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Features of statistical dynamics in a finite system
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We study features of statistical dynamics in a finite Hamilton system composed of a relevant one degree of
freedom coupled to an irrelevant multidegree of freedom system through a weak interaction. Special attention
is paid on how the statistical dynamics changes depending on the number of degrees of freedom in the
irrelevant system. It is found that the macrolevel statistical aspects are strongly related to an appearance of the
microlevel chaotic motion, and a dissipation of the relevant motion is realized passing through three distinct
stages: dephasing, statistical relaxation, and equilibrium regimes. It is clarified that the dynamical description
and the conventional transport approach provide us with almost the same macrolevel and microlevel mecha-
nisms only for the system with a very large number of irrelevant degrees of freedom. It is also shown that the
statistical relaxation in the finite system is an anomalous diffusion and the fluctuation effects have a finite
correlation time.
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I. INTRODUCTION

A dynamic origin of dissipative motion observed in a
nite many-body system is a fundamental and challeng
problem in various fields of contemporary science@1#. The
underlying physics is how the statistical state is realized
of the microscopic deterministic motion, and how the irr
versible macrolevel process is generated as a result of
reversible microlevel dynamics.

In the conventional approach in deriving the Fokke
Planck or Langevin equations, the entire system is divid
into relevant and irrelevant subsystems intuitively, while t
ergodic and irreversible property are assumed for the ir
evant subsystem composed of infinite number of degree
freedom~DOF!, and thermodynamical concepts, such a
thermal heat bath or a time-independent canonical ensem
are introduced by hand. In afinite system, however, it is no
a trivial discussion whether or not the irrelevant subsyst
can be effectively replaced by a statistical object, e.g., a h
bath, even when it shows chaotic behavior and its Lyapu
exponent has a positive value everywhere in the phase sp

In order to explore the microscopic dynamics respons
for the macroscopic transport phenomena, a theory
coupled-master equation has been formulated@2# as a genera
framework for deriving the transport equation, and for cla
fying its underlying assumptions. In order toself-consistently
andoptimally divide the finite system into a pair of weakl
coupled subsystems, the theory employs the self-consis
collective coordinate~SCC! method@3#. The self-consisten
and optimal separation carried out by the SCC method
ables us to study the large-amplitude dissipative motion
the relevant subsystem in a reasonable scheme.

It has been clarified@1# that the macroscopic transpo
equation is obtained from the fully microscopic master eq
tion under the following microscopic conditions.

~i! Effects coming from the irrelevant subsystem on t
relevant one are taken into account and mainly expresse
an average effect over the irrelevant distribution functio
Namely, the fluctuation effects are considered to be su
1063-651X/2002/65~3!/031111~16!/$20.00 65 0311
g

t
-
he

-
d

e
l-
of
a
le

at
v
ce.
e
of

-

nt

n-
r

-

by
.
-

ciently small and are able to be treated as a perturba
around the path generated by the average Hamiltonian.

~ii ! Irrelevant distribution function has already reached
time-independent stationary state before the main mic
scopic dynamics responsible for the damping of the relev
motion dominates. According to our previous paper@4#, this
situation turned out to be well realized even in the two-DO
system.

~iii ! Time scale of the irrelevant motion is much short
than that of the relevant one.

In order to get a full understanding of the dynamical r
alization of statistical state in a finite system, in our previo
paper@5#, an evolution process of a simple two-DOF syste
has been studied by using a general microscopic trans
theory@2,4,6#. It has been shown that the nonlinear coupli
between different DOF responsible for generating a cha
motion plays an important role in realizing the statistic
state for such a system that is described by a bundle of
jectories ~distribution function!. For the two-DOF system
however, it is not possible to assign the relevant subsys
or to discuss its transport process, since the chaotic or st
tical state can only be realized by a system with at least
DOF. Thus, one needs a system with more than two D
which will be allowed to be divided into two weekly couple
subsystems: one is composed of at least two DOF, whic
regarded as an irrelevant subsystem and the rest is co
ered to be a relevant subsystem.

Based on the numerical simulation for a microscopic s
tem composed of the relevant one-DOF system coupled
the irrelevant two-DOF system through a weak interacti
the transport phenomenon was first established theoretic
and numerically@1#. It was clarified that the microscopi
dephasingmechanism caused by the chaoticity of irreleva
subsystem is responsible for the energy transfer from
relevant subsystem to the environment. Although our
merical simulation by employing the Langevin equation w
able to reproduce the macrolevel transport phenomeno
was also clarified that there are substantial differences in
©2002 The American Physical Society11-1
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microlevel mechanism between the fully microscopic d
scription and the Langevin description, and in order to rep
duce the same results the parameters used in the Lang
equation do not satisfy the fluctuation-dissipation theorem

Therefore various questions related to the transport p
nomenon realized in the finite system on how to underst
the differences between the above-mentioned two desc
tions, what kinds of other microscopic mechanisms are th
besides thedephasing, and when the fluctuation-dissipatio
theorem comes true, etc., are still remained. In the conv
tional approaches, e.g., the Fokker-Planck or Langevin t
equations, the irrelevant subsystem is always assume
have a large~eveninfinite! number of DOF and is placed i
a canonically equilibrated state. It is then quite natural to
whether these problems are caused by a limited num
~only two! of DOF in the irrelevant subsystem considered
our previous work. In order to fill the gap between two a
infinite DOF for the irrelevant subsystem, it is extreme
important to study how the microscopic dynamics chan
depending on the number of the irrelevent DOF.

For this purpose, in this paper, a Fermi-Pasta-Ulam~FPU!
system is adopted for the irrelevant subsystem, as it all
us to change the number of DOF conveniently. It will
shown that although the dephasing mechanism is the m
mechanism for a case with a small number of DOF, the
fusion mechanism will start to play a role as the number
DOF becomes large~say, eight or more!, and, in general, the
energy transport process occurs by passing through three
tinct stages, such as, the dephasing, the statistical relaxa
and the equilibrium regimes. By examining a time evoluti
of a nonextensive entropy@7#, an existence of three regime
will be clearly exhibited.

Exploiting an analytical relation, it will be shown that th
energy transport process is described by thegeneralized
Fokker-Planck and Langevin-type equation, and a phen
enological fluctuation-dissipation relation is satisfied in
case with relatively large DOF system. It will be clarifie
that the irrelevant subsystem with finite number of DOF c
be treated as a heat bath with a finite correlation time,
the statistical relaxation turns out to be an anomalous di
sion, and both the microscopic approach and the conv
tional phenomenological approach may reach the same
crolevel description for the transport phenomena only wh
the number of irrelevant DOF becomes very large.

The outline of this paper is as follows. In Sec. II, th
microscopic model Hamiltonian will be introduced and t
most general coupled-master equation will be briefly re
pitulated for the sake of self-containedness. In Sec. III,
behavior of energy transfer process will be discussed
gether with an energy equipartition problem and its dep
dence on the number of DOF. An evolution process will
examined by using the nonextensive entropy in Sec. IV
Sec. V, our numerical results will be explored in an analyti
way and the Fokker-Planck equation will be derived. T
final section will be devoted for discussion and summary

II. MICROSCOPIC MODEL

With the aid of the SCC method@3#, the whole micro-
scopic system can be optimally divided into the relev
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~collective! and irrelevant~intrinsic! DOF by introducing an
optimal canonical coordinate system called the dynam
canonical coordinate~DCC! system for a given trajectory
That is, the total closed systemh % j is dynamically divided
into two subsystemsh and j, whose optimal canonical co
ordinates are expressed asha , ha* :a51, . . . and
ja , ja* :a51, . . . , respectively. The resulting Hamiltonia
in the DCC system is expressed as

H5Hh1Hj1Hcoupl , ~1!

whereHh depends on the collective,Hj on the intrinsic, and
Hcoupl on both the collective and intrinsic variables. Tim
dependence of the collective and intrinsic variables are
scribed by a set of canonical equations of motion given as@1#

i ḣa5
]H

]ha*
, i ḣa* 52

]H

]ha
,

i j̇a5
]H

]ja*
, i j̇a* 52

]H

]ja
. ~2!

Here, it is worthwhile mentioning that the SCC metho
defines the DCC system in such a way that thelinear cou-
pling between the collective and intrinsic systems is elim
nated, i.e., the maximal decoupling condition@2# given by

]Hcoupl

]h U
j5j* 50

50 ~3!

is satisfied. This separation in the DOF has been known to
very important in exploring the energy dissipation proce
and the nonlinear dynamics between the collective and
trinsic modes of motion.

To deal with an ensemble of trajectories, we start with
Liouville equation for a distribution function

ṙ~ t !52 iLr~ t !, L•••[ i $H,•••%PB ,

r~ t ![r„h~ t !,h~ t !* ,j~ t !,j~ t !* …. ~4!

Here the symbol$ %PB denotes the Poisson bracket. Since
are interested in a time evolution of the bundle of trajec
ries, whose bulk properties ought to be expressed by
collective variables alone, we introduce a pair of reduc
distribution functions through

rh~ t ![Trj r~ t !, rj~ t ![Trh r~ t !. ~5!

Here, the total distribution functionr(t) is normalized so as
to satisfy the relation

Tr r~ t !51, ~6!

where
1-2
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Tr[Trh Trj , Trh[)
a
E E dhadha* ,

Trj[)
a

E E djadja* . ~7!

With the aid of the reduced distribution functionsrh(t) and
rj(t), one may decompose the Hamiltonian in Eq.~1! into
the following form:

H5Hh1Hj1Hcoupl

5Hh1Hh~ t !1Hj1Hj~ t !1HD~ t !2E0~ t !,

Hh~ t ![Trj Hcouplrj~ t !,

Hj~ t ![Trh Hcouplrh~ t !,

~8!

Haver~ t ![Hh~ t !1Hj~ t !,

E0~ t ![Tr Hcouplr~ t !,

HD~ t ![Hcoupl2Haver~ t !1E0~ t !.

The corresponding Liouvillians are defined as

Lh•••[ i $Hh ,•••%PB , Lh~ t !•••[ i $Hh~ t !,•••%PB ,

Lj . . . [ i $Hj ,•••%PB , Lj~ t ! . . . [ i $Hj~ t !,•••%PB ,
~9!

Lcoupl . . . [ i $Hcoupl ,•••%PB,

LD~ t ! . . . [ i $HD~ t !,•••%PB.

By exploiting the time-dependent projection opera
method@2,8#, one may decompose the distribution functi
into a separable part and a correlated one as

r~ t !5rs~ t !1rc~ t !,

rs~ t ![P~ t !r~ t !5rh~ t !rj~ t !, ~10!

rc~ t ![@12P~ t !#r~ t !,

whereP(t) is the time-dependent projection operator defin
by

P~ t ![rh~ t !Trh1rj~ t !Trj2rh~ t !rj~ t !Trh Trj . ~11!

From the Liouville equation~4!, one gets

ṙs~ t !52 iP~ t !Lrs~ t !2 iP~ t !Lrc~ t !, ~12!

ṙc~ t !52 i @12P~ t !#Lrs~ t !2 i @12P~ t !#Lrc~ t !. ~13!

By introducing a propagator
03111
r

d

g~ t,t8![T expH 2 i E
t8

t

@12P~t!#LdtJ , ~14!

whereT denotes the time ordering operator, one obtains
master equation forrs(t) as

ṙs~ t !52 iP~ t !Lrs~ t !2 iP~ t !Lg~ t,t I!rc~ t I!

2E
t I

t

dt8P~ t !Lg~ t,t8!$12P~ t8!%Lrs~ t8!, ~15!

where t I stands for an initial time. As is easily proved, th
Liouvillian L appearing inside the time integration in E
~15! can be replaced byLcoupl . Expressingrs(t) andP(t) in
terms ofrh(t) andrj(t), and operating Trh and Trj on Eq.
~15!, one obtains a coupled master equation

ṙh~ t !52 i @Lh1Lh~ t !#rh~ t !2 i Trj@Lh

1Lcoupl#g~ t,t I!rc~ t I!

2E
t I

t

dt Trj LD~ t !g~ t,t!LD~t!rh~t!rj~t!,

~16a!

ṙj~ t !52 i @Lj1Lj~ t !#rj~ t !2 i Trh@Lj

1Lcoupl#g~ t,t I!rc~ t I!

2E
t I

t

dt Trh LD~ t !g~ t,t!LD~t!rh~t!rj~t!.

~16b!

The coupled master equations~16! are equivalent to the
original Liouville equation~4! and can be considered as
general framework for deriving the transport equation a
for clarifying its underlying assumptions.

In this paper, the collective system is represented b
harmonic oscillator with a coordinateq, momentump, mass
M, and frequencyv, given by

Hh~q,p!5
p2

2M
1

1

2
Mv2q2, ~17!

and the intrinsic system mimicking the environment is d
scribed by ab-FPU system~called so because of its qua
dratic interaction!, which was posed in the famous paper@9#
and reviewed in@10#

Hj5(
i 51

Nd pi
2

2
1(

i 52

Nd

W~qi2qi 21!1W~qNd
!,

W~q!5
q4

4
1

q2

2
, ~18!

where
1-3
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q5
1

A2
~h1h* !, p5

i

A2
~h* 2h!,

qi5
1

A2
~j i1j i* !, pi5

i

A2
~j i* 2j i !, ~19!

andNd represents a number of DOF~i.e., a number of non-
linear oscillators!. According to the related references@10–
12#, the dynamics ofb-FPU becomes strongly chaotic an
relaxation is fast, when the energy per DOFe is chosen to be
larger than a certain value~called as the critical value@12#,
sayec'0.1). In the present paper,e is chosen as 10 to guar
antee that our irrelevant subsystem can reach fully cha
situation. Indeed, in this case, the calculated larg
Lyapunov exponents(Nd) turns out to be positive, for in-
stance,s(Nd)50.15, 0.11, and 0.11 forNd52, 4, and 8,
respectively. Thus, a ‘‘fully developed chaos’’ is expected
the b-FPU system, and an appearance of statistical beha
in its chain of oscillators and an energy equipartition amo
the modes are expected to be realized.

For the coupling interaction, we use the following nonli
ear interaction given by

Hcoupl5l$q22q0
2%$q1

22q1,0
2 %. ~20!

Quantitiesq0 andq1,0 in Eq. ~20! denote a set of positions o
the collective coordinate and the first intrinsic coordinate o
sample trajectory at the time when the interaction is switc
on. According to the above form of the coupling,q1 describ-
ing the first oscillator plays a role of doorway variabl
through which the intrinsic system exerts its influence on
collective system@11#. Throughout the present study, th
coupling strength parameter is chosen asl50.002.

In performing the numerical simulation, the time evol
tion of the distribution functionr(t) is evaluated by using
the pseudoparticle method as

r~ t !5
1

Np
(
n51

Np

)
i 51

Nd

d„qi2qi ,n~ t !…d„pi2pi ,n~ t !…

3d„q2qn~ t !…d„p2pn~ t !…, ~21!

whereNp means a total number of pseudoparticles. The d
tribution function in Eq.~21! defines an ensemble of sy
tems, each member of which is composed of a collec
DOF coupled to a single intrinsic trajectory. The collecti
coordinatesqn(t) and pn(t), and the intrinsic coordinate
qi ,n(t) and pi ,n(t)$ i 51, . . . ,Nd% determine a phase-spac
point of thenth pseudoparticle at timet, whose time depen
dence is described by the canonical equations of mo
given by

q̇i5
]H

]pi
, ṗi52

]H

]qi
, $ i 51, . . . ,Nd%

q̇5
]H

]p
, ṗ52

]H

]q
. ~22!
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We use the fourth-order symplectic Runge-Kutta algorith
@13# for integrating the canonical equations of motion andNp
is chosen to be 10 000.

In our calculation, the coupling interaction is activate
after the statistical state has been realized in the intrin
system, i.e., two subsystems evolve independently at an
tial stage. Hereaftertsw denotes a moment when the intera
tion is switched on. Since our primary aim is to microsco
cally generate such a transport phenomenon that migh
understood in terms of the Langevin-type equation, we h
to realize such a microscopic situation where the Conditi
~i!, ~ii !, and~iii ! discussed in Sec. I are satisfied. To this en
we first let the intrinsic system evolve alone, till the ergod
and irreversible property are well realizeddynamically. We
will show that the above microscopic situation is indeed
alizeddynamicallyfor the intrinsic system.

III. ENERGY DISSIPATION AND EQUIPARTITION

In Ref. @1#, a microscopic dynamical system composed
one collective and two intrinsic DOF was studied, and t
dephasing mechanism turned out to be the only mechan
responsible for the energy transfer from the collective sys
to the environment. It was also shown that the fluctuatio
dissipation theorem does not hold, and there is a substa
difference in the microscopic behavior between the dyna
cal simulations based on the Liouville equation and on
phenomenological Langevin equation, even though these
descriptions provide us with almost the same macrosco
transport phenomenon. Namely, the collective distribut
function organized by the former evolves into a ring shape
the collective phase space by approximately keeping its
tial collective energy, while that of the latter evolves into
round shape, whose collective energy is ranging from
initial value to zero. In order to understand the above diff
ences, i.e., to clarify a necessary condition where the b
descriptions give the same result, and to study a phys
situation where the fluctuation-dissipation theorem com
true, it is strongly desired to explore how different m
crolevel dynamics appears depending on the number of
trinsic DOF.

In our numerical calculation, the used parameters areM
51, v250.2. In this case, the collective time scaletcol
characterized by the harmonic oscillator in Eq.~17! and the
intrinsic time scalet in by the harmonic part of the intrinsic
Hamiltonian in Eq.~18! satisfies a relationtcol@t in . The
switch-on timetsw is set to betsw5100tcol .

In Figs. 1~a!–1~d!, average values of partial Hamiltonian
^Hh& t , ^Hj& t , and ^Hcoupl& t and of the total Hamiltonian
^H& t defined by

^X& t5E Xr~ t !dqdp)
i 51

2

dqidpi , ~23!

as a function of the time are depicted for the cases withEh
530, l50.002, andNd52, 4, 8, and 16, respectively. In
order to show clearly how the dissipation of collective e
ergy changes depending onNd , the time-dependent averag
values of collective Hamiltonian̂Hh& t are shown in Fig. 2
1-4
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FIG. 1. Time dependence of the average partial Hamiltonian^Hh& t , ^Hj& t , ^Hcoupl& t and the total Hamiltonian̂H& t for Eh530, l
50.002.~a! Nd52; ~b! Nd54; ~c! Nd58; and~d! Nd516.
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for the cases withNd52, 4, 8, and 16. In order to unde
stand the final stage of the total system, an asymptotic a
age energy for each DOF in the intrinsic system is calcula
to be 11.92, 12.54, 11.851, and 10.996, and that of the
lective system to be 24.03, 17.15, 12.499, and 11.32 forNd
52, 4, 8, and 16, respectively. Considering a boundary
fect of the finiteb-FPU system, i.e., two end oscillators, on
may see that the energy equipartition over every DOF
expected in the saturated stage for the cases with relati
large number of DOF, asNd>8.

FIG. 2. Time-dependent average value of collective ene
^Hh& t for the cases withNd52, 4, 8, and 16. Parameters are t
same as in Fig. 1.
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From our numerical calculation, one may clearly see t
a very similar result has been obtained for another Hamil
system in the case withNd52 @1#. Namely, the main change
occurs in the collective energy as well as the interaction
ergy, and the main process responsible for this change
been clarified to be the dephasing mechanism. One may
learn from our previous paper@1# that the dissipative-
diffusion mechanism plays a crucial role in reducing the
cillation amplitude of collective energy, and in realizing th
steady energy flow from the collective system to the envir
ment, when one tries to understand the energy transfer
cess in terms of the Langevin equation. WhenNd increases,
one may clearly learn the following number dependen
from Fig. 2: After the dephasing process, the collective
ergy gradually decreases and finally reaches to a satur
value as the number of intrinsic DOF increases. More p
cisely, the energy transfer process can be divided into th
stages.

~a! Dephasing regime. Here the fluctuation interaction re
duces a coherence of the collective trajectories and ma
the average amplitude of collective motion damped. This
gime is the main process for a system with small numbe
intrinsic DOF~say, two!. When the number of intrinsic DOF
increases, a lasting time of this regime decreases.

~b! Nonequilibrium relaxation regime. This regime will
also be called as a thermodynamical regime in the follow
section. In this regime, the collective energy is irreversib
transferred to the ‘‘environment.’’

y

1-5
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~c! Saturation regime. This is an asymptotic regime wher
the total system reaches to some equilibrium state and
total energy is equally distributed over every DOF realized
the cases with largeNd ~say,>8).

A more detailed study on the above three regimes will
discussed in the following sections.

If one sticks to the conventional transport theory and tr
to understand the above results from a macroscopic poin
view, one may say that a gradually decreasing behavio
the collective energy is due to an irreversible dissipative p
turbation coming from the interaction with intrinsic su
system. In our previous simulation@1#, by using the Lange-
vin equation for the case withNd52, it turned out that the
fluctuation interaction mainly contributes to a diffusion effe
so as to reduce the coherence of collective trajectories, w
the irreversible dissipative perturbation~friction force! is
much smaller than that predicted by the fluctuatio
dissipation theorem. According to a naive picture based
the phenomenological Langevin equation, an appearanc
the second regime may be understood to be an increas
the dissipative mechanism, and an asymptotic and satur
behavior may indicate a realization of the conventio
fluctuation-dissipation theorem for the cases withNd>8.
Namely, an effect of the dissipative mechanism is expec
to increase asNd becomes large. From this phenomenolo
cal understanding, the above numerical simulation may p
vide us with very important information on the mechanis
of microscopic dynamics of the dissipative collective m
tion, which might change depending on the number of intr
sic DOF.

Based on the standard nonequilibrium statistical the
the nonequilibrium relaxation regime~or called as thermody
namical regime! may be understood within the linear re
sponse theory@11,14,15# when the number of intrinsic DOF
is sufficiently large. However, we have learned that
dephasing process dominates when the collective syste
nonlinearlycoupled with the intrinsic system composed o
very small number of DOF. For the case withNd52, the
dephasing process lasts for a very long time and play
decisive role in organizing the time evolution of the colle
tive motion. For the case withNd,8 where an applicability
of the linear response theory is still a question of deb
@16,17#, the dephasing mechanism may still play an imp
tant role in the transport process. WhenNd increases up to
16, the lasting time of the dephasing process becomes
short and the nonequilibrium relaxation process seems to
come a dominant mechanism for the energy dissipat
WhenNd becomes large~more than 16!, the thermodynami-
cal mechanism seems to become a dominant mechanism
there might be no big differences between the nonlinear
linear response theory.

IV. ENTROPY EVOLUTION FOR THE COUPLED
SYSTEM

Let us discuss how to understand the three regimes in
transport process discussed in the preceding section. A
shown in Sec. III, the transport, dissipative and damp
phenomena in the collective behavior of the ensemble
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trajectories are well realized in our numerical simulation.
the general theory of dynamical system, the order-to-ch
transition is usually regarded as the microscopic origin of
appearance of the statistical state in the finite system. S
one may express the heat bath in terms of the infinite num
of integrablesystems, e.g., the harmonic oscillators who
frequencies have a Debye distribution, it may not be a
evant question whether the chaos plays a decisive role for
dissipation mechanism and for the microscopic generatio
the statistical state in a case of the infinite system. In
finite system where the large number limit is not secured,
order-to-chaos transition is expected to play a decisive
in generating some behaviors which are regarded to be
tistical. There might be a relation between the generation
the chaotic motion in a single trajectory and the realizat
of a statistical state for a system described by a bundle
trajectories.

This issue has been studied as a dynamical relation
tween the Kolmogorov-Sinai~KS! entropy and the physica
Boltzmann-Gibbs~BG! entropy in the classical Hamilton
system @16#, and in the quantum dynamical system@17#.
Here, the KS entropy is a single numberk related to an
average rate of the exponential divergence of nearby tra
tories, whereas the physical BG entropyS(t) known as an
entropy of the second law in the thermodynamics is defin
by the distribution functionr(t) of a bundle of trajectories a

S~ t !52E r~ t !ln r~ t !dqdp)
i 51

Nd

dqidpi , ~24!

which depends not only on the particular dynamical syste
but also on the choice of an initial probability distributio
Therefore, a relation between the KS entropy and phys
BG entropy may give an information on the relation betwe
the chaoticity of a single trajectory and the statistical st
described by a bundle of trajectories.

It has been concluded@16# that the time evolution ofS(t)
in the conserved system goes through three time regime

~1! An early regime whereS(t) is heavily dependent on
the details of the dynamical system and of the initial dis
bution. This regime is called as the decoherence regime
the quantum system or the dephasing regime for the clas
system. In this regime, there is no generic relation betw
S(t) andk.

~2! An intermediate time regime whereS(t) increases lin-
early with slopek, i.e., udS(t)/dtu;k. This stage is called as
the Kolmogorov-Sinai regime or thermodynamical regim
In this regime, a transition from dynamics to thermodyna
ics is expected to occur.

~3! A saturation regime whereS(t) is in equilibrium. In
this case,r(t) is uniformly distributed over the whole ene
getically available area of the phase space. In accorda
with a view of Krylov @20#, a coarse graining process
required in this regime in dividing the phase space. It sho
be mentioned that the BG entropyS(t) in Eq. ~24! is unable
to deal with a variety of interesting physical problems su
as the thermodynamics of self-gravitating systems, so
anomalous diffusion phenomena, Le´vy flights, etc., among
1-6
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FIG. 3. ~a! Physical Boltzmann-Gibbs entropyS(t). Nonextensive entropySa(t) for collective~b!, intrinsic ~c!, and total phase space~d!
for the case withNd58. Entropic indexa50.7. Parameters are the same as Fig. 1.
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others @21–24#. In order to deal with these difficulties,
generalized, nonextensive entropy is introduced@7#

Sa~ t !5

12E @r~ t !#adqdp)
i 51

Nd

dqidpi

a21
, ~25!

wherea is called the entropic index characterizing the e
tropy functionalSa(t). When a51, Sa(t) reduces to the
conventional physical BG entropyS(t). How to understand a
departure ofa from 1 has been discussed in Refs.@21,23#.
From a macroscopic point of view, the diversion ofa from 1
measures how the dynamics of the system violates the
dition of short-range interaction and correlation, which p
vides a necessary condition~in the traditional wisdom! in
establishing the thermodynamical properties@21#. On the
other hand, such deviation can be attributed to themixing
~not only ergodicity! property of the phase space. That is, t
a51 and physical BG entropyS(t) is an adequate hypoth
esis when the mixing is exponential~strong mixing!, whereas
the nonextensive entropy should be used@23# when themix-
ing is weak.

It is very interesting to notice that our simulated ener
transfer process also shows three regimes as mentione
Sec. III. Consequently, there arises an inevitable ques
whether there is some relation between our numerical si
lation and the time evolution ofS(t) or Sa(t). To this aim,
let us introduce the nonextensive entropies
03111
-

n-
-

in
n

u-

Sa
C~ t !5

12E @rh~ t !#adqdp

a21
, ~26a!

Sa
I ~ t !5

12E @rj~ t !#a)
i 51

Nd

dqidpi

a21
, ~26b!

whererh(t) andrj(t) are the reduced distribution function
in Eq. ~5!. For comparison, the physical BG entropies for t
collective and intrinsic systems defined as

SC~ t !52E rh~ t !ln rh~ t !dqdp, ~27a!

SI~ t !52E rj~ t !lnrj~ t !)
i 51

Nd

dqidpi , ~27b!

are also introduced.
Time dependence of the physical BG entropyS(t) is de-

picted in Fig. 3~a! and that of the nonextensive entropi
Sa

C(t), Sa
I (t), andSa(t) for the collective, intrinsic, and to-

tal system are shown in Figs. 3~b!–3~d! for the case with
Nd58. From this figure, it is recognized that there is
entropy production in the collective system before the c
pling interaction is activated. During this time interval, a
entropy increasing process in the intrinsic system is ob
1-7



on
e
e
ed
e

p
e
p

on

h

a
in
ce
e

lt

i-
au
sy
th
la

e
a
r

r

-

in
th

ess
e.
ess
in

he

me
by

ra
c
erva-

ally,

rgy
the

to

e-

n

ping
tion

ow

end-

ing

ng
ep-
-
ant

time
hase,
pari-
ies.
cro-
ial

n
tri-
ion

-

SHIWEI YAN, FUMIHIKO SAKATA, AND YIZHONG ZHUO PHYSICAL REVIEW E 65 031111
ously seen both in the physical BG entropy and in the n
extensive entropy. This means that the intrinsic syst
(b-FPU system! diffuses far from the equilibrium state to th
equilibrium state where trajectories are uniformly distribut
in the phase space. This conclusion is consistent with R
@11#. After the coupling interaction is switched on, there a
pear different situation either one uses the physical BG
tropy or the nonextensive entropy in evaluating the entro
production of the intrinsic system. As was already shown@1#,
the intrinsic system is always in a time-independent stati
ary state even after the switch-on timetsw5100tcol , because
its time scale is much smaller than the collective one. T
point is clearly seen from the present simulation in Fig. 3~a!
where no change is observed inSI(t) aroundtsw . Since there
exists an energy transfer process between the collective
intrinsic systems aftertsw @25#, there should be a change
the distribution of trajectories in the intrinsic phase spa
which is not observed by the BG entropy. Such a chang
the distribution can only be observed by means ofSa

I (t) as
shown in Fig. 3~c!.

With regard to the collective system, our numerical resu
for SC(t) andSa

C(t) are shown in Figs. 3~a! and 3~b!, respec-
tively. From Fig. 3~a!, one may observe thatSC(t) increases
exponentially to a maximum value just aftertsw . It is not
trivial to answer whether or not this maximum value ind
cates the stationary state for the collective system, bec
the energy exchange between the collective and intrinsic
tems is still going on at this moment as mentioned in
preceding section. This point may be examined by calcu
ing the nonextensive entropySa

C(t) shown in Fig. 3~b!. In
Fig. 3~b!, Sa

C(t) increases exponentially to a maximal valu
and then decreases almost linearly, and finally tends to s
rate toward a time-independent value. From the above
sults, one may say that the time evolution ofSa

C(t) after tsw

is divided into three stages; exponentially increasing, linea
decreasing, and saturated regimes forNd58.

In order to understand theNd dependence of the three
stage transport process,Sa

C(t) for Nd52, 4, 8, and 16 are
depicted in Fig. 4. For a case withNd52, only an exponen-
tially increasing behavior is observed. Since the dephas
mechanism mainly contributes to the transport process in
case withNd52 @1#, the exponentially increasing partmay

FIG. 4. Comparison ofSa
C(t) for Nd52, 4, 8, and 16. Param

eters are the same as in Fig. 3.
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correspond to the dephasing regime.
As Nd increases up to 8, a linearly decreasing proc

appears inSa
C(t) after the exponentially increasing stag

From the discussion in the preceding section, this proc
may correspond to the nonequilibrium relaxation process
which the collective energy is irreversibly transferred to t
‘‘environment.’’

Here it should be mentioned why the second regi
shows a linearly decreasing, unlike a case discussed
Latora and Baranger@18#. The systems considered by Lato
and Baranger and others@19,21,22# are conservative chaoti
systems. In our present case, the total system is a cons
tive system whose entropy is shown in Fig. 3~d!, while the
intrinsic and collective systems are open systems. Especi
the collective system is a dissipative system aftertsw . In the
second regime of energy dissipation, the collective ene
irreversibly dissipates into the intrinsic system by making
distribution of collective trajectories in the phase space
shrunk.

In order to explore this situation more deeply, a time d
velopment of the collective distribution functionrh(t) in the
collective ~p,q!-phase space and a probability distributio
function of collective trajectories defined as

Ph~e!5E rh~ t !uHh(q,p)5edqdp, ~28!

are shown in Fig. 5 at various times forNd58. These figures
illustrate how a shape of the distribution functionrh(t) dis-
perses depending on time. Dynamic process of the dam
ought to be observed when a peak location of the distribu
function changes from the outside~higher collective energy!
region to the inside~lower collective energy! region, and the
dissipative diffusion mechanism is studied by observing h
strongly a distribution function initially~at t5tsw) located at
a tiny region of the collective phase space disperses dep
ing on time.

One may see that in the period shortly after the coupl
interaction is switched on, i.e., fromtsw5100tcol to
110tcol , rh(t) quickly disperses and tends to cover a ri
shape in the collective phase space by approximately ke
ing its initial collective energy. When the distribution func
tion tends to expand over the whole ring shape, the relev
part of the bundle of trajectories does not have the same
dependence. Some trajectories have an advanced p
whereas other trajectories have a retarded phase in com
son with the average motion over the bundle of trajector
This dephasing mechanism is considered to be the mi
scopic origin of the entropy production in the exponent
regime.

A more interesting situation appears fromT5110tcol
through 140tcol . One may see that the distribution functio
gradually invades into a central region. A peak of the dis
bution gradually moves to the center, and the distribut
tends to have the Boltzmann distribution as

Ph~e!;e2be, ~29!
1-8
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FIG. 5. ~A! parts ~a!–~f! Collective distribution function in (p,q) space;~B! parts ~a!–~f! probability distribution functionPh(e) of
collective trajectories atT5102.5tcol , 110tcol , 120tcol , 140tcol , 160tcol , and 240tcol for Eh530 andl50.002.
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which is clearly seen from subfigures~d!, ~e!, and~f! of Part
~B! of Fig. 5. After T5160tcol to 240tcol , the distribution
function does not practically change anymore, which cor
sponds to the saturated regime. Comparing the distributio
subfigure~f! of Part ~A! of Fig. 5 with the one obtained by
the phenomenological transport equation~such as the Lange
vin equation! in our previous paper@1#, one may see that th
final stationary distribution is consistent with the resu
simulated by the Langevin equation. From the above disc
sion, a transition from dynamics to thermodynamics is
deed realized numerically, and the collective system is
garded to reach to the equilibrium state finally.

Here it is worthwhile to clarify a relation between a
anomalous diffusion and the above-mentioned nonexten
entropy expressed by the time evolution of the subsyst
03111
-
in

s-
-
-

ve
s

with a,1, because the nonequilibrium relaxation regime
characterized not by the physical BG entropy, but by
nonextensive entropy witha,1. Generally, the diffusion
process is characterized by the average square displace
or its variance as

s2~ t !;tm. ~30!

For normal diffusionm51. All processes withmÞ1 are
termed as an anomalous diffusion, namely, subdiffusion
0,m,1 and superdiffusion for 1,m,2.

We calculate a time-dependent variance of collective
ordinatesq

2(t)5Šq22^q2& t‹t for the case withNd58 as de-
picted in Fig. 6, which also clearly shows the three stages
1-9
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FIG. 5. ~Continued!.
e

t-

ro

ng
discussed above. The result ofsq
2(t) in nonequilibrium re-

laxation regime can be characterized by the expression

sq
2~ t !5sq

2~ t0!2D~ t2t0!mq, ~31!

wheret05110tcol is a moment when the dephasing regim
has finished, andsq

2(t0)5335.0 the value ofsq
2(t) at timet0.

We fit the diffusion coefficientD and diffusion exponentmq
in Eq. ~31! for the non-equilibrium relaxation regime as plo
ted in Fig 7. The resultant values are D515.5 and mq
50.58, which suggest that the nonequilibrium relaxation p
cess of a finite system correspond to ananomalousdiffusion
process.

At the end of this section, one may come to the followi
conclusions.
03111
-

FIG. 6. Time-dependent variancesq
2(t) with Nd58. Parameters

are the same as in Fig. 1.
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~i! When the physical BG entropy is used to evaluate
entropy production for the system considered in this wo
the three characteristic regimes cannot be detected in
collective system. When the nonextensive entropy is u
with a,1.0, the three dynamical stages, i.e., the depha
regime, nonequilibrium relaxation regime and equilibriu
regime appear for a relatively large number of intrinsic DO
as Nd>8. The second regime may disappear for a sm
number of DOF case, e.g.,Nd52.

~ii ! Since the collective system is a dissipative syst
whose distribution function varies nonuniformly in the no
equilibrium relaxation regime, one has to use the entro
index a different from 1.

~iii ! As is shown by thesq
2(t) and bya,1, the nonequi-

librium relaxation process of a finite system considered
this paper corresponds to the anomalous diffusion proce

~iv! The final regime is consistent with the simulatio
obtained by the phenomenological transport equat
Namely, the statistical state is actually realized dynamica
in a finite system, which is composed by the collective a
intrinsic systems coupled with the nonlinear interaction.

V. FLUCTUATION-DISSIPATION RELATION
OF COLLECTIVE MOTION

We are now in a position to analytically understand w
and how the second regime, i.e., the thermodynamical
gime appears whenNd increases. Since the intrinsic DOF
regarded to be in the fully developed chaotic situation in
second regime, it is reasonable to assume that the effec
the collective system coming from the intrinsic one a
mainly expressed by an average effect. Namely, the eff
arising from the fluctuationHD(t) are assumed to be muc
smaller than those coming fromHh1Hh(t), and are able to
be treated as a perturbation around the path determine
themean-field@26# HamiltonianHh1Hh(t). In the previous
paper@1#, a phenomenological Langevin equation given b

Mq̈1
]Um f~q!

]q
1gq̇5 f ~ t !, q5

h1h*

A2
, ~32!

FIG. 7. Time-dependent variancesq
2(t) for the case withNd

58. Solid line refers to the result of dynamical simulation as sho
in Fig. 6; long dashed line refers to the fitting result of Eq.~31! with
parametersD515.5 andmq50.58.
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was used in reproducing our simulated results phenome
logically. Here Um f(q) denotes the potential part ofHh
1Hh(t), g the friction parameter, andf (t) the Gaussian
white noise with an appropriate temperature. Since
present main concern is to make clear a relation between
macrolevel dynamics organized by the phenomenolog
equation, e.g., Eq.~32! @or Fokker-Planck equation~55! or
the macrolevel Eq.~60! discussed in the following# and the
microlevel dynamics by Eq.~16! one step further, we star
with the Hamiltonian given by

Hh
T5Hh1Hh~ t !1lHD,h~ t !, ~33!

whereHh andHh(t) are defined in Eqs.~17! and~8!, respec-
tively. An explicit form of HD,h(t) will be discussed in Eq.
~35!. The main differences between Eq.~32! and Eq.~33! are
~i! g and f (t) in Eq. ~32! are given by hand and~ii ! rj(t)
specifying the fluctuation effectsHD,h(t) in Eq. ~33! is de-
termined microscopically from Eq.~16!. What we are going
to discuss in the following is to understand a change of p
nomenological parameters in Eqs.~32!, ~55!, or ~60! in terms
of the fluctuationHD,h(t) associated with the microscopi
dynamicsrj(t) determined by Eq.~16!.

In terms of Eq.~20!, the coupling interaction is expresse
as

Hcoupl~h,j!5lA~h!B~j!. ~34!

The fluctuation HamiltonianHD,h(t) in Eq. ~33! is then ex-
pressed as

HD,h~ t !5f8~ t !A~h!, f8~ t !5B~j!2^B~j!& t . ~35!

With the aid of the Hamiltonian~33!, the collective distribu-
tion functionrh(t) determined by Eq.~16! may be explored
by using the Liouville equation given by

ṙh~ t !52 iL h
Trh~ t !52 i @Lh1Lh~ t !1lLD,h~ t !#rh~ t !,

~36!

whereL h
T andLD,h(t) are defined as

L h
T
•••[ i $Hh

T ,•••%PB , LD,h~ t !•••[ i $HD,h~ t !,•••%PB .
~37!

Here $,%PB denotes a Poisson bracket with respect to
collective variables. AlthoughHD,h(t) contains the intrinsic
variables, in the present formulation, the fluctuationHD,h(t)
should be considered to be a time-dependent stochastic f
expressed asf8(t) in Eq. ~35!, and a stochastic average
obtained by taking the integration over the intrinsic variab
with a weight functionrj(t). Here it should be noticed tha
the Liouville equation~36! is an approximation to Eq.~16!.
Since our present aim is to explore how the effects on
collective system coming from the intrinsic fluctuationf8(t)
change depending on the number of intrinsic DOF as sim
as possible, we start with Eq.~36! rather than Eq.~16!.
Namely, the collective fluctuation effects originated fro
A(h)2Trh A(h)rh on the intrinsic system ought to be dis
regarded, because we are now studying the average dyn
ics of collective motion. It should be also noticed that t

n

1-11
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Liouville equation~36! will not be used to determinerh(t),
but it will be used only to understand what happens in
collective distribution functionrh(t), which is numerically
obtained by integrating the canonical equations of mot
~22! with the Hamiltonian in Eq.~1!.

Let us start our discussion just after the dephasing pro
has finished. When the stochastic term is regarded as a
turbation, it is convenient to introduce themean-fieldpropa-
gator

Gh~ t,t8!5T expH 2 i E
t8

t

@Lh1Lh~t!#dtJ , ~38!

which describes an average time evolution of the collec
system. Using themean-fieldpropagatorGh(t,t8) and taking
the stochastic average overrj(t), one may obtain the follow-
ing master equation forrh(t) from Eq. ~36! as

ṙh~ t !52 i $Lh1Lh~ t !%rh~ t !2l2E
0

`

dt^^LD,h~ t !

3Gh~ t,t2t!LD,h~ t2t!&& trh~ t2t!, ~39!

where a symbol̂ ^•••&& t denotes a cumulant related to th
average^* & t5Trj* rj(t), and a derivation of Eq.~39! is
given in the Appendix. In getting Eq.~39! from Eq. ~A10!,
the collective distribution functionrh(t) is assumed@27# to
evolve through the mean-field HamiltonianHh1Hh(t) from
t to t2t. This is because the fluctuation effects are so sm
as to be treated as a perturbation around the path gene
by the mean-field HamiltonianHh1Hh(t), and are sufficient
to be retained up to the second order inl in Eq. ~39!. Under
the assumption of a weak coupling interaction and of a fin
correlation timetc , i.e.,

^^f8~ t !f8~ t8!&& t50 for ut2t8u.tc ,

an upper limit in the time integration in Eq.~39! is extended
to `.

The mean-field propagatorGh(t,t2t) provides a solution
of the unperturbed equation. That is, there holds a relati

f ~h,t !5Gh~ t,t2t! f ~h,t2t!, ~40!

provided f (h,t) satisfies a relation

] f ~h,t !

]t
52 i @Lh1Lh~ t !# f ~h,t !. ~41!

Since the Liouville equation~41! is equivalent to the canoni
cal equation of motion given by
03111
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i ḣa5
]„Hh1Hh~ t !…

]ha*
, ~42!

i ḣa* 52
]„Hh1Hh~ t !…

]ha
, ~43!

there holds a relation

f ~h,t !5 f ~h t2t,t2t!Udh t2t

dh U5Gh~ t,t2t! f ~h,t2t!,

~44!

udh t2t/dhu being a Jacobian determinant.
Using the above relation, Eq.~39! is simplified as

ṙh~ t !52 i $Lh1Lh~ t !%rh~ t !2l2E
0

`

dtUdh t2t

dh U
3^^LD,h~ t !L D,h

2t ~ t2t!&& tU dh

dh t2tUrh~ t !, ~45!

where

LD,h~ t !•••[ if8~ t !$A~h!,•••%, ~46!

L D,h
2t ~ t2t!•••[ if8~ t2t!$A~h t2t!,•••%. ~47!

With the HamiltoniansHh andHh(t) defined in Eqs.~17!
and ~8!, one may easily get an analytic form of mappingh
→ht by solving the unperturbed Eqs.~42! and ~43! as

q~t!5q cosv8t1
p

Mv8
sinv8t, ~48!

p~t!52qMv8 sinv8t1p cosv8t, ~49!

with

v82[v21
2l^$q1

22q1,0
2 %& t

M
,

where Eq.~19! is used. The Jacobian determinant of th
mapping reads

Udh2t

dh U5U dh

dh2tU51, ~50!

becausev8 does not practically depend on time. In terms
the coupling interaction~20!, the fluctuation Hamiltonian
HD,h(t) in Eq. ~35! can be explicitly written as

HD,h~ t !5f8~ t !$q22q0
2%, ~51!

f8~ t !5$q1
22q1,0

2 %2^$q1
22q1,0

2 %& t . ~52!

With the aid of Eq.~51!, the cumulant in Eq.~45! is ex-
pressed as
1-12
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^^LD,h~ t !L D,h
2t ~ t2t!&& t52^^f~ t !f~ t2t!&& tq

]

]p

3q~ t2t!
]

]p~ t2t!
, ~53!

where f(t)52f8(t). Considering (h2t)t5h and using
Eqs.~48! and ~49!, one gets

q~ t2t!
]

]p~ t2t!
5S q

sinv8t cosv8t

Mv8
2p

sin2 v8t

M2v82 D ]

]q

1S q cos2 v8t2p
sinv8t cosv8t

Mv8
D ]

]p
.

~54!

Finally, Eq. ~45! is explicitly written as

]rh~ t !

]t
5H Le f f1l2Fb1q

]

]p S q
]

]q
2p

]

]pD1b2q2
]

]p2

2b3q
]

]p
p

]

]qG J rh~ t !, ~55!

where

Le f f52
p

M

]

]q
1~Mv821lb0!q

]

]p

is an effective unperturbed~mean-field! Liouvillian of the
collective system. The parametersb0 , b1 , b2, andb3 are
expressed as Fourier transformations of the correlation fu
tions of intrinsic system

b05^f~ t !& t , ~56a!

b15
1

Mv8
E

0

`

dt^^f~ t !f~ t2t!&& tcosv8t sinv8t,

~56b!

b25E
0

`

dt^^f~ t !f~ t2t!&& tcos2 v8t, ~56c!

b35
1

M2v82E0

`

dt^^f~ t !f~ t2t!&& tsin2 v8t. ~56d!
03111
c-

Equation~55! is a two-dimensional Fokker-Planck equatio
The first term on the right-hand side of Eq.~55! represents
the contribution from the mean-field partHh1Hh(t), and
the last three terms represent contributions from the dyna
cal fluctuation effectsHD,h . The parametersb0 , b1 , b2,
andb3 establish the connection between the macrolevel
namical evolution of collective system and the microlev
fluctuation of intrinsic one.

A time derivative of the average collective quantity
calculated as

d^X&
dt

5E X
drh~ t !

dt
dqdp ~57!

for any collective variableX which does not explicitly de-
pend on time. When one inserts Eq.~55! into Eq. ~57!, and
evaluates the individual term by observing the standard

E A$B,C%PBdqdp5E $A,B%PBCdqdp, ~58!

one obtains the equation for the first moment

d^q&
dt

5
^p&
M

,

d^p&
dt

52
lb3

M
^p&2FMv821lb02l2

b1

M G^q&, ~59!

or in a compact way as

M ^q̈&1g^q̇&1FMv821lb02l2
b1

M G^q&50, ~60!

g5
lb3

M
. ~61!

Hereb3 ~or g) represents the damping effects on collecti
motion coming from the fluctuation interaction, which orig
nates from the chaoticity of intrinsic system. Equation~61! is
regarded as a fluctuation-dissipation relation, and the da
ing factor ~described byb3 or g) implies an irreversible
energy dissipation from the collective system to the intrin
one.

Applying similar procedures as in obtaining Eq.~60!, one
may derive an equation of motion for the second moment
d

dtF ^qq&

^pp&

^qp&

G 5F 0 0
2

M

4l2M2v82b312l2b2 24l2b3 22Mv8222lb0

2M2v822lb012l2b1
1

M
24l2b3

G F ^qq&

^pp&

^qp&

G . ~62!
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A real eigenvalue of the matrix in the above equation in
cates an instability of collective trajectory, which is caus
by the chaoticity of intrinsic trajectory through fluctuatio
HamiltonianHD,h @10#. Equations~55!, ~60!, and~62! set up
the relations among the microlevel properties of the intrin
system and the macrolevel time evolution of the collect
system through the microscopic correlation functions.

Employing the numerical simulation for Eq.~22!, we cal-
culate the correlation function̂ ^f(t)f(t2t)&& t at t
5120tcol for the cases withNd52, 4, and 8 as shown in
Fig. 8. Generally speaking, the correlation functi
^^f(t)f(t2t)&& t as well as the parametersb0 , b1 , b2,
andb3 may have a strong time dependence, when the int
sic system undergoes a drastic change as in the deph
regime. In the present context, in understanding why the
ond regime, i.e., thermodynamical regime appears when
number of intrinsic DOF increases fromNd52 to larger one
as Nd58, it is reasonable to select a time just after t
dephasing process has finished. From Figs. 1–5, it can
seen thatt5120tcol just corresponds to such a moment.

From Fig. 8, one can see that the correlation function
Nd52 is very weak and oscillates around̂̂ f(t)f(t
2t)&& t50. In this case, the main influence of the intrins
system on the collective one has taken place in the depha
regime, and has finished beforet5120tcol . As Nd increases,
the magnitude of the correlation function becomes large
behaves similar to a ‘‘colored noise’’ with finite correlatio
time tc

^^f~ t !f~ t2t!&& t;e2t/tc.

From this calculation, the correlation function seems to re
a d function representing a ‘‘white noise’’ whenNd increases
to infinity. This results verify our understanding as discuss
in Secs. III and IV.

~1! The dephasing regime is the main mechanism for
small number of DOF~say, two! case.

~2! Both the dynamical description and convention
transport approach may provide us with almost the sa
macrolevel and microlevel mechanisms only for the syst
with a very large number of DOF, sayNd.8. For the finite

FIG. 8. Correlation function att5120tcol for the cases with
Nd52, 4, and 8. Parameters are the same as in Fig. 1.
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system, however, the statistical relaxation is anomalous
fusion and the fluctuation effects have finite correlation tim

Using the correlation function, we calculate the parame
b3 as shown in Table I. As is obviously seen, the damp
effects on the collective motion will increase when the nu
ber of intrinsic DOF increases. For the case with small nu
ber of intrinsic DOF, the damping effects are too small
make the second regime realized. For the case with a la
number of DOF asNd58, the damping effects become a
preciable and make the collective system relaxed thermo
namically to an equilibrium state.

At the end of this section, we discuss the fluctuatio
dissipation relation of the collective motion. As mentioned
Sec. III, the energy equipartition among every DOF is e
pected in the final regime for the case with relatively lar
number of DOF, asNd58. This situation just corresponds t
a case where the conventional transport equation is app
and the fluctuation-dissipation relation of the collective m
tion is expected. Since the collective energy is given by

^E&5
^p2&
2M

1
1

2
mv3^q2&, ~63!

which is derived from Eq.~17!, one may evaluate a rate o
collective energy change as

d^E&
dt

5F4l2M2v82b312l2b2

2M
^qq&2

4l2b3

2M
^pp&G

~64!

by using Eq.~62!. Since the energy interchange between t
systems is supposed to have finished on average in the
regime, the relationd^E&/dt50, i.e.,

TABLE I. Calculated values ofb3 at t5120tcol for the case
with Nd52, 4, 8, and 16, respectively.

Nd 2 4 8 16

b3 0.201 0.530 0.820 1.773

FIG. 9. Rate of collective energy change in Eq.~64!. Correlation
function is calculated att5240tcol for Nd58. Parameters are th
same as in Fig. 1.
1-14
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@~2M2v82b31b2!^qq&22b3^pp&#50 ~65!

must be satisfied. Figure 9 shows numerical results of
right-hand side~rhs! of Eq. ~64!. It is clearly seen that a
relation ~65! is actually satisfied on the third regime.

To summarize this section, one may get the followi
conclusions. The damping mechanism caused by the fluc
tion interaction is the main reason for the appearance of
thermodynamical process. When the number of intrin
DOF becomes relatively large~as Nd58), the damping
mechanism generates the thermodynamical process an
saturated situation. In this case, the traditional Fokker-Pla
equation is safely used in describing the thermodynam
process, and a fluctuation-dissipation relation is well re
ized.

VI. DISCUSSION

In this paper, we have systematically studied the none
librium process of a microscopic Hamilton system with fin
DOF without introducing any statistical ansatz. A macr
scopic transport equation has been derived from the ma
equation, which describes a microscopic system compo
of the one collective DOF coupled to a finite intrinsic DO
through a weak interaction.

It has been shown that for the case with small numbe
intrinsic DOF ~say, two!, the dephasing mechanism is th
dominant process for the dissipation of collective ener
When the number of intrinsic DOF becomes large~say, eight
or more!, the energy transport process can be divided i
three regimes, i.e., the dephasing, nonequilibrium relaxat
and saturation regimes. We have shown that the energy tr
port process is safely described by the Fokker-Planck-
Langevin-type equation, when the number of intrinsic DO
is relatively large. In this case, the intrinsic system exhib
very interesting property, such as a finiteheat bath, and the
fluctuation has the finite correlation time~as colored noise!.
Only when the number of intrinsic DOF is infinite, the in
trinsic system may be treated as a statistical heat bath
white noise.
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APPENDIX

In this appendix, a derivation of the master equation~39!
is discussed. The mean-field propagatorGh(t,t8) defined in
Eq. ~38! satisfies the following relations:

dGh~ t,t8!

dt
52 il@Lh1Lh~ t !#Gh~ t,t8!, ~A1!
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Gh~ t,t1!Gh~ t1 ,t8!5Gh~ t,t8!,

Gh
21~ t,t8!5Gh~ t8,t !, ~A2!

whereGh
21(t,t8) is the inverse propagator ofGh(t,t8).

With the aid of the mean-field propagator, one may int
duce the interaction representationrh8 (t) through

rh~ t !5Gh~ t,0!rh8 ~ t !. ~A3!

Taking a time derivative of Eq.~A3!, and using the relation
~A1!, one gets the following relation from Eq.~36!:

ṙh8 ~ t !52 ilLD,h8 ~ t !rh8 ~ t !, ~A4!

where

LD,h8 ~ t !5Gh
21~ t,0!LD,h~ t !Gh~ t,0!. ~A5!

Equation~A4! is a linear stochastic differential equation. In
tegrating Eq.~A4! iteratively, one gets

rh8 ~ t !5T expH 2 ilE
0

t

LD,h8 ~t!dtJ rh8 ~0!. ~A6!

Taking the average over the intrinsic distribution functi
rj(t) at t in Eq. ~A6!, one may evaluate stochastic effec
coming from the irrelevant DOF. Applying the cumulant e
pansion@16# in the rhs of the resulting equation, one gets

ṙh8 ~ t !52 il^^LD,h8 ~ t !&& trh8 ~ t !

2l2E
0

t

dt^^LD,h8 ~ t !LD,h8 ~t!&& trh8 ~ t !, ~A7!

where ^^•••&& t denotes a cumulant at timet related to
the average over the intrinsic degrees of freedom^•••& t
[Trj•••rj(t) at timet. Equation~A7! is valid upto the sec-
ond order inl. According to the definition of the fluctuation
HamiltonianHD,h(t) in Eq. ~35!, the first-order term in Eq.
~A7! is zero, since there holds a relation

^^LD,h8 ~ t !&& t;^^f8~ t !&& t5^f8~ t !& t50. ~A8!

One thus obtains

ṙh8 ~ t !52l2E
0

t

dt^^LD,h8 ~ t !LD,h8 ~t!&& trh8 ~t!. ~A9!

Going back to the original representation, one has

ṙh~ t !52 il@Lh1Lh~ t !#rh~ t !2l2

3E
0

t

dt^^LD,h~ t !Gh~ t,t!LD,h~t!&& tGh~t,t !rh~ t !.

~A10!

Making the variable transformationt→t2t, one finally gets
Eq. ~39!.
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