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Probability distribution of the sizes of the largest erased loops in loop-erased random walks
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We have studied the probability distribution of the perimeter and the area @thhargest erased loop in
loop-erased random walks in two dimensions fer1 to 3. For a random walk dfl steps, for largeN, the
average value of th&th largest perimeter and area scales\N& and N, respectively. The behavior of the
scaled distribution functions is determined for very large and very small arguments. We have used exact
enumeration foN=<20 to determine the probability that no loop of size greater thamerased. We show that
correlations between loops have to be taken into account to describe the average siZetofaigest erased
loops. We propose a one-dimensional Levy walk model that takes care of these correlations. The simulations
of this simpler model compare very well with the simulations of the original problem.
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[. INTRODUCTION the probability of erasure of another large loop within a short
time.

The statistics of extremes of many correlated random These correlations are better described in terms of the
variables is relevant in many different physical contexts, forprobability distribution of the size of the large&r second
example, in the study of earthquaKés, weather record2],  largest, third largest, efcof erased loops im consecutive
slow relaxation in glassy systerf3], and persistence in ran- steps, rather than by the usual time-dependent two-point cor-
dom walks[4]. In the sandpile model of Bak, Tang, and relation function, which gives only a very small weight to
Wiesenfeld [5], understanding the scaling properties of jarge events. In this paper we shall deal only with the case
“big” avalanches is an important unresolved questi®).  when one looks at thith rank loop of all the loops erased
The theory of extremals of mangdependent identically dis-  amongst the firsh steps. We propose that the expected ratios
tributed random variables is a well-studied subject in prob-of sjzes ofkth largest loop with the largest loop is a good
ability theory, and it is known that the distribution of extre- | 4 iaple to quantify these strong correlations, and propose a
mals converges to one of the three Gumbel distributiong,o_qimensional Levy walk model that is then tested by
[7.8]. It.is not known how these results are modified .Whensimulations.
the vanabk_es have a Iong—ranged. p_ower-law correlation. In The LERW problem was introduced by Lawlgi1] as a
some special cases extremal statistics of strongly correlated

. . more tractable variant of the self-avoiding walk problem.
variables can be determined exad@. In general, however, This problem is related to many well-studied problems in
the study of extremal distributions of correlated and strongly | " b ) many ' P

tatistical physics: the classical graph-theoretical problem of

correlated random variables poses a rather nontrivial probs-‘ } . o n
lem even in the simplest cases. spanning trees, theg-state Potts model in the limig—0

This paper deals with the extremal statistics of variable¢12]: and the Laplacian self-avoiding walk problef3].
with long-range power-law correlations in the |00p_eraseOConnect|on to the spanning trees also relates this problem to
random walks(LERW's) in two dimensions. Our interest in the abelian sandpile model of self-organized criticalig].
the LERW problem comes from the fact that it provides oneRecently simulation of LERW has been used as a computa-
of the simplest examples of self-organized critical systemstionally efficient way to determine the dynamical exponent
In the LERW problem, the length of the walk is first in- of the Abelian sandpile model in three dimensidhs|. The
creased by one at each step, and then decreases by a randdier critical dimension of LERW's is known to be[46].
amount due to possible loop erasures. The probability distriln two dimensions, the fractal dimension of LERW's is
bution of sizes of erased |00ps has a power-|aw m] known to be 5/412,17,18, and the exponent CharaCteriZing
This is, thus, similar to the sandpile model where one grain ighe probability distribution of the area of erased loops is
added at each time step but the distribution of number oknown to be superuniversalL5]. Several other results on
grains leaving the pile has a power-law tail. Clearly, there ard-ERW’s can be found i10,19-21 and a good review of
correlations in the sizes of erased loops at different timesgarlier results on the LERW problem can be found i6].
These correlations are more pronounced for larger loops. We shall denote by’; the perimeter of the loop erased at
Erasure of a large loop leads to significant decrease in thée ith step of the walk, and by'{ the kth largest value
length of the erased walk, and hence a significant decrease &mong the erased loogg’;},i=1 to N. In this paper, we
show that the asymptotic behavior of the probability distri-
bution function Prob( ("= /) is described by &-dependent
*Present address: Department of Physics of Complex Systemscaling function with argument/N?2. Thus the scaling vari-
Weizmann Institute of Science, Rehovot 76100, Israel.able is the same as would be expected for a Gumbel distri-
Electronic address: feagrawa@wicc.weizmann.ac.il bution of extremal oN variables having a probability distri-
"Electronic addresss: ddhar@theory.tifr.res.in bution with a power-law tail. However, the variables in our
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problem are not identically distributed, as the typical size of
erased loops increases with time. The resulting distribution is
also not of Gumbel type, and the limiting distribution is no
longer universal, and depends on the way distribution’of
scales withi. We determine the behavior of the scaling func-
tion for the largest loop for very large and very small values
of its argument. A similar behavior is found for the loops
ranked by the enclosed area, rather than by their perimeter.
The probability that there is no erased loop of length
greater than a fixed valuevaries exponentially witiN for
largeN. Enumerating all walks satisfying this propetfgr a
fixed r) is a generalization of the self-avoiding walk prob-
lem. We have used exact enumeration techniques to deter-
mine the behavior of this probability far=0,2, and 4 by
enumerating all random walks witN=<20. We have pro- , )
posed a simple Levy walk model that captures the correla- FIG. 1. An illustrative exampl_e of the loop-erasure procedure
tions in the LERW and agrees well with its extremal statisticslanOI sc_nmle aspects ;elateg o perleeEﬁ: and gncloseiargg gf erased
as determined from large-scale Monte Carlo simulations. ;ng'_?}_g_??:ﬁf?i? 52ra:teg;nsvt\’;t:a aiéagngsm atv.aihg-e:z;sé g

fi _The Elarté);ws padpelr IS as fc;llows. In S?IC'AI' aftler de'Ioops are shown by thin lines and the loop-erased aatki-j -k-|
ining the MOCdEIl precisely, we reca the re evant having 12 steps is shown by thick lines with sites on it marked by
points from the scaling theory for distribution of sizes of solid circles. Note that at the pointandk, while the random walk

erased loops. These are used to get the scaling form for theyh intersects itself, the LERW encounters no intersection as the
probability distribution of the perimeter and the area of larg-joop p-c-k-d-i-b has already been erased.

est erased loop in a walk ®f steps. In Sec. lll, we outline

our results about the connectivity constaptsand ., (defi- Let Prob¢/;>/) be the cumulative probability that the
nition follows in Sec. 1) and estimate their numerical value '

) . ) . . erimeter/; of the loop erased at thi¢h step of the LERW
using the exact enumeration technique. The simulation tech- ' b P

; ; . . reater than”. W fin
nigue and results obtained thereof are described in Sec. IV. Ir? greater tham”. We define

Sec. V, we describe the Levy walk model and compare the

results of numerical simulations of this model with that of F(/)=limProl(/;>/). )
the LERW. Finally, some concluding remarks follow in =
Sec. VI.

It was shown in[15] that for largei>/>1, Prob¢;>/)

satisfies the scaling form
II. SCALING THEORY OF LOOP-SIZE DISTRIBUTIONS

A loop-erased random walk is defined recursively as fol- Prol( /> /)~ /"2 (/1i??). 3
lows. For a one step random walk, the corresponding loop-
erased random walk is the same as the random walk. To for
the LERW L' corresponding to a given random walk ¥ (
+1) steps, we first form the LERW corresponding to the
first N steps of the random walk. Let us say this LERWhas
n steps. We now add theN(+ 1)th step of the random walk
to L. If no loop is formed, the resultingh( 1)-stepped walk
is £'. If this results in forming a loop of perimetef, this
loop is erased, and the resulting« 1— /) -stepped walk is
L. A simple example is depicted in Fig. 1.

Let £ be a LERW ofn steps obtained from a random walk
of N steps. For a fixefl, nis a random variable. The critical
exponentz of the LERW is defined by the relation that

Fhe scaling functiorf(x) tends to a nonzero constant as
tends to zero, and decreases to zero exponentially fast for
>1. Note that the exponents appearing in this scaling form
depend only on the fractal dimensianNote also that the
distribution of /; broadens as increases, and thus the vari-
ables/’; are not identically distributed random variables.
Let &(/{’</) be the cumulative probability thaf{}’
will be less than or equal tg". We shall study the behavior
of this function for largeN. The probability that the erased
loop at thekth step of the LERW has perimeter less than or
equal to/ is given by 1-Prob(/,>/). A simple approxi-
mate formula ford(/(M</) is obtained by neglecting cor-
relations among sizes of erased loops, and treating the gen-
(n)~N#2 (1)  eration of loops at different time steps as independent events.
In the following, we will denote by®d . the value of
®(/{P=</) in this uncorrelated approximation. This gives
for large N, where the angular brackets denote ensemble av-

eraging over all random walks dfl steps. Since the root- N

mean-square end-to-end distariRéor LERW's is the same (/O )=b (V< /)= 1—Prol/.>/

as that for random walks, we haw~NY?, and (n)~ Rz (A==l V=) kE[l[ H/= )
Thus,z is the fractal dimension of the LERW. (4
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Let x=/IN??, x(P=/{)IN??, andy=k/N be the new
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TABLE |. Number of N-step loop-erased random walks(N)

scaling variables. In terms of these new variables, substitud which the largest loop of perimetet less than or equal to 2 and

tion of Prob¢/ >/ from Eq. (3) in Eq. (4), gives

4 are erased foN=

1,...,20.

o P N Ca(N) Ca(N)
D (X sx)—]_y[ 1- X % S (5) 1 ] .
2 16 16
For fixedx and largeN, we can evaluate this expression 3 64 64
by taking logs, expanding in powers of NIy, and keeping 4 248 256
only the lowest order terms in (). With this we get 5 976 1024
- 6 3736 4072
In @, (x{<x)=—x"(x), (6) 7 14536 16248
~ - 8 55280 64 352
where(x) = [5f(x/y??)dy. It is easy to see thafi(x) has 9 213336 256120
the same qualitative behavior &&x). In terms of Prob(, 10 808016 1011 504
> /"), this equation can be written as 11 3099 456 4016 496
b = med NEANL D g a4 690 962 o2 727520
where 14 168475176 246 805 224
15 640913784 976 340 664
_ 1 N 16 2411998 168 3836482 296
F(/,N)= N > Prol/>/). (8) 17 9148 925 856 15153 764 480
k=1 18 34387933 200 59 482 843 856
For smallx, In ® (x{"'<x) should vary as-x %~ For large 19 130125970320 234640138528
20 488 603502 672 920216177 360

x,f(x) is small, and +®,(x{’<x) should vary as
X~ 2% (x).

Equation(7) is a good approximation to E¢4) so long as  value of uq is known very precisely and we have estimated
the higher order terms in (W) can be neglected. It is easily u, and u, using series expansion and exact enumeration
seen that the neglected term is of ordéF2(/,N), and (details follow.
hence the approximation is valid so long4s N7, It will We determined the numbe@; (N) for N<20 and for all
be seen from simulation resultsee Sec. 1Y that our as- I by exact enumeration. The enumeration resultsrfer2
sumption about correlations being small is not too bad an@nd 4 are tabulated in Table I. We analyzed this data by
that Eq.(4), and consequently also Eq$) and(7), are rea- fitting it to the extrapolation form
sonable approximations to the largest erased-loop size distri-
bution for all /. The deviation of the correct value from Eq.
(4) is largest if/ is very small, say equal to 0,2,4. . . Itis
important to understand the behaviordf/{’</) in this
case. This we do in the following section. (11)

Ci(N)=Koup(N)N”~1

Ky (=DM Ks
1+W+W 2+W

11l. DETERMINATION OF CONNECTIVITY CONSTANTS -, . .
where the critical exponent is expected to be independent

Let C,(N) be the number ofN-step random walks in of r and takes the self-avoiding walk value of 43/32 in two
which no loop of sizegreater than ris formed. The case  dimensiong22] andK; are constants that depend nriThis
=0 corresponds to self-avoiding walks. As the total numbeform is similar to that used by Conway and Guttmdgag]

of random walks oN steps is &' on square lattice, we have for analyzing 51-term series of self-avoiding walks. We have
reduced the number of parameters in Efl) because our

series is shorter. Our estimates @f and w4, by fitting the
9  form given by Eq.(11) term by term to the 20-term series
tabulated in Table |, are 3.7083(2) and 3.8818 respec-
tively. These values are not very sensitive to variation in the
fitting values of the parameteks; .
(10) It is interesting to compare the numerical values.gf,
Mo, and u, with the estimates obtained using the uncorre-
lated approximation. From Eqg$9) and (10) we see that
@(/f\,l)s/) varies as f,/4)N for largeN. Thus the approxi-
mation Eq.(7) givesu/4~1—F(k). Using the values oft
determined above, this would imply th&{(0), F(2), and

C,(N
d(/P=r)= —r(N ),
For largeN it is expected thaf22]

Cr(N)~py'.

For largeN,u, tends to a constant independent Mgf
which may be called theth connectivity constantWe also
have the trivial inequalityu, <u, ., for all r. Asr tends to
infinity, u, tends to 4. From Jensen and Guttm4@8] the
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FIG. 2. The observed probability distributions for the perimeter g1 3. The cumulative probability distribution for the perimeter
of the kth Iargeszg erased loog=1,2, and 3, for two-dimensional the kh largest erased loof=1, 2, and 3, for different values of
LERW for N=27 N for two-dimensional LERW. Solid lines give the prediction of the

uncorrelated theory and dashed lines with symbols give the numeri-
F(4) have the values 0.3404, 0.0729, and 0.0295, respecally observed distributions. Fof/N??>1 the curves match well
tively. The values of these quantities obtained from simulawith ®(/¥</) approaching unity very fast. Note the excellent
tions are 0.3125, 0.0625, and 0.0257, respectively. We se®llapse of the lines of the same type for all valueNaindk and
that the approximation fares rather well in relating the prop-also the systematic deviatidover prediction of the uncorrelated
erties of the self-avoiding walks and loop-erased walkstheory from the numerically observed distribution.

which have quite different large-scale properties. . .
However, considerable departure is seen for smaller values

of x, for x<1.
I[V. COMPUTER SIMULATION RESULTS From Fig. 3 it is clearly seen that the prediction of the
We generated two-dimensional loop-erased random Walkcumglative dis'tribution function by the uncorrelated.the'ory'is
. . . . 8on5|stently higher compared to the observed distribution
using the algorithm outlined ifil5]. For each walk we col-

lected statisti bout th imet dth f1h throughout the range of variation of the scaling variakle
ected statistics about the perimeter and the area ol the eraseiis o q\ys the expected anticorrelation between occurrences
loop at each step. The statistics were collected Nestep of large loops

walks with N=2",r=15,...,20. Weaveraged over 4.7 ;

. - For small values of the scaling parametethe observed
X 10° different realizations of the random walk. We were cumulative distribution function seems to behave as

able to simulate the entire ensemble in about 93 h on a
Pentium-lll 700-MHz machine using about 2.6-Mb RAM. @0(X§\Il)$x)~aexq_bx_2/z)' (12)

with a=2.2+0.3 andb=0.39=0.02. The fit is shown in Fig.

. , , - 4. For largex,1—®(x®M=<x) is very nearlyNF(/,N) that
During the simulations we collected statistics F(”",N),  yaries as

the average number of loops of perimetéiformed from a

random walk ofN steps. For each walk we also determined 1— P (xP=x)~aexo — bx2? 13

the perimeter and area of the five largest loops formed. This ol XN ) " ) (13

s used to obtain the measured cumulative distributionwith the numerical value of the parameters obtained by curve
o (/P=</), of size of loops of rank, with k=1 to 5. The P y

o . . __ fitting being a=0.32+0.03 andb=1.7+0.1, same as that
S“bSC”Pt 0" here refers to “observed.” To reduce NOISE, yptained by analysis of the all-loops data. This fit is shown in
nearby/ values were binned together. We used 30 bins per:ig_ 5. Notice that both Eqg12) and (13) are generally of
decade of data. the form of Gumbel distribution of type Il and I[I7]. If the

i (K — o
In Fig. 2 we have shown the plot for Pigls'\’=/) ver- - scaiing function were a Gumbel distribution, Ed2) would
sus/ the observed probability distributions fee=1, 2, and  h5ve held exactly for alk.

3 for N=2%. In Fig. 3 we have plotted (/<) versus
/IN?2 for various values oN as found in the simulations,
and compared it to the theoretical curve given by Edf)
ignoring correlations between loops. An excellent collapse is During simulations we collected statistics for the area of
seen among curves for all the values Mfwhen plotted the erased loops also. L&f be the area of the loop erased at
against the scaling variable= //N?2. From these figures it theith step, andA{ be thekth largest area amongst the first

is clearly seen that fox>1 the prediction of the uncorre- N erased loops. The statistics for these were obtained exactly
lated theory is quite good and indeed asymptotically exactas detailed for the perimeter data in the preceding section.

A. Largest loop perimeter

B. Largest loop area

031108-4



PROBABILITY DISTRIBUTION OF THE SIZES @& . . . PHYSICAL REVIEW E 65 031108

o (AP <4)

0 5 10 15 20 25 30 35
i AIN

FIG. 4. Variation of the cumulative probability distribution for ~ FIG. 6. The cumulative probability distribution for the area of
the perimeter of the largest erased loop for srwaffor different  thekth largest erased loog=1, 2, and 3, for different values of
values ofN for two-dimensional LERW. The solid line gives the for two-dimensional LERW. Solid lines give the prediction of the
curve fit corresponding to Eq12) and dashed lines with symbols uncorrelated theory and dashed lines with symbols give the numeri-
give the numerically observed distributions. cally observed distributions. Fgk/N>0.1 the curves match well

with ®(A¥<A) approaching unity very fast. Note the excellent

In Fig. 6 we have shown the plots deo(AF\jk)SA) versus Collapse of the lines of the same type for all valuedNadndk and
A/N for various values oN, for k=1 to 3. The format of also the systematic de_viatidover predic_tior) of_the uncorrelated
presentation is identical to that of Fig. 3. An excellent col- theory from the numerically observed distribution.
lapse is seen among the curves for various valuds$ when
plotted against the scaling variabje= A/N. have as expfaly) with a=0.049+-0.002. For largey,1

The departure between the observed behavior and predic- ¢ (y(Y)<y) varies as exptby) with b=14+1.
tion of the uncorrelated theory is also similar to that seen for
the perimeter data in the preceding section. It is clearly seen
from this figure that fory>0.1 the prediction of the uncor- ] o S
related theory is quite good and seems to be asymptotically It (IE) clearly seen in Fig. 2 t_hat the probability d_lst_rlbutlon
exact for largey. For y<0.1 considerable departure is seenOf 7/’ becomes sharper dsincreases. In fact, ik is of
between observed behavior and uncorrelated prediction. AgrderN (say k=N/1000), it is easy to see that the distribu-
in the perimeter data, there is a systematic overprediction b{jon tends to a5 function for largeN. A more careful argu-
the uncorrelated theory_ ment shows that ik> NZ/(Z+1), then the distribution would

For small values of the scaling parameyethe observed tend to as function. We note that () varies as KI/k)¥? and
cumulative distribution functionb(y(*)<y) seems to be- the average number of erased loops with this perimeter var-

ies asN/(/ )12 For the distribution to have sharp peak

C. Variation of loop sizes with rank

10° T at/{, this number should be much greater than fluctuations
220 e in the expected number of loops with perimeter greater than
107! %12 e b /(0. The latter varies ak'2 Simple algebra then gives the
DL required result.
= 102t Fit ) A similar argument for the probability distribution of the
i areaA{¥ of erased loops shows that the position of the peak
‘320 107 ] for the kth rank varies roughly all/k and their width varies
e asN/k®2 Furthermore, whet>N?? the width of the dis-
— o ] tribution becomes exponentially small kh
. D. Affect of correlations on the probability distribution
107} Do 3 functions for the kth largest erased-loop size
' : : ' : ' Let m be the expected number of loops of perimeter
0 1 2 3 4 5 6 7

greater than or equalo /* generated from a random walk of

N steps. If there are no correlations between different loops,
FIG. 5. Variation of the cumulative probability distribution for for m<N, the number of such loops generated in particular

the perimeter of the largest erased loop for largdor different ~ realization is a random variable, distributed according to the

values ofN for two-dimensional LERW. The solid line gives curve Poisson distribution. The probability that exactky such

fit corresponding to Eq13) and dashed lines with symbols give the loops are generated & ™mKk/k!. This implies that the prob-

numerically observed distributions. ability that less thark loops of size greater thasi are gen-

N
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1.0 This could be useful in investigations of other models of
self-organized criticality such as the sandpile or earthquake
models.

0.8 3

V. MODELING CORRELATIONS
= 06 1
&le Consider the time serigs;} with i=1,2, ... ,generated
= in a LERW simulation, where; is number of steps in the
© 04 3 LERW at time stepi. This process can be modeled by a
stochastic motion of point on a one-dimensional lattice. As

02 ] n; is always positive, the motion occurs in the half space
=0. In a single time step, this point can move one step to the
right (if no loop erasure occurs in the corresponding random

0.0 L ' ' ' walk), or several spaces to the left. Now suppose that the

0.0 02 0.4 . 0.6 0.8 L0 random walk is not accessible to observation, and only the
o(1y<1) time series{n;} is observed. While the original LERW,

treated as a stochastic process is a Markov process, the pro-
jected process is clearlyot Markovian. However, it may be
approximated as a Markov process.

FIG. 7. Variation of the cumulative probability distribution for
the perimeter of th&th largest erased loog=2 and 3, with that of
the largest erased loop for two-dimensional LERW. Dashed line
give the prediction by uncorrelated theory and solid lines give the

behavior of the observed data. Here the curves are shown only for A. One-dimensional Levy walk model
N=22% Curves for other values dfi=2", r=17,18,19, collapse N o ]
indistinguishably with these curves. The transition probabilities for this Markov process are

easily defined. We think of; as the position of a random

erated can be expressed in terms of the probability tioat walker at timei on a one-dimensional lattice. The walk be-
loop of size greater tharf is generated, and this functional 9inS att=0 with the walker positioned at=0. At each

form is independent of the functioRi(/). Simple algebra subsequent time step, the walker takes one step to the right
and then draws a non-negative integer random nuraber

gives with the probability Prob(’),/=0,1,2 ... . Wewill assume
Im that for large/’, Prob(”) decreases as™ " with 7>1. If /
d)uc(/'(h,kk/):exp(—m 2 HE (14) is less than or equal to the current positionf the walker,
-0 the walker takes” steps to the left; otherwise it stays put.
N This completes one step. Clearly, we have
where

—In[®(/P<)]. (15) Z}O Prol(/)=1. (17)

; A2)— , A(3)—
In Fig. 7(,1\)/ve have pIotteZG({;(/N </) andd(/\ ;O To ensure that there is no overall drift in the model, we also
versus® (/<) for N=2 from the observed distribu- 55sume that

tions. This is compared with what would be expected on the
basis of uncorrelated approximation. Similar plots using area
(instead of perimetedata show similar trends, and are omit-
ted here. From this figure, it is clearly seen that the predicted
and the observed distributions are quite close. The actual
curve always lies above the value calculated by neglecting
anticorrelations present.

A better quantitative estimate can be obtained by compa
ing the ratioR,, defined as

2_‘, / Prol /)= (18

Note that the/” here corresponds to the erased-loop size
in LERW's. In general, one can expect to improve compari-
son with the original LERW model by making the probabil-
ity of backward/” steps when the walker is atequal to the
conditional probability in the LERW problem that the next
step leads to erasure of a loop of lengtlwhen the current
length of walk isn. This is expected to be of the form

Re=kX /(7 D), (16)

where( ) denotes expectation value. The fadtdf has been
included so that the value &, would be 1 for allk, if the
variables were independent.

The value ofR, as found in the simulations of the LERW
was found to be 0.935, 0.922, 0.918, and 0.91&feR to 5, where f o iS a cutoff function that is strictly zero if its
respectively. The deviation from 1 provides a convenientargument is greater than 1. We make the simple choice that
measure of the strength of correlations in the largest events$. o is 1 if the argument is less than 1.

Prok(/|n)=Prol( /o) f s £/N), (19
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For our simulations, we made a particular choice of 0.5
Prob(/). We assumed that it is given by

11 1 04 1
—|———], for ls/<w
AVARNVER L
Prol /)= . (20) 2 03 ]
1—- >, Prokk), for /=0. .
k=1 = 02 1
This particular choice ensures that Proh(varies as ol

/=272 for large /, and that the no-drift condition given by
Eqg. (18) is automatically guaranteed for any choice @f
Furthermore, one can generate this distribution numerically g9
by using only two calls to the random number generator. We
take a random number with uniform distribution between XN
[0,1], definem=|u~**|, and then pur’=m with probabil-
ity 1/m and /=0 with probability 1-1/m. In our simula-
tions, we useda=0.6, which corresponds to the value
=2.6 of the exponent of the two-dimensional LERW'’s
Other choices of Prob() having the same value af and
satisfying Egs(17) and(18) would be expected to give simi-
lar results.

The master equation for the above process describing t
evolution of the probabilityP(x,t) of the walker being at
positionx at timet is written as

FIG. 8. Scaling plots from numerical integration of the master
equation Eq(21) for the probability of finding the Levy walker at
positionx at time stepN versusx/N#2, z=5/4, forN=2¢and 2".

* Good scaling and consequently good collapse of curves are seen.

about 7-Mb RAM. We also simulated the Levy walk process
Hor time steps up tdN=2% for obtaining the statistics on

erased-loop sizes and ttkh largest erased-loop size. The
quantities were sampled along the same lines as for the
LERW's discussed in Sec. IV. To reduce noise in the statis-
o tics, we averaged over a large ensemble consisting of 2

P(x,t+1)= 2 Prol(/)P(x—1+/t). (21 X 10° different runs. The simulation of the entire ensemble

/=0 required about 141 h of CPU time on a Pentium Il 350-MHz

) ) o machine using about 1.5-Mb RAM.

For I_arge timeg, the_w_ldth of the probability dlstrlbutlo_n Scaling plots for the computed probability of finding the
P(x,t) increases /tci+|nf|n|ty. It is easy.to see th.at the W|dth|_evy walker at locatiorx at time stepN, P(x,N), are shown
must increase s, We note that if the particle ita, i, Fig. 8. In this figures we have plotteéd?2P(x,N) versus
its expected displacement in the next time step is positive, a$INZ2, for z=5/4. The figure clearly shows that the observed

jumps with displacement greater tharo the left are disal-  penavior agrees well with the conjectured scaling form given
lowed. The contribution of such terms to Ed.7) varies as by Eq.(23.

x2~". This equation may schematically be written in the form

P d
E~5(PXZ’7)+DP, (22) 20¢

where D denotes diffusion operator that, presumably, in- = st
volves fractional derivativef24]. The resulting equation for 2=
the scaling function is nonlocal, and its analytical solution 2
seems difficult. Simple dimensional analysis shows that £ 10}
scales ax” 1. Hence the width of this distribution should ‘&

scale ag¥"~1). Furthermore, for large,P(x,t) tends to the

scaling form 05T ]
X 00 . . : .
P(x,t)= =L el K (23 "0 1000 2000 3000 4000 5000 6000 7000 8000
!
B. Results from the Levy walk model FIG. 9. Observed probability distributions for sigeerimeter for

) ) ) . LERW) of the kth largest erased loop for two-dimensional LERW
We numerically integrated the master equation @) in  (solid lineg and the Levy walk modeidashed linesfor N=2%.
x=0 half space using the probability distribution for erased-The extremal distributions for the Levy walk model have been res-
loop sizes given by Eq20) and computedP(x,t). The in-  caled by multiplying(dividing) the abscisséordinate by a factor of
tegration for walks having up th=2'7 steps required about 1.04. This rescaling makes the mean points of the distributions ob-
80 h of CPU time on a Pentium Il 350-MHz machine usingtained from the Levy walk model coincide with those of the LERW.
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We also analyzed the distribution kth largest loop sizes VI. CONCLUDING REMARKS
in simulation of this Levy walk model, and compared them

\I/_vli:_tg\BCe cc:jrrtlass)von;jing ddiﬁtribtétiogs for_the t]:/vo-dirr?ensiodr?alof the largest erased loops in LERW's is fairly well described
model. We found that the deviations rom the pre IC'by the simple approximation ignoring correlations between

tions of the uncorrelated theory are much smaller in the casge sizes of different loops. However, the average values of
of the Levy walk model than in the original LERW. The plots 4165 of /(9 are not well described in this approximation. A

are very similar to the Figs. 2, 3, and 7, and are being omitgjmple model that takes care of a large part of these correla-
tions is the Levy walk model introduced in this paper. In this

Our analysis above shows that the probability distribution

ted here.

In Fig. 9, we have compared the probability distributionsmodel, one keeps information about fleegthof the LERW,
for the kth largest erased-loop sizes from the Levy walkput throws out all information about its shape. We have seen
model with those from LERW. The figure clearly shows thatthat this model reproduces the extremal statistics of the
the probability distributions obtained from the Levy walk LERW'’s quite well.
model match very well with those from the LERW. Second, we have exactly enumerat@dN) the number
The value ofR, for k=2 to 5 as determined from the of N-step LERW's in which loops of sizkess than or equal
simulation of the Levy walk model were 0.947, 0.940, 0.942to r are erased. Using these we have determjngthe rth
and 0.946, respectively. These are comparable to the valuesnnectivity constant. The determination @f for various
for the actual LERW model, and shows that the Levy walklattices has been a long-standing problem in lattice statistics.
model takes much of the correlations of the LERW problemHigher r values present interesting geometrical questions,
into account. A better choice of the cutoff function would and may be helpful in understanding the crossover from ran-
have yielded even better agreement. dom walk to self-avoiding walk.
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