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Microscopic distribution functions, structure, and kinetic energy of liquid and solid neon:
Quantum Monte Carlo simulations

Martin Neumann
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~Received 30 July 2001; published 5 March 2002!

We have performed extensive path integral Monte Carlo simulations of liquid and solid neon, in order to
derive the kinetic energy as well as the single-particle and pair distribution functions of neon atoms in the
condensed phases. From the single-particle distribution functionn(r ) one can derive the momentum distribu-
tion and thus obtain an independent estimate of the kinetic energy. The simulations have been carried out using
mostly the semiempirical HFD-C2 pair potential by Azizet al. @R. A. Aziz, W. J. Meath, and A. R. Allnatt,
Chem. Phys.79, 295 ~1983!#, but, in a few cases, we have also used the Lennard-Jones potential. The
differences between the potentials, as measured by the properties investigated, are not very large, especially
when compared with the actual precision of the experimental data. The simulation results have been compared
with all the experimental information that is available from neutron scattering. The overall agreement with the
experiments is very good.

DOI: 10.1103/PhysRevE.65.031203 PACS number~s!: 61.20.Ja, 61.12.2q, 61.25.Bi, 67.20.1k
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I. INTRODUCTION

The properties of the condensed noble gases have
studied thoroughly in the last decades, and many impor
lessons have been learned from these simple systems.
well-known concepts that have emerged are the law of c
responding states and the virtual equivalence of the var
interatomic pair potentials, on a reduced scale of length
energy. The almost universal use of the Lennard-Jones~LJ!
potential is based on this knowledge. In fact, this sim
interaction potential not only reproduces the qualitative
havior of condensed matter properties, but it also gives a
quantitative account of the reality. For example, it is w
known that many properties of the heavier noble gases~Ar,
Kr, and Xe!, including the microscopic structure factor, a
reasonably well reproduced by a classical statistical mech
ics theory, using simple LJ potentials@1,2#. It is only when
pushing the available experimental techniques to the m
mum allowed precision that a clear distinction between
LJ potential and a more realistic model can be detected in
microscopic structure function obtained from a neutron d
fraction experiment@3,4#. On the other hand, some expe
mental findings seem to be at variance with these unify
concepts. For example, the lighter noble gases Ne and
cannot be described within the same framework, and
was attributed either to the emergence of quantum mech
cal effects or to a poor scaling of the interaction potentia

As a consequence of these facts, the concept of an un
sal scaling potential was relaxed, and a separate analys
the interactions of the various noble-gas systems was
formed. However, the large amount of work done recen
and the most accurate determinations of the intermolec
interactions in noble-gas systems@5# again lead to the con
clusion that the various potentials agree to within 1% o
reduced scale@6#. This leads to the obvious conclusion tha
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provided the irreducible many-body interactions have ne
gible effects, the only difference among the various nob
gas systems resides in the magnitude of the quantum eff

If the scalable potential is assumed to be of the LJ for
then the key parameter that gives a measure of the expe
magnitude of quantum effects is the reduced value of
quantum of actionh ~Planck’s constant!. This is defined as
@7#

L* 5
h

Am«s2
, ~1!

wherem is the atomic mass, and« ands are, respectively,
the well depth of the potential and the particle diameter. T
quantum parameterL* can also be interpreted as the rat
between the so-called de Boer wavelength@8# and the dis-
tance parameters of the LJ potential. In a condensed sy
tem, where the average intermolecular distance is of the
der of s and the typical interaction energies are of the ord
of «, this ratio gives a measure of the relative size of the
Boer wavelength compared to the average interatomic
tance. For LJ heliumL* 52.68, while for neonL* 50.59.
For argon and the heavier noble-gas systems this value d
significantly, and an essentially classical behavior is expec
@9#.

As long asN-body statistical mechanics calculations we
restricted to classical computer simulations, an effective
vestigation of the deviation from classical behavior was d
ficult. Attempts to explain the discrepancies of the micr
scopic structure of liquid neon have appeared in
literature, and a perturbation method based on the Wig
Kirkwood ~WK! expansion of the quantum mechanical o
erators was used to resolve the neon anomaly@10,11#. How-
ever, the development of genuinely quantum mechan
©2002 The American Physical Society03-1
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MARTIN NEUMANN AND MARCO ZOPPI PHYSICAL REVIEW E65 031203
methods of computer simulation allows one to tackle
problem more directly. In particular, the powerful path int
gral Monte Carlo~PIMC! simulation technique has bee
used to compute the properties of such prototypical quan
systems as normal and superfluid helium@12–14#.

At present, the computer simulation machinery is ava
able to evaluate the static equilibrium properties of co
densed systems, both on a classical or quantum mecha
level. This may be done by means of classical Metropo
Monte Carlo simulations or by quantum mechanical PIM
Unfortunately, the development of fully quantum mechani
methods for calculating dynamical properties is still in
infancy. In spite of the numerous attempts made recentl
extend the molecular dynamics method to quantum syst
@15–21# the general usefulness of the method still has to
demonstrated on an experimental basis.

Apart from the macroscopic thermodynamic and transp
properties, the primary experimental access to the collec
microscopic features of condensed noble gases is throug
radial distribution functiong(r ) or, to be more precise, it
Fourier transform, the structure factorS(Q) @1#. Experiments
probing the microscopic dynamic properties are available
well, but their interpretation by means of simulation tec
niques is limited to the classical ones. However, neut
Compton scattering~NCS!, a recently developed exper
mental technique, provides a direct route to the atomic m
mentum distributionn(p) whose second moment yield
the single-particle kinetic energyEk @22#. For classical
monatomic systems, by the equipartition theorem,Ek
5(3/2)kBT, but this value may be substantially exceed
when quantum effects become relevant@23–30#. The mo-
mentum distribution of the particles and the expectat
value of the kinetic energy are quantities that can be rea
computed by PIMC simulation@12#. Thus, even thoughn(p)
is not an intrinsically dynamic property, the possibility
comparing experimental and simulation results for the m
mentum distribution opens a new direction of research
could have interesting developments in the not too dis
future.

The key quantity that may be computed by PIMC is t
single-particle density matrixn(r ), whose Fourier transform
yields the momentum distributionn(p) @31#. For a classical
system,n(p) has a Gaussian shape. However, it is kno
that the simple Gaussian shape is lost for a strongly quan
mechanical system such as4He in the vicinity of thel tran-
sition @13,32–37#, where the emergence of a long-range t
in n(r ) is interpreted as a measure of the condensate frac
One might ask whether significant deviations from a Gau
ian distribution are also observable in less strongly quan
mechanical systems. In this context, liquid and solid ne
represent an obvious choice.

The properties of liquid and solid neon have been m
sured, and the available experimental data can be comp
with the results of either classical or quantum mechan
simulations. Neutron diffraction experimental data are av
able, which give the structure factor of liquid neon@38# and
thus also the radial distribution function@39#. Moreover,
NCS experiments have been published, both for the liq
and the solid phase, which clearly show deviations from
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classical value of the kinetic energy@23,24,30#. In the analy-
sis of the experimental data, the shape of the momen
distribution is assumed to be almost Gaussian, and there
the comparison with the available experimental results w
carried out@30# at the level of the width of the distribution
i.e., the translational kinetic energy. However, in a more
cent experiment in the liquid phase it is claimed that t
momentum distribution is somewhat sharper than the Ga
ian @40#. Therefore, one of the aims of the present set
simulations is to investigate the detailed shape of the m
mentum distribution in a more systematic way.

Previous simulation results exist for the LJ potential, bo
in the liquid @10,11# and in the solid phase@41,30,42#. These
were either classical~in the liquid, using the Wigner-
Kirkwood expansion! or quantum simulations~in the solid,
using either an effective potential Monte Carlo technique
the PIMC technique!. Since the potential model was su
pected as a likely cause of the differences found in the co
parison with the kinetic energy data of an earlier experim
@23,24,41#, we have carried out our simulations using mos
the HFD-C2 potential for neon suggested by Azizet al. @43#.
However, a more recent experiment carried out in the so
phase has removed some of the discrepancies and has s
a rather good agreement with the simulations@30,42#. In this
paper, we will present a comprehensive comparison of
available experimental data with the present as well as w
previous simulation results. This comparison will includ
virtually all the available data on the kinetic energy and
the pair distribution function.

II. PIMC SIMULATIONS

A. Model potentials and implementation

We have performed an extensive series of simulations
neon~atomic mass 20.183!, covering a range of temperature
and densities, both in the liquid and solid phase. Most of
simulations are based on the HFD-C2@43# pair potential, but
a few additional runs were also carried out for the sim
Lennard-Jones potential with parameter set«LJ536.8 K and
sLJ52.789 Å @44#. All simulations were performed at con
stant volumeV, temperatureT, and number of particlesN,
and the particles were assumed to obey Boltzmann statis
Pair interactions were truncated spherically at a dista
equal to half the edge length of the cubic simulation box, a
potential energies and pressures were corrected in the u
way by integrating over a uniform density beyond the cuto
Apart from some test runs with smaller systems, we ha
generally worked withN5256 particles in the liquid andN
5108 in the solid. The Trotter number~see below! was var-
ied in the rangeP54, . . .,64, to monitor the convergence t
the quantum mechanical limit.

All our programs are more or less straightforward imp
mentations of the path integral Monte Carlo method@45–
47,14# in the canonical ensemble, using the so-called prim
tive algorithm. As with most variants of PIMC, this is base
on a factorization of theN-body density matrix
3-2
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r~r1
(1) , . . . ,rN

(1) ;r1
(P11) , . . . ,rN

(P11) ;b!5E )
k52

P

dr1
(k)
•••drN

(k)r~r1
(1) , . . . ,rN

(1) ;r1
(2) , . . . ,rN

(2) ;b/P!

3•••r~r1
(P) , . . . ,rN

(P) ;r1
(P11) , . . . ,rN

(P11) ;b/P!, ~2!
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which relates the density matrix at temperatureb51/kBT to
a convolution of density matrices at the higher temperat
b/P. Here, r1 , . . . ,rN are the positions of particle
1, . . . ,N, andP, the Trotter number, is the number of inte
mediate states~plus one!. In the primitive algorithm, the den
sity matrices at temperatureb/P are approximated by thei
high-temperature limit, in which they factorize into a produ
of free-particle density matrices and a term containing
intermolecular potentialU,

r~r1
(k) , . . . ,rN

(k) ;r1
(k11) , . . . ,rN

(k11) ;b/P!

'S mP

2pb\2D 3N/2

)
i 51

N

expH 2
mP

2b\2
@r i

(k11)2r i
(k)#2J

3expH b

2P
@U~r1

(k) , . . . ,rN
(k)!

1U~r1
(k11) , . . . ,rN

(k11)!#J . ~3!

Assuming identical, distinguishable particles, the canon
partition function is given by

Q5
1

N! E dr1•••drNr~r1 , . . . ,rN ;r1 , . . . ,rN ;b!

'
1

N! S mP

2pb\2D 3NP/2E )
k51

P

dr1
(k)
•••drN

(k)

3expH 2
b

P F(
i 51

N
mP2

2b2\2 (
k51

P

~r i
(k11)2r i

(k)!2

1 (
k51

P

U~r1
(k) , . . . ,rN

(k)!G J . ~4!

This looks like the configurational partition function, at tem
peratureb/P, of a system of classical ring polymers~labeled
i 51, . . . ,N), in which successive beads are connected
harmonic springs with spring constantmP2/b2\2, and where
only beads with the same indexk are allowed to interac
through the intermolecular potentialU. For the Trotter~or
bead! index k periodic boundary conditions apply, i.e
r i

(P11)5r i
(1) .

Expectation values of observables depending only on
ticle coordinates~but not on their momenta!, such as the
intermolecular potential energy, the virial, or the pair cor
lation functiong(r ), are readily calculated as averages of t
general form
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A~r1 , . . . ,rN!5
1

Q

1

N! S mP

2pb\2D 3NP/2

3E )
k51

P

dr1
(k)
•••drN

(k)e2(b/P)F

3
1

P (
k51

P

A~r1
(k) , . . . ,rN

(k)!, ~5!

whereF is the temperature-dependent potential given by
expression in square brackets in the exponential in Eq.~4!.
An estimator for the kinetic energy is obtained by applyi
the thermodynamic relationshipE5](bF)/]b to Eq. ~4!
and subtracting the expectation value of the potential ene
Here,E is the total energy andF is the free energy given by
bF52 ln Q. The result is

Ek5
3NP

2b
2

1

P K (
i 51

N
mP2

2b2\2 (
k51

P

~r i
(k11)2r i

(k)!2L . ~6!

According to this ‘‘crude’’ estimator@44# the translational
kinetic energy is given by the difference between a cons
and the energy stored in the ‘‘intramolecular’’ springs.

Both, the primitive algorithm and the crude energy es
mator, are sometimes regarded as inefficient and numeric
less than optimal@14#. While it is true that using the primi-
tive algorithm rather large Trotter numbers are required
approach the quantum mechanical limit, its principal adv
tage is the ease of implementation that is comparable to
of a classical monatomic system. Also, in our experience
crude energy estimator is not plagued by excessive fluc
tions @48#, at least for the Boltzmann systems we have co
sidered so far.

An equally important implementation detail affecting th
overall efficiency of the simulation is the strategy for sa
pling the intramolecular coordinates~i.e., the relative bead
positions within a polymer!. Since the intramolecular spring
usually are extremely stiff compared to the intermolecu
potential, random displacements of individual beads are l
ited to rather smaller step sizes, resulting in a very ineffici
sampling of the intramolecular configuration space, even
one uses different displacements for individual beads and
center of mass of the polymer. Therefore, in all our simu
tions involving closed ring polymers~but not in the simula-
tions involving open polymers described in Sec. II C!, we
have sampled the intramolecular coordinates directly fr
the free-particle density matrix@the contribution to the Boltz-
mann factor originating from the first term in the exponent
in Eq. ~4!#, so that each single-particle move consists of
independently sampledcompleteset of intramolecular co-
3-3
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TABLE I. PIMC simulations of liquid neon with the HFD-C2 pair potential andN5256 particles.P is the
number of beads on the classical ring polymers~Trotter number!, xA the fraction of accepted trial move
~acceptance ratio!, andR the rms radius of the ring polymers.Ek andU are the kinetic and potential energie
and p is the pressure. Values in parentheses are from simulations with the Lennard-Jones potent
statistical errors on the kinetic energy are of the order of a few units in 1022 K and appear to slightly
increase with the Trotter number. Typical errors on the quantum mechanical limits are estimated to be
0.1 K, i.e., much smaller than the available experimental errors.

r T P Passes xA R Ek /N U p
(nm23) ~K! (Å ) ~K! ~kJ/mol! ~atm!

31.70 35.3 4 250 000 0.335 0.124 59.31 21.460 243
8 250 000 0.335 0.127 60.03 21.457 238
16 250 000 0.335 0.128 60.37 21.456 237
32 250 000 0.335 0.129 60.34 21.456 236

~32! ~500 000! ~0.339! ~0.129! ~60.25! (21.450) ~20!

Expt. 66.463.3 21

34.61 35.1 4 250 000 0.480 0.123 60.20 21.595 42
8 250 000 0.482 0.127 61.09 21.591 48
16 250 000 0.482 0.128 61.38 21.590 52
32 250 000 0.482 0.129 61.44 21.592 51

~32! ~500 000! ~0.482! ~0.129! ~61.39! (21.576) ~145!
Expt. 69.064.7 137

36.28 25.8 4 250 000 0.466 0.141 47.85 21.735 2144
8 250 000 0.470 0.147 49.19 21.730 2131
16 250 000 0.472 0.148 49.60 21.728 2128
32 250 000 0.472 0.148 49.72 21.729 2127

~32! ~500 000! ~0.471! ~0.148! ~49.76! (21.707) (29)
Expt. 52.863.7 1
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ordinates and a random displacement of the polymer’s ce
of mass. To be consistent with this sampling scheme,
Metropolis criterion for the acceptance or rejection of t
trial move now only involves the difference inintermolecu-
lar energies, since the intramolecular part has been fact
out from the probability density. The free-particle dens
matrix itself is most conveniently sampled by transformi
the intramolecular coordinates in such a way that the res
ing probability density is a product ofP21 independent
Gaussians. This has the additional advantage of isolating
center of mass of the polymer as an independent unif
random variable for which rather large displacements can
made. The required transformation is not unique, but
obvious choice is the Fourier transform used to diagona
the linear chain in elementary solid state physics. We h
found that PIMC based on the direct sampling of the fr
particle density matrix is a very efficient implementation
long as the spread of the free particle is not apprecia
larger than the extent of the single-particle density matrix
the condensed phase. In that case the rate of accepted m
drops to a low value~cf. the lowest temperature simulatio
of the solid in Table II!.

B. Thermodynamic states

The thermodynamic conditions and the details of o
PIMC simulations in the liquid phase are summarized
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Table I. The density and temperature of each state point w
chosen to match the experimental conditions of Ref.@23#.
Each simulation was started either from a random confi
ration or a perfect fcc lattice ofN5256 quantum particles
~represented by classical ring polymers with Trotter numb
in the rangeP54, . . .,32) and consisted of an equilibratio
stage of 20 0003M passes~attempted moves per particle!,
followed by a production stage of at least 50 0003M passes.
Here M is the ‘‘dilution factor,’’ i.e., the number of passe
performed before analyzing the next configuration. In t
present simulations we have always usedM55. In Table I,
xA is the acceptance ratio, i.e., the fraction of accepted t
moves,R is the rms spread of the ring polymers,Ek is the
kinetic energy,U is the potential energy, andp is the pres-
sure.

It is interesting to note that the size of the quantum effe
in the liquid phase, even though not negligible, is not ve
large, as is evident from the comparison between the kin
energy per particle and the classical limit (3/2)kBT. Another
indication of the moderate role of quantum mechanics
these relatively high temperatures is the fast convergenc
the various thermodynamic quantities with the Trotter nu
berP. This is a consequence of the fact thatR, the positional
‘‘spread’’ of the quantum particles, is at most 5% of th
atomic diameter. While all other entries in the table are
the HFD-C2 potential, the results shown in parentheses~for
3-4
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MICROSCOPIC DISTRIBUTION . . . PHYSICAL REVIEW E65 031203
P532 only! were obtained using the LJ model. We obser
that the only significant difference between the two pot
tials is in the results for the pressure, with the LJ valu
being consistently much closer to the experimental on
Since the HFD-C2 pair potential, by construction, is supe
to LJ in describing the experimental pair properties, this f
may be interpreted as an indication that the LJ model ef
tively accounts for irreducible three-body and higher-ord
interactions.

The thermodynamic conditions and the details of o
simulations in the solid phase are collected in Table II. Sin
there are no experimental pair correlations available for co
parison and there was thus no need to calculate the lo
range structure, we limited the number of particles in
solid to N5108, but extended the variation of the Trott
number to the rangeP54, . . .,64. The density and tempera
ture of each state point were now chosen to match the
perimental conditions of Refs.@24# and@30#. As before, each
simulation was started from a perfect fcc lattice and equ
brated for 20 0003M passes, with the dilution factor aga
set toM55. In order to compensate for the loss in statisti
information ~due to the lower number of particles compar
to the previous set of simulations!, the production stage wa
extended to at least 100 0003M passes. At the lowest tem
perature, where the acceptance rate for direct sampling f
the free-particle density matrix drops by an order of mag
tude, the runs with the highest Trotter numbers were subs
tially longer.

Some of the simulations in the solid phase are charac
ized by a much lower temperature than in the liquid. The
fore, one may expect considerably larger quantum effe
and this is the reason why we have extended the maxim
Trotter number fromP532 to 64. The results in Table I
confirm this expectation. For instance, we find that when
temperature is lowered fromT526.4 to 4.7 K, the kinetic
energy per particle decreases only from 54 to 41 K, th
deviating more and more from the classical equipartit
theorem and approaching the ground state value. As in
case of the liquid, the entries given in parentheses were
tained from additional runs with the LJ potential and a
generally close to the results for the HFD-C2 model. S
stantial differences are only found for the pressure, where
LJ potential again outperforms HFD-C2, although the ab
lute values obtained with such small systems are proba
not too reliable.

C. The single-particle density matrix

The single-particle density matrix for our system of ide
tical particles obeying Boltzmann statistics may be defin
as

n~r !5
1

Q

1

N! E dr1•••drN

3r~r1 ,r2 , . . . ,rN ;r11r ,r2 , . . . ,rN ;b!. ~7!

Its Fourier transform is the single-particle momentum dis
bution,
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n~p!5
1

~2p\!3E dre2( i /\)p•rn~r !, ~8!

which is a properly normalized distribution function, whi
the normalization ofn(r ) is such thatn(0)51. In the clas-
sical limit both functions reduce to Gaussians: the famil
Maxwell distribution of momenta

n~p!5S b

2pmD 3/2

e2b(p2/2m), ~9!

and

n~r !5e2(mr2/2b\2). ~10!

In the analysis of neutron Compton scattering experimen
is usually assumed thatn(p) is Gaussian also for quantum
mechanical systems, so that the single-particle kinetic ene
may be obtained from the width of a Gaussian fitted ton(r )
or n(p), e.g.,

n~r !5expS 2
m~Ek /N!

3\2
r 2D . ~11!

Path integral Monte Carlo simulations, at least in th
conventional implementation, only allow the calculation
averages for which knowledge of the diagonal elements
the density matrix is sufficient. This covers the majority
cases in which only thermodynamic or structural informati
is sought. On the other hand, the calculation ofn(r ) also
requires information about the off-diagonal elements. The
fore, in their first calculation by PIMC of the single-partic
density matrix of normal and superfluid helium, Ceperl
and Pollock@13# proposed two complementary methods
determinen(r ) by simulation.

In the first approach~‘‘virtual displacements’’!, advan-
tage is taken of the fact that Eq.~7!, after performing a
factorization to temperatureb/P and replacing the las
factor by r(r1

(P) , . . . ;r1
(1) , . . . ;b/P) 3 @r(r1

(P) , . . . ;
r1

(1)1r , . . . ;b/P)/r(r1
(P) , . . . ;r1

(1) , . . . ;b/P)#, may be
written as

n~r !5K r~r1
(P) , . . . ;r1

(1)1r , . . . ;b/P!

r~r1
(P) , . . . ;r1

(1) , . . . ;b/P!
L ~12!

or, in the primitive algorithm,

n~r !'K expS 2
b

P H mP2

2b2\2
@~r1

(1)1r2r1
(P)!22~r1

(1)2r1
(P)!2#

1
1

2
@U~r1

(1)1r ,r2
(1) , . . . ,rN

(1)!

2U~r1
(1) ,r2

(1) , . . . ,rN
(1)!#J D L . ~13!

This is interpreted as an average, over all configurations
closedring polymers, in which bead 1 of polymer 1 is vir
3-5
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TABLE II. PIMC simulations of solid neon with the HFD-C2 pair potential andN5108 particles.P is the
number of beads on the classical ring polymers~Trotter number!, xA the fraction of accepted trial move
~acceptance ratio!, andR the rms radius of the ring polymers.Ek andU are the kinetic and potential energie
and p is the pressure. Values in parentheses are from simulations with the Lennard-Jones potent
statistical errors on the kinetic energy are of the order of a few units in 1022 K and appear to slightly
increase with the Trotter number. Typical errors on the quantum mechanical limits are estimated to be
0.1 K, i.e., much smaller than the available experimental errors.

r T P Passes xA R Ek /N U p

(nm23) ~K! (Å ) ~K! ~kJ/mol! ~atm!

43.26 26.4 4 500 000 0.473 0.138 51.68 22.180 2107
8 500 000 0.478 0.144 53.36 22.172 277
16 500 000 0.481 0.145 53.91 22.171 269
32 500 000 0.481 0.145 54.07 22.170 267

~32! ~500 000! ~0.474! ~0.145! ~54.45! (22.103) ~211!
64 500 000 0.681 0.146 54.00 22.170 267

Expt. 57.962.0 170

43.91 20.2 4 500 000 0.480 0.153 44.23 22.260 2255
8 500 000 0.492 0.160 46.79 22.248 2204
16 500 000 0.497 0.162 47.61 22.244 2190
32 500 000 0.498 0.163 47.84 22.243 2186

~32! ~500 000! ~0.490! ~0.163! ~48.21! (22.168) ~113!
64 500 000 0.499 0.163 47.94 22.243 2185

Expt. 4861

44.12 17.8 4 500 000 0.433 0.160 41.45 22.288 2313
8 500 000 0.445 0.168 44.47 22.273 2249
16 500 000 0.451 0.170 45.48 22.268 2229
32 500 000 0.453 0.171 45.85 22.267 2223

~32! ~500 000! ~0.445! ~0.171! ~46.17! (22.189) ~80!

64 500 000 0.454 0.172 45.81 22.267 2222
Expt. 51.262.8 0.01

44.68 10.2 4 500 000 0.310 0.184 32.24 22.370 2503
8 500 000 0.324 0.200 38.08 22.338 2355
16 500 000 0.324 0.205 40.65 22.325 2297
32 500 000 0.331 0.207 41.48 22.321 2278

~32! ~500 000! ~0.320! ~0.206! ~41.90! (22.236) ~39!

64 500 000 0.332 0.207 41.70 22.319 2273
Expt. 4361

44.77 11.4 4 500 000 0.301 0.180 34.04 22.365 2440
8 500 000 0.372 0.194 39.35 22.334 2308
16 500 000 0.388 0.198 41.58 22.322 2258
32 500 000 0.394 0.200 42.28 22.320 2243

~32! ~500 000! ~0.383! ~0.199! ~42.67! (22.234) ~75!

64 500 000 0.396 0.200 42.43 22.319 2239
Expt. 49.062.4 1

44.87 9.4 4 500 000 0.248 0.186 31.23 22.385 2507
8 500 000 0.256 0.203 37.63 22.349 2341
16 500 000 0.270 0.209 40.59 22.333 2270
32 500 000 0.276 0.211 41.59 22.328 2249

~32! ~500 000! ~0.266! ~0.210! ~41.99! (22.241) ~73!
031203-6
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TABLE II. ~Continued!.

r T P Passes xA R Ek /N U p
(nm23) ~K! (Å ) ~K! ~kJ/mol! ~atm!

64 500 000 0.278 0.211 41.84 22.327 2242
Expt. 49.164.0 1

44.97 4.7 4 500 000 0.028 0.191 21.40 22.453 2792
8 500 000 0.018 0.224 30.52 22.395 2515
16 500 000 0.018 0.237 36.96 22.357 2342
32 4 000 000 0.019 0.241 40.02 22.341 2271

~32! ~2 500 000! ~0.017! ~0.241! ~40.42! (22.253) ~51!

64 2 500 000 0.020 0.242 41.07 22.336 2247
Expt. 49.262.8 1
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tually displaced to a distancer away from its original posi-
tion r1

(1) . Equivalently, one may say that the polymer is v
tually cut between beadsP and 1, a (P11)th bead is created
at positionr1

(1)1r and connected to beadP ~but not 1), and
the ratio of the density matrices for the open/closed polym
is averaged. Since not only bead 1 on polymer 1, but an
theN3P equivalent particles may be displaced, this meth
would appear to be simple and extremely efficient. In pr
tice, however, it is only of very limited use, because in a
simulation~of finite duration! with closed polymers, beads
and P will always be very close together—the more so t
higher the Trotter numberP ~in the primitive algorithm the
spring constants are proportional to 1/P). Consequently, vir-
tual beadP11, which is linked toP by a similar stiff spring,
cannot be far from bead 1 either, andn(r ) will be affected
by large errors as soon asr gets appreciably larger than th
typical distance between successive beads on a ring poly

Therefore, in the second approach~‘‘open polymer’’! pro-
posed by Ceperley and Pollock@13#, one rewrites Eq.~7! as

n~r !5
1

Q

1

N! E dr1•••drNdr18d
(3)@r182~r11r !#

3r~r1 ,r2 , . . . ;r18 ,r2 , . . . ;b!, ~14!

introducing an additional integration variabler18 . Factoriza-
tion of the density matrix yields

n~r !5
1

Q

1

N! E )
k51

P

$dr1
(k)
•••drN

(k)%dr1
(P11)d (3)@r1

(P11)

2~r1
(1)1r !#r~r1

(1) ,r2
(1) , . . . ;r1

(2) ,r2
(2) , . . . ;b/P!

3•••3r~r1
(P) ,r2

(P) , . . . ;r1
(P11) ,r2

(1) , . . . ;b/P!,

~15!

and, specifically in the case of the primitive algorithm,
03120
r
of
d
-

y

er.

n~r !'
1

Q

1

N! S mP

2p\2D (3NP/2)E )
k51

P

$dr1
(k)
•••drN

(k)%

3dr1
(P11)d (3)@r1

(P11)2~r1
(1)1r !#

3expH 2
b

P F mP2

2b2\2 (
k51

P

~r1
(k11)2r1

(k)!2

1(
i 52

N
mP2

2b2\2 (
k51

P

~r i
(k11)2r i

(k)!2G J
3expH 2

b

P F1

2
U~r1

(P11) , . . . ,rN
(1)!

1
1

2
U~r1

(1) , . . . ,rN
(1)!1 (

k52

P

U~r1
(k) , . . . ,rN

(k)!G J .

~16!

Here, the arguments of the exponentials have been wri
as the sum of two~or three! terms to indicate that bead co
ordinates are periodic with respect tok only in the last term
but not in the first~and second! term~s!. In other words, for
polymer 1, r1

(P11) is an independent variable withr1
(P11)

Þr1
(1) . Thus, apart from a normalization factor (Q is still the

partition function of the original ring polymer system!, n(r )
may be obtained from the end-to-end distribution of asingle
open polymerconsisting ofP11 beads, embedded in a sy
tem of N21 closed ring polymers. Because of the unknow
normalization factor the resulting distribution is not aut
matically normalized ton(0)51, but this is generally not a
problem, as one is usually only interested in the shape
n(r ). A more serious drawback is the fact that the open po
mer method requires much longer simulations than virt
displacements, because only a single polymer~with a single
end-to-end distance! is available for averaging. Also, becaus
r5r1

(1)2r1
(P11) is a three-dimensional vector, intermedia

end-to-end distances are sampled much more frequently
small ones, leading to rather poor statistics at very lowr .
This may be overcome by introducing a weighting functi
3-7
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MARTIN NEUMANN AND MARCO ZOPPI PHYSICAL REVIEW E65 031203
that increases the sampling rate at lowr , but we have not
found this necessary in the present paper.

D. Test of the Gaussian assumption

The relative merits of the two methods for calculati
n(r ) and the principal features of the single-particle dens
matrix have already been discussed by Ceperley and Po
@13#. In particular, these authors found that the methods w
complementary, with virtual displacements being very e
cient for smallr and the open polymer algorithm superior
long range, so that the respective curves could be matche
the intermediate range. As to the shape ofn(r ), small but
significant deviations from the Gaussian form were o
served. However, these conclusions were based on sim
tions of normal and superfluid helium near thel transition
and do not necessarily carry over to a considerably less q
tum mechanical system such as neon.

Therefore, and because the assumption of a Gaussian
mentum distribution is at the heart of the experimental
proach to the kinetic energy, we decided to perform a s
tematic investigation ofn(r ) for neon at two selected
thermodynamic states. At the same time, this would also
low us to study the convergence, within either algorithm,
n(r ) with the Trotter numberP. In all these simulations
neon was modeled as a Lennard-Jones system, and the
modynamic states considered were one typical of the liq
(r534.61 nm23, T535.1 K) and one in the solid phas
(r544.87 nm23, T59.4 K). Runs employing virtual dis
placements were typically 0.53106 passes long, simulation
based on the open polymer algorithm consisted of7

passes. In the latter case, intramolecular configurations w
not sampled directly~from the free-particle density maxtrix!,
but by the ‘‘slow’’ method, i.e., combining small simulta
neous random displacements of a polymer’s beads wit
larger displacement of its center of mass and subjecting
trial configuration to the usual Metropolis acceptance cr
rion. Since neither the kinetic energy norn(r ) should be

FIG. 1. Single-particle density matrix obtained with the virtu
displacement algorithm for liquid neon atr534.61 nm23, T
535.1 K. The number of~Lennard-Jones! particles wasN5108,
andP is the number of beads on the classical ring polymers.
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strongly N dependent, some calculations were perform
with rather small system sizes.

Figure 1 shows the single-particle density matrix in t
liquid, as obtained with a system ofN5108 particles and
Trotter numbers in the rangeP54, . . .,32. ~Note that, in an
isotropic system,n(r ) can only depend on the magnitude
r 5ur u.! As can be seen, the width ofn(r ) is only
0.25–0.3 Å ~about a factor of 5 smaller than in liquid he
lium!, but the results are clearly not convergent withP: while
the curves forP54 and 8 are still rather similar~and ap-
proximately Gaussian in shape!, theP516 and 32 results are
dramatically different, and the effective range ofn(r ) seems
to shrink systematically withP. Thus, apart from an initial
portion, where all curves nicely superimpose, the shape
n(r ) is completely undefined.

In the solid, Fig. 2~again based on simulations withN
5108 particles!, the situation is similar, except that at th
lower temperature the apparent width ofn(r ) initially seems
to increase and approach a stable value aroundP58 or 16,
before eventually following the same pattern as in the liqu
As already indicated in Sec. II C, this failure of the virtu
displacement method is caused by the fact that, on a clo
ring polymer, large displacements of a virtual particle~far!
away from bead 1 have an increasingly low probability wh
both the virtual particle and bead 1 are linked by their
spective springs to a common beadP. This systematic under
estimate ofn(r ) at long range is particularly severe for a
unsophisticated PIMC implementation such as the primit
algorithm, where one is forced to go to rather large Trot
numbers, but in principle this problem might also be pres
in other implementations. Therefore, we have to conclu
that the virtual displacement method is not suitable for
tablishing the shape ofn(r ), except in a very limited range
aroundr50. On the other hand, forr→0, the behavior of
n(r ) is more readily obtained from a direct estimate of t
kinetic energy,

n~r !5n~0!1
r 2

2
¹2n~r !ur501•••512

m~Ek /N!

3\2
r 21•••,

~17!

FIG. 2. Single-particle density matrix obtained with the virtu
displacement algorithm for solid neon atr544.87 nm23, T
59.4 K. The number of~Lennard-Jones! particles wasN5108,
andP is the number of beads on the classical ring polymers.
3-8
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a relationship that is independent of the Gaussian assu
tion.

Of the two problems associated with the open polym
algorithm, namely,~i! that the calculated probability densit
of end-to-end distances does not yield a properly normali
n(r ), and~ii ! that small end-to-end distances are not samp
effectively, the former seems easier to fix than the lat
However, as Fig. 6~see below! shows, it is precisely becaus
of the large scatter of the data points at smallr , that we
cannot normalize the simulation results by simply dividi
through by ther50 value. On the other hand, if the func
tional form of n(r ) were known, both problems could b
solved simultaneously by fitting a function of this type to t
raw data. This would not only smooth the scatter of the d
points but also provide a clean value atr50.

Since, for neon,n(r ) seems to be Gaussian to a very go
approximation, we have followed this procedure in t
present paper, i.e., anormalizedGaussian,

n8~r !5S m~Ek /N!

3p\2 D 3/2

expS 2
mEk /N

3\2
r 2D , ~18!

was fitted to the raw data, which was then divided by
prefactor of the exponential to yield a properly normaliz
n(r ). Actually, it was notn8(r ) but r 2n8(r ) that was fitted to
the data, in order to suppress the influence of the points w
the largest uncertainty nearr50; this is also consistent with
the relative frequency of counts in the end-to-end dista

FIG. 3. Single-particle density matrix obtained with the op
polymer algorithm for liquid neon atr534.61 nm23, T
535.1 K. Circles, distribution of end-to-end distances for an op
polymer with P11 beads embedded in a system ofN21 closed
ring polymers; solid lines,r 2-weighted fit of a Gaussian to the ra
data. The total number of~Lennard-Jones! particles wasN5108,
andP is the number of beads on the closed ring polymers. The p
have been shifted for clarity (P54, 8, and 16, from bottom to top!.
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histograms. The fitting parameterEk may be regarded as a
independent estimate of the kinetic energy.

The results obtained in this way are shown in Fig. 3~liq-
uid; N5256 particles with Trotter numbersP54, 8, and
16) and Fig. 4~solid; N532 particles and Trotter numbers i
the rangeP54, . . .,64). As can be seen, for neon the a
sumption thatn(r ) is Gaussian holds over four or five orde
of magnitude, and this seems to be true for both the liq
and the solid phases, at least under the thermodynamic
ditions we have studied. What is even more striking—and
contrast to the results of the virtual displacement method—
the fact that, with the open polymer algorithm,n(r ) is
Gaussian not only in the quantum mechanical limit, but a
for all finite values ofP. In the liquid, theP54, 8, and 16
curves are so similar that they would be indistinguishable
the scale of the plot if they were superimposed. In the so
the widths of the curves do change slightly withP, but their
shape is Gaussian for allP.

The convergence ofn(r ) to a limiting form is also exam-
ined, on a linear scale, in Fig. 5.~For clarity, only the fitted
curves but not the raw data are shown.! In contrast to Fig. 2,
the curves for the variousP now show a consistent pattern
the width of n(r ) increases monotonically withP, and a
well-defined limit seems to be approached asP→`.

A final comparison of the algorithms for calculatingn(r ),
including raw and fitted data for the highest Trotter numb
in the liquid and solid phases, is made in Fig. 6. This figu
not only illustrates the difficulty of obtaining reliable smallr
data with the open polymer algorithm, but also justifies o

n

ts

FIG. 4. Single-particle density matrix obtained with the op
polymer algorithm for solid neon atr544.87 nm23, T59.4 K.
Circles, distribution of end-to-end distances for an open polym
with P11 beads embedded in a system ofN21 closed ring poly-
mers; solid lines,r 2-weighted fit of a Gaussian to the raw data. T
total number of~Lennard-Jones! particles wasN532, andP is the
number of beads on the closed ring polymers. The plots have b
shifted for clarity (P54, 8, 16, 32, and 64, from bottom to top!.
3-9
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MARTIN NEUMANN AND MARCO ZOPPI PHYSICAL REVIEW E65 031203
procedure of fitting Gaussians to the raw data. Since
points at smallr were given relatively little weight, there ar
considerable deviations between data and fits in this ra
Nevertheless, the fitted Gaussians are in excellent agree
with the curves obtained with the virtual displaceme
method for r ,0.15 Å , i.e., in the range where the latt
method is expected to perform best. On the other hand,
n(r )’s from the virtual displacement method are again fou
to fail badly forr .0.25 Å . Since, in this example, the sol
is at a much lower temperature~9.4 K! than the liquid~35.1
K!, its kinetic energy is also lower, and its momentum d
tribution narrower. Consequently,n(r ), the Fourier transform

FIG. 6. Single-particle density matrix obtained by various me
ods for liquid and solid neon. Open circles, normalized end-to-
distribution of an open polymer in the liquid (r534.61 nm23, T
535.1 K, N5256 P516); full circles, normalized end-to-en
distribution in the solid (r544.87 nm23, T59.4 K, N532, P
564); solid lines, Gaussians fitted to the raw data; dashed li
results of the virtual displacement algorithm for the liquid (N
5108, P532) and the solid (N5108, P564).

FIG. 5. Single-particle density matrix obtained with the op
polymer algorithm for solid neon atr544.87 nm23, T59.4 K.
Only the Gaussians fitted to the raw data are shown. The total~open
plus closed polymers! number of LJ particles wasN532, andP is
the number of beads on the closed ring polymers.
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of n(p), must be wider, and this is also reflected in the fi
ure.

In Table III, we compare two alternative ways of calc
lating the kinetic energy within the open polymer algorithm
In the first method, which may be regarded as the equiva
of the experimental procedure~except that there one work
with the momentum distribution!, we fitted a Gaussian to th
single-particle density matrix and derived the kinetic ene
from the width of the distribution, i.e., the fit parameterEk in
Eq. ~18!. The second, conventional method is the~crude!
energy estimator, Eq.~6!, utilizing the potential energy
stored in the intramolecular springs. Note that, in a simu
tion involving an open polymer, there are onlyN21 closed
polymers, for which spring energies may be calculated. Al
strictly speaking, Eq.~6! does not apply, because it is derive
for a ‘‘neat’’ system of closed polymers, but the error i
curred by using this equation is probably small~of order
1/N). The general trend, both in the liquid and in the solid,
that the kinetic energies obtained from the intramolecu
springs increase monotonically withP, whereas the kinetic
energies derived from the width ofn(r ) decrease with in-
creasingP, but the respective sequences of numbers app
to tend to a common limit. For the liquid, the consisten
between the two methods is already very good forP58; for
the solid, the respective limits seem to differ by;1 K, but
this apparent discrepancy may well be due to the sma
system size or to the rather large uncertainties of the fits~cf.
the difference between theN532 andN5108 results!.

Concluding this section we can state that for neon aro
10 K and above, the single-particle density matrix~and,
hence, the momentum distribution! are Gaussian to a ver
good approximation. Therefore, making this assumption
basis of the analysis of experimental data should not lea
significant systematic errors. In simulations, the sing
particle density matrix is best calculated using the open po
mer algorithm, since this is the only way to ensure that
long-range behavior ofn(r ) is predicted correctly.

-
d

s,

TABLE III. Comparison of different methods of calculating th
kinetic energy of LJ neon, for typical states in the liquid and so
phase. Fifth column, fit of a normalized Gaussian to t
r 2-weighted single-particle density matrix; sixth column,Ek as ob-
tained from the crude energy estimator~intramolecular spring en-
ergy!. N is the number of Lennard-Jones particles,P the Trotter
number, and the results are based on simulations of 107 passes.

r T N P Ek /N ~K!

(nm23) ~K! r 2n(r ) Springs

34.61 35.1 256 4 62.10 60.23
256 8 61.20 61.13
256 16 60.97 61.71

44.87 9.4 32 4 53.52 31.42
32 8 46.32 37.97
32 16 43.88 41.19
32 32 43.79 42.15
108 32 42.64 42.02
32 64 42.12 43.53
3-10
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III. COMPARISON WITH THE NEUTRON SCATTERING
EXPERIMENTS

A. The structure factor in the liquid phase

The experimental structure factor of liquid neon was m
sured long ago by de Graaf and Mozer@38#. The neutron
diffraction experiment was quite accurate and theQ range
~momentum transfer! covered was such that a reliable rad
distribution function could be extracted from the data@39#. A
comparison between the experiment and the~quantum cor-
rected! classical simulation can be seen in Ref.@11#. Here,
the simulation was carried out using the Wigner-Kirkwo
expansion up to the third order~6th power inL* ), and a fair
quantitative agreement was found between the calculat
and the experimental results. However, the agreement
tied to a slight modification of the pair potential paramete
In particular, parameters halfway between the ones der
from gas phase data and those fitted to solid phase prope
were found to give the best agreement with the scatte
data.

In the present simulation of the liquid, both the LJ and t
HFD-C2 potentials were used. For the LJ potential we u
the parameters«LJ536.8 K andsLJ52.789 Å @44#. In Fig.
7 we report theP532 results~cf. Sec. II above! for the
radial distribution function and their comparison with th
experimental data of de Graaf and Mozer atT535.1 K, r
534.61 nm23. The agreement between the simulations a
the experimentalg(r ) ~using either potential model! is very
good over the whole distance range. However, we wo
expect that a more accurate structure determination sh
be able to distinguish more clearly between the two pot
tials @3,4#. A slight discrepancy is observed in the value
the compressibility, which determines theQ→0 limit of the
structure factor. The experimental value for the compress
ity yields S(Q→0)50.160. The LJ value is 0.139, while fo
the HFD-C2 potential it is 0.179~these numbers were ob
tained by numerical differentiation of the pressures repor

FIG. 7. Pair correlation functiong(r ) for liquid neon at r
534.61 nm23, T535.1 K. Circles, experimental result, obtaine
in Ref. @39# from the neutron scattering data of Ref.@38#; solid line,
PIMC simulation using the HFD-C2 potential,N5500 particles,
andP532; dashed line, PIMC simulation using the Lennard-Jo
potential.
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in Table I!. The differences between the two simulations, a
between the individual simulations and the experiment,
not large but significant, implying that many-body intera
tions may play a role in liquid neon. Similar features cou
be noted by comparing the experimental results on the st
ture factor S(Q) directly with those obtained by Fourie
transforming the simulatedg(r ).

B. The kinetic energy in the liquid phase

The first experimental determination, over a wide range
Q and v, of the dynamic structure factorS(Q,v) of liquid
neon atT529.9 K was published 27 years ago@49#. The
high Q values of the scattering function were subsequen
analyzed in the framework of NCS theory by Sears@50,51#.
However, for this experiment, the highest value for the m
mentum transfer wasQ512.5 Å21, which is probably too
low for a correct extrapolation ofS(Q,v) to the impulse
approximation regime,Q→`.

Some time ago, an experiment at much higherQ values
was carried out on liquid neon atT525.8 and 35.2 K, using
the energetic neutrons of a pulsed source@23#. The actualQ
range was in the interval 20–28 Å21, which should justify
the use of the impulse approximation theory@52#. The ex-
perimental results for the kinetic energy were compared w
the available theoretical estimates, which were essenti
based on semiclassical expansions of the quantum mech
cal operators@23#. More recently, the saturated vapor pre
sure~SVP! liquid was investigated atT525.8 K, using the
MARI spectrometer at ISIS~U.K.! @40#. Here, the range of
the momentum transfer was between 2 and 13 Å21, but the
main goal of the experiment was to gain information on t
shape of the momentum distribution.

Our results on the kinetic energy of liquid neon are c
lected in Table IV, where we have also included previo
results obtained within the framework of the Wigne
Kirkwood approximation, to put them in perspective with th
present, independent calculations. The formal expansion
the relevant thermodynamic observables of the WK ser
up to the second-order term, has been given in Ref.@9#. It is
easily seen that the expansion reported by Sears@51# is cor-
rect at first order, but he uses an approximate expression
the second-order term that is rigorous only if the spec
density of the velocity autocorrelation function is of Gaus
ian shape. The column labeled WK1 is the result of a fir
order WK calculation that utilizes the experimentalg(r ) de-
termined in Ref.@38#. The column labeled WK2 is the resu
of a second-order WK expansion calculation.

First, we note the excellent agreement between the PI
simulations based on the LJ and the HFD-C2 potential m
els. The precise form of the interaction potential does
seem to play a substantial role in determining the kine
energy of liquid neon. This is what we should expect for
observable that is measured by very high energy neutr
probing single-atom properties. Also, the WK calculatio
are closer to the PIMC values than to the experiment. T
same observation applies to the approximate calculation
Sears~WK2 value at T526.9 K). Moreover, due to the
good convergence rate of the WK expansion~cf. footnote b

s
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TABLE IV. Comparison of the various experimental and theoretical determinations of the kinetic e
of liquid neon. For a detailed explanation see Sec. III B.

T r Ek /N ~K!

~K! (nm23) Expt. Ref. WK1-LJ WK2-LJ PIMC-HFDd PIMC-LJ e Ref.

35.360.4 31.70 66.463.3 @23# 60 a 60.3760.18 60.25 present work
35.1 32.0 61.7b @9#

35.160.4 34.61 69.064.7 @23# 60 a 61.4460.15 61.39 present work
25.861.0 36.28 52.863.7 @23# 48 a 49.7160.19 49.80 present work
26.960.2 36.1 48.260.9 @51# 49.7c @51#

aThis value was obtained by using the first-order term of the Wigner-Kirkwood expansion and the e
mentalg(r ) from Ref. @38#.
bValue obtained for the Lennard-Jones model using the Wigner-Kirkwood expansion, up to the second
according to Ref.@9#. The zeroth-order~classical! term is 52.5 K, the first and second corrections are 8.1
and 1.1 K, respectively.
cValue obtained by Sears@51# using an approximate version of the Wigner-Kirkwood expansion.
dResults from the PIMC simulation using the HFD-C2 potential, extrapolated toP→`. The quoted uncer-
tainties are the sum of the difference between theP516 andP532 results and their combined statistic
errors, assuming that the former is a measure of the systematic error of the simulations.
eResults from the PIMC simulation (P532) using the Lennard-Jones potential.
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in Table IV!, it appears that a first-order WK calculatio
should already give reliable results. This is corroborated
the WK1 values that we have calculated using not the sim
lations but the experimental microscopic structure de
mined by de Graaf and Mozer@38,39#. Given that the agree
ment between theory and experiment at the level of the ra
distribution function is excellent, this is not surprising.

On the experimental side, the early experimental deter
nation by Sears@51# is found to be in good agreement wit
the theoretical prediction. However, the more recent exp
mental data reported in Ref.@23# appear to be systematicall
higher than all theoretical results. While, atT525.8 K, the
experimental value~which has recently been confirmed
Ref. @40#! is still consistent with the simulation result, at th
higher temperatures the difference between experiment
simulation exceeds the quoted error margin.

C. The kinetic energy in the solid phase

No experimental data seems to be available on the st
ture factor of neon in the solid phase. This is to be expec
as a crystal structure develops long-range correlations~Bragg
peaks! which render the determination of the diffuse, liqui
like component of the measuredS(Q) extremely difficult.
However, on the basis of the results obtained for the liqui
is likely that the simulations will also predict the corre
structure for the solid phase of neon. Thus, the compar
with experimental neutron scattering data is currently limi
to the kinetic energy, values for which have been reporte
Refs. @24# and @30#. These experiments were performed
almost constant density and at various temperatures, with
aim of measuring the ground state energy of solid neon.
worthwhile to note that in Ref.@24# the measured kinetic
energies were found to be consistently higher than vari
theoretical predictions using harmonic models. The auth
thus inferred a substantial anharmonicity of neon.
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Following the experiment reported in Ref.@24#, a paper
@41# has appeared that presents the results of a PIMC si
lation. This technique is not based on the harmonic hypo
esis and therefore one would expect that most of the
served discrepancies should be removed. Instead
substantial difference was still found between the experim
tal data and the simulation results. A likely inadequacy of
intermolecular potential~LJ! was then suggested as a po
sible justification of the discrepancy. The same LJ poten
was also used in a subsequent simulation of solid neon@42#.
Also, the most recent experiment on solid neon@30# attrib-
uted a generally lower value to the atomic kinetic energy a
therefore removed most of the previously observed discr
ancies. However, the agreement between these experim
data and the simulation results is still not fully satisfacto
@30,42#. Therefore, in order to avoid any further source
uncertainty, we decided to perform the present PIMC sim
lations using the more realistic HFD-C2 potential for neo
These were made at the same temperatures and densit
the experimental determinations@24,30#.

In Table V, we report a comparison of various experime
tal and theoretical results. As far as the consistency of
theoretical calculations is concerned, the present simulat
show a substantial agreement for the value of the kin
energy, using either of two different potentials, name
HFD-C2 and LJ. This confirms the results already given
Ref. @30#, even though the differences are smaller in o
case. In general, we find that the present simulation res
and those reported in Ref.@30# are in good agreement
(;1 K) in spite of the different implementation of th
PIMC algorithm. The agreement with the results of Re
@41# and @42# is also good.

By contrast, the experimental results of Ref.@24# appear
to be consistently higher than the simulations, with the d
ferences being between two and three times the size of
3-12
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TABLE V. Comparison of the various experimental and theoretical determinations of the kinetic ene
solid neon. For a detailed explanation see Sec. III C.

T r Ek /N ~K!

~K! (nm23) Expt. Ref. PIMC-HFD PIMC-LJ Ref.

4.125 44.97 41.6 42.0 @30#

4.260.1 44.97 44.061.0 @30#

4.760.1 44.97 49.262.8 @24# 41.261.1a 40.4b present work
5.0 44.57 42.81 @41#

9.460.1 44.87 49.164.0 @24# 41.960.3a 42.0b present work

10.0 44.48 43.21 @41#

10.15 44.85 42.6 43.2 @30#

10.260.1 44.68 43.061.0 @30# 41.860.3a 41.9b present work

11.460.2 44.77 49.062.4 @24# 42.560.2a 42.7b present work
15.0 44.11 44.68 @41#

15.261.0 44.45 50.063.0 @30#

15.7 44.48 46.5 @30#

17.860.2 44.12 51.262.8 @24# 45.960.1a 46.2b present work

20.0 43.60 47.68 @41#

20.260.1 43.91 48.061.0 @30# 47.960.2a 48.2b present work

20.3 43.5 47.8 47.8 @30#

26.460.2 43.26 57.962.0 @24# 54.160.1a 54.5b present work

aResults from PIMC simulations using the HFD-C2 potential, extrapolated toP→`. The quoted uncertain-
ties are the sum of the difference between theP532 andP564 results and their combined statistical erro
assuming that the former is a measure of the systematic error of the simulations.
bResults from PIMC simulations (P532) using the LJ potential.
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quoted error bars. The more recent results of Ref.@30#, how-
ever, turn out in a better agreement with the calculations
the differences, when present, never exceed twice the qu
experimental errors. On the average, however, the exp
ment seems to overestimate the kinetic energy of solid n
~cf., for example, Fig. 3 of Ref.@42#!.

Finally, concerning the validity of the WK approximatio
in the solid phase@53,54#, this is questionable and therefo
we did not attempt any comparison. In fact, it was alrea
shown~cf. Ref.@9#! that in the solid phase the first correctio
term in the WK expansion of the kinetic energy was of t
same order of magnitude as the classical reference term
this condition, it is hopeless to expect an asymptotic serie
converge.

IV. CONCLUSIONS

The emergence of quantum properties in quasiclass
systems is a process that can be observed gradually in
densed neon. In the liquid state, at relatively high tempe
tures, quantum effects manifest themselves as a broade
of the single-particle distribution function,n(r ). This func-
tion degenerates to ad function in the classical limit but it
03120
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exhibits a finite width in the quantum mechanical case. T
pair distribution functiong(r ) is only marginally affected by
this effect showing just a slight broadening and shift of t
first intermolecular peak@11#. Due to the small size of quan
tum effects in the liquid phase of neon, the results of a p
vious WK expansion up to the third order inL* were suffi-
ciently accurate to give a fair quantitative agreement with
microscopic structure factor determined from the expe
ment. However, this involved a slight modification of th
pair potential parameters. In the present PIMC calculatio
we used two different interatomic potentials, namely, an
fective LJ potential and the pure two-body HFD-C2 pair p
tential, and the simulations give slightly different results f
g(r ). However, within the present experimental accuracy
is impossible to discriminate between the two potential m
els ~cf. Fig. 7!.

The atomic kinetic energy of neon, on the other hand,
been measured in a much wider density and tempera
range. One can use the variation in the kinetic energy
measure the gradual emergence of quantum effects in
densed neon. In fact, the difference between the quan
mechanical kinetic energy and the classical equipartit
3-13
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theorem increases on decreasing the temperature and
comes very large in the solid phase~cf. Tables IV and V!.

The kinetic energy is related to the single-particle dis
bution functionn(r ) and its Fourier transformn(p). For a
classical particle,n(p) has a Gaussian shape whose width
determined by the thermal kinetic energy (3/2)kBT. As quan-
tum effects become relevant, the value of the kinetic ene
deviates from the classical equipartition theorem but
shape ofn(r ) is usually assumed to remain approximate
Gaussian. On the other hand, the Gaussian assumption
not be retained when quantum statistics starts to play a r
such as in normal helium close to thel transition or in the
superfluid phase@13#. The most recent experiment carrie
out on liquid neon@40# seems to indicate a marginal devi
tion of the momentum distribution from a purely Gaussi
shape. This suggestion is in contrast with the present si
lation results. In fact, we have seen in Figs. 3 and 4, that
Gaussian approximation is very well obeyed by the funct
n(r ), extending for 4–5 orders of magnitude both in t
liquid and the solid phase of neon.

As a byproduct of our calculations, we have given a co
prehensive comparison between two sets of experime
data and the results of a wide collection of data obtain
from quantum simulations of liquid and solid neon. Wh
the structural data show almost perfect agreement betw
the experiment and the simulation results~liquid phase, cf.
Sec. III A!, a small systematic difference remains at the le
of the kinetic energy, in both the liquid and solid phases.

The theoretical calculations of the ground state kine
energy of solid neon, which were carried out within the h
monic or the self-consistent harmonic approximation, are
substantial agreement with the simulations~cf. Table II of
Ref. @24# and Table V of this paper!. The only exception
appears to be the variational calculation by Bernardes@55#.
However, it should be noted that a subsequent calculation
Nosanow and Shaw@56# ~self-consistent solution of Hartre
equations! brought that value back to the level of the ha
monic models.

Originally, the differences between the experimental d
and theory were attributed to a possible high anharmoni
s

ys

.

ha

e
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of solid neon. This is not corroborated by the present cal
lations as all our simulations, i.e., the ones using the
potential and those using the HFD-C2 potential, give res
in substantial mutual agreement as well as in agreement
the harmonic~or self-consistent harmonic! model.

It was also suggested that three-body irreducible term
the interaction potential might account, directly or indirect
for the observed differences in the kinetic energy@24#. We
tend to exclude this possibility on the basis of the compa
son with the microscopic structure of liquid neon that w
shown in Sec. III A. The present results are consistent w
the view that three-body irreducible terms in the interact
potentials, when present, show up in the very lowQ region
of the structure factorS(Q), i.e., at the level of long-range
correlations. Alternatively, they may also be observable
certain macroscopic properties such as the equation of s
@57#. On the other hand, experiments aiming to measure
kinetic energy of atoms in condensed systems directly
volve a very high value of the momentum transfer\Q,
which is usually chosen in a region whereS(Q) is already
very close to unity. Therefore, the system is seen by
neutron probe as an ideal gas.

In conclusion, we have presently no explanation for t
remaining small difference between the simulated and
perimental kinetic energy, both in the liquid and in the so
phase. On the theoretical side, simulations by various gro
employing different potential models were found to be
mutual agreement. However, we observe that the uncerta
in the experimental data is still sufficiently large to allow f
further improvements, especially at the level of possible s
tematic errors. In fact, the kinetic energy is measured as
width of the recoil peak in a NCS experiment. This peak,
turn, is convoluted with the instrument resolution functio
that, at present, is usually large. Therefore, improvement
the instrumental performance could allow better experim
tal determinations of the kinetic energy. We suggest that
remaining discrepancy found in neon could provide, amo
other things, a further valid motivation to improve the res
lution of the available NCS instruments.
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