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Features of statistical dynamics in a finite system
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We study features of statistical dynamics in a finite Hamilton system composed of a relevant one degree of
freedom coupled to an irrelevant multidegree of freedom system through a weak interaction. Special attention
is paid on how the statistical dynamics changes depending on the number of degrees of freedom in the
irrelevant system. It is found that the macrolevel statistical aspects are strongly related to an appearance of the
microlevel chaotic motion, and a dissipation of the relevant motion is realized passing through three distinct
stages: dephasing, statistical relaxation, and equilibrium regimes. It is clarified that the dynamical description
and the conventional transport approach provide us with almost the same macrolevel and microlevel mecha-
nisms only for the system with a very large number of irrelevant degrees of freedom. It is also shown that the
statistical relaxation in the finite system is an anomalous diffusion and the fluctuation effects have a finite
correlation time.

DOI: 10.1103/PhysReVvE.65.031111 PACS nuner05.40—a, 05.45--a, 24.60.Ky, 03.65.Sq

[. INTRODUCTION ciently small and are able to be treated as a perturbation

A dynamic origin of dissipative motion observed in a fi- around the path generated by the average Hamiltonian.
nite many-body system is a fundamental and challenging (ii) Irrelevant distribution function has already reached its
problem in various fields of contemporary scierit¢ The time-independent stationary state before the main micro-
underlying physics is how the statistical state is realized ouscopic dynamics responsible for the damping of the relevant
of the microscopic deterministic motion, and how the irre-motion dominates. According to our previous pap# this
versible macrolevel process is generated as a result of thetuation turned out to be well realized even in the two-DOF
reversible microlevel dynamics. system.

In the conventional approach in deriving the Fokker- (iii) Time scale of the irrelevant motion is much shorter
Planck or Langevin equations, the entire system is dividedhan that of the relevant one.
into relevant and irrelevant subsystems intuitively, while the In order to get a full understanding of the dynamical re-
ergodic and irreversible property are assumed for the irrelalization of statistical state in a finite system, in our previous
evant subsystem composed of infinite number of degrees qfaper[5], an evolution process of a simple two-DOF system
freedom(DOF), and thermodynamical concepts, such as éhas been studied by using a general microscopic transport
thermal heat bath or a time-independent canonical ensembtbeory[2,4,6]. It has been shown that the nonlinear coupling
are introduced by hand. Infanite system, however, it is not between different DOF responsible for generating a chaotic
a trivial discussion whether or not the irrelevant subsystemmotion plays an important role in realizing the statistical
can be effectively replaced by a statistical object, e.g., a heattate for such a system that is described by a bundle of tra-
bath, even when it shows chaotic behavior and its Lyapunoyectories (distribution function. For the two-DOF system,
exponent has a positive value everywhere in the phase spadewever, it is not possible to assign the relevant subsystem

In order to explore the microscopic dynamics responsibleor to discuss its transport process, since the chaotic or statis-
for the macroscopic transport phenomena, a theory ofical state can only be realized by a system with at least two
coupled-master equation has been formul§®@s a general DOF. Thus, one needs a system with more than two DOF,
framework for deriving the transport equation, and for clari-which will be allowed to be divided into two weekly coupled
fying its underlying assumptions. In ordergelf-consistently subsystems: one is composed of at least two DOF, which is
and optimally divide the finite system into a pair of weakly regarded as an irrelevant subsystem and the rest is consid-
coupled subsystems, the theory employs the self-consisterted to be a relevant subsystem.
collective coordinatd SCO method[3]. The self-consistent Based on the numerical simulation for a microscopic sys-
and optimal separation carried out by the SCC method entem composed of the relevant one-DOF system coupled to
ables us to study the large-amplitude dissipative motion fothe irrelevant two-DOF system through a weak interaction,
the relevant subsystem in a reasonable scheme. the transport phenomenon was first established theoretically

It has been clarified1] that the macroscopic transport and numerically[1]. It was clarified that the microscopic
equation is obtained from the fully microscopic master equadephasingnechanism caused by the chaoticity of irrelevant
tion under the following microscopic conditions. subsystem is responsible for the energy transfer from the

(i) Effects coming from the irrelevant subsystem on therelevant subsystem to the environment. Although our nu-
relevant one are taken into account and mainly expressed byerical simulation by employing the Langevin equation was
an average effect over the irrelevant distribution function.able to reproduce the macrolevel transport phenomenon, it
Namely, the fluctuation effects are considered to be suffiwas also clarified that there are substantial differences in the
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microlevel mechanism between the fully microscopic de-(collective) and irrelevaniintrinsic) DOF by introducing an
scription and the Langevin description, and in order to reproeoptimal canonical coordinate system called the dynamical
duce the same results the parameters used in the Langewianonical coordinat¢éDCC) system for a given trajectory.
equation do not satisfy the fluctuation-dissipation theorem. That is, the total closed syste# & is dynamically divided

Therefore various questions related to the transport pheinto two subsystems; and ¢, whose optimal canonical co-
nomenon realized in the finite system on how to understandrdinates are expressed ag,, 7i:a=1,... and
the differences between the above-mentioned two descrip: | £ :a=1, ... respectively. The resulting Hamiltonian
tions, what kinds of other microscopic mechanisms are therg, the pCC system is expressed as
besides thalephasing and when the fluctuation-dissipation
theorem comes true, etc., are still remained. In the conven- _
tional approaches, e.g., the Fokker-Planck or Langevin type H=H,+HetHeoupr @)
equations, the irrelevant subsystem is always assumed to . S
have a largéeveninfinite) number of DOF and is placed in WhereH , depends on the 9°”eCt'Vé.lf on t.he |nt'r|nS|c, an'd
a canonically equilibrated state. It is then quite natural to aslycoup' on both the coIIectl've and !ntr!ns!c var_lables. Time
whether these problems are caused by a limited numbeq,ependence of the collepnve and Intrinsic Va”abl‘?s are de-
(only two) of DOF in the irrelevant subsystem considered inSCrIbeOI by a set of canonical equations of motion givefias
our previous work. In order to fill the gap between two and
infinite DOF for the irrelevant subsystem, it is extremely - oH -, oH
important to study how the microscopic dynamics changes '”a_ﬁ’ 72 =~ N,
depending on the number of the irrelevent DOF. a

For this purpose, in this paper, a Fermi-Pasta-Ul&RU)
system is adopted for the irrelevant subsystem, as it allows . ﬁ kL ﬁ @)
us to change the number of DOF conveniently. It will be aEx £a= 2€,’
shown that although the dephasing mechanism is the main
mechanism for a case with a small number of DOF, the dif-

gj(sjlgnbmechanllsm will sta_lrthtto play a roI(ej as the nurlnlr:ﬁr Ofdefines the DCC system in such a way that lihear cou-
ecomes largesay, eight or morg and, in general, the pling between the collective and intrinsic systems is elimi-

energy transport process occurs by passing through three d'ﬁéted i e. the maximal decoupling conditi iven b
tinct stages, such as, the dephasing, the statistical relaxation, ' " Ping 21 g y

and the equilibrium regimes. By examining a time evolution
of a nonextensive entrofy], an existence of three regimes
will be clearly exhibited. /N P

Exploiting an analytical relation, it will be shown that the
energy transport process is described by demeralized s satisfied. This separation in the DOF has been known to be
Fokker-Planck and Langevin-type equation, and a phenomyery important in exploring the energy dissipation process
enological fluctuation-dissipation relation is satisfied in aand the nonlinear dynamics between the collective and in-
case with relatively large DOF system. It will be clarified trinsic modes of motion.
that the irrelevant subsystem with finite number of DOF can To deal with an ensemble of trajectories, we start with the
be treated as a heat bath with a finite correlation time, andiouville equation for a distribution function
the statistical relaxation turns out to be an anomalous diffu-
sion, and both the microscopic approach and the conven- SN T
tional phenomenological approach may reach the same mi- p=—1Lp(V),  L---=i{H, - Jps,
crolevel description for the transport phenomena only when _ N .
the number of irrelevant DOF becomes very large. p()=p(7(t), n()*,&(1),£(1)"). (4)

The outline of this paper is as follows. In Sec. Il, the
microscopic model Hamiltonian will be introduced and the Here the symbo} }pg denotes the Poisson bracket. Since we
most genera| Coup|ed-master equation will be br|ef|y recadre interested in a time evolution of the bundle of tra.jeCtO'
pitulated for the sake of self-containedness. In Sec. Ill, thdies, whose bulk properties ought to be expressed by the
behavior of energy transfer process will be discussed tocollective variables alone, we introduce a pair of reduced
gether with an energy equipartition problem and its dependistribution functions through
dence on the number of DOF. An evolution process will be
examined by using the nonextensive entropy in Sec. IV. In p,(D=Trep(t), pA)=Tr, p(1). 5
Sec. V, our numerical results will be explored in an analytical
way and the Fokker-Planck equation will be derived. TheHere, the total distribution functiop(t) is normalized so as
final section will be devoted for discussion and summary. to satisfy the relation

Here, it is worthwhile mentioning that the SCC method

JH
coupl -0 (3)

Il. MICROSCOPIC MODEL Trp(t)=1, (6)

With the aid of the SCC metho[B], the whole micro-
scopic system can be optimally divided into the relevantwhere
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t
Tr=Tr,Tre, Tr,=I1 f f dy.dyt g(t,t)=T exp{ —if [1—P(T)]£d7'}, (14)
a t’
. whereT denotes the time ordering operator, one obtains the
Trle;l f j dé.dé, . ( master equation fop¢(t) as
With the aid of the reduced distribution functiops(t) and ps()=—iP(t)Lps(t) —iP(t) LY(t,t) p(t))
p(t), one may decompose the Hamiltonian in Et). into ‘
the following form: - f dt'P(H) Lg(t,t){1-P(t)}Lpg(t'), (15)
t

H=H,+H:+Hcoupl

wheret, stands for an initial time. As is easily proved, the

Liouvillian £ appearing inside the time integration in Eg.

(15) can be replaced bg., . Expressingg(t) andP(t) in

H,()=Tr:Heouppe(t), terms ofp,(t) andp(t), and operating Ty and T on Eq.
(15), one obtains a coupled master equation

=H,+H, (1) +He+He(t) +Ha(t) — Eq(t),

He(t)=Tr, Heoup (1),

(8) po(D)= =L+ L, (0]p, (=i Tr{L,
Haper()=H (1) +H(1), + Leoupll9(t,t) pe(t))
Eo(t)=TrHooupp(1) - @ camatn Lamipy oo,
Ha(t)=Hcoup—Hayer(t) + Eo(t). (163
The corresponding Liouvillians are defined as ;'Jf(t)= —i[Let La(t)]pe(t) =i Tr [ L
L,--=i{H,,---}ps, Ly(t)---=i{H,(1),-}pp, + Leoupll 9L, 1) pe(t))
Lg...=i{Hg, - -tpg,  Lg(t) ... =i{HL1),-- '}PB’(g) — j:drTrnﬁA(t)g(t,T)EA(T)p,](T)pg(T).
Leoupl- - - =i{Hcoupls* " }ra. (16b)
La(t) ... =i{HA(1), - }pp. The coupled master equatiorid6) are equivalent to the

- . o original Liouville equation(4) and can be considered as a
By exploiting the time-dependent projection operatorgeneral framework for deriving the transport equation and
method[2,8], one may decompose the distribution function for clarifying its underlying assumptions.

into a separable part and a correlated one as In this paper, the collective system is represented by a
harmonic oscillator with a coordinatg momentump, mass
p(t)=ps(t) +pc(t), M, and frequencyo, given by
ps()=P()p(t)=p,()pt), (10 p?2 1
’ H(a.p)=5+ Eszqz, (17)

pc()=[1—-P(t)]p(1),
. . o ~and the intrinsic system mimicking the environment is de-
whereP(t) is the time-dependent projection operator definedyiped by a8-FPU system(called so because of its qua-
by dratic interactiof which was posed in the famous pap@t

and reviewed if 10]

N N
From the Liouville equatiori4), one gets ngzd %.2+2d WG — )+ W)
= = b da’”
p)=—iP(t) Lpt) —iP (1) Lpu(t), 12) o
qa q
: W(a)=—1+ =, 18
pe(t)=—i[1=P()]Lpg() —i[1-P(t)]1Lpc(t). (13 (@=7*3 (18)

By introducing a propagator where

031111-3



SHIWEI YAN, FUMIHIKO SAKATA, AND YIZHONG ZHUO PHYSICAL REVIEW E 65031111

1 i We use the fourth-order symplectic Runge-Kutta algorithm
q=—=(n+7*), p=—=(n*—17n), [13] for integrating the canonical equations of motion &g
V2 V2 is chosen to be 10 000.
In our calculation, the coupling interaction is activated
1 N P, after the statistical state has been realized in the intrinsic
qizﬁ(‘fi'i_gi ), DiZE(& —&), (19 system, i.e., two subsystems evolve independently at an ini-
tial stage. Hereafters,, denotes a moment when the interac-
tion is switched on. Since our primary aim is to microscopi-
cally generate such a transport phenomenon that might be
understood in terms of the Langevin-type equation, we have
to realize such a microscopic situation where the Conditions
: > (i), (i), and(iii ) discussed in Sec. | are satisfied. To this end,
larger than a certain valuealled as the critical valupL2] we first let the intrinsic system evolve alone, till the ergodic

nies that our itlevant Subsystem can reach fily chaot1d iTeversible property are well realizegnamically We
y Y ill show that the above microscopic situation is indeed re-

situation. Indeed, in this case, the calculated largesy,. . P
Lyapunov exponentr(Ngy) turns out to be positive, for inq lizeddynamicallyfor the intrinsic system.
stance,oc(Ng)=0.15, 0.11, and 0.11 foN4=2, 4, and 8,
respectively. Thus, a “fully developed chaos” is expected for IIl. ENERGY DISSIPATION AND EQUIPARTITION
the B-FPU system, and an appearance of statistical behavior | Ref. [1], a microscopic dynamical system composed of
in its chain of oscillators and an energy equipartition amongyne collective and two intrinsic DOF was studied, and the

and Ny represents a number of DQFe., a number of non-
linear oscillators According to the related referencE0—
12], the dynamics of3-FPU becomes strongly chaotic and
relaxation is fast, when the energy per D®I5 chosen to be

the modes are expected to be realized. . _dephasing mechanism turned out to be the only mechanism
For the coupling interaction, we use the following nonlin- responsible for the energy transfer from the collective system
ear interaction given by to the environment. It was also shown that the fluctuation-
dissipation theorem does not hold, and there is a substantial
H :)\{ 2_ 2}{ 2_ 20} (20) . . . . . .
coupl=AMA"~ o1~ Ao difference in the microscopic behavior between the dynami-

» ] » cal simulations based on the Liouville equation and on the
Quantitiesqo anday o in Eq. (20) denote a set of positions of henomenological Langevin equation, even though these two
the collective coordinate and the first intrinsic coordinate of 8lescriptions provide us with almost the same macroscopic
sample trajectory at the time when the interaction is switchegransport phenomenon. Namely, the collective distribution
on. According to the above form of the couplireg, describ-  fnction organized by the former evolves into a ring shape in
ing the first oscillator plays a role of doorway variable, the collective phase space by approximately keeping its ini-
through which the intrinsic system exerts its influence on thgig| collective energy, while that of the latter evolves into a
coIIec_tive system[11]. Throughout the present study, the ;qund shape, whose collective energy is ranging from its
coupling strength parameter is chosemas0.002. initial value to zero. In order to understand the above differ-

In performing the numerical simulation, the time evolu- gnces; i.e., to clarify a necessary condition where the both
tion of the distr_ibution functiorp(t) is evaluated by using descriptions give the same result, and to study a physical
the pseudoparticle method as situation where the fluctuation-dissipation theorem comes
true, it is strongly desired to explore how different mi-

Np Nd . - -
crolevel dynamics appears depending on the number of in-
p(0= 5 2, L1 56=ain()api=pin(0) e DOE PP pending

In our numerical calculation, the used parametershre
X 8(q—qn(t))d(p—pa(t)), (2) =1, w?=0.2. In this case, the collective time scalg,
characterized by the harmonic oscillator in Efj7) and the

whereN, means a total number of pseudoparticles. The disintrinsic time scaler;, by the harmonic part of the intrinsic

tribution function in Eq.(21) defines an ensemble of sys- Hamiltonian in Eq.(18) satisfies a relationr.o> 7,. The

tems, each member of which is composed of a collectiveyyitch-on timer, is set to berg,=100r.,,.

DOF coupled to a single intrinsic trajectory. The collective | Figs. 1a)—1(d), average values of partial Hamiltonians
coordinatesg,(t) and p,(t), and the intrinsic coordinates (H)t, (Hoe, and(Hcoup): and of the total Hamiltonian
gi.n(t) and p; n(t){i=1,... Ny} determine a phase-space (H), defined by

point of thenth pseudoparticle at time whose time depen-

dence is described by the canonical equations of motion 2
given by (X)e= f Xp(tydadpl ] dadp;, (23
. H . MH . . . .
g=-—, pi=—-—, {i=1,...Ng as a function of the time are depicted for the cases With
Ipi Jdi =30, A=0.002, andN4=2, 4, 8, and 16, respectively. In
order to show clearly how the dissipation of collective en-
o IH - _oH (22 &0 changes depending df, the time-dependent average
ap’ aq’ values of collective HamiltoniagH ,); are shown in Fig. 2
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FIG. 1. Time dependence of the average partial Hamiltogkp),, (Hz)¢, (Hcoup)t @and the total HamiltoniagH), for E, =30, A
=0.002.(a) Ng=2; (b) Ng=4; (c) Ng=8; and(d) Ny=16.

for the cases witiNg=2, 4, 8, and 16. In order to under- From our numerical calculation, one may clearly see that
stand the final stage of the total system, an asymptotic avea very similar result has been obtained for another Hamilton
age energy for each DOF in the intrinsic system is calculatedystem in the case witNy= 2 [1]. Namely, the main change

to be 11.92, 12.54, 11.851, and 10.996, and that of the cobccurs in the collective energy as well as the interaction en-
lective system to be 24.03, 17.15, 12.499, and 11.3Nfpr ergy, and the main process responsible for this change has
=2, 4, 8, and 16, respectively. Considering a boundary efpeen clarified to be the dephasing mechanism. One may also
fect of the f|n|teﬁ'FPU System, .i.e., tWO end OSCi”atorS, OI’IQ |ear‘n from our previous pape[rl] that the dissipative_
may see that the energy equipartition over every DOF igjiffusion mechanism plays a crucial role in reducing the os-
expected in the saturated stage for the cases with relativelyiation amplitude of collective energy, and in realizing the
large number of DOF, a;=8. steady energy flow from the collective system to the environ-
ment, when one tries to understand the energy transfer pro-

50

45 L N2 —— | cess in terms of the Langevin equation. Whépincreases,

w0l Ny=d ——ee | one may clearly learn the following number dependence
I Nfi?ﬁ T | from Fig. 2: After the dephasing process, the collective en-

33 ergy gradually decreases and finally reaches to a saturated

30 1 value as the number of intrinsic DOF increases. More pre-

cisely, the energy transfer process can be divided into three

T stages.
(a) Dephasing regimeHere the fluctuation interaction re-

25
20

(H m/)

15
10l - - duces a coherence of the collective trajectories and makes
sl ] the average amplitude of collective motion damped. This re-
gime is the main process for a system with small number of
% 1(')0 110 1'20 1é0 1;10 150 intrinsic DOF (say, twg. When the number of intrinsic DOF
Trt. increases, a Ia}gtlng time of tr_ns regime depreasgs. .
“ (b) Nonequilibrium relaxation regimeThis regime will

FIG. 2. Time-dependent average value of collective energyalso be called as a thermodynamical regime in the following
(H )¢ for the cases wittN4=2, 4, 8, and 16. Parameters are the section. In this regime, the collective energy is irreversibly

same as in Fig. 1. transferred to the “environment.”
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(c) Saturation regimeThis is an asymptotic regime where trajectories are well realized in our numerical simulation. In
the total system reaches to some equilibrium state and thihe general theory of dynamical system, the order-to-chaos
total energy is equally distributed over every DOF realized intransition is usually regarded as the microscopic origin of an

the cases with larghl, (say,=8). appearance of the statistical state in the finite system. Since
A more detailed study on the above three regimes will beone may express the heat bath in terms of the infinite number
discussed in the following sections. of integrable systems, e.g., the harmonic oscillators whose

If one sticks to the conventional transport theory and triedrequencies have a Debye distribution, it may not be a rel-
to understand the above results from a macroscopic point afvant question whether the chaos plays a decisive role for the
view, one may say that a gradually decreasing behavior odlissipation mechanism and for the microscopic generation of
the collective energy is due to an irreversible dissipative perthe statistical state in a case of the infinite system. In the
turbation coming from the interaction with intrinsic sub- finite system where the large number limit is not secured, the
system. In our previous simulatidi], by using the Lange- order-to-chaos transition is expected to play a decisive role
vin equation for the case withNy=2, it turned out that the in generating some behaviors which are regarded to be sta-
fluctuation interaction mainly contributes to a diffusion effecttistical. There might be a relation between the generation of
so0 as to reduce the coherence of collective trajectories, whilthe chaotic motion in a single trajectory and the realization
the irreversible dissipative perturbatidffriction force) is  of a statistical state for a system described by a bundle of
much smaller than that predicted by the fluctuation-trajectories.
dissipation theorem. According to a naive picture based on This issue has been studied as a dynamical relation be-
the phenomenological Langevin equation, an appearance tiieen the Kolmogorov-SingKS) entropy and the physical
the second regime may be understood to be an increase Bbltzmann-Gibbs(BG) entropy in the classical Hamilton
the dissipative mechanism, and an asymptotic and saturateystem[16], and in the quantum dynamical systd?7].
behavior may indicate a realization of the conventionalHere, the KS entropy is a single numberrelated to an
fluctuation-dissipation theorem for the cases wiNh=8. average rate of the exponential divergence of nearby trajec-
Namely, an effect of the dissipative mechanism is expectetbries, whereas the physical BG entrofft) known as an
to increase adly becomes large. From this phenomenologi-entropy of the second law in the thermodynamics is defined
cal understanding, the above numerical simulation may proby the distribution functiop(t) of a bundle of trajectories as
vide us with very important information on the mechanism

of microscopic dynamics of the dissipative collective mo- Ng
tion, which might change depending on the number of intrin- S(t)=— J p(t)In p(t)dqde dgdp;, (24)
sic DOF. ]

Based on the standard nonequilibrium statistical theory,
the nonequilibrium relaxation reginter called as thermody- which depends not only on the particular dynamical system,
namical regimg may be understood within the linear re- put also on the choice of an initial probability distribution.
sponse theory11,14,19 when the number of intrinsic DOF  Therefore, a relation between the KS entropy and physical
is sufficiently large. However, we have learned that theBG entropy may give an information on the relation between
dephasing process dominates when the collective system ife chaoticity of a single trajectory and the statistical state
nonlinearly coupled with the intrinsic system composed of adescribed by a bundle of trajectories.
very small number of DOF. For the case wity=2, the It has been concluddd 6] that the time evolution o§(t)
dephasing process lasts for a very long time and plays @& the conserved system goes through three time regimes.
decisive role in organizing the time evolution of the collec- (1) An early regime wheré(t) is heavily dependent on
tive motion. For the case witN3<8 where an applicability the details of the dynamical system and of the initial distri-
of the linear response theory is still a question of debatéution. This regime is called as the decoherence regime for
[16,17, the dephasing mechanism may still play an impor-the quantum system or the dephasing regime for the classical
tant role in the transport process. Whidg increases up to  system. In this regime, there is no generic relation between
16, the lasting time of the dephasing process becomes veiy(t) and «.
short and the nonequilibrium relaxation process seems to be- (2) An intermediate time regime whe®ét) increases lin-
come a dominant mechanism for the energy dissipationearly with slopex, i.e.,|dS(t)/dt|~ «. This stage is called as
WhenNy becomes largémore than 1§ the thermodynami-  the Kolmogorov-Sinai regime or thermodynamical regime.
cal mechanism seems to become a dominant mechanism afflthis regime, a transition from dynamics to thermodynam-
there might be no big differences between the nonlinear angts is expected to occur.
linear response theory. (3) A saturation regime wher8&(t) is in equilibrium. In
this casep(t) is uniformly distributed over the whole ener-
getically available area of the phase space. In accordance
with a view of Krylov [20], a coarse graining process is
required in this regime in dividing the phase space. It should

Let us discuss how to understand the three regimes in thee mentioned that the BG entrof@{t) in Eq. (24) is unable
transport process discussed in the preceding section. As ie deal with a variety of interesting physical problems such
shown in Sec. lll, the transport, dissipative and dampingas the thermodynamics of self-gravitating systems, some
phenomena in the collective behavior of the ensemble ofnomalous diffusion phenomena, weflights, etc., among

IV. ENTROPY EVOLUTION FOR THE COUPLED
SYSTEM
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FIG. 3. (a) Physical Boltzmann-Gibbs entroi8(t). Nonextensive entrop$,(t) for collective(b), intrinsic (c), and total phase spa¢d)
for the case wittNy=8. Entropic indexa=0.7. Parameters are the same as Fig. 1.

others[21-24. In order to deal with these difficulties, a
generalized, nonextensive entropy is introdufgd 1—j [p,(1)]*dqdp
Se(t)= , (269
Ng a—1
1- [ tptv17dadel ] dadp .
Sa(t)= a1 (29 1- f [pet)])°]1 daidp
S,(t)= (26b)

where « is called the entropic index characterizing the en- a-1 ’

tropy functional S,(t). When a=1, S,(t) reduces to the
conventional physical BG entro(t). How to understand a
departure ofe from 1 has been discussed in Rgf21,23.
From a macroscopic point of view, the diversionaofrom 1

wherep,(t) andp,(t) are the reduced distribution functions
in Eq. (5). For comparison, the physical BG entropies for the
collective and intrinsic systems defined as

measures how the dynamics of the system violates the con-

dition of short-range interaction and correlation, which pro- SE(t)= —f p,(DInp,(t)dgdp, (279
vides a necessary conditigim the traditional wisdomin

establishing the thermodynamical properti@i]. On the Ny

other hand, such deviation can be attributed to rtiging St :_f o .(t dado 27b)
(not only ergodicity property of the phase space. That is, the ® pet)inp )iﬂl WP 27

a=1 and physical BG entrop$(t) is an adequate hypoth-

esis when the mixing is exponentiatrong mixing, whereas are also introduced.

the nonextensive entropy should be u§28] when themix- Time dependence of the physical BG entrd{y) is de-

ing is weak. picted in Fig. 3a) and that of the nonextensive entropies
It is very interesting to notice that our simulated energySS(t), S'a(t), andS,(t) for the collective, intrinsic, and to-

transfer process also shows three regimes as mentioned tal system are shown in Figs(l8—-3(d) for the case with

Sec. lll. Consequently, there arises an inevitable questiofNly=8. From this figure, it is recognized that there is no

whether there is some relation between our numerical simuentropy production in the collective system before the cou-

lation and the time evolution d(t) or S,(t). To this aim, pling interaction is activated. During this time interval, an

let us introduce the nonextensive entropies entropy increasing process in the intrinsic system is obvi-
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100 - - - - correspond to the dephasing regime.
As Ny increases up to 8, a linearly decreasing process
80 | appears insg(t) after the exponentially increasing stage.
From the discussion in the preceding section, this process
60 - may correspond to the nonequilibrium relaxation process in
g which the collective energy is irreversibly transferred to the
a0k “environment.”
Here it should be mentioned why the second regime
a0l shows a linearly decreasing, unlike a case discussed by
Latora and Baranggd8]. The systems considered by Latora
and Baranger and othef$9,21,23 are conservative chaotic

0 0 5'0 100 1;0 2(')0 250 systems. In our present case, the tota}l system is a conserva-
Tt tive system whose.entropy is shown in FigdB while the .
intrinsic and collective systems are open systems. Especially,
FIG. 4. Comparison o8S(t) for Ng=2, 4, 8, and 16. Param- the collective system is a dissipative system aftgr In the
eters are the same as in Fig. 3. second regime of energy dissipation, the collective energy

| both in the phvsical BG ent din th irreversibly dissipates into the intrinsic system by making the
ously seen both in the physica entropy and in the NONgieyinytion of collective trajectories in the phase space to
extensive entropy. This means that the intrinsic syste hrunk

(B-FPU systemdiffuses far from the equilibrium state to the
equilibrium state where trajectories are uniformly distributed
in the phase space. Th_|s conc_lu5|_on IS consistent with Ref o) o ctive (p,g)-phase space and a probability distribution
[11]. After the cpupl!ng mteracuon is switched on, there aP-function of collective trajectories defined as
pear different situation either one uses the physical BG en-
tropy or the nonextensive entropy in evaluating the entropy
production of the intrinsic system. As was already sh®in
the intrinsic system is always in a time-independent station- Pl f):f Pn(t)|H7](q,p):edqdp' (28)
ary state even after the switch-on timg=100r.,,, because
its time scale is much smaller than the collective one. This
point is clearly seen from the present simulation in Figy 3 are shown in Fig. 5 at various times fdg=8. These figures
where no change is observedSHt) aroundts,,. Since there illustrate how a shape of the distribution functipp(t) dis-
exists an energy transfer process between the collective amgrses depending on time. Dynamic process of the damping
intrinsic systems aftet,, [25], there should be a change in ought to be observed when a peak location of the distribution
the distribution of trajectories in the intrinsic phase spacefunction changes from the outsideigher collective energy
which is not observed by the BG entropy. Such a change ifiegion to the insidélower collective energyregion, and the
the distribution can only be observed by meansSipft) as dissipative diffusion mechanism is studied by observing how
shown in Fig. %c). strongly a distribution function initiallyatt= Tsw) located at

With regard to the collective system, our numerical results? tiny region of the collective phase space disperses depend-
for S°(t) andSC(t) are shown in Figs. @) and 3b), respec- N9 on time. _ _ _
tively. From Fig. 3a), one may observe th&C(t) increases One may see that in the per_lod shortly after the coupling
exponentially to a maximum value just after,. It is not ~ Intéraction is switched on, ie., fronts,=100r t0
trivial to answer whether or not this maximum value indi- 1107col. p,(t) quickly disperses and tends to cover a ring
cates the stationary state for the collective system, becausg@pe in the collective phase space by approximately keep-
the energy exchange between the collective and intrinsic sy4?9 its initial collective energy. When _the distribution func-
tems is still going on at this moment as mentioned in the!on teénds to expand over the whole ring shape, the relevant
preceding section. This point may be examined by calculatPart of the bundle of trajectories does not have the same time
ing the nonextensive entrop@‘;(t) shown in Fig. 8b). In dependence. Some trajectories have an advanced phase,

Fig. 3(b), Sg(t) increases exponentially to a maximal value,WhereaS other trajectories have a retarded phase in compari-

and then decreases almost linearly, and finally tends to satLS|_-0n with the average motion over the bundle of trajectories.

rate toward a time-independent value. From the above re—hIS dephasing mechanism is considered to be the micro-

) . scopic origin of the entro roduction in the exponential
sults, one may say that the time evolqunSif(t) afterts,, regiFr)ne g by P P

is divided into three stages; exponentially increasing, linearly A more interesting situation appears frofi=110r,,
co

detl:reas&ng,tand sdaturtatec(jj tfﬁglmdesmlz& f the th through 146,,. One may see that the distribution function
n order to understan d dependence of the three- gradually invades into a central region. A peak of the distri-

C —

stage traﬂsp(_)rt procesS,(t) for_Nd—Z, 4, 8, and 16 are p sion gradually moves to the center, and the distribution
depicted in Fig. 4. For a case willly=2, only an exponen- engs to have the Boltzmann distribution as

tially increasing behavior is observed. Since the dephasing

mechanism mainly contributes to the transport process in the
case withNyg=2 [1], the exponentially increasing parnay P, (e)~e P (29

In order to explore this situation more deeply, a time de-
elopment of the collective distribution functign,(t) in the
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FIG. 5. (A) parts(a)—(f) Collective distribution function in §,q) space;(B) parts (a)—(f) probability distribution functionP,(e) of
collective trajectories al=102.5r;,, 110r¢,, 1207y, 140rc,, 160r,, and 240G for E, =30 and\ =0.002.

which is clearly seen from subfiguréd), (e), and(f) of Part ~ with <1, because the nonequilibrium relaxation regime is
(B) of Fig. 5. After T=160r,, to 240r.,, the distribution characterized not by the physical BG entropy, but by the
function does not practically change anymore, which correnonextensive entropy witte<<1. Generally, the diffusion
sponds to the saturated regime. Comparing the distribution iprocess is characterized by the average square displacement
subfigure(f) of Part(A) of Fig. 5 with the one obtained by or its variance as
the phenomenological transport equatisach as the Lange-
vin equation in our previous pap€rl], one may see that the o2 (t) ~t~, (30)
final stationary distribution is consistent with the results
simulated by the Langevin equation. From the above discus-
sion, a transition from dynamics to thermodynamics is in-For normal diffusionu=1. All processes withu#1 are
deed realized numerically, and the collective system is retermed as an anomalous diffusion, namely, subdiffusion for
garded to reach to the equilibrium state finally. 0<u<1 and superdiffusion for £ u<2.

Here it is worthwhile to clarify a relation between an  We calculate a time-dependent variance of collective co-
anomalous diffusion and the above-mentioned nonextensiverdinates(t)=(q?—(q?),) for the case wittNy=8 as de-
entropy expressed by the time evolution of the subsystemgicted in Fig. 6, which also clearly shows the three stages as
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FIG. 5. (Continued.
. . I 10000 : . : ;
discussed above. The result @ﬁ(t) in nonequilibrium re-
laxation regime can be characterized by the expression
1000 | 4
2 2 =
og(t)=og(te) = D(t—tg)*s, (31) &
q q q
& N
: . . T 100 | _
wherety=110r.,, is @ moment when the dephasing regime i
has finished, ane(to) = 335.0 the value of;(t) at timet,. &
We fit the diffusion coefficienD and diffusion exponeng 10 | 1
in Eq. (31 for the non-equilibrium relaxation regime as plot-
ted in Fig 7. The resultant values are=D5.5 and u,
= . R ) i 1 . . .
=0.58, wh!ch suggest that the nonequilibrium rela}xatlpn pro 0 - 100 150 200 250
cess of a finite system correspond toaaromalouddiffusion Tit
process. “
At the end of this section, one may come to the following  FIG. 6. Time-dependent variano%(t) with Ny=8. Parameters

conclusions.
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are the same as in Fig. 1.



FEATURES OF STATISTICAL DYNAMICS INA.. .. PHYSICAL REVIEW E65 031111

500 - - . was used in reproducing our simulated results phenomeno-
450 L ] logically. Here U™Mf(q) denotes the potential part afl,
Simulation +H,(t), v the friction parameter, andi(t) the Gaussian

400 Fitting -~ white noise with an appropriate temperature. Since our

350 1 present main concern is to make clear a relation between the
) macrolevel dynamics organized by the phenomenological

equation, e.g., Eq32) [or Fokker-Planck equatio(b5) or

250 the macrolevel Eq(60) discussed in the followingand the

200 - ] microlevel dynamics by Eq(16) one step further, we start

with the Hamiltonian given by

(P~

300

o3

150 |
100 . . - HY=H,+H,()+XH, (1), (33

110 115 120 125 130

/%o whereH , andH ,(t) are defined in Eq$17) and(8), respec-

tively. An explicit form of H, ,(t) will be discussed in Eq.
(35). The main differences between E§2) and Eq.(33) are
(i) y andf(t) in Eq. (32) are given by hand andi) p.(t)
specifying the fluctuation effectd, ,(t) in Eq. (33) is de-
termined microscopically from Ed16). What we are going

(i) When the physical BG entropy is used to evaluate thdo discuss i_n the following i; to understand a cha_mge of phe-
entropy production for the system considered in this work "omenological parameters in E82), (55), or (60) in terms
the three characteristic regimes cannot be detected in tH the fluctuationH, ,(t) associated with the microscopic
collective system. When the nonextensive entropy is usedynamicsp(t) determined by Eq(16). o
with «<1.0, the three dynamical stages, i.e., the dephasing !N terms of Eq.(20), the coupling interaction is expressed
regime, nonequilibrium relaxation regime and equilibrium @S

FIG. 7. Time-dependent varianaeé(t) for the case withNg
=8. Solid line refers to the result of dynamical simulation as shown
in Fig. 6; long dashed line refers to the fitting result of E2{) with
parameter®d =15.5 andu=0.58.

regime appear for a relatively large number of intrinsic DOF _
as Ng=8. The second regime may disappear for a small Heoupl( 7:6) =NA(7)B(). (34)
number of DOF case, e.gNg=2. The fluctuation Hamiltoniam, ,(t) in Eq. (33) is then ex-

(if) Since the collective system is a dissipative systeMpressed as
whose distribution function varies nonuniformly in the non-
equilibrium relaxation regime, one has to use the entropy Ha(D=0¢"(DA(n), ¢'(1)=B(&)—(B(£)):. (35
index « different from 1. _ _ o ) o

(il ) As is shown by therﬁ(t) and bya<1, the nonequi- W|th the z_i|d of the Hamlltpnlal(l33), the collective distribu-
librium relaxation process of a finite system considered irfion functionp,(t) determined by Eq(16) may be explored
this paper corresponds to the anomalous diffusion processPY Using the Liouville equation given by

(iv) The final regime is consistent with the simulation . T )
obtained by the phenomenological transport equation. py()=—1Lp ()= —I[Ly+ L)+ ALy ,(D]p,(1),
Namely, the statistical state is actually realized dynamically (36)
@n a finite system, which is _composed _by thg collect.ive anthereET andZ, () are defined as
intrinsic systems coupled with the nonlinear interaction. n 7

EI,' . .Ei{H;,. g, Ly 1) .Ei{HA’n(t),. - }pg.

V. FLUCTUATION-DISSIPATION RELATION (37)
OF COLLECTIVE MOTION

_ . ) Here {,}pg denotes a Poisson bracket with respect to the
We are now in a position to analytically understand why ciective variables. Although A.,(t) contains the intrinsic

and how the second regime, i.e., the thermodynamical r&y,yjaples, in the present formulation, the fluctuation ,(t)
gime appears wheNd increases. Since the !ntn'nsm_ DQF IS should be considered to be a time-dependent stochastic force
regarded to be in t_he fully developed chaotic situation in theexpressed ag’' () in Eq. (35), and a stochastic average is
second regime, it is reasonable to assume that the effects @fyaineq by taking the integration over the intrinsic variables
the_ collective system coming from the intrinsic one areith a weight functionp,(t). Here it should be noticed that
mainly expressed by an average effect. Namely, the effectgq | joyyille equation(36) is an approximation to Eq16).
arising from the fluctua'FlorHA(t) are assumed to be much gjnce oy present aim is to explore how the effects on the
smaller than those coming frok, +H,(1), and are able t0 - ¢qective system coming from the intrinsic fluctuatigh(t)
be treated as a perturbation around the path determined Ry,ange depending on the number of intrinsic DOF as simple
the mean-field 26] HamiltonianH ,+H,(t). In the previous ¢ hossible, we start with Eq36) rather than Eq(16).
paper[1], a phenomenological Langevin equation given by Namely, the collective fluctuation effects originated from
JU™(q) - A(n)—Tr,A(n)p, on the intrinsic system ought to be dis-
Mq+ —q+ yq=1(t), q= mn ' (32) regarded, because we are now studying the average dynam-
aq J2 ics of collective motion. It should be also noticed that the
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Liouyillg equation(36) will not be used to determinp,,(t)_, L a(H,HH (D)

but it will be used only to understand what happens in the i 7,= " , (42

collective distribution functiorp,(t), which is numerically d7q

obtained by integrating the canonical equations of motion

(22) with the Hamiltonian in Eq(1). . O(H,HH (D) 43
Let us start our discussion just after the dephasing process 'a = TN ’ (43

has finished. When the stochastic term is regarded as a per-
turbation, it is convenient to introduce theean-fieldoropa-  there holds a relation
gator

t—7

f(n,t)=f('"""t—1) dan

G,,(t,t'):TexW’ —i J't[ﬁ,ﬁ—ﬁn(f)]dr], (38) (44)
t/

|d7'~7/d»| being a Jacobian determinant.
Using the above relation, Eq39) is simplified as
which describes an average time evolution of the collective
system. Using thenean-fieldoropagatoG,(t,t") and taking . . 2|7
the stochastic average ovex(t), one may obtain the follow- py(D)=—HLy T Ly(O}p,(H) =N 0 dr

=G, (t,t—nf(nt-1),

t—7

dn

dn

ing master equation fogs,(t) from Eq. (36) as

i} XLy, (DL A (= 7)) ay p,(t), (45)

D= =L+ £,(01p,(0 -2 | “r((Ls (0
0 where
XG, (t,t—7)Ly (t— t—17), 39 -,
A DLy e, (2, (39 La D) =16/ (D[AD),- -}, (46

where a symbol(- - -)); denotes a cumulant related to the Ly (t=m)- =i (t=n{A(n" ), -} (47
average(* );=Tr* p,(t), and a derivation of EQq(39) is _ o o
given in the Appendix. In getting Eq39) from Eq. (A10), With the Hamiltoniangd ,, andH,(t) defined in Eqs(17)

the collective distribution functiop,(t) is assumed27]to  and(8), one may easily get an analytic form of mapping
evolve through the mean-field Hamiltoniah,+H ,(t) from  — 7" by solving the unperturbed Eq&2) and (43) as
tto t— 7. This is because the fluctuation effects are so small

as to be treated as a perturbation around the path generated B , p .,
by the mean-field HamiltoniaH ,+H,,(t), and are sufficient q(7)=gcosw’ 7+ Moo T (48)
to be retained up to the second ordeiiin Eq. (39). Under
the assympt.ion of a weak coupling interaction and of a finite p(7)=—qMe’ sinw’ 7+ p cose' 7, (49)
correlation timer., i.e.,
with
"' (")) =0 for |t—t'|>7,
(@' (DS (L)) [t=t'[>7 2, IN({Q2— o2 )y
= —

an upper limit in the time integration in E(B9) is extended

1o . where EQ.(19) is used. The Jacobian determinant of this
The mean-field propagat@,(t,t— 7) provides a solution ~mapping reads

of the unperturbed equation. That is, there holds a relation

dyp 7 d
i :‘—77 -1, (50)
f(7.0)=G (tt=nf(pt=7), (40) 71 ldw
becausan’ does not practically depend on time. In terms of
providedf(#,t) satisfies a relation the coupling interaction(20), the fluctuation Hamiltonian
Ha, ,(t) in Eqg. (35 can be explicitly written as
tnt) Ha () =¢"(H{a’—ag}, (51
= L, L), (41) 7
¢'(={df—aid—({ai—aig) (52
Since the Liouville equatiofdl) is equivalent to the canoni- With the aid of Eq.(51), the cumulant in Eq(45) is ex-
cal equation of motion given by pressed as
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]
(Lo, (DL T(t= 7)== ((S(t) p(t— T)))tq%

J
XQ(t—T)m, (53

where ¢(t)=2¢'(t). Considering @ ")"=» and using
Egs.(48) and(49), one gets

Sinw’ 7cosw’ 7
Mo’

q(t—17)

Sinzw'7'> d

J
p(t—1) P 2w g

2o sinw’TCOSw’r) d
+|{qcos w' T—p————

Mo’ %
(54
Finally, Eq. (45) is explicitly written as
ap,(1) ad ad
&”t { Lerrt N2 ,qu ( &q &p) ,82q
J J
—Bsq% ﬁ] (1), (55)
where
p J 12 J
Ceffz—M%HMw ‘H\ﬁo)Q%

is an effective unperturbe@mean-field Liouvillian of the
collective system. The parameteBg, B1, B,, and3; are

expressed as Fourier transformations of the correlation func-

tions of intrinsic system

Bo=(d(1))1, (569
ﬁlew,L dr{{p(t)p(t—7)))COSw’ 7SINW’ 7,
(56b)
Bo= f:d7<<¢(t)¢(t—7')>>t0052 o', (560
B3= M0 ,2J' dT<<¢(t)¢(t—T)>>tSIn2w 7. (560

(qq) 0

d 2 12 2

at (PP | =| 4N2M2w'2B3+2)2%B,
(ap) ~ M2’ 2=\ By+2\2B,

PHYSICAL REVIEW E65 031111

Equation(55) is a two-dimensional Fokker-Planck equation.
The first term on the right-hand side of E5) represents
the contribution from the mean-field part,+H,(t), and
the last three terms represent contributions from the dynami-
cal fluctuation effectH, ,. The parameterg,, B, B>,
and 35 establish the connection between the macrolevel dy-
namical evolution of collective system and the microlevel
fluctuation of intrinsic one.

A time derivative of the average collective quantity is
calculated as

d(x)
dt

dp,,(t)

= —.—dqdp (57)

for any collective variableX which does not explicitly de-
pend on time. When one inserts E§5) into Eq. (57), and
evaluates the individual term by observing the standard rule

| AB.Closdadp- [ {ABleoCdadn (58
one obtains the equation for the first moment
&a) _(p)
dt - M
d<p> _ )\B3 2 2181
di = M (P Mo Ao (a), (59
or in a compact way as
- : ’2 2P1 _
M(a)+ ¥(a)+| Mo +XBo— A" - (a)=0, (60)
RY:E
Y= (62)

Here 85 (or y) represents the damping effects on collective
motion coming from the fluctuation interaction, which origi-
nates from the chaoticity of intrinsic system. Equat{6) is
regarded as a fluctuation-dissipation relation, and the damp-
ing factor (described byB; or y) implies an irreversible
energy dissipation from the collective system to the intrinsic
one.

Applying similar procedures as in obtaining E§0), one
may derive an equation of motion for the second moments as

2 9 -~ -
0 ™ (qa)
—4N%B; —2Mw'?—2\B, (pp) (62)
1
= —4\%B, | | {(ap) |
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300 T T . . T T T . . TABLE |. Calculated values of3; at t=120r,, for the case
with Ng=2, 4, 8, and 16, respectively.
250 Ng=2 —
Ng=4 -
J Y N 2 4 8 16
200 s 1 J
B3 0.201 0.530 0.820 1.773

150 §

GG

100 system, however, the statistical relaxation is anomalous dif-

fusion and the fluctuation effects have finite correlation time.
Using the correlation function, we calculate the parameter
B3 as shown in Table I. As is obviously seen, the damping
effects on the collective motion will increase when the num-
ber of intrinsic DOF increases. For the case with small num-
ber of intrinsic DOF, the damping effects are too small to
FIG. 8. Correlation function at=120r.,, for the cases with make the second regime realized. For the case with a larger
Ng=2, 4, and 8. Parameters are the same as in Fig. 1. number of DOF adNy=8, the damping effects become ap-
preciable and make the collective system relaxed thermody-

A real eigenvalue of the matrix in the above equation indi-namically to an equilibrium state.

cates an instability of collective trajectory, which is caused At the end of this section, we discuss the fluctuation-

by the chaoticity of intrinsic trajectory through fluctuation dissipation relation of the collective motion. As mentioned in

HamiltonianH  ,, [10]. Equations(55), (60), and(62) set up Sec. lll, the energy equipartition among every DOF is ex-

the relations among the microlevel properties of the intrinsid*ected in the final regime for the case with relatively large

system and the macrolevel time evolution of the collectivenumber of DOF, adly=8. This situation just corresponds to

system through the microscopic correlation functions. a case where the conventional transport equation is applied
Employing the numerical simulation for E(2), we cal- and the fluctuation-dissipation relation of the collective mo-

culate the correlation function(($(t)p(t—7))), at t tion is expected. Since the collective energy is given by

=120r,,, for the cases wittNg=2, 4, and 8 as shown in 5

Fig. 8. Generally speaking, the correlation function E)— er } 3, 2 63

{p(t)p(t—7))), as well as the parameteB,, Bi, Bo, (B)= oM pMme (a%), (63)

and B3 may have a strong time dependence, when the intrin-

sic system undergoes a drastic change as in the dephasifgich is derived from Eq(17), one may evaluate a rate of

regime. In the present context, in understanding why the segyllective energy change as

ond regime, i.e., thermodynamical regime appears when the

50 F

T D T W O T
7«,._;!*;‘. h‘*i.mit”-v.,;on’-‘; L%.; el

0O 5 10 15 20 25 30 35 40 45 50
T/Tcal

number of intrinsic DOF increases froNy=2 to larger one d(E) [4N2M2w'?B5+2\25, AN,
as Ny=8, it is reasonable to select a time just after the rTE oM (qq)— oM (pp)}
dephasing process has finished. From Figs. 1-5, it can be 64)

seen that=120r.,, just corresponds to such a moment.

From Fig. 8, one can see that the correlation function forby using Eq(62). Since the energy interchange between two

Ng=2 _'S very .weak and osqllz_ites aroun@(q&(t).(b(.t . systems is supposed to have finished on average in the third
—7)))=0. In this case, the main influence of the intrinsic regime, the relation(E)/dt=0, i.e

system on the collective one has taken place in the dephasing
regime, and has finished befdre 120r.,,. As N, increases,

the magnitude of the correlation function becomes large and
behaves similar to a “colored noise” with finite correlation 20
time 7

30

10

(Pt p(t—7))~e 7.

dEY N dt
=

From this calculation, the correlation function seems to reach 10k
a ¢ function representing a “white noise” whex, increases
to infinity. This results verify our understanding as discussed 20 b
in Secs. Il and IV.
. . . . . _30 1 1 1 1
(1) The dephasing regime is the main mechanism for the o po 100 0 prom 56

small number of DORsay, twg case.

(2) Both the dynamical description and conventional
transport approach may provide us with almost the same FIG. 9. Rate of collective energy change in Egy). Correlation
macrolevel and microlevel mechanisms only for the systenfunction is calculated at=_240r,,, for Ny=8. Parameters are the
with a very large number of DOF, sayy>8. For the finite  same as in Fig. 1.

T/ Tcol
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[(2M?w'?Bs+ Bo)(Aa) —2B5(pPP)]=0 (65 G,(1,11)G (11, 1) =G, (L"),
must be satisfied. Figure 9 shows numerical results of the G;l(t,t’)=G,7(t’,t), (A2)
right-hand side(rhs) of Eq. (64). It is clearly seen that a
relation (65) is actually satisfied on the third regime. whereG, *(t,t') is the inverse propagator @, (t,t").

To summarize this section, one may get the following With the aid of the mean-field propagator, one may intro-
conclusions. The damping mechanism caused by the fluctualuce the interaction representatipp(t) through
tion interaction is the main reason for the appearance of the
thermodynamical process. When the number of in.trinsic p,](t):G,?(t,O)p;?(t). (A3)
DOF becomes relatively largéas Ny=8), the damping
mechanism generates the thermodynamical process and tfaking a time derivative of E((A3), and using the relation
saturated situation. In this case, the traditional Fokker-PlanckA1), one gets the following relation from E¢36):
equation is safely used in describing the thermodynamical
process, and a fluctuation-dissipation relation is well real- b;(t)Z—iAﬁA,n(t)P;(t), (A4)
ized.

where

VI. DISCUSSION L4 (D=6 t0) Ly (DG, (t.0). (A5)
In this paper, we have systematically studied the nonequi- ) , ) L . .

librium process of a microscopic Hamilton system with finite EqUation(Ad) is a linear stochastic differential equation. In-

DOF without introducing any statistical ansatz. A macro-t€9rating Eq(A4) iteratively, one gets

scopic transport equation has been derived from the master

equation, which describes a microscopic system composed p’(t)=Tex;{ —i)\ftﬁ’ (T)dT}p'(O). (AB)

of the one collective DOF coupled to a finite intrinsic DOF K o A7 K

through a weak interaction.

It has been shown that for the case with small number of Taking the average over the intrinsic distribution function
intrinsic DOF (say, twd, the dephasing mechanism is the P(t) attin Eq. (A6), one may evaluate stochastic effects
dominant process for the dissipation of collective energycoming from the irrelevant DOF. Applying the cumulant ex-
When the number of intrinsic DOF becomes lafgay, eight Pansion[16] in the rhs of the resulting equation, one gets
or more, the energy transport process can be divided into

three regimes, i.e., the dephasing, nonequilibrium relaxation, b;(t)= —ih((ﬁg’n(t)»tp;(t)

and saturation regimes. We have shown that the energy trans- .

port process is safely described by the Fokker-Planck- and _}‘2J dr(L. (D)L 't A7
Langevin-type equation, when the number of intrinsic DOF 0 H(Lan(VLL (DD, (AT)

is relatively large. In this case, the intrinsic system exhibits _

very interesting property, such as a finiteat bath and the ~ Where ((---)); denotes a cumulant at time related to
fluctuation has the finite correlation tinfas colored noige  the average over the intrinsic degrees of freedom- ),
Only when the number of intrinsic DOF is infinite, the in- =Trs - - pg(t) at timet. Equation(A7) is valid upto the sec-

trinsic system may be treated as a statistical heat bath Wnﬁnd order in\. According to the definition of the fluctuation
white noise. HamiltonianH, ,(t) in Eq. (35), the first-order term in Eq.

(A7) is zero, since there holds a relation
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Going back to the original representation, one has

APPENDIX P (D)= —IN[L,+ L, (D]p, (D) =\
In this appendix, a derivation of the master equati@9) ‘
is discussed. The mean-field propagato)(t,t’) defined in ><J' d7(( L, ()G, (t,7) La, ,(TI)ING,(7,1)p,(1).
Eq. (38) satisfies the following relations: 0
(A10)
dG,(t,t") i i i i _ ;
r;jt = —iN[£,+ £, ()]G, (t,1), (A1) I\E/I;kgg.the variable transformation—t— 7, one finally gets
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