PHYSICAL REVIEW E, VOLUME 65, 031203

Microscopic distribution functions, structure, and kinetic energy of liquid and solid neon:
Quantum Monte Carlo simulations
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We have performed extensive path integral Monte Carlo simulations of liquid and solid neon, in order to
derive the kinetic energy as well as the single-particle and pair distribution functions of neon atoms in the
condensed phases. From the single-particle distribution funo{iphone can derive the momentum distribu-
tion and thus obtain an independent estimate of the kinetic energy. The simulations have been carried out using
mostly the semiempirical HFD-C2 pair potential by Aaral. [R. A. Aziz, W. J. Meath, and A. R. Allnatt,

Chem. Phys79, 295 (1983], but, in a few cases, we have also used the Lennard-Jones potential. The
differences between the potentials, as measured by the properties investigated, are not very large, especially
when compared with the actual precision of the experimental data. The simulation results have been compared
with all the experimental information that is available from neutron scattering. The overall agreement with the
experiments is very good.
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[. INTRODUCTION provided the irreducible many-body interactions have negli-
gible effects, the only difference among the various noble-
The properties of the condensed noble gases have beg@as systems resides in the magnitude of the quantum effects.
studied thoroughly in the last decades, and many important If the scalable potential is assumed to be of the LJ form,
lessons have been learned from these simple systems. Twleen the key parameter that gives a measure of the expected
well-known concepts that have emerged are the law of cormagnitude of quantum effects is the reduced value of the
responding states and the virtual equivalence of the variouguantum of actiorh (Planck’s constant This is defined as
interatomic pair potentials, on a reduced scale of length anfl7]
energy. The almost universal use of the Lennard-Jébds

potential is based on this knowledge. In fact, this simple h
interaction potential not only reproduces the qualitative be- A* = > (1)
havior of condensed matter properties, but it also gives a fair Me o

guantitative account of the reality. For example, it is well
known that many properties of the heavier noble gdses Wwherem is the atomic mass, and and o are, respectively,
Kr, and X, including the microscopic structure factor, are the well depth of the potential and the particle diameter. The
reasonably well reproduced by a classical statistical mecharguantum parametek™ can also be interpreted as the ratio
ics theory, using simple LJ potentidl$,2]. It is only when  between the so-called de Boer wavelenfhand the dis-
pushing the available experimental techniques to the maxitance parametes of the LJ potential. In a condensed sys-
mum allowed precision that a clear distinction between théem, where the average intermolecular distance is of the or-
LJ potential and a more realistic model can be detected in thder of o and the typical interaction energies are of the order
microscopic structure function obtained from a neutron dif-of ¢, this ratio gives a measure of the relative size of the de
fraction experimen{3,4]. On the other hand, some experi- Boer wavelength compared to the average interatomic dis-
mental findings seem to be at variance with these unifyingance. For LJ helium\* =2.68, while for neonA* =0.59.
concepts. For example, the lighter noble gases Ne and Heor argon and the heavier noble-gas systems this value drops
cannot be described within the same framework, and thisignificantly, and an essentially classical behavior is expected
was attributed either to the emergence of quantum mechani9].
cal effects or to a poor scaling of the interaction potential. ~ As long asN-body statistical mechanics calculations were
As a consequence of these facts, the concept of an univerestricted to classical computer simulations, an effective in-
sal scaling potential was relaxed, and a separate analysis @éstigation of the deviation from classical behavior was dif-
the interactions of the various noble-gas systems was peficult. Attempts to explain the discrepancies of the micro-
formed. However, the large amount of work done recentlyscopic structure of liquid neon have appeared in the
and the most accurate determinations of the intermoleculditerature, and a perturbation method based on the Wigner-
interactions in noble-gas systenfs again lead to the con- Kirkwood (WK) expansion of the quantum mechanical op-
clusion that the various potentials agree to within 1% on eerators was used to resolve the neon anorfiEly11]. How-
reduced scalg6]. This leads to the obvious conclusion that, ever, the development of genuinely quantum mechanical
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methods of computer simulation allows one to tackle theclassical value of the kinetic ener§®3,24,3Q. In the analy-
problem more directly. In particular, the powerful path inte-sis of the experimental data, the shape of the momentum
gral Monte Carlo(PIMC) simulation technique has been distribution is assumed to be almost Gaussian, and therefore
used to compute the properties of such prototypical quanturthe comparison with the available experimental results was
systems as normal and superfluid helifd2—14. carried out{30] at the level of the width of the distribution,

At present, the computer simulation machinery is avail-i.e., the translational kinetic energy. However, in a more re-
able to evaluate the static equilibrium properties of concent experiment in the liquid phase it is claimed that the
densed systems, both on a classical or quantum mechanig@bmentum distribution is somewhat sharper than the Gauss-
level. This may be done by means of classical Metropolisan [40]. Therefore, one of the aims of the present set of
Monte Carlo simulations or by quantum mechanical PIMC.simulations is to investigate the detailed shape of the mo-
Unfortunately, the development of fully quantum mechanicalyentum distribution in a more systematic way.
methods for calculating dynamical properties is still in its  preyious simulation results exist for the LJ potential, both

infancy. In spite of the numerous attempts made recently t, the liquid[10,11 and in the solid phasig1,30,43. These
extend the molecular dynamics method to quantum systeMSare either classicalin the liquid, using the Wigner-

[15-21] the general usefulness of the method still has to b‘?(irkwood expansioh or quantum simulationgin the solid,

demonstrated on an expenmental basis. . sing either an effective potential Monte Carlo technique or
Apart from the macroscopic thermodynamic and transporE

properties, the primary experimental access to the collectiv he PIMC technique Since the potential model was sus-

microscopic features of condensed noble gases is through ﬂpgc_ted as a likely cause of the differences found in the com-

radial distribution functiong(r) or, to be more precise, its parison with the kinetic energy data .Of an garlier t_axperiment
Fourier transform, the structure fac®(Q) [1]. Experiments [23,24,4], we have_ carried out our simulations using mostly
probing the microscopic dynamic properties are available af'® HFD-C2 potential for neon suggested by Aetzl.[43].
well, but their interpretation by means of simulation tech-However, a more recent experiment carried out in the solid
niques is limited to the classical ones. However, neutrorPhase has removed some of the discrepancies and has shown
Compton scatteringNCS), a recently developed experi- @ rather good agreement with the simulatig88,42. In this
mental technique, provides a direct route to the atomic moPaper, we will present a comprehensive comparison of the
mentum distributionn(p) whose second moment yields available experimental data with the present as well as with
the single-particle kinetic energf, [22]. For classical previous simulation results. This comparison will include
monatomic systems, by the equipartition theoref, virtually all the available data on the kinetic energy and on
=(3/2)kgT, but this value may be substantially exceededthe pair distribution function.

when quantum effects become relev4@d8—3(0. The mo-

mentum distribution of the particles and the expectation

value of the kinetic energy are quantities that can be readily Il. PIMC SIMULATIONS
computed by PIMC simulatiofiL2]. Thus, even though(p) _ _ _
is not an intrinsically dynamic property, the possibility of A. Model potentials and implementation

comparing experimental and simulation results for the mo- e have performed an extensive series of simulations of
mentum distribution opens a new direction of research thageon(atomic mass 20.183covering a range of temperatures
could have interesting developments in the not too distanjng densities, both in the liquid and solid phase. Most of the
future. _ , simulations are based on the HFD-{2B] pair potential, but
The key quantity that may be computed by PIMC is the, e\ additional runs were also carried out for the simple

single-particle density matrir(r), whose Fourier transform | ennar4-jones potential with parameter:sgt=36.8 K and
yields the momentum distributiom(p) [31]. For a classical o,=2.789 A [44]. All simulations were performed at con-

system,n(p) has a G?‘USS'a” shape. However, it is knovVnstant volumeV, temperaturel, and number of particlebl,
that the simple Gaussian shape is lost for a strongly quantum

. . I and the particles were assumed to obey Boltzmann statistics.
mechanical system such &ble in the vicinity of thex tran- Pair interactions were truncated spherically at a distance
sition [13,32—-37, where the emergence of a long-range tail P y

in n(r) is interpreted as a measure of the condensate fractioﬁ.qual t.o half th? edge length of the cubic S|mulatlop box, and
One might ask whether significant deviations from a GaussPOtential energies and pressures were corrected in the usual
ian distribution are also observable in less strongly quantunf/@ DY integrating over a uniform density beyond the cutoff.
mechanical systems. In this context, liquid and solid neorf\Part from some test runs with smaller systems, we have
represent an obvious choice. generally worked witiN= 256 particles in the liquid anil

The properties of liquid and solid neon have been mea*™ 108 in the solid. The Trotter numbésee belowwas var-
sured, and the available experimental data can be comparé@d in the range®=4, . . .,64, to monitor the convergence to
with the results of either classical or quantum mechanicathe quantum mechanical limit.
simulations. Neutron diffraction experimental data are avail- All our programs are more or less straightforward imple-
able, which give the structure factor of liquid ne[@8] and  mentations of the path integral Monte Carlo metHd8—
thus also the radial distribution functiof89]. Moreover, 47,14 in the canonical ensemble, using the so-called primi-
NCS experiments have been published, both for the liquidive algorithm. As with most variants of PIMC, this is based
and the solid phase, which clearly show deviations from theon a factorization of thé&-body density matrix
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which relates the density matrix at temperatgre 1/kgT to 11 mp | 3NP2

a convolution of density matrices at the higher temperature A(ry, ... Iy == NI 5

BIP. Here, ry,...ry are the positions of particles QNI 2787

1,... N, andP, the Trotter number, is the number of inter- p

mediate state@lus ong. In the primitive algorithm, the den- X J IT ar®...dre-erPe
. . . . 1 N

sity matrices at temperatug@/ P are approximated by their k=1

high-temperature limit, in which they factorize into a product
of free-particle density matrices and a term containing the

P
1
— (k) (k)
intermolecular potentiall), X5 2 A, ), )

Ny
Il
-

p(r{0, e kD grp)y where® is the temperature-dependent potential given by the
expression in square brackets in the exponential in(Eqg.

3N/2 N mP An estimator for the kinetic energy is obtained by applying
exp — ——[r D072
ﬁz I I

[

=1

the thermodynamic relationshig=d(BF)/dB to Eg. (4)

and subtracting the expectation value of the potential energy.
B Here,E is the total energy anB is the free energy given by

Xexp[ﬁ[U(r(lk), ) BF=—InQ. The result is

N( P
2 Bh>

NP 1/ 8 mP? C
T + _ _ - (k+1) _ (k)
FUrey 1>)]]. 3) Ex= 25 P<i212g2ﬁ2 kgl (rirD )2>. (6)

Assuming identical, distinguishable particles, the canonicaficcording to this “crude” estimatof44] the translational
partition function is given by kinetic energy is given by the difference between a constant

and the energy stored in the “intramolecular” springs.
Both, the primitive algorithm and the crude energy esti-

Q= %f dry---dryp(ry, ... FNifLy - FNGB) mator, are sometimes regarc_ieq as inefficien; and num.eri.cally
: less than optimal14]. While it is true that using the primi-
3NP2 . P tive algorithm rather large Trotter numbers are required to
Ni _mP_ I dr...ar® approach the quantum mechanical limit, its principal advan-
NP\ 27872 k=1t N tage is the ease of implementation that is comparable to that

b of a classical monatomic system. Also, in our experience the
B mP? E (k+1)_  (K)\2 crude energy estimator is not plagued by excessive fluctua-

xexp —p 2372 & (=) tions [48], at least for the Boltzmann systems we have con-
sidered so far.

P H An equally important implementation detail affecting the

+> 0, ) (4)  overall efficiency of the simulation is the strategy for sam-
k=1 pling the intramolecular coordinatdse., the relative bead
positions within a polymer Since the intramolecular springs
This looks like the configurational partition function, at tem- ysually are extremely stiff compared to the intermolecular
peratures/P, of a system of classical ring polymeltabeled  potential, random displacements of individual beads are lim-
i=1,...N), in which successive beads are connected byted to rather smaller step sizes, resulting in a very inefficient
harmonic springs with spring constantP?/ 8242, and where  sampling of the intramolecular configuration space, even if
only beads with the same indeéxare allowed to interact one uses different displacements for individual beads and the
through the intermolecular potentitl. For the Trotter(or  center of mass of the polymer. Therefore, in all our simula-
bead index k periodic boundary conditions apply, i.e., tions involving closed ring polymergbut not in the simula-
rPHD=r@) tions involving open polymers described in Sec. )] @e
Expectation values of observables depending only on pahave sampled the intramolecular coordinates directly from
ticle coordinates(but not on their momenjasuch as the the free-particle density matr[the contribution to the Boltz-
intermolecular potential energy, the virial, or the pair corre-mann factor originating from the first term in the exponential
lation functiong(r), are readily calculated as averages of thein Eqg. (4)], so that each single-particle move consists of an
general form independently sampledompleteset of intramolecular co-
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TABLE I. PIMC simulations of liquid neon with the HFD-C2 pair potential axe- 256 particlesP is the
number of beads on the classical ring polyméFsotter number, x5 the fraction of accepted trial moves
(acceptance ratjpandR the rms radius of the ring polymers, andU are the kinetic and potential energies,
and p is the pressure. Values in parentheses are from simulations with the Lennard-Jones potential. The
statistical errors on the kinetic energy are of the order of a few units irf 20 and appear to slightly
increase with the Trotter number. Typical errors on the quantum mechanical limits are estimated to be below
0.1 K, i.e., much smaller than the available experimental errors.

p T P Passes Xp R E./N U p
(nm™3) (K) (A) (K) (kJ/mol (atm)
31.70 35.3 4 250000 0.335 0.124 59.31 —1.460 —43
8 250000 0.335 0.127 60.03 —1.457 —-38
16 250000 0.335 0.128 60.37 —1.456 -37
32 250000 0.335 0.129 60.34 —1.456 —36
(32 (500000 (0.339 (0.129 (60.25 (—1.450) (20
Expt. 66.4-3.3 21
34.61 35.1 4 250000 0.480 0.123 60.20 —1.595 42
8 250000 0.482 0.127 61.09 —-1.591 48
16 250000 0.482 0.128 61.38 —1.590 52
32 250000 0.482 0.129 61.44 —1.592 51
(32 (500000 (0.482 (0.129 (61.39 (—1.576) (145
Expt. 69.0-4.7 137
36.28 25.8 4 250000 0.466 0.141 47.85 —1.735 —144
8 250000 0.470 0.147 49.19 —1.730 —131
16 250000 0.472 0.148 49.60 —-1.728 —128
32 250000 0.472 0.148 49.72 —-1.729 —127
(32 (500 000 (0.47) (0.148 (49.76 (—1.707) +=9)
Expt. 52.8-3.7 1

ordinates and a random displacement of the polymer’s centérable I. The density and temperature of each state point were
of mass. To be consistent with this sampling scheme, thehosen to match the experimental conditions of R28].
Metropolis criterion for the acceptance or rejection of theEach simulation was started either from a random configu-
trial move now only involves the difference intermolecu-  ration or a perfect fcc lattice dl=256 quantum particles
lar energies, since the intramolecular part has been factore@epresented by classical ring polymers with Trotter numbers
out from the probability density. The free-particle densityin the rangeP=4, . . .,32) and consisted of an equilibration
matrix itself is most conyenlen'FIy sampled by transformlngstage of 20008 M passegattempted moves per partizle
the intramolecular coordinates in such a way that the resultey;5ed by a production stage of at least 50 60d passes.
ing prqbability'density is a _p'roduct aP—1 independgnt Here M is the “dilution factor,” i.e., the number of passes
Gaussians. This has the additional adva_mtage of 'Smatmgt erformed before analyzing the next configuration. In the
center of mass of the polymer as an independent unifor : .

. . . resent simulations we have always udée-5. In Table |,
random variable for which rather large displacements can b)g( is the accentance ratio. i.e.. the fraction of accented trial
made. The required transformation is not unique, but oné” ) P L . °p

oves,R is the rms spread of the ring polymeis, is the

obvious choice is the Fourier transform used to diagonaliz inetic energy,U is the potential energy, angis the pres-
the linear chain in elementary solid state physics. We have 9y P 9 P

found that PIMC based on the direct sampling of the free>U®

particle density matrix is a very efficient implementation as. Itis interesting to note that the size of th_e quantum effects
long as the spread of the free particle is not appreciablIn the liquid phase, even though not negligible, is not very

larger than the extent of the single-particle density matrix N g€, as 1S evident from the comparison between the kinetic

the condensed phase. In that case the rate of accepted movek. 9Y Per particle and the classical limit (3g]. Another

drops to a low valudcf. the lowest temperature simulation Indication .Of the_moderate role Of quantum mechanics at
of the solid in Table I, these relatively high temperatures is the fast convergence of

the various thermodynamic quantities with the Trotter num-
berP. This is a consequence of the fact tRathe positional
“spread” of the quantum particles, is at most 5% of the
The thermodynamic conditions and the details of ouratomic diameter. While all other entries in the table are for
PIMC simulations in the liquid phase are summarized inthe HFD-C2 potential, the results shown in parenthéges

B. Thermodynamic states
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P=232 only) were obtained using the LJ model. We observe 1
that the only significant difference between the two poten- n(p)=
tials is in the results for the pressure, with the LJ values (2mh)®
being consistently much closer to the experimental ones.,. . . o . .
Since the HFD-C2 pair potential, by construction, is superimwhICh IS a.pro'perly normallzed distribution function, while

to LJ in describing the experimental pair properties, this facfhe no_rrr_1al|zat|on oh_(r) is such than(0)= 1 In. the clas-_ .

may be interpreted as an indication that the LJ model effecsical limit both functions reduce to Gaussians: the familiar

tively accounts for irreducible three-body and higher—ordelMaxwe" distribution of momenta

f dre” (/MP-Tn(y), 8

interactions. B |32 ,
The thermodynamic conditions and the details of our n(p)= (2—) e~ AlpTzm) 9)
simulations in the solid phase are collected in Table Il. Since mm

there are no experimental pair correlations available for comy 4
parison and there was thus no need to calculate the long-
range structure, we limited the number of particles in the n(r):e—(erIZﬁhz). (10)
solid to N=108, but extended the variation of the Trotter

number to the rangB=4, . . .,64. The density and tempera- In the analysis of neutron Compton scattering experiments it
ture of each state point were now chosen to match the exs usually assumed thai(p) is Gaussian also for quantum
perimental conditions of Reff24] and[30]. As before, each mechanical systems, so that the single-particle kinetic energy
simulation was started from a perfect fcc lattice and equili-may be obtained from the width of a Gaussian fittea¢o)
brated for 20008 M passes, with the dilution factor again or n(p), e.g.,

set toM =5. In order to compensate for the loss in statistical

information (due to the lower number of particles compared m(Ex/N) ,
to the previous set of simulationghe production stage was n(r)=exp — ?r - 1D
extended to at least 100 080/ passes. At the lowest tem-

perature, where the acceptance rate for direct sampling from path integral Monte Carlo simulations, at least in their
the free-particle density matrix drops by an order of magniconyentional implementation, only allow the calculation of
tude, the runs with the hlghest Trotter numbers were Substa%\/erages for which know|edge of the diagona| elements of
tially longer. o _ the density matrix is sufficient. This covers the majority of
Some of the simulations in the solid phase are charactegases in which only thermodynamic or structural information
ized by a much lower temperature than in the liquid. Therejg sought. On the other hand, the calculationn¢f) also
fore, one may expect considerably larger quantum effectsequires information about the off-diagonal elements. There-
and this is the reason why we have extended the maximufyre  in their first calculation by PIMC of the single-particle
Trotter number fromP=32 to 64. The results in Table Il density matrix of normal and superfluid helium, Ceperley
confirm this expectation. For instance, we find that when thgynq Pollock[13] proposed two complementary methods to
temperature is lowered fromi=26.4 to 4.7 K, the kinetic determinen(r) by simulation.
energy per particle decreases only from 54 to 41 K, thus | the first approach“virtual displacements}, advan-
deviating more and more from the classical equipartitioniage is taken of the fact that Eq7), after performing a

theorem and approaching the ground state value. As in thgctorization to temperaturgd/P and replacing the last
case of the liquid, the entries given in parentheses were oz tor by p(r(lp), o §f(11)a .. :BIP) X [p(r(lP), L
tained from additional runs with the LJ potential and are (1) , .”.ﬂlp)/p(r(P) O] . BIP)]
generally close to the results for the HFD-C2 model. SUb'V\}ritten, as Lol '
stantial differences are only found for the pressure, where the

LJ potential again outperforms HFD-C2, although the abso- " <p(r(1p), oW, ;B/p)> 1
n(r)=

may be

lute values obtained with such small systems are probably
not too reliable.

p(riP oD BIP)

C. The single-particle density matrix or, in the primitive algorithm,

The single-particle density matrix for our system of iden- B| mP? " (P2 (1) (P)2
tical particles obeying Boltzmann statistics may be defined(r)~{ exg — 5 5 2ﬁz[(rl Fr—ry) = (ry=ry)]
as B

1
11 FourP+re®d B
n(r)=6mJ drq---dry 2
Xp(rlrer er1r1+r!r25 1rN1ﬁ) (7) —U(rgl),r(zl), ,rg\ll))]])> (13)

Its Fourier transform is the single-particle momentum distri-This is interpreted as an average, over all configurations of
bution, closedring polymers, in which bead 1 of polymer 1 is vir-
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TABLE II. PIMC simulations of solid neon with the HFD-C2 pair potential aviet 108 particlesP is the
number of beads on the classical ring polyméFsotter number, x, the fraction of accepted trial moves
(acceptance ratjpandR the rms radius of the ring polymers, andU are the kinetic and potential energies,
and p is the pressure. Values in parentheses are from simulations with the Lennard-Jones potential. The
statistical errors on the kinetic energy are of the order of a few units irf 20 and appear to slightly
increase with the Trotter number. Typical errors on the quantum mechanical limits are estimated to be below
0.1 K, i.e., much smaller than the available experimental errors.

p T P Passes Xp R E./N U p
(nm~3) (K) (A) (K) (kd/mol) (atm)
43.26 26.4 4 500 000 0.473 0.138 51.68 —2.180 —107
8 500 000 0.478 0.144 53.36 -2.172 -77
16 500 000 0.481 0.145 53.91 -2.171 —69
32 500 000 0.481 0.145 54.07 -2.170 - 67
(32 (500 000 (0.479 (0.145 (54.45 (—2.103) (211
64 500 000 0.681 0.146 54.00 -2.170 - 67
Expt. 57.9:2.0 170
43.91 20.2 4 500 000 0.480 0.153 44.23  —2.260 —255
8 500 000 0.492 0.160 46.79 —2.248 —204
16 500 000 0.497 0.162 47.61 —2.244 -190
32 500 000 0.498 0.163 47.84 —2.243 —186
(32 (500000 (0.490 (0.163 (48.21 (—2.168) (113
64 500 000 0.499 0.163 47.94 —2.243 —185
Expt. 48+1
44.12 17.8 4 500 000 0.433 0.160 41.45 —2.288 -313
8 500 000 0.445 0.168 44.47 —2.273 —249
16 500 000 0.451 0.170 45.48 —2.268 -229
32 500 000 0.453 0.171 45.85 —2.267 —223
(32 (500000 (0.4459 (0.172 (46.17 (—2.189) (80
64 500 000 0.454 0.172 45.81 —2.267 —222
Expt. 51.2:2.8 0.01
44.68 10.2 4 500 000 0.310 0.184 32.24 —2.370 -503
8 500 000 0.324 0.200 38.08 —2.338 —355
16 500 000 0.324 0.205 40.65 -2.325 —297
32 500 000 0.331 0.207 41.48 -2.321 —278
(32 (500000 (0.320 (0.206 (41.90 (—2.236) (39
64 500 000 0.332 0.207 41.70 -2.319 —-273
Expt. 43+1
44.77 114 4 500 000 0.301 0.180 34.04 —-2.365 —440
8 500 000 0.372 0.194 39.35 -2.334 —308
16 500 000 0.388 0.198 41.58 -2.322 —258
32 500 000 0.394 0.200 42.28 -2.320 —243
(32 (500000 (0.383 (0.199 (42.67 (—2.234) (75
64 500 000 0.396 0.200 42.43 -2.319 —239
Expt. 49.0:2.4 1
44.87 9.4 4 500 000 0.248 0.186 31.23 —2.385 -507
8 500 000 0.256 0.203 37.63 —2.349 —341
16 500 000 0.270 0.209 40.59 -2.333 -270
32 500 000 0.276 0.211 41.59 -2.328 —249

(32 (500 000 (0.266 (0.210 (41.99 (—2.241) (73
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TABLE Il. (Continued.
p T P Passes Xa R E./N U p
(nm~3) (K) (A) (K) (kJ/mol) (atm)
64 500 000 0.278 0.211 41.84 —2.327 —242
Expt. 49.1+4.0 1
44.97 4.7 4 500 000 0.028 0.191 21.40 —2.453 —-792
8 500 000 0.018 0.224 30.52 —2.395 —-515
16 500 000 0.018 0.237 36.96 —2.357 —342
32 4000000 0.019 0.241 40.02 —2.341 —271
(32 (2500000 (0.019 (0.24) (40.42 (—2.253) (52
64 2500000 0.020 0.242 41.07 —2.336 —247
Expt. 49.2-2.8 1
tually displaced to a distanaeaway from its original posi- 11 (BNPR2) . P W, .. qr(0
tion r{" . Equivalently, one may say that the polymer is vir- n(f)“am o hz j H {dri”- - -dry’}

tually cut between beaddand 1, a P+ 1)th bead is created
at positionr{")+r and connected to bed® (but not 1), and

xdr(lp*l)éw)[r(lp“)—(r(11)+r)]

the ratio of the density matrices for the open/closed polymer
is averaged. Since not only bead 1 on polymer 1, but any of
the N X P equivalent particles may be displaced, this method
would appear to be simple and extremely efficient. In prac-
tice, however, it is only of very limited use, because in any

simulation(of finite duration with closed polymers, beads 1
and P will always be very close together—the more so the
higher the Trotter numbeP (in the primitive algorithm the
spring constants are proportional td®?)/ Consequently, vir-
tual beadP + 1, which is linked toP by a similar stiff spring,
cannot be far from bead 1 either, an¢r) will be affected
by large errors as soon aggets appreciably larger than the

typical distance between successive beads on a ring polymer.

Therefore, in the second approaébpen polymer”) pro-
posed by Ceperley and Pollo€k3], one rewrites Eq(7) as

n(ry= % %f dry---drpydri6®[r,—(ry+1)]

Xp(ry,ro, oo, o 3B), (14)

introducing an additional integration variabl¢. Factoriza-
tion of the density matrix yields

n(r)— fH {dr{9...dr{O}dr{PT V5@ P

Q N!

—(rP+n)]prM D, @, BIP)
X xp(r{P P (PED D prpy,
(15

and, specifically in the case of the primitive algorithm,

P
< EXP{ 'g B (k+l)_ r(lk))2
=l
N P
m P2
4 pkr1) (02
2, 2gon 2 (rf )

1
Xexp{ —g EU(r(lF”’l), )
1 P
+§U(r(ll), ,r(Nl))JrkZ:2 ur{, ,r(Nk))”.

(16)

Here, the arguments of the exponentials have been written
as the sum of twdor threg terms to indicate that bead co-
ordinates are periodic with respectkanly in the last term
but not in the firsttand secondterm(s). In other words, for
polymer 1,r{P*1) is an independent variable witi"**)
#r{1) . Thus, apart from a normalization factd® (s still the
partition function of the original ring polymer systénm(r)
may be obtained from the end-to-end distribution cfiragle
open polymerconsisting ofP+1 beads, embedded in a sys-
tem of N—1 closed ring polymers. Because of the unknown
normalization factor the resulting distribution is not auto-
matically normalized tan(0)=1, but this is generally not a
problem, as one is usually only interested in the shape of
n(r). A more serious drawback is the fact that the open poly-
mer method requires much longer simulations than virtual
displacements, because only a single poly(méth a single
end-to-end distangés available for averaging. Also, because
r=r{V—r{°*Y is a three-dimensional vector, intermediate
end-to-end distances are sampled much more frequently than
small ones, leading to rather poor statistics at very low
This may be overcome by introducing a weighting function
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FIG. 1. Single-particle density matrix obtained with the virtual ~ FIG. 2. Single-particle density matrix obtained with the virtual
displacement algorithm for liquid neon at=34.61 nm?3, T displacement algorithm for solid neon @t=44.87 nm?3, T
=35.1 K. The number ofLennard-Jonesparticles wasN=108, =9.4 K. The number oflLennard-Jonesparticles wasN= 108,
andP is the number of beads on the classical ring polymers. andP is the number of beads on the classical ring polymers.

) ) strongly N dependent, some calculations were performed
that increases the sampling rate at lowbut we have not \yjth rather small system sizes.

found this necessary in the present paper. Figure 1 shows the single-particle density matrix in the
liquid, as obtained with a system of=108 particles and
Trotter numbers in the randge=4, . . .,32. (Note that, in an
isotropic systemn(r) can only depend on the magnitude of
The relative merits of the two methods for calculatingr=|r|.) As can be seen, the width of(r) is only
n(r) and the principal features of the single-particle density0.25-0.3 A (about a factor of 5 smaller than in liquid he-
matrix have already been discussed by Ceperley and Pollodkuim), but the results are clearly not convergent vathwhile
[13]. In particular, these authors found that the methods weréhe curves forP=4 and 8 are still rather similaand ap-
complementary, with virtual displacements being very effi-proximately Gaussian in shapéhe P=16 and 32 results are
cient for smallr and the open polymer algorithm superior at dramatically different, and the effective rangendf) seems
long range, so that the respective curves could be matched @ shrink systematically wittP. Thus, apart from an initial
the intermediate range. As to the shapen¢f), small but ~ Portion, where all curves nicely superimpose, the shape of
significant deviations from the Gaussian form were ob-N(r) is completely undefined. , _ _
served. However, these conclusions were based on simula- N the solid, Fig. 2(again based on simulations with
tions of normal and superfluid helium near thetransition =108 particleg the situation is similar, except that at this

and do not necessarily carry over to a considerably less quatPWer temperature the apparent widthrdf) initially seems
tum mechanical system such as neon. to increase and approach a stable value arduad or 16,

Therefore, and because the assumption of a Gaussian m efore eventually following the same pattern as in the liquid.

L T . s already indicated in Sec. Il C, this failure of the virtual
mentum distribution is at the heart of the experimental ap'displacemint method is caused by the fact that, on a closed
proach to the kinetic energy, we decided to perform a sys ’

. S ring polymer, large displacements of a virtual partiier)
tematic investigation ofn(r) for neon at two selected v from bead 1 have an increasingly low probability when
thermodynamic states. At the same time, this would also alpq' the virtual particle and bead 1 are linked by their re-
low us .to study the convergence, within e|therlalgor|thm, °fspective springs to a common beRdThis systematic under-
n(r) with the Trotter numberP. In all these simulations, estimate ofn(r) at long range is particularly severe for an
neon was modeled as a Lennard-Jones system, and the th@rsophisticated PIMC implementation such as the primitive
modynamic states considered were one typical of the liquichigorithm, where one is forced to go to rather large Trotter
(p=34.61 nm 3, T=35.1 K) and one in the solid phase numbers, but in principle this problem might also be present
(p=44.87 nm3, T=9.4 K). Runs employing virtual dis- in other implementations. Therefore, we have to conclude
placements were typically 0:51(° passes long, simulations that the virtual displacement method is not suitable for es-
based on the open polymer algorithm consisted of 10tablishing the shape af(r), except in a very limited range
passes. In the latter case, intramolecular configurations weroundr=0. On the other hand, far—0, the behavior of
not sampled directlyfrom the free-particle density maxtjix  n(r) is more readily obtained from a direct estimate of the
but by the “slow” method, i.e., combining small simulta- Kinetic energy,
neous random displacements of a polymer’s beads with a

D. Test of the Gaussian assumption

2
larger displacement of its center of mass and subjecting thi%(r): n(0)+ r—Vzn(r)| =1 m(Ey/N) r24 ...

trial configuration to the usual Metropolis acceptance crite- 2 =0 3h2 ’
rion. Since neither the kinetic energy nofr) should be a7
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FIG. 3. Single-particle density matrix obtained with the open FIG. 4. Single-particle density matrix obtained with the open
polymer algorithm for liquid neon atp=34.61 nm3, T polymer algorithm for solid neon gi=44.87 nm?3, T=9.4 K.
=35.1 K. Circles, distribution of end-to-end distances for an openCircles, distribution of end-to-end distances for an open polymer
polymer with P+1 beads embedded in a systemMNf 1 closed with P+1 beads embedded in a systemNof 1 closed ring poly-
ring polymers; solid lines;?-weighted fit of a Gaussian to the raw mers; solid linest?-weighted fit of a Gaussian to the raw data. The
data. The total number glLennard-Jongsparticles wasN= 108, total number of(Lennard-Jongsparticles wadN=32, andP is the
andP is the number of beads on the closed ring polymers. The plotsiumber of beads on the closed ring polymers. The plots have been
have been shifted for clarityR=4, 8, and 16, from bottom to tgp  shifted for clarity P=4, 8, 16, 32, and 64, from bottom to top

a relationship that is independent of the Gaussian assumpjstograms. The fitting parametgy, may be regarded as an
tion. . _ independent estimate of the kinetic energy.
Of the two problems associated with the open polymer  The results obtained in this way are shown in Figli¢-
algorithm, namely(i) that the calculated probability density jig: N=256 particles with Trotter numbe8=4, 8, and
of end-to-end distances does not yield a properly normalize%) and Fig. 4solid; N= 32 particles and Trotter numbers in
n(r), and(ii) that small end-to-end distances are not samplegl,g rangeP=4, ...,64). As can be seen, for neon the as-
effectively, the former seems easier to fix than the lattergmntion than(r) is Gaussian holds over four or five orders
However, as Fig. 6see belowshows, itis precisely because ot magnitude, and this seems to be true for both the liquid
of the large scatter of the data points at smallthat we 414 the solid phases, at least under the thermodynamic con-
cannot normalize the simulation results by simply dividing gitions we have studied. What is even more striking—and in
through by ther=0 value. On the other hand, if the func- contrast to the results of the virtual displacement method—is
tional form of n(r) were known, both problems could be he fact that, with the open polymer algorithm(r) is
solved simultaneously by fitting a function of this type to the Gayssian not only in the quantum mechanical limit, but also
raw data. This would not only smooth the scatter of the datay, 4 finite values ofP. In the liquid, theP=4, 8, and 16
points but also provide a clean valueratO0. curves are so similar that they would be indistinguishable on
Since, for neonn(r) seems to be Gaussian to a very goodihe scale of the plot if they were superimposed. In the solid,
approximation, we have followed this procedure in thethe widths of the curves do change slightly wiRhbut their
present paper, i.e., @ormalizedGaussian, shape is Gaussian for &
The convergence af(r) to a limiting form is also exam-
ined, on a linear scale, in Fig. 8-or clarity, only the fitted
, (18 curves but not the raw data are showin. contrast to Fig. 2,
the curves for the variouB now show a consistent pattern:
the width of n(r) increases monotonically witf, and a
was fitted to the raw data, which was then divided by thewell-defined limit seems to be approachedPas «.
prefactor of the exponential to yield a properly normalized A final comparison of the algorithms for calculatingr),
n(r). Actually, it was not’(r) butr?n’(r) that was fitted to  including raw and fitted data for the highest Trotter numbers
the data, in order to suppress the influence of the points witin the liquid and solid phases, is made in Fig. 6. This figure
the largest uncertainty near0; this is also consistent with not only illustrates the difficulty of obtaining reliable small
the relative frequency of counts in the end-to-end distancéata with the open polymer algorithm, but also justifies our

2

r

m(E/N) | ¥ p( ME/N
=|————| expg —
32
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1.0

TABLE lll. Comparison of different methods of calculating the
kinetic energy of LJ neon, for typical states in the liquid and solid
phase. Fifth column, fit of a normalized Gaussian to the
r2-weighted single-particle density matrix; sixth coluntf, as ob-
tained from the crude energy estimatartramolecular spring en-
ergy). N is the number of Lennard-Jones particl€the Trotter
number, and the results are based on simulations bpa6ses.

0.8

0.6

n(r)

0.4 - p T N P B/N (K)
P=16.32,64 (nm™3) (K) r2n(r) Springs

02 - P=3 34.61 35.1 256 4 62.10 60.23
256 8 61.20 61.13

00 256 16 60.97 61.71

" 00 02 04 06 0.8 10

(&) 44.87 9.4 32 4 53.52 31.42

32 8 46.32 37.97

FIG. 5. Single-particle density matrix obtained with the open

polymer algorithm for solid neon gi=44.87 nm?3, T=9.4 K. 32 16 43.88 41.19
Only the Gaussians fitted to the raw data are shown. The(tmeh 32 32 43.79 42.15
plus closed polymejsnumber of LJ particles wali= 32, andP is 108 32 42.64 42.02
the number of beads on the closed ring polymers. 32 64 42.12 43.53

procedure of fitting Gaussians to the raw data. Since thef n(p), must be wider, and this is also reflected in the fig-
points at small were given relatively little weight, there are ure.
considerable deviations between data and fits in this range. In Table Ill, we compare two alternative ways of calcu-
Nevertheless, the fitted Gaussians are in excellent agreemeating the kinetic energy within the open polymer algorithm.
with the curves obtained with the virtual displacementin the first method, which may be regarded as the equivalent
method forr<0.15 A, i.e., in the range where the latter of the experimental procedufexcept that there one works
method is expected to perform best. On the other hand, th&ith the momentum distributionwe fitted a Gaussian to the
n(r)’s from the virtual displacement method are again foundsingle-particle density matrix and derived the kinetic energy
to fail badly forr>0.25 A . Since, in this example, the solid from the width of the distribution, i.e., the fit parameEgrin
is at a much lower temperatu(®.4 K) than the liquid(35.1  Eq. (18). The second, conventional method is tfeeude
K), its kinetic energy is also lower, and its momentum dis-energy estimator, Eq(6), utilizing the potential energy
tribution narrower. Consequently(r), the Fourier transform stored in the intramolecular springs. Note that, in a simula-
tion involving an open polymer, there are oy~ 1 closed
12 . . . . polymers, for which spring energies may be calculated. Also,
3 strictly speaking, Eq6) does not apply, because it is derived
for a “neat” system of closed polymers, but the error in-
curred by using this equation is probably smaif order
1/N). The general trend, both in the liquid and in the solid, is
that the kinetic energies obtained from the intramolecular
springs increase monotonically with, whereas the kinetic
energies derived from the width a@f(r) decrease with in-
creasingP, but the respective sequences of numbers appear
to tend to a common limit. For the liquid, the consistency
between the two methods is already very goodHet8; for
the solid, the respective limits seem to differ ;yl K, but
this apparent discrepancy may well be due to the smaller
, Seoeo , system size or to the rather large uncertainties of thedfts
0.0 0.2 04 0.6 038 L0 the difference between tHé=32 andN=108 results
r® Concluding this section we can state that for neon around
FIG. 6. Single-particle density matrix obtained by various meth-10 K and above, the single-particle density matfand,
ods for liquid and solid neon. Open circles, normalized end-to-end'€Nce, the momentum distributipare Gaussian to a very
distribution of an open polymer in the liquipE34.61 nm3, T  good approximation. Therefore, making this assumption the
=35.1 K, N=256 P=16); full circles, normalized end-to-end basis of the analysis of experimental data should not lead to
distribution in the solid p=44.87 nm3, T=9.4 K, N=32, P significant systematic errors. In simulations, the single-
=64); solid lines, Gaussians fitted to the raw data; dashed linefparticle density matrix is best calculated using the open poly-
results of the virtual displacement algorithm for the liquitl ( mer algorithm, since this is the only way to ensure that the
=108, P=32) and the solid (=108, P=64). long-range behavior afi(r) is predicted correctly.

n(r)
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25 ' . ' ' ' in Table ). The differences between the two simulations, and
between the individual simulations and the experiment, are
not large but significant, implying that many-body interac-
tions may play a role in liquid neon. Similar features could
be noted by comparing the experimental results on the struc-
151 i ture factor S(Q) directly with those obtained by Fourier
transforming the simulated(r).

2.0 1

&

1.0 A
B. The kinetic energy in the liquid phase

The first experimental determination, over a wide range of
Q and w, of the dynamic structure fact@(Q,w) of liquid
neon atT=29.9 K was published 27 years a{49]. The
00 ' ' ' ; high Q values of the scattering function were subsequently
ey analyzed in the framework of NCS theory by Sel8,51.
However, for this experiment, the highest value for the mo-
FIG. 7. Pair correlation functiomg(r) for liquid neon atp mentum transfer wa@=12.5 A~1 which is probably too
.=34.61 nm3, T=35.1 K. Circles,. experimental result,. optained low for a correct extrapolation 08(Q,®) to the impulse
in Ref. [_39] from the peutron scattering data (_)f RE38]; solid _Ilne, approximation regimeQ— .
PIMC simulation using the HFI_D-CZ potent!aN:SOO particles, Some time ago, an experiment at much higBevalues
and Pf32; dashed line, PIMC simulation using the Lennalrd-‘]one%\,as carried out on liquid neon &t=25.8 and 35.2 K, using
potential, the energetic neutrons of a pulsed soJ28. The actualQ
Ill. COMPARISON WITH THE NEUTRON SCATTERING range was in the interval 20-28 A&, which should justify
EXPERIMENTS the use of the impulse approximation the¢B2]. The ex-
perimental results for the kinetic energy were compared with
the available theoretical estimates, which were essentially
The experimental structure factor of liquid neon was meabased on semiclassical expansions of the quantum mechani-
sured long ago by de Graaf and Mo4@&8]. The neutron cal operator§23]. More recently, the saturated vapor pres-
diffraction experiment was quite accurate and @eange sure(SVP) liquid was investigated af=25.8 K, using the
(momentum transfgrcovered was such that a reliable radial MARI spectrometer at 1ISISU.K.) [40]. Here, the range of
distribution function could be extracted from the dg2a]. A the momentum transfer was between 2 and 13 *Abut the
comparison between the experiment and (fpeantum cor- main goal of the experiment was to gain information on the
rected classical simulation can be seen in Refl]. Here, shape of the momentum distribution.
the simulation was carried out using the Wigner-Kirkwood  Our results on the kinetic energy of liquid neon are col-
expansion up to the third ordésth power inA*), and a fair  lected in Table 1V, where we have also included previous
quantitative agreement was found between the calculationgsults obtained within the framework of the Wigner-
and the experimental results. However, the agreement wasirkwood approximation, to put them in perspective with the
tied to a slight modification of the pair potential parameterspresent, independent calculations. The formal expansion of
In particular, parameters halfway between the ones derivethe relevant thermodynamic observables of the WK series,
from gas phase data and those fitted to solid phase propertiep to the second-order term, has been given in Faf It is
were found to give the best agreement with the scatteringasily seen that the expansion reported by Sislkis cor-
data. rect at first order, but he uses an approximate expression for
In the present simulation of the liquid, both the LJ and thethe second-order term that is rigorous only if the spectral
HFD-C2 potentials were used. For the LJ potential we usedensity of the velocity autocorrelation function is of Gauss-
the parameters, ;=36.8 K ando ;=2.789 A[44].InFig. ian shape. The column labeled WK1 is the result of a first-
7 we report theP=232 results(cf. Sec. Il abovg for the  order WK calculation that utilizes the experimengdl) de-
radial distribution function and their comparison with the termined in Ref[38]. The column labeled WK2 is the result
experimental data of de Graaf and MozerfTat35.1 K, p of a second-order WK expansion calculation.
=34.61 nm 3. The agreement between the simulations and First, we note the excellent agreement between the PIMC
the experimentafj(r) (using either potential modeis very  simulations based on the LJ and the HFD-C2 potential mod-
good over the whole distance range. However, we woulcls. The precise form of the interaction potential does not
expect that a more accurate structure determination shoukkeem to play a substantial role in determining the kinetic
be able to distinguish more clearly between the two potenenergy of liquid neon. This is what we should expect for an
tials [3,4]. A slight discrepancy is observed in the value of observable that is measured by very high energy neutrons
the compressibility, which determines tile—0 limit of the  probing single-atom properties. Also, the WK calculations
structure factor. The experimental value for the compressibilare closer to the PIMC values than to the experiment. The
ity yields S(Q—0)=0.160. The LJ value is 0.139, while for same observation applies to the approximate calculation by
the HFD-C2 potential it is 0.17%hese numbers were ob- Sears(WK2 value atT=26.9 K). Moreover, due to the
tained by numerical differentiation of the pressures reportegiood convergence rate of the WK expansioh footnote b

0.5 1

A. The structure factor in the liquid phase
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TABLE IV. Comparison of the various experimental and theoretical determinations of the kinetic energy
of liquid neon. For a detailed explanation see Sec. Il B.

T p E /N (K)

(K) (nm~%  Expt. Ref. WK1-LJ WK2-LJ PIMC-HFD' PIMC-LJ® Ref.
35.3+0.4 31.70 66.43.3 [23] 602 60.37-0.18 60.25 present work
35.1 32.0 61.7 [9]
35.1+0.4 34.61 69.64.7 [23] 602 61.44+0.15 61.39 present work
25.8+1.0 36.28 52.83.7 [23] 482 49.71+0.19 49.80 present work
26.9+0.2 36.1 48.220.9 [51] 49.7° [51]

&This value was obtained by using the first-order term of the Wigner-Kirkwood expansion and the experi-
mentalg(r) from Ref.[38].

bValue obtained for the Lennard-Jones model using the Wigner-Kirkwood expansion, up to the second order,
according to Ref[9]. The zeroth-orde(classical term is 52.5 K, the first and second corrections are 8.1 K
and 1.1 K, respectively.

“Value obtained by Seaf§1] using an approximate version of the Wigner-Kirkwood expansion.

dResults from the PIMC simulation using the HFD-C2 potential, extrapolaté®-toc. The quoted uncer-
tainties are the sum of the difference between Phel6 andP =32 results and their combined statistical
errors, assuming that the former is a measure of the systematic error of the simulations.

®Results from the PIMC simulatiorP(=32) using the Lennard-Jones potential.

in Table 1V), it appears that a first-order WK calculation  Following the experiment reported in R¢R4], a paper
should already give reliable results. This is corroborated by41] has appeared that presents the results of a PIMC simu-
the WK1 values that we have calculated using not the simutation. This technique is not based on the harmonic hypoth-
lations but the experimental microscopic structure deteresis and therefore one would expect that most of the ob-
mined by de Graaf and Moz¢88,39. Given that the agree- served discrepancies should be removed. Instead, a
ment between theory and experiment at the level of the radiajpstantial difference was still found between the experimen-
distribution function is excellent, this is not surprising. ~ ta| data and the simulation results. A likely inadequacy of the
On the experimental side, the early experimental deterMmipytermolecular potentiallJ) was then suggested as a pos-
nation by Sear$51] is found to be in good agreement with e justification of the discrepancy. The same LJ potential
the theoretical prediction. However, the more recent experiy .« 210 used in a subsequent simulation of solid fiéah
mental data reported in R423] appear to be systematically Also, the most recent experiment on solid ng80] attrib-

h|gher than all theoret!cal results. While, &t=25.8 .K’ the' uted a generally lower value to the atomic kinetic energy and
experimental valugwhich has recently been confirmed in theref d t of th iouslv ob d di i
Ref.[40]) is still consistent with the simulation result, at the eretore removed most of the previously observed discrep
higher temperatures the difference between experiment ai af;ezﬁg'?r\:ve e\é,(iar:;Jg?i:r?rrizirlf:tisbimeﬁgt tf?ﬁf,esgﬁgfearég;tal
simulation exceeds the quoted error margin. [30,42. Therefore, in order to avoid any further source of
uncertainty, we decided to perform the present PIMC simu-
lations using the more realistic HFD-C2 potential for neon.
No experimental data seems to be available on the struckhese were made at the same temperatures and densities as
ture factor of neon in the solid phase. This is to be expectedhe experimental determinatioh®4,30Q.
as a crystal structure develops long-range correlatiBresgg In Table V, we report a comparison of various experimen-
peaks$ which render the determination of the diffuse, liquid- tal and theoretical results. As far as the consistency of the
like component of the measure®{Q) extremely difficult.  theoretical calculations is concerned, the present simulations
However, on the basis of the results obtained for the liquid ishow a substantial agreement for the value of the kinetic
is likely that the simulations will also predict the correct energy, using either of two different potentials, namely,
structure for the solid phase of neon. Thus, the comparisohlFD-C2 and LJ. This confirms the results already given in
with experimental neutron scattering data is currently limitedRef. [30], even though the differences are smaller in our
to the kinetic energy, values for which have been reported ircase. In general, we find that the present simulation results
Refs.[24] and [30]. These experiments were performed atand those reported in Ref30] are in good agreement
almost constant density and at various temperatures, with the-1 K) in spite of the different implementation of the
aim of measuring the ground state energy of solid neon. It iPIMC algorithm. The agreement with the results of Refs.
worthwhile to note that in Ref[24] the measured kinetic [41] and[42] is also good.
energies were found to be consistently higher than various By contrast, the experimental results of Ref4] appear
theoretical predictions using harmonic models. The authorto be consistently higher than the simulations, with the dif-
thus inferred a substantial anharmonicity of neon. ferences being between two and three times the size of the

C. The kinetic energy in the solid phase
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TABLE V. Comparison of the various experimental and theoretical determinations of the kinetic energy of
solid neon. For a detailed explanation see Sec. Il C.

T p Ex/N (K)

(K) (nm~3) Expt. Ref. PIMC-HFD PIMC-LJ Ref.
4.125 4497 41.6 42.0 [30]
42+0.1 44.97 44.81.0 [30]

47+0.1 44.97 49.22.8 [24] 412112 40.4° present work
5.0 44.57 42.81 [41]
9.4+0.1 44.87 49.34.0 [24] 41.9+0.32 42.0° present work
10.0 44.48 43.21 [41]
10.15 44.85 42.6 43.2 [30]
10.2+0.1 44.68 43.61.0 [30] 41.8+0.32 41.9° present work
11.4+0.2 44.77 49.62.4 [24] 42.5+0.22 42.7° present work
15.0 44.11 44.68 [41]
15.2+1.0 44.45 50.8:3.0 [30]

15.7 44.48 46.5 [30]
17.8+0.2 44.12 51.22.8 [24] 45.9+0.12 46.2° present work
20.0 43.60 47.68 [41]
20.2+0.1 4391 48.861.0 [30] 47.9+0.22 48.2° present work
20.3 435 47.8 47.8 [30]
26.4+0.2 43.26 57.22.0 [24] 54.1+0.12 54.5° present work

8Results from PIMC simulations using the HFD-C2 potential, extrapolatd®-to<. The quoted uncertain-
ties are the sum of the difference betweenRe32 andP =64 results and their combined statistical errors,
assuming that the former is a measure of the systematic error of the simulations.

PResults from PIMC simulations”(=32) using the LJ potential.

quoted error bars. The more recent results of &4, how-  exhibits a finite width in the quantum mechanical case. The
ever, turn out in a better agreement with the calculations angair distribution functiorg(r) is only marginally affected by
the differences, when present, never exceed twice the quotefiis effect showing just a slight broadening and shift of the
experimental errors. On the average, however, the experfirst intermolecular peakl1]. Due to the small size of quan-
ment seems to overestimate the kinetic energy of solid Neoflim effects in the ||qu|d phase of neon, the results of a pre-
(cf., for example, Fig. 3 of Re{42]). _ vious WK expansion up to the third order i* were suffi-

~ Finally, concerning the validity of the WK approximation cjently accurate to give a fair quantitative agreement with the
in the solid phas¢53,54), this is questionable and therefore \icroscopic structure factor determined from the experi-
we did not attempt any comparison. In fact, it was already,

shown(cf. Ref.[9]) that in the solid phase the first correction ment. However, this involved a slight modification of the
L : . L air potential parameters. In the present PIMC calculations,
term in the WK expansion of the kinetic energy was of thep b b P

) . we used two different interatomic potentials, namely, an ef-
same order of magnitude as the classical reference term. szctive LJ potential and the pure two-body HED-C2 pair po-
this condition, it is hopeless to expect an asymptotic series t P P y pairp

?ential, and the simulations give slightly different results for
converge. - . .

g(r). However, within the present experimental accuracy, it
is impossible to discriminate between the two potential mod-
els (cf. Fig. 7).

The emergence of quantum properties in quasiclassical The atomic kinetic energy of neon, on the other hand, has
systems is a process that can be observed gradually in cobeen measured in a much wider density and temperature
densed neon. In the liquid state, at relatively high temperarange. One can use the variation in the kinetic energy to
tures, quantum effects manifest themselves as a broadenimgeasure the gradual emergence of quantum effects in con-
of the single-particle distribution functiom(r). This func- densed neon. In fact, the difference between the quantum
tion degenerates to & function in the classical limit but it mechanical kinetic energy and the classical equipartition

IV. CONCLUSIONS
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theorem increases on decreasing the temperature and be-solid neon. This is not corroborated by the present calcu-
comes very large in the solid phag#. Tables IV and V. lations as all our simulations, i.e., the ones using the LJ
The kinetic energy is related to the single-particle distri-potential and those using the HFD-C2 potential, give results
bution functionn(r) and its Fourier transformm(p). For a  in substantial mutual agreement as well as in agreement with
classical particlen(p) has a Gaussian shape whose width isthe harmonidor self-consistent harmonienodel.
determined by the thermal kinetic energy (¥g). As quan- It was also suggested that three-body irreducible terms in
tum effects become relevant, the value of the kinetic energyhe interaction potential might account, directly or indirectly,
deviates from. the classical equipartition theorem but thgg, the observed differences in the kinetic enefgy]. We
shape ofn(r) is usually assumed to remain approximately teng to exclude this possibility on the basis of the compari-
Gaussian. On the other hand, the Gaussian assumption caly, \ith the microscopic structure of liquid neon that was
not be retained when quantum statistics starts to play a rolgyn in Sec. 11l A. The present results are consistent with
such as in normal helium close to thetransition or in the oo yie\y that three-body irreducible terms in the interaction
superflu_|d _phas¢13]. The most recent experiment carn_ed potentials, when present, show up in the very lQwegion
out on liquid neorf40] seems to indicate a marginal devia- of the structure facto8(Q), i.e., at the level of long-range

tion of the momentum distribution from a purely Gaussian : . .
purely orrelations. Alternatively, they may also be observable in

shape. This suggestion is in contrast with the present simEo"Te! . . ;
lation results. In fact, we have seen in Figs. 3 and 4, that th ertain macroscopic properties such as the equation of state

Gaussian approximation is very well obeyed by the functio 57]. On the other hand, experiments aiming to measure the
n(r), extending for 4—5 orders of magnitude both in theKinetic energy gf atoms in condensed systems directly in-
liquid and the solid phase of neon. volve a very high value of the momentum transfe®,

As a byproduct of our calculations, we have given a comWhich is usually chosen in a region whe®¢Q) is already
prehensive comparison between two sets of experimentiery close to unity. Therefore, the system is seen by the
data and the results of a wide collection of data obtainedneutron probe as an ideal gas.
from quantum simulations of liquid and solid neon. While  In conclusion, we have presently no explanation for the
the structural data show almost perfect agreement betweaemaining small difference between the simulated and ex-
the experiment and the simulation resuliguid phase, cf. perimental kinetic energy, both in the liquid and in the solid
Sec. lll A), a small systematic difference remains at the levephase. On the theoretical side, simulations by various groups
of the kinetic energy, in both the liquid and solid phases. employing different potential models were found to be in

The theoretical calculations of the ground state kineticmutual agreement. However, we observe that the uncertainty
energy of solid neon, which were carried out within the har-in the experimental data is still sufficiently large to allow for
monic or the self-consistent harmonic approximation, are irfurther improvements, especially at the level of possible sys-
substantial agreement with the simulatiaie§. Table Il of  tematic errors. In fact, the kinetic energy is measured as the
Ref. [24] and Table V of this papgr The only exception width of the recoil peak in a NCS experiment. This peak, in
appears to be the variational calculation by Bernaiféé&s. turn, is convoluted with the instrument resolution function
However, it should be noted that a subsequent calculation bthat, at present, is usually large. Therefore, improvements in
Nosanow and Sha\b6] (self-consistent solution of Hartree the instrumental performance could allow better experimen-
equationy brought that value back to the level of the har- tal determinations of the kinetic energy. We suggest that the
monic models. remaining discrepancy found in neon could provide, among

Originally, the differences between the experimental datather things, a further valid motivation to improve the reso-
and theory were attributed to a possible high anharmonicityution of the available NCS instruments.
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