearby crystal and which
trapped in a restricted portion of phase space. In this se
we may expect each crystal to have associated to it a par
lar glass type. Since one of the crystals in our phase diag
is ‘‘attractive energy dominated’’ and the other ‘‘repulsiv
energy dominated,’’ it is hardly surprising that there shou
be two types of glass, dominated by the two regimes
interaction.
7-8
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PHASE EQUILIBRIA AND GLASS TRANSITION IN . . . PHYSICAL REVIEW E65 031407
A further comment on the relevance of these glass cur
is that we may see them as more than simply ‘‘transit
curves.’’ If we reflect more deeply on the nature of the eq
librium phase diagram and the thermodynamic states pre
in them, we recognize that at a deeper level they are refl
ing the fact that for those particular parameters, the ph
space is dominated by a particular structure: a crystall
liquid, or gas structure. The arrest curves carry analog
information. Thus, in the vicinity of the arrest curve, we m
understand that most of phase space is becoming incr
ingly inaccessible and breaks into smaller regions that
disconnected. That this may occur even for states that ap
to have static structures typical of liquids is the distinguis
ing feature of glasses. Associated to this observation is
dynamical slowing and tendency to arrest during any ph
separation through which such a glass curve passes. We
argue in the conclusions that such phenomena are releva
protein crystallization.

B. Experimental studies

We now discuss some of the particular experimenta
determined features that are associated with dynamical a
driven by attractive interactions. For example, Verduin a
Dhont @4# determined a curve of structurally arrested sta
in the phase diagram of a system with short-ranged attrac
depletion interactions. This locus, in some cases, inters
the binodal line and is referred to as transient gelation w
observed in the spinodal region. The authors of Ref.@4# were
the first to comment that MCT might also be applicable
cases where attractive interactions are important. As
noted above, subsequent results of such calculations
been most interesting@10,11,19#. In addition a number of
other experimental programs involving particles with dep
tion interactions have been published which offer many
teresting insights for example in@52,53#. In particular, Poon
and co-workers@5# have studied the arrest transition for sy
tems where the range of the interactions is short, and t
more recent work on this topic involves detailed connect
to the theory described above@54#. Other systems may hav
certain advantages over the depletion interaction system
it is as yet too early to decide this issue@6,55–60#. The
results are typically quite promising, with some of the
other systems also exhibiting some of the phenomena
dicted by the theory. We may note in particular a more rec
set of experiments that are intriguing in that they make
tailed predictions for the correlation functions in a particu
~reentrant! part of the phase diagram. Thus, concentrat
time correlation functions have been observed in a polym
micelle system with a decay process much longer than
usual stretched exponential, and the results have been
fitted to a logarithmic time relaxation@61# as predicted by
the theory@62#.

The development of experimental understanding, a
deepening of the theory of systems with short-ranged po
tials is really just beginning, and many experimental p
grams have now been commenced or reoriented to m
progress. However, early information indicates that
MCT-type theory may be able to describe main elements
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the principal phenomena, at least for reasonably high volu
fractions, where it is possible to separate aging from dyna
cal arrest in a reasonably clean manner.

VI. ARE SPINODALS IN COLLOIDAL SYSTEMS
MEANINGFUL?

Here we will take the liberty of raising a few issues
relation to spinodal curves that are calculated via SCOZA
indeed many other typical liquid state theories. The rea
that we make these comments is that such curves sh
have a particular status for these colloidal systems that
not relevant generally for molecular systems. We note fi
that the spinodal curve is determined from the condition t
the curvature of the free energy with respect to the relev
density variable becomes zero, and that this correspond
the fluid phase becoming unstable as we lower the temp
ture. Between the binodal and the spinodal, the liquid a
gas states in coexistence may be the global free-en
minima, but the fluid state remains metastable. Inside
region bounded by the spinodal, only the liquid and g
states in coexistence are stable. Now it is well known@63#
that the free energy is a convex function, and it posses
only one minimum, and for some years now it has be
understood that the spinodal curve determined from appr
mate theories~e.g., mean-field theories! that consider two
separate branches of the free energy and then connect t
has no real scientific basis. Careful Monte Carlo simulatio
carried out in systems of increasing size@64# have lead to the
conclusion that the spinodal curve shifts with the syst
size, merging with the binodal in the limit of infinite system
There is some loosely defined kinetic phenomenon howe
@64,65#, though even there it is not possible to define a sp
odal curve, but a cross-over regime where the kinetic mec
nisms begin to change from nucleation and growth to m
collective phenomena. Interestingly enough, when the p
ticle size becomes large, these more sophisticated expe
tions are less relevant. Thus, it transpires that the relev
parameter in this story is the ratio of the particle diameter
the correlation length of the fluid. For very large particle
such as high molecular weight polymers, colloidal and ot
particles, the microscopic length is so large that one has t
extremely close to the critical point to see fully develop
fluctuations beyond the mean-field type ideas. Another c
sequence of this is that critical exponents in such system
proteins @66# and micelles@67# have often been measure
with mean-field values because experiments were not
formed in the true critical regime. Similarly, the normal sce
ticism about the existence of a spinodal curve should be
relevant here, and we may expect the colloidal system
exhibit quite reasonable spinodal behavior. We have, th
fore, included the spinodal curve in our phase diagrams.

In concluding this section on dynamically defined obje
in the phase diagrams, it is commented that we have cho
to plot the MCT curves through the metastable regions
tween binodals and spinodals. Again, in colloidal system
for the reasons given above, it is to be expected that s
curves would have meaning, whereas they would not
meaningful in molecular systems.
7-9
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VII. PHASE EQUILIBRIA AND DYNAMICAL
ARREST LINES

In this section we combine the results from the differe
techniques described above to exhibit the state of the sys
for given well depth.

A. Yukawa potential

In this section results for the Yukawa potential with t
temperature in units of the well depth (kBT/e) plotted
against the volume fraction of the systemf are presented
The values of the well width are determined via the scre
ing parameter of the Yukawab. The hard-core radius is fixe
at unity, so all quoted lengths are in units of the hard-c

FIG. 3. Phase diagram for the Yukawa fluid with screening
rameterb55.0. The crosses represent the fluid-solid phase tra
tion, the continuous line is the binodal, and the dashed one is
spinodal. The filled circle is the critical point. The glass transiti
line as evaluated for mode coupling theory is also displayed~open
circles!. The glass line shifted to obtain the asymptotic value
T→` to be the experimental packing fractionf50.58 is presented
~stars!. The subscriptsc and p refer to the critical point and the
triple point, respectively.

FIG. 4. As in Fig. 3 withb56.05. The fluid branch of the
fluid-crystal coexistence line now passes through the liquid-
critical point.
03140
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diameter. We show results for values ofb55 ~Fig. 3!, b
56.05 ~Fig. 4!, b57.5 ~Fig. 5!, b530 ~Fig. 6!, b560 ~Fig.
7!, andb5100 ~Fig. 8!. For comparison we also show~Fig.
9! a calculation for the square well system withD50.03.

We begin with the largest well width, corresponding
b55, see Fig. 3. Here the well width, considered say as
distance of half-amplitude of a Yukawa, is comparable to
particle hard-core size. This is the typical situation that
are familiar with in elementary phase diagrams of atoms
molecules where van der Waals interactions predomin
Thus, we see the expected pattern of phase behavior. B
the critical temperature, the gas-liquid phase equilibrium
cupies the greater part of the low and middle range of d
sities, above the triple point. The crystal is favored at hig
density, and the liquid- and fluid-crystal boundary is nea
vertical, that is at fixed density, reflecting the substantial
sence of any energy scale in the problem. The crystal is
tightly packed, and the attractions are so spread out ac
the system that it is only the repulsive part of the poten

-
i-
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r

s

FIG. 5. As in Fig. 3 withb57.5.

FIG. 6. As in Fig. 3 withb530. For the pointsA andB see the
text. At this b value the glass line passes through the metasta
liquid-gas critical point. The labels I, II, and III are chosen b
analogy with the proposition of Mushol and Rosenberg@2#. See text
for details. The shifted glass line is not represented in this figure
in Fig. 7–10.
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that is fundamental for crystallization. Indeed this is one
the important ideas in traditional liquid state theory that
tractions are not relevant to crystallization.

The asymptotic limits of solidification and melting boun
aries of this coexistence at high temperatures reflect the h
sphere limits, respectively, off.0.49 andf.0.55, as ex-
pected from many simulations and theoretical observati
@15,34#. The triple-point temperature is labeledTp . Within
the crystal phase there is also the boundary for the dyna
cally arrested state~the MCT transition line!, again with
high-temperature asymptote off.0.52 ~circles!, the hard-
sphere volume fraction for the glass transition predicted
MCT. We recall that MCT underestimates the glass transit
packing fraction by about 0.06. To call attention on this sh
we report the true MCT curve~circles! as well as the MCT
curve shifted by 0.06 in packing fraction using * as symb
This boundary is also almost vertical, again reflecting
fact that for wider wells the arrest transition is driven ess
tially, at high enough temperature by the repulsive part of
potential. Thus, no attractive glass is observed for this ra
of the potential. It has been shown theoretically@15,14#, ex-
perimentally@68#, and by simulation@16# that on decreasing
the range of the attractive potential the fluid-fluid coexi

FIG. 7. As in Fig. 3 withb560. The subscriptsc8 andp8 refer
now to the critical and triple points of the solid-solid transition.

FIG. 8. As in Fig. 3, figures forb5100.
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ence curve becomes metastable with respect to the fluid-s
one. This means that for short enough potential ranges,
liquid-gas critical point is hidden in a phase separating
gion. This has two main consequences. The coexiste
curve between the fluid and the solid is very broad, implyin
for low temperatures, coexistence between a very low d
sity fluid and a high density solid~fcc!. Also, the critical
point becomes metastable with respect to gas-solid
existence. We will return to some of the possible implic
tions of all this later in the discussion. We have calcula
the particular value of the screening parameterb, at which
the critical point becomes metastable with respect to the
density fluid-gas equilibrium, to beb* 56.05, and then pre-
sented the phase diagram at that value~see Fig. 4!. We note
that slightly different values have been previously reported
the literature. Thus, Hagen and Frenkel quote the valuesb*
57.4 using a Monte Carlo perturbation theory, and the va
b* 56 based on GEMC@16#. Their GEMC value is very
close to the value we have found. However, a number
other values have also been quoted in the literature. M
deros and Navascues@69# used a density functional approac
to determineb* 58.25, while Shukla@28# quotes a much
higher value ofb* 513. This latter value, in particular, is
much higher than previous ones and our value, and con
ering that it is based on more extensive simulations th
previous research this might be a matter of concern. T
issues in relation to the accuracy of SCOZA have been
dressed for modest values ofb in Figs. 1 and 2, where the
liquid-gas phase diagrams were shown forb51.8 andb56.
However, if we examine Table IV and Fig. 4 of@28#, we can
readily compare the simulations to the precise predicti
from SCOZA for selected values of the vapor and liqu
densities for a range of temperatures. Forb* 56, we find
remarkable agreement between SCOZA and the Shukla
liquid equilibria. Also, whilst they are not quoted, we ma
estimate the critical temperature for differing screening
rameters from these simulations, and interpolation of oth

FIG. 9. Phase diagram for the SW model forD50.03. The
crosses represent the solid-fluid phase coexistence and the s
open circles is the glass line. Note the solid-solid coexistence on
high density side of the phase diagram: its critical point is labe
by a filled circle. The position of the liquid-solid-solid triple point i
also displayed (fp8 ,Tp8).
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GIUSEPPE FOFFIet al. PHYSICAL REVIEW E 65 031407
and again conclude that the discrepancy between wha
find for b* and the Shukla result cannot arise due to a d
ference between the SCOZA and GEMC results for g
liquid systems. The problem lies in the estimation of t
crystal free energy, or entropy, or estimation of the trip
point; the other aspect of what we need to know to determ
b* . In @28# the freezing transition location is determined
the so-called one-phase entropic condition@70#. This condi-
tion implies that the freezing density is essentially const
and almost unchanged for the range ofb values 1.8 to 10
@28#. In fact, in Fig. 4, the phase diagram forb* 56.05, we
do see rather significant deviation of the freezing density
the vicinity of the critical temperature from its high
temperature limit. Indeed, comparing the other phase
grams, Figs. 5–8, we conclude that this variation is intrin
to the whole short-ranged scenario, since it is the prelud
the splitting of the solid phase into two crystalline phas
The true underlying discrepancy arises because the ent
criterion implies that attractive forces are not important
the regime of crystallization currently under discussio
whereas the perturbation theory implies that they are hig
significant. Both approaches are approximations, but i
possible to estimate the errors arising from the perturba
theory by considering the higher-order terms.

Thus, for b* 56.05, ~here kBTc* /e50.454 and fc*
50.230) we can propose to bound the errors in the per
bation theory of the crystal by reporting the ratios of t
second- to first-order terms in the perturbation series. In
regime where the low-density fluid and crystal are in eq
librium, we find that the ratio of the second- to first-ord
terms is approximately 0.0044, whilst the first-order term h
an absolute value of 10.4@71#. If this ratio represents a tru
estimate of the errors, then the perturbation theory wo
appear to be quite satisfactory. The curvature of the freez
curve appears genuine and the attendant flattening of
fluid side of the coexistence also appears quite accurate

In general, by estimating the impact of such errors
perturbation theory, we can estimate the shift of the fluid s
of coexistence, and thereby estimate errors. In doing so
find that the typical error inb* will be less than 1% from
this source. If we accept this means of characterizing
error in perturbation theory, a matter clearly based on
series being well behaved at successive orders, then
might conclude that the value ofb* 56.05, in agreemen
with Frenkel’s original calculation, is a good approximatio
If this is confirmed, then the calculations reported here
the overall phase diagram are probably amongst the m
accurate for modest values of the range parameter, de
the fact that simulation is never used. This is not the prim
motivation of our paper, but it would be an interesting w
of approaching phase diagrams in future. Despite these o
mistic estimates, more careful evaluations are required
different methods to find a truly accurate value.

We should not imply that the value ofb* is of such cru-
cial importance in the overall picture offered here. Howev
it does provide a useful check between different researc
and methods of approximating the phase behavior in tha
accurate estimation requires some satisfactory and sim
neous treatment of gas, liquid, and solid phases.
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Finally, we note that ten Wolde and Frenkel have ma
some interesting comments in relation to the kinetic p
cesses that might be expected in this regime@72#.

In Fig. 5 the caseb57.5 has been plotted. As noted by
number of authors, the metastable gas-liquid phase equ
rium curve has now flattened considerably, and the lo
density fluid-crystal coexistence~on the fluid side! has nearly
the same slope. Increase in curvature of the crystal sid
the fluid-crystal equilibrium curve is observed, arising fro
the increased influence of attractions on the crystal. The
odal line and the spinodal line in this case lie complet
within the region of fluid-solid phase separation, the trip
point has disappeared and the critical point is buried be
the flat part of coexistence curve between the low-den
fluid and the solid. As we mentioned earlier, this metasta
behavior would normally not be observable due to fluctu
tions, but for colloidal systems, globular proteins and oth
large particles, we may expect to observe such phenom
Thus, on quenching such a system, we might expect to
rather a rich pattern of behavior, depending on the den
that we quench at, and the depth of the quench. In particu
it is noted that we should be able to see a metastable gas
a liquid; the latter arresting into a glass at sufficiently lo
temperature, because the glass curve crosses the binoda
spinodal at a finite temperature. We have earlier alluded
the idea that critical fluctuations can play an important r
in the formation of crystals, for example, protein crysta
@72#. The present screening parameter regime would ex
plify this type of phenomenon since here we have a me
stable liquid and gas that are critical~for large particles this
should have some observable lifetime!. The equilibrium
phase diagram exhibits a fluid-crystal coexistence, so
have the possibility of crystal nucleation and growth ph
nomena in the presence of this metastable critical fluid, an
is this matter that ten Wolde and Frenkel have discussed@72#.
However, we also note the point that for this value of t
screening parameter, the glass curve has not begun to
verely interfere with the gas-solid equilibrium curve as y
and this is an additional advantage in the formation of cr
tals. This is in distinction to subsequent phase diagra
where the glass curve extends across much of the space

It is in fact worth reflecting on the shifted, more realist
placement of the glass transition curve~stars!. Thus, we see
that at high temperature, as expected, from 55% to 5
volume fraction values, we have a crystalline state that is
interrupted by a glass transition. However, as the tempera
is lowered, the increased importance of the attraction lead
the glass curve crossing the low density fluid-crystal coex
ence region, and beneath this, the crystal may never f
without the glass being an alternative long-lived state. T
comment is relevant also to the case ofb56.05, but forb
57.5, the curvature of the solidification curve has increa
greatly, so this effect is emphasized. This dramatic interr
tion of the crystallization scenario will become more a
more significant as the range of the potential narrows,
this will be an important theme in our discussion.

Now we turn our investigation to the case of very narro
potential ranges. In Fig. 6 we present the caseb530. The
two-phase coexistence of fluid and solid now occupie
7-12
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much larger portion of the parameter space. The gas-liq
critical point is hidden well below the fluid-solid coexisten
line and on the crystal-fluid phase boundary the effects
critical fluctuations will be much less. It is interesting to no
that the crystal side of the coexistence curve exhibits a str
deviation towards higher densities. Thus the coexisting s
will be much more dense that in the previous cases, since
strong short-ranged attraction is pulling the particles close
low temperatures. This phenomenon is the precursor o
solid-solid phase coexistence that in this case is still m
stable and lies within the sublimation curve.

The glass transition curve is most interesting. Of cour
for T→`, the curve asymptotes to the hard-core value. T
attractive forces at low temperatures now begin to stron
affect the curve so that it now turns sharply to the left, pa
ing very close to the submerged critical point. Thus, we m
tentatively assignb** 530.0 as that value of the screenin
parameter at which the submerged critical point becom
submerged by the glass, as well as by the crystal-gas cu
The inherent inaccuracies in the MCT estimate, alluded
before, may mean that theb** value may not be very accu
rate. However, the phenomenon is interesting. It means
the metastable critical fluid is now competing with a gla
transition. It will transpire that the nucleation rate of the
fluid-crystal equilibria is very low, possibly due to the hig
interfacial tension and, therefore, it is feasible that one m
be able to approach the liquid-gas equilibrium and its nea
glass transition without significant interference of the crys
The type of slowing that would arise from a combination
critical slowing down and glassy slowing down has not be
discussed in the literature previously. It would be an intere
ing problem. However, the phenomenon discussed h
would significantly affect the possibility to form high-qualit
crystals, perhaps rendering it essentially impossible. E
though the glass may eventually decay in favor of the crys
this will never lead to high quality crystals. Of course,
alternative view of this situation is that under these con
tions it may be possible to make interesting materials t
have critical fluctuations frozen into the glassy phase. Pro
scientists wish to make good quality crystal; materials sci
tists often wish to make interesting materials. Our comme
are applicable to both situations.

It is interesting also to note that in this case the gl
curve passes close to the gas-liquid critical temperature,
then dips and intersects the binodal line below the criti
density, passing through the spinodal region. Such a scen
has been found by Verduin and Dhont@4# in experiments on
colloidal systems. We should stress that for low densities
glass curve itself may not be reliable, as was discusse
@11#. The situation in relation to this point is, as yet, n
settled.

We now discuss the case of extremely narrow wells. I
worth noting that the previous two values of the screen
parameters represent the typical range of values accesse
those studying depletion-induced attraction between co
dal particles@5# or globular proteins@1,73#. The next set of
phase diagrams~Figs. 7 and 8! represent the limit of these
types of interaction and may correspond to cases, suc
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grafted coatings on latex particles where we can access m
narrower ranges of potentials.

In Figs. 7 and 8, we present the casesb560 and b
5100, respectively. For numerical reasons, it is difficult
extend fluid-solid coexistence curves in the low-density
gion of the phase diagram. This is evident from the trun
tion of the phase diagrams, and has no fundamental sig
cance. As already noted in this paper, SCOZA has not b
tested with simulations for such narrow ranges of the attr
tive potential. On the other hand, the main phenomena
pear using other methods, so at least these are expected
reliable. We return to this point at the end of this section

In both figures we observe similar features. The spino
line is now buried deep in the sublimation curve as is
critical point. The most striking feature of these phase d
grams is the presence of a solid-solid coexistence. This fi
order phase transition was already present for less nar
ranges but there it was metastable~see, for example, the
shoulder in the phase diagram forb530). This phase bound
ary represents the coexistence of two crystals with the s
lattice structure but different lattice spacing and con
quently different density@12#. It is terminated by a critical
point of the solid-solid coexistence. The origin of this c
existence is interesting. The presence of short-ranged at
tive interactions causes competition with the hard-core rep
sive interaction. The fact that both have variations that oc
on very short-length scales means that the system ma
forced to ‘‘choose’’ between the attractive-dominated crys
and the repulsive-dominated crystal.

In the low-density crystal region, i.e.,f,0.65, the crys-
tallization is dominated by entropic effect. In other words t
system chooses to optimize the entropy to form an fcc str
ture. Increasing the density, the particles become closer
at some density they are forced to remain in the attrac
shell of their nearest neighbors. When this happens, there
decrease in energy, which leads to an ‘‘attractive’’ crystal
is the energy that stabilizes the phase. It is indeed clear
such a phenomenon can be present only if the range of
attractive potential is short enough. We may note that
isostructural phase transition has been already discu
theoretically for other kinds of potential characterized by
short-range potential@13# and indeed was also detected b
simulation@12,14#. It is almost certainly a genuine phenom
enon. Here the isostructural phase transition is present
both b560 andb5100. Decreasing the range, moves t
critical point of the transition to higher density and, indee
this is also in agreement with the behavior in simulatio
@12#. It is interesting to note that it is possible to find a trip
point Tp at which the two solids and the fluid coexist at th
same temperature.

In Figs. 7 and 8 the glass lines have also been plot
They both tend to the hard-sphere limit for high tempe
tures, and bend towards low densities with decreasing t
perature, as we have seen in the earlier cases. For s
enough interaction ranges the glass transition line does
pass close to the critical point. We note that forb5100 the
glass curve appears to break into two branches, with an
parent discontinuity at that point markedPD in the figure.
The low-density branch is called attractive glass, while
7-13



o
lo
d
b
n

n

er
fo
th
t

o
w
i-
m

B
m
f

un
n
th

W
n
is
a

ig
er
ie
lid
hi
t p

ap-
of

wa
e a
sin-
e
ive
two
ase
the

in-
n-

tal
log

tal
ical
be
is
int

wo
on-
to
the
So
the
ged
by

ed
of

rid
and

e
gy
w it
se
tial

he
red
this
ny

ical
eir
so-
rest
ng.
ars
to
est
vel-

-

GIUSEPPE FOFFIet al. PHYSICAL REVIEW E 65 031407
right-hand branch is called repulsive glass. For very sh
ranges, in other types of attractive potentials, we have
cated a glass-glass transition, a transition between two
ferent type of glasses originated either by repulsion or
attraction @10#. For the Yukawa fluid such a phenomeno
also appears to be present, although it has not yet bee
vestigated in detail@50,51#.

Both the results for the Yukawa potential considered h
and those for the square-well fluid that we present next
comparison, clearly show that the distinction between
attractive solid and repulsive solid becomes sharper as
range of the potential becomes narrower.

To present in a coherent way, the role of the attractions
the crystal, glass and liquid-gas coexistence line, we sho
Fig. 10 the dependence ofTc on b and both the glass trans
tion temperature and the solid-fluid first-order transition te
perature at the critical packing fractionfc . For complete-
ness, the inset showsfc(b).

B. Square-well potential

Finally we discuss a single example for the SW model.
doing so, we wish to make the point that the main pheno
ena that have been discussed above are independent o
details of the shape of the potential, and are essentially
versal. We note, however, that the SW phase diagram is
expected to be so quantitatively accurate as that of
Yukawa potential for reasons discussed in Sec. III.

The SW model was solved as discussed in Sec. II B.
discuss a case where the range of the potential is very
row, i.e.,D50.03, and the result is presented in Fig. 9. It
clear that the situation is very similar to that for the Yukaw
fluid, i.e., a solid-fluid phase coexistence extends from h
temperatures~where again it reaches the correct hard-sph
limit ! expanding dramatically towards low and high densit
for low enough temperatures. An isostructural solid-so
phase transition, with a critical point, is also present in t
case. Indeed a limited correspondence between differen
tentials based on their general characteristics~effective core,

FIG. 10. Critical temperatureTc plotted as a function of the
screening parameterb. The glass transition and the solid-fluid co
existence temperature at the critical packing fractionfc are also
displayed. For completeness, in the inset thefc as a function ofb is
also shown.
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range, and energy scale! has been recently proposed@74#,
and it is possible that this idea may have more general
plicability. We hope to return to this more general concept
corresponding states at a later point@75#.

The glass line also has a very similar shape to the Yuka
fluid. As noted above, and in earlier publications, we hav
glass-glass transition, terminating in a higher-order glass
gularity, theA3 transition@10#. We believe that the presenc
of these two types of glass, the attractive and the repuls
glass, is the disordered analog of the presence of the
types of crystals discussed in some detail above. In this c
we may draw also an analogy between the presence of
isostructural critical point and the presence of this MCT s
gularity A3 end point at which the two glasses become ide
tical. Also as the well width gets larger, the crystal-crys
critical point vanishes. We believe that the glass-glass ana
of this is theA4 point @10,18#.

It is quite reasonable to suppose that for every crys
there should be an analogous glass and for every crit
point of such a crystal-crystal equilibrium there should
such an MCT singularity. It will be interesting to explore th
idea in future. It has the appeal of a potential general jo
classification of equilibrium and glass transitions.

VIII. CONCLUSIONS

We shall use the conclusions section of this paper for t
purposes. Thus we shall attempt to sum up the practical c
clusions of our calculations, but, at the same time, try
considerably broaden the discussion to make contact with
main experimental situations where they might be useful.
far, we have focused the discussion quite strongly on
narrowly defined consequences of studying a short-ran
hard-core attractive Yukawa potential, so we will begin
summing up that aspect of the discussion.

First, from the technical point of view, we have achiev
a certain success combining a good liquid-state method
calculation with the perturbation theory. The resulting hyb
method takes free energies from SCOZA for the gas
liquid states, and from perturbation theory for the crystal. W
have indicated, in broad terms, how this overall strate
could be applied to phase diagrams, in general, and ho
may be qualified by checking of errors and relating the
errors to shifts in the phase boundaries. Given the poten
to exploit powerful methods of liquid-state theory and t
remarkable success of perturbation theory for the orde
state when one chooses the correct zeroth-order state,
may be a competitive manner in which to proceed for ma
problems in future.

On the other hand, the methods to determine dynam
arrest~e.g., MCT! are not nearly so developed, despite th
relative success in colloidal science. In particular, the ab
lute values of the density and temperature at which the ar
takes place is not correct. This should not be surprisi
Equilibrium theory has had the benefit of many more ye
of development, and much more effort devoted to bring it
this level of achievement whereas for the dynamical arr
alternative routes or different approaches have been de
7-14
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PHASE EQUILIBRIA AND GLASS TRANSITION IN . . . PHYSICAL REVIEW E65 031407
oped only recently@76#. However, this aspect is quite incon
venient.

As we try to apply this theory to more realistic situatio
in colloids, materials and biology, we see increasingly t
important motif of a competition between the equilibriu
Boltzmann view of the matter and the dynamically arres
aspects. So far, these two fields have developed somewh
independent manner. However from the point of view
these practical topics in nature, there is no distinction, an
is often not the separate behaviors, but the interplay
competition between them that is primary to the scient
issue. This paper is one of the first attempts to make con
tions between these phenomena, but one can clearly se
limitations. For greater insight into these topics, we will ha
to address the possibility to both improve systematically
methods of studying arrest transitions, and also their con
tency with equilibrium transitions. This must represent o
of the important technical challenges in coming years.

From a broader perspective, we have shown that when
range of the potential becomes short in comparison to
core size, the subtle interplay between entropy and en
begins to change its character. The range of densities
which configurational entropy is relevant is much reduc
and one begins to lose the liquid state in favor of crystals
arrested glassy states. The reasons have been discussed
beginning of the paper. In essence they amount to the
that to retain the benefits of short-ranged attractions, the
ticles must not depart too much from their typical interp
ticle distance, or they are no longer in their mutual attract
well. This loss of freedom of motion and restriction of favo
able configurations leads to a lowered configurational
tropy. Another way of expressing the same idea is that
short-ranged potential leads to the loss of easy fluctuat
that can open the cage of neighboring particles that tra
central particle. The probability of finding such an ‘‘ope
ing’’ of the cage is much reduced, and the time during wh
a particle is localized by its neighbors increases, divergin
the arrest transition to form the ‘‘attractive glass’’ that w
have discussed. As the range of the potential narrows,
means of egress permitted to the particles is further limit
and the attractive glass becomes more favored. This glas
therefore, an effective competitor to the liquid and crystall
phases of the system, and this is reflected in the fact tha
fluid phase is eventually erased by the glassy phase and
critical point is submerged underneath the curve of ar
transitions. This aspect should not be confused with the e
librium phase diagram, although it is interesting that th
are many parallels between the two.

As we discussed before, when the range of the poten
becomes very short, the competition between entropy
energy is responsible for the formation of two distinct crys
phases. Coming from the fluid side, a crystalline phase do
nated by repulsion is present. This state arises from the
that, at such densities, the entropy of a system made of
ticles free to move only in their own Weigner-Seitz cell of
fcc structure is larger then that of the metastable fluid.
named this phase a repulsive crystal by analogy with
glass. On increasing the density, this crystal becomes
stable and makes a transition to a smaller Weigner-Seitz
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so that particles mainly stay within the attractive well. T
structure of this phase, that we named attractive crystal,
more compact fcc crystal that optimizes the free energy
means of reducing the potential energy. The result at
point is that the crystal structure may adopt two differe
states. The situation is analogous to the case of a gas-li
phase separation where the gas~low density! phase optimizes
the entropy and the liquid~high density! has a much lower
energy.

The implications of all this are profound for practical sit
ations. For reasons given earlier, many systems such as
loids, globular proteins, fullerenes, nanoparticles, precera
particulates, and others have this property of a short-ran
attraction. In all these cases ‘‘precipitation,’’ ‘‘gellation,
‘‘glassification,’’ or solidification are frequently the com
monly observed outcomes. In cases where we conscio
seek to make such a state, this is satisfactory and it rem
only to adjust the potential to have sufficiently short range
obtain the required properties of the solid. However,
cases such as globular proteins, and nanoscale or meso
ordered materials with prescribed optical properties, the s
ation is quite different. Here we seek to make a crystal.
fact, reviewing the phase diagrams in Figs. 5–8, we can
why the crystal is hard to access. If we work to the right s
of the glass curve~point markedA in Fig. 6!, universally we
may expect to fall into the glass state; there is essentially
choice. Since the glass curve moves to low density, this
serious restriction. However, we may choose to work with
the two-phase low-density fluid-crystal coexistence regim
but to the left of the glass curve~point markedB in Fig. 6!.
The outcome is then a question of kinetic control and w
not be completely settled by diagrams, such as, we are d
ing. However, we can make some educated comments. T
if we work in the two-phase regime of gas solid (B), we may
nucleate and grow crystals. Whether the proximity to a me
stable critical point is advantageous or not, as discussed
Hagen and Frenkel@16# is not our primary concern here
though this is an interesting proposition. The broader poin
that by nucleating to the left of the glass curve one may en
the crystalline region~thus form a macroscopic crystal! by a
route not described by the ‘‘adiabatic’’ description here, a
thereby avoid some of the complications of the glass. T
renders the formation of crystal at least feasible, althou
where the glass curve runs through the two-phase regio
will remain difficult to form truly large high quality crystals
From this region where it is possible to crystallize, o
should also exclude the two-phase region, whether it is m
stable or not, since the partial~micro-!phase separation, crys
tallization and glassification, all competing dynamically
unlikely to produce a good crystal also. This leaves only
region bounded to the right by the glass curve, to the bott
by phase separation, and to the top by the gas side of
gas-crystal phase-coexistence as a likely candidate for fo
ing good crystals. This is interesting. It leads us to supp
that for a fixed short range of the potential there is a ‘‘pra
tical crystallization region’’ in the temperature-density plan
irrespective of the specific features of the equilibrium pha
diagram. However, more importantly, there is also a limit
regime of interaction ranges where such a slot is significa
7-15
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large enough to be accessed experimentally. We believe
much of the discussion that has taken place in the last
years in the literature in relation to protein crystallizati
@1,2,77# is almost certainly heading in the correct directio
Thus, Mushol and Rosenberg@2# show in their Fig. 12 the
typical situation for a globular protein phase diagram. Th
exhibit a phase diagram that has~a! two metastable liquid
phases in equilibrium, a more and less dilute phase of pro
~gas-liquid in our language!, ~b! a ‘‘gellation curve’’ that we
associate with the glass curves in our work, and~c! a fluid-
crystal coexistence regime. They name the ‘‘good’’ regim
for crystallization zone I, and the others II, and III. We ha
also essentially partitioned our phase diagram into the s
types of zones, and concluded that this gas-crystal reg
described above by the glass, binodal and gas side of
coexistence boundary~zone I in their language! would be the
most favorable for formation of crystals. For the sake
comparison in one of our figures~Fig. 6! that has a range
typical of globular proteins, we have marked regions I–III
analogy with Ref.@2#.

We would argue that the present work, with its pha
diagrams, and discussion of control parameters is the q
titative expression of these ideas that have surfaced in
protein crystal literature. This is potentially encouragin
since it opens the possibility to make more quantitative st
of these systems.

However, perhaps the most promising directions invo
the study of the current model and underlying ideas in m
depth to see what independent kinetic routes exist to
formation of crystals. We have seen how these phase
grams are indicative of the kinetic behavior, but we belie
that there will be much more significant insights as to how
form high quality crystals in these regimes if a deeper und
.
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standing of kinetics is acquired in future. In particular, t
glass analogy seems promising as a means to characteriz
more confined phase space experienced by these sys
Aging, and kinetic phenomena in general, is an arena tha
growing in importance@78–82# and may offer significant
advances. The traditional viewpoint of activated proces
and simple kinetic processes is without doubt incomplete
the limit where we approach the rather confined phase sp
characterized by approach to a glass transition. The rea
tion that we are in a ‘‘glassy’’ scenario may well assist
development of new theories of kinetics of crystallizati
more appropriate for such questions.

In any case, one can hardly doubt the high degree
practical significance that kinetic phenomena associated
short-ranged potential systems will have in the coming f
years. Given that we discuss a model potential that is o
slightly different from those long considered in liquid-sta
theory, we must be intrigued by the novelty in suppose
simple situations.
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