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Statistical properties of a class of nonlinear systems driven
by colored multiplicative Gaussian noise
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We derive the time-dependent univariate and bivariate probability distribution function for an overdamped
system with a quadratic potential driven by colored Gaussian noise, whose amplitude depends on the system
statex as|x|*. Particular attention is paid to the effect of the correlation function of the noise on the statistical
properties of the system. We obtain exact expressions for the fractional moments as well as the correlation
function of the system and calculate the fractal dimension. We also consider the special case of a constant
potential and determine the criteria for anomalous diffusion and stochastic localization of free particles.
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[. INTRODUCTION oversimplification. Ratchet systems are one example; here a
nonzero current of Brownian particles results from the per-
Models with state-dependerinultiplicative) noise find  turbation of an asymmetrjc _periodic potential by external
numerous applications in many different fields of science, foccorrelated random or periodic forc¢9]. Linear systems
example, in quantum optic§l], biology [2—4], noise- With additive colored noise are another example. In contrast
induced transitiong5,6], growth phenomen47], reaction- 10 white noise, colored noise can give rise to anomalous
diffusion models of chemical systems and epiderfiges11], ~ diffusion of free particles without dissipatid@0], with non-
and economic activitieEL2]. They are also currently studied 'ocal dissipatior{21], with time-dependent frictiof22], and
as simple models that generate power-law probability districan lead to anomalous diffusion and stochastic localization
bution functions(PDF9 [13]. A number of natural, social, of_dampgd classicgl3] _and quantunﬁ_24] part|cle§. System-
and economic phenomena are claimed to be described ic studies of the statistical properties of nonlinear systems
power-law distributions, and such distributions are consid- riven by colored noise have barely begun to be undertaken.

. . In this paper, we study in detail nonlinear systems whose
ered the signature of complex self-organizing systems | di h ltiolicative L .
[14.15. Statex(t) evolves according to the multiplicative Langevin

. . equation
Systems with state-dependent noise are usually modele

py a discretg- or continu'ous-time versipn of thg mgltipliga- k(t)+xx(t)=|x(t)|“f(t) [X(0)=x¢>0], (1.2)
tive Langevin equation, i.e., a Langevin equation in which
the noisef (t) is multiplied by a function of the system state wherex=0, « is a real-valued parameter, afit) is a noise
X(t). Since the Langevin equation relates the state of thevith zero mean and known statistical characteristics. Equa-
systemx(t) to the noisef (t), one expects that the statistical tion (1.1) describes a wide class of random processes. Spe-
characteristics of(t) can be expressed in terms of the givencifically, if f(t) is Gaussian white noise, thet(t) is the
statistical characteristics df(t). An explicit solution, how- Wiener process ik=0 anda=0, the Ornstein-Uhlenbeck
ever, cannot always be found, even for the linear multiplicaprocess if«x>0 anda=0 [25], and the lognormal process if
tive Langevin equation, a generic model for generatingk=0 and a=1 [26]. Further, multiplicative noise withy
power-law PDF$13]. For the continuous-time version of the =1/2 occurs in models of lasef$], and in models of chemi-
nonlinear multiplicative Langevin equation, no generalcal reactions and epidemi¢8—11]. The latter belong to the
method exists to determine the PDFs of the system in termsniversality class that can be represented by the Langevin
of the noise for arbitraryf(t). The problem simplifies sig- equation of Reggeon field theory. The spatially homogeneous
nificantly, if f(t) is Gaussian white noise. Thet(t) is a  version of that equation coincides with Ed.1) for smallx.
Markovian diffusion procesl6], and its univariate PDF and An interesting feature of Eq.l1.1) is the fact that for 0
transition probability density satisfy the Fokker-Planck equa<<a<1 the solution is not unique at=0; there are two
tion, which can be solved exactly in specific cagg47,19. solutions that pass through zero. Physical considerations de-
However, various physical effects are induced only bytermine the appropriate choice for each model or application.
colored noise, which has a nonzero correlation time, and itf the point x=0 should be considered to be an absorbing
these cases the white noise approximation represents goint, as for example in the chemical and epidemic models
mentioned above, then the solution of E.1) coincides
with the solution of the equation
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for O<t<ty, (t;, is the random first-passage time from wherew=(1—a)«. Taking into account thag(0)=x,, we
X(0)=Xg to X(t;)=0) and x(t)=0 for t=t;,. This case obtain

will be considered elsewhef27]. In this paper, we study the

case where(t) represents thggeneralizegicoordinate of an v dy’
overdamped particle moving in a parabolic potential. The LO W
point x=0 should then be considered to be a regular point,
and the solution of Eq(1.1) coincides with the solution of |f o+ 1, then Eq.(2.2) yields
Eq. (1.2 for all timest=0.

Our central result is an analytical expression for the single
time and two-time probability density function of the random
processx(t) governed by the Langevin equatidh.2). The
temporal evolution ofk(t) is determined by the competing and the solution of Eq(1.2) is given by
effects of the systematic restoring foreexx(t) and the ran- a ot a ot wll-a)
dom driving force|x(t)|“f(t). The effects of this competi- X()=[xg “e”“'+a(t)]lxg “e” “'+q(t)| :
tion are studied by calculating the fractional moments of the (2.4
single-time or univariate PDIP,(x,t) and exploring their
short- and long-time behavior. For the case 0, these mo-
ments are useful to characterize the diffusive behavior of free t )
particles. We find that, depending on the noise intensity and q(t)=(1—a)f dt’e”t=f(t). (2.9
the exponentw, colored multiplicative Gaussian noise can 0
Igad to stochastic Io'calization, nor'mal diffusion, subdiffu- For a>1, Eq. (2.4 leads to|x(t)| o as Xé—aemt
sion, and superdiffusion. An analysis of the temporal evolu-+q(t)_)0_ If the noisef(t) has an infinite range of values,

tion of P,(x,t) provides further insight into the competition then the random function(t) has the same range. In this
between the systematic and random force. We find that the_ . "o probability that the equatieh “e~“'+q(t)=0
opposing effects of these two forces lead to temporal bimoF1615 (’,ﬂ least one solution on any intervalt{Os nonzero
d_ality_. As far as numerical characteris’_tics of the t\{vo-time M This implies that the state of the systexft) reaches infinit)./
b|var!a.te PDF are co_ncerned, we derive EXPressions for thgn any finite time interval with nonzero probability. Further,
coefficient of correlation and show that correlations betweer?Or XL ag-oty q(t)= +0 andx} “e “+q(t)= -0, ie
x(t) andx(t,) persist agt—t,|— o only for free particles in 0 fini 4 f I ch 0 - q Ep.4 g Id
the case of stochastic localization. To characterize the irrngpr an infinitesimally small c ange o time, E@.4) yields
larities of the sample paths of the random process, we calcd(-(t):. +e andx(t)= —® respectlvel'y. To exclude this un-
late their fractal dimension. Only colored Gaussian noisé’hySICaI behavior, we will only consider the (_:aszél.
whose correlation function diverges as a power law at zero If a=1, then the integral on the left-hand side of @2)
leads to fractal sample paths. goes to— asy()—0 and to+» asy(t)—+, ie,
The paper is structured as follows. In Sec. II, we solve EqY(1)=0 for all times. In this case the solution of E.2)
(1.2) for the general case of arbitrary nois) and exclude nas the formy(t) =xo expw(t), where
values of the parameter for which the system reaches in- ¢
finity with nonzero probability on any finite time interval. In W(t):f dt’'f(t"), (2.6
Sec. lll, we derive the uni- and bivariate PDFsxgt) for 0
stationary Gaussian noidét). In Sec. 1V, we obtain exact
expressions for the fractional moments xft) and their
short- and long-time asymptotics. In the same section we X(t)=xo exf — kt-+w(t)]. 2.7
determine the criteria for anomalous diffusion and stochastic
localization of free particles. In Sec. V, we study the timeNote that fora=1, Egs.(1.2) and(1.1) are equivalent.
evolution of the univariate PDF analytically and numerically.

= ftdt'ewt’f(t’). (2.2
0

t !
y<t>|y<t>|‘“=xé‘“+(1—a>f0dt'ewt (), 23

where

In §ec. VI, we calgulate the. correlation functior_1 and the co- IIl. BIVARIATE AND UNIVARIATE PDF
efficient of correlation, and in Sec. VII we obtain the fractal
dimension ofx(t). We summarize our results in Sec. VIILI. We have obtained an explicit expression %¢t) in terms

of a functional off(t), namely,w(t) for «=1 andq(t) for
a<1, respectively. These functionals represent the cumula-
Il. SOLUTION OF THE LANGEVIN EQUATION tive effect of the random driving force from the initial instant

Our aim is to express the statistical propertiesx@t) in ~ UP t©0 timet. For =1, w(t) is simply the integral ovef(t),
terms of the given statistical characteristics of the randomyvhereas fora<<1, the past influence of the driving force is
driving forcef(t). To this end, we need to obtain an explicit Weighted by an exponential kernel. The time-dependent
solution of the Langevin equatiofL.?. We introduce the univariate and bivariate PDF. of the multllpllcatlve noise sys-
new variabley(t) = x(t)exp(kt) and reduce the equation to tem (1.1) can now be determined if the bivariate PDF of the

force functionalsq(t) and w(t), respectively, can be ob-
) tained. This is certainly the case for Gaussian noise as ex-
y(O)|y(t)|”*=e (1), (2.1)  plained below.
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A. Bivariate PDF

Let P,(x,t;xq,t1) and Pg4(q,t;q1,t;) be the bivariate
PDFs thatx(t)=x and x(t;) =Xy, and q(t)=q and q(t;)
=(Q4, respectively. According to Eq2.4) the relation

At =x(t)|x(t)] " “—xp ‘e, (3.

holds, and a one-to-one correspondence exists betw@gn

and q(t). This implies that P,(X,t;xq,t1)|dx dx|
=P4(Q,t;01,t;)|dg day, and
d(d,41)
PX(Xlt;Xlrtl):Pq(q!t;qlltl) r?(X,Xl) ] (32)
where
J(q, 1-a)?
(9,90)] ( o @3

XX | x|

is the Jacobian. If the bivariate PIHG(q,t;q;,t;) is known,
then the bivariate PDIP,(x,t;X4,t;) for «<1 is given by

(1-a)? _ o _
Py(X,tiXq ty) = —Pa(XIX| T = xg e X x| ¢
| X4
l1-a,—wt
—Xp ‘e “Lty). (3.9
Using the relation
X(t)
w(t) =In—+ «t, (3.5
Xo

which follows from Eq.(2.7), we obtain in the same way for

a=1,

gt
X Klyl!

(3.6

1 X
. _ 4 .
P (X,t;Xq,t1) X% Puw InXO kt,t;In
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and

Rw(t,t'):f;drf;'dr'R(h— _ 3.8

Introducing the new variables=7— 7', v=7+7" and de-
fining

1z
Fw(z)=ZLduR(u)sinf‘[w(z—u)], (3.9

we can reduce Eq$3.7) and(3.8) after some algebra to

Ry(t,t)=(1—a) e “'F () +e “'F (1) —F,(t—t")],
(3.10

and
Ru(t,t")=Fo(t) +Fo(t")—Fpo(t—t"), (3.11)

where Fy(t)=Ilim,_ o F,(t). Note thatF_ (—2)=F_,(2),
sinceR(—u)=R(u). Further, we have that

2
e“’tFw(t)=%<<fotdre‘”(tT)f(r)) > (3.12

which implies that~,(t)=0 andF ,(t)=0 only fort=0.

Using the well-known expression for the bivariate PDF of

a Gaussian proce$28], we obtain from Eqs(3.4) and(3.6)

1—a)?|xxq| @
PX(Xlt;letl): ( ) | 1|

(x,x4=0), whereP,,(w,t;w,,t;) is the bivariate PDF that
w(t)=w andw(t;)=w;.

The bivariate PDFs ofj(t) andw(t) are easily obtained
for the case of a Gaussian random force. Since these func-
tionals depend linearly of(t), see Eqs(2.5 and(2.6), they
are themselves Gaussian processes. As is well known, a
Gaussian process is fully defined by its mean value and its
correlation function. In our caséf(t))=0, and therefore
(q(t))=0 and{w(t))=0, where() denotes averaging with
respect to the noisé(t). To fully determine the above bi-
variate PDFs, we need to express the correlation functions of
a(t), (a()a(t’))=Rq(t,t'), and of w(t), (w(t)w(t'))
=R,(t,t"), in terms of the correlation functioff (t)f(t"))
=R(|t—t'|) of the stationary Gaussian noidét). From
Egs.(2.5 and(2.6) we obtain

, t ’ ,

Ry(t,t")=(1—a)?e (" )f drft dr’e(m+7)
0 0

XR(|7—17']), 37
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for <1, and

2mog(t) og(t) VI-r3(t,ty)
p{ 1
Xexp — P
2[1-r2(t,ty)]

2
1 X
><|: 5 ( a_xé—ae—a)t)
o)\ x|

1 ( X1
+ 2 @
O-q(tl) |X1|

2
_yl-ap—ot
Xg € 1)

2rqy(tty)

— —<L _Xl—ae—wt>
O'q(t)o'q(tl) |X|a 0

X

X
ol _Xéaewtl)
1

], (3.13
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(xxq) "1
270 (D oy (t)V1-r2(t,ty)

2[1-ri(tty)]

X 2 1
X|— In—+«kt| +
og(t)\ Xo

Pu(X,tiXq,t1) =

U\%v(tl)
2

Xl 2rW(t1tl)
X|In—+kty|] —————

Xo ! Uw(t)aw(tl)

X X1
X | In—+kt || In—+ «t; , (3.19

Xo Xo

for a=1. Here

efwt t
a'g(t)ERq(t,t)ZZ(l—a)2 ” foduR(u)sini‘[w(t—u)],
(3.15
is the dispersion ofj(t),
t
a@(t)sRW(t,t)zzf duR(u)(t—u), (3.16
0
is the dispersion ofv(t), and
Fqu(tity)= Ryl Ly (3.17)

Uq,w(t)o'q,w(tl) ,

are the coefficients of correlation, which satisfy the condition

Irqw(t,t)[<1[29].

B. Univariate PDF

PHYSICAL REVIEW B5 031105

P, (x,t) 17
X -
AN TN E

1 (x 1
exp ——— | .%o
204(t) | [x|*

=

(3.21)
for <1, and
P, (X,1) ! ! (I X4 t2
X,t)= Xp — n—
)= e O 2020\ Xo
(3.22

for a=1. Expression$3.14) and(3.22 are the bivariate and
univariate PDFs of the logarithmic-normdbgnorma) dis-
tribution [26]. By analogy, we call the probability distribu-
tion, whose bivariate and univariate PDFs are given by Eqgs.
(3.13 and(3.21), the power-normal distribution.

It is not difficult to verify that the univariate PDRS8.21)
and (3.22 satisfy the Fokker-Planck equation

J J
SEPx(0 D)= [rx— A, (1) ax|x|2 @ DIP(x,1)

at
&2
+A (1) — [X[2*Py(x,1), (3.23
X
where the function
t)og(t)+ wo(t
t agq(t)og(t) + woy( )’ a<l,
Aw(t)=f duR(u)e™ = (1-a@)?
0 .
ow(Doy(t), a=1,
(3.249

is the exponentially weighted time-dependent intensity of

To obtain the univariate PDP,(x,t) we can proceed in f(t). Specifically, if f(t) is Gaussian white noise, then
the same way as for the bivariate PDF, or we can simphR(u)=2A4d(u) [A is the white noise intensityj(u) is the s

eliminate one variable by integration,
PX(th):J XmPX(XIt;Xlatl)' (318

Substituting expressiof8.4) into Eq.(3.18), using the trans-

formation of variabley = x,|x,| ™%, and taking into account

that integration oPy(q,t;q,,t;) overq; yields the univari-
ate PDFP(q,t), we find fora<1,

-« X ea
Pux,t)=-——Pg| ———xg " “,t|. (3.19
| |

In the same way we find for=1,

. (3.20

1 X
Py (x,t)= X Pw InX—O + kt,t

If f(t) is a Gaussian noise, Eq8.19 and(3.20 yield

function] and Eq.(3.249) yields A (t)=A. In that casex(t)

is a Markovian diffusion process, and E§.23 corresponds
to the Stratonovich interpretatidi80] of Eq. (1.1). We em-
phasize that for colored noigét) the random procesqt) is
not Markovian, in spite of the fact tha®,(x,t) obeys a
Fokker-Planck equatiorifFor a Markovian process, it is the
transition probability density, and not only the univariate
PDF, that obeys a Fokker-Planck equatioie will exploit
the fact that the univariate POB.21) obeys a Fokker-Planck
equation in another papg27] to obtain the statistical prop-
erties ofx(t) with an absorbing boundary at=0.

IV. FRACTIONAL MOMENTS

In the previous section, we have achieved the main goal
of this work, namely, to express the statistical properties of
the state variablg(t) in terms of the statistical characteris-
tics of the driving forcef (t) for the case of colored Gaussian
noise. Though Eq<€3.13), (3.14), (3.21), and(3.22 provide
explicit expressions for the bivariate and univariate PDFs, it

031105-4
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is helpful for our understanding of colored noise systems ofvhere erfc ¢) = (2/\/7) [ Zdt exp(—t?) is the complementary

type (1.1) to consider also a more concise description ancerror function. Specifically, fon=0 we have
determine numerical characteristics of the random process

X(t). Moments are of particular interest for applications, and T o2s z
we begin our analysis of the temporal evolution of Efl) 1(2) >€ erfcﬁ 4.7
by calculating the time-dependent fractional moments of

X(t). They are defined as follows: and, since erfcq) +erfc(—z)=2, Eq. (4.5 yields mg(t)

" =1, i.e.,P,(x,t) is properly normalized.
mr(t):f dxP,(x,t)|x|"~"x”, (4.2 For the lognormal distribution, i.e., for=1, Eq. (4.2)
- yields

wherer is a real number, and=0 or 1. In the case of the 1 o 1

power-normal distribution, the fractional moments;(t) m(t)= —J dxxrlexr{— —

characterize its asymmetry, and alway$(t)=m?(t). For V2may(t)Jo 20(1)

the lognormal distributionP,(x,t)=0 if x<0, and m?(t)

= m,l(t)Emr(t). Fractional moments with>0 are a useful

tool to characterize the behavior Bf(x,t) as|x|—, and

those withr <0 provide information about the behavior of . . .

P,(x,t) in the vicinity of x=0. The convergence or diver- To evaluate the mFegraI, we introduce the new variaple

gence ofm/(t) for a particular realr allows us to draw = In(x%o)+ «t, and find

conclusions about the functional behavior of the univariate 1

PDF as|x|—= andx— 0, respectively. m, (t) =Xg ex;{irza@(t)—mt), 4.9
First we calculate the fractional moments fex 1, i.e.,

for the case of the power-normal distribution. Writing Eq

(4.1) as

X 2
X |nx—+Kt) . (4.8

0

*which is valid for allr. In particular,my(t) =1, i.e., Py (x,t)
is properly normalized.
" Moments provide a concise means of characterizing the
:f dx[ Py (x,t)+(—1)"P,(—x,t)]x", (4.2  time evolution of a random process. To gain insight into the
0 motion of a particle in a quadratic potential driven by mul-
. . tiplicative colored Gaussian noise, we evaluate the
and using Eq(3.21), we obtain asymptotic behavior of the fractional moments fex0 and
R0 o
vy 24 ¢ fx £ 1 a—a2()(v—1)2/2
m; (1) V2 (v 0 dov® e A. Short-time behavior
First we determine the asymptotic behaviomaf(t) and
m,(t) for t—0. We consider the case that the leading
where ¢=1+r/(1— ), and a(t)= x —ag wt/(fq(t)_ Ac- asymptotic term of the correlation_zunction of the noR_(eJ)
cording to Eq.(4.3), all fractional moments diverge, if obe_y; a power law, |.eF_§(u)~cau .asuio' He[eac)aﬁlfza
<0, that is, ifr<a—1. For ¢£>0, we use the integral rep- positive parameter, which has the dmensmm%ﬁ s

resentation of the Weber parabolic cylinder functip] and 0= B<1.[The inequality3=0 follows from the condi-
tion R(0)=R(u), which is valid for arbitrary stationary pro-

+(— 1)Ve—a2(t)(v+l)2/2]' (4.3

o704 cessf(t), and the inequalitys<<1 from the condition that the
D_,(2)= f dyy* e ¥2-2Y (4,>0), (4.4 integral in Eq.(3.15 converges at the lower limjtIn this
L) case, Egs(3.15 and(3.16) yield
[T(u)=[5dyy* e Y is the gamma functioh and reduce gg(t) (Ca(l—a)z 2128 1
Eq. (43 10 207\ o Jaepe—p “0
my(t)= @efaz(t)/4o_gfl(t){[)7§[_a(t)] ast—0. Sin_cea(t)ﬂoo if_ t—0, we use the Laplace meth_od
N [33] to obtain the following asymptotic formulas for the in-
tegrals in Eq.(4.3):
+(=1)"D_Ja(t)]}. (4.9
» 2 1-¢)(2—
If §:n+1 (n:O,l' L )'then[32] f dvvg—le—az(t)(v—l)zlz’v \/_77 14 ( g)( g)
0 a(t) 2a%(t)
1" d" z
D_,_1(2)= \[( 1) e ’4—( 212 arfe —) —a2(t)12
2 n! dz" \/E f dvvg 1 —az(t)(v+1)2/2 F(f) ’ (411)
(4.6) 0 a*(t)

031105-5
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asa(t)—«. For k>0, Egs.(4.3, (4.9, and(4.1]) lead to
the same asymptotic formula fom;(t) andm,(t),

my (t)
(m (t))~xg(1—rf<t) (t—0), (4.12
and forx=0, they yield
r(r+a—1)c
(t)~xb| 1 = 2-F (41
my(t) xo< +(1—,8)(2—,8)X§(1_“)t >,( 3
and
) rac, -
mr(t)~x0 1+ mtz B), (4.19

(t—0). Herere (a— 1) andr e (—»,») if a<l anda
=1, respectively. Note that the fractional momem4t) do

not depend on, since fort— 0 the support of the univariate

PDF P,(x,t) is a small vicinity of the poink= Xg.
Our results show the expected behavior. korO, frac-

PHYSICAL REVIEW B5 031105

(4.18

5 ( ) —a |X|2(1—a)
X)=————éexp ——5—|.
. \/27Tcrq(00)|x|”‘ 20’3(00)

Note thatPg(x) is even, as is also reflected byrl(oc)=0.

As expected, our results show that the interplay between
the systematic restoring force and the random driving force
achieves a balance in the long term and results in a stationary
PDF.

2. a<l, k=0

This is the case of a constant potential, i.e., the case of a
free particle. As mentioned in the Introduction, free particles
described by Langevin equations with additive colored noise
can display anomalous diffusion. Here we investigate the
effect of multiplicative colored noise on the diffusive behav-
ior of free particles. Fow<1 and k=0, Eq.(3.19 is re-
duced to

aé(t)=2(1—a)zftduR(u)(t—u). (4.19
0

tional moments with positive decrease and those with nega- According to Ref[23], if

tive r increase with time. This behavior indicates that the
short-time evolution of the particle is dominated by the sys-
tematic force that drives the particle towards the origin. For a
flat potential,k=0, i.e., a free particle, the short-time motion

is of course driven by the random force. The broadening ofhen a—é(oc)<oo, and if 0<R=w~, whereR=[gduR(u) is

. t
Fo(t)=f0duR(u)=o(1/t) (t—00), (4.20

fact that the moments that probe the behavior near zero, i.emengg(oc):oo_ This implies that all fractional moments are

r<0, as well as those that probe the behavior for Idsge
i.e., r>0, increase with time.

B. Long-time behavior

To address the long-time behavior of the partitle; o,
we need to consider four cases separately, nametyl and
k>0, <1l and k=0, a=1 and x>0, anda=1 and «
=0.

1. a<l, k>0
In this casea(«~)=0, and Eq.3.15 vyields
2 2 1(= —wu
og(*)=(1-a)*—| duRu)e “" (4.15
wJo

[SinceR(u)—0 asu—x, o5(e)<.] Using the formula

I'(&/2)
_o&2-1
D_40)=2 CR (4.19
which follows from Eq.(4.4), we obtain
oo TRy oy 1H(=1)"
mr(w)—TTerZUq () ——%—, (4.17)

(€>0). In this case all fractional moments with>ao—1
have a finite value, and according to £8.21) the stationary
PDF Pg(X) = Py(X,%°) has the form

finite if Eq. (4.20 is fulfilled,

r
my(0) = (Zfieaz(”)”ﬁél(m){Dg[—a(°°)]

+(=1)"D_fa(=)]}, (4.21)

with a(e) = xé’”‘/aq(oo), and the stationary PDF is given by

b (%) 1-a p( (x|x|‘“—xé_“)2)

s(X)=———exp ——————|.

U N2mag(e)|x| 205() .
4,

In contrast to the previous cades(x) is not even. Indeed,
Eq. (4.22 shows thatPg(—Xx) # Pg(X).

These results show that a free particle driven by multipli-
cative colored Gaussian noise obeying E520, i.e., noise
whose intensityR vanishes, does not display the expected
diffusive behavior. The random driving force h&s=0, if
contributions from regions of positive and negative correla-
tions in the noisef(t) cancel each other out. This counter-
balance of positive correlations by negative ones leads to
stochastic localization of free particles, a phenomenon first
described for free particles driven by additive colored noise
[23].

If Eq. (4.20 is not fulfilled, the stationary PDF does not
exist. In this case, free particles display diffusive behavior
that can be characterized by the fractional moments. The
asymptotic behavior of the fractional moments is determined
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by the asymptotic behavior of-z(t) ast—o, Using EQs.
(4.5) and (4.16), we find form? (t)

()~ e, SN (toe), (423
2
and using the asymptotic formula
202 ey q
D_g(—z)—D_g(z)~wF T Z, (4.24)

(z—0), which follows from Eq.4.4), we obtain formrl(t),
xp <§+ 1
N 2

If 0<R<, theno? g(t) <t ast—ce [23], and Eqs(4.23
and(4.25 yield m (t)oct(g D2 andml(t)«t271, These re-
lations show thatm Y(*)=0 for re(a 1y(1-a)), and

2(t) (t—o).

r(t) (4.25

&2 &
2 (o

my (=)= forre (v(l—a),oo). Note that the dispersion of

the particle positiong2(t) =(x?(t))—(x(t))?, can be repre-
sented as o2(t)=m3(t)—[mi(t)]%. So, o2(t)~md(t)
«tY(1=@) ast—o, and the conditionsr=0, <0, and 0
<a<1 correspond to normal diffusion, subdiffusi¢diffu-
sion slower than the normaland superdiffusioridiffusion

faster than the normplrespectively. In other words, in this

case the state dependence of the ndigeen a+0) gives
rise to anomalous diffusive behavior.

For R=«, the function a'g(t) grows faster thart but
slower thant? ast—o [23]. If R(u)>xu~? (0<y<1) asu
—, then o3(t)«t?”?, and Egs.(4.23 and (4.25 yield
m¢ (t)oct(§ D-2) and m}(t)«t(e=2A=72) " gpecifically,
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this behavior is qualitatively different from the case @f
<1. In that case, the amplitude of the fluctuations does not
go to zero linearly ag—0, and as discussed above, neither
the systematic force nor the random force dominates in the
long term; their effects balance and result in a stationary
PDF.

If R#0, then the long-time behavior is more complicated
and no well-defined stationary PDF exists. This aspect will
be addressed in more detail in the next section. As far as the
fractional moments are concerned, we obtain the following
results.

If 0 <R<x, then, writing the leading asymptotic term of
o2 (t) as Zt, we obtain

m, (t)~Xg exd r(rg—«)t] (t—o). (4.206
Thusm, () =00 if r<0 orr>«/g, andm,(«)=0 if 0<r
<klg. For r=«l/g, the valuem,(«) is determined by the
second term of the asymptotic expansionoﬁj(t). Finally,

for R=< the condition lim_., ofv(t)/t=oc holds, and all
fractional moments withi 0 diverge ag— .

4. =1, k=0

For the case of free particles, stochastic localization oc-
curs again if Eq.(4.20 holds, since then we hava, ()
=x{ expr?o2()/2] <. According to Eq(3.22) the station-
ary PDF exists in this case and has the form

In?(x/Xq)
202(»)

(4.27)

1
Pel)= Jﬁavv(oo)xexp( )

the long-time asymptotic behawor of the dispersion of theOtherW|se o (Oc):w and all fractional momentsn, ()
l r

particle position has the formZ(t) ot~ ?/(1=9) This result

implies that normal diffusion, subdiffusion, and superdiffu-

sion occur fora=y—1, a<y—1, and y—1<a<l, re-

=Xg exfr?o5(t)/2] with r#0 diverge ag—c.

V. TIME EVOLUTION OF THE UNIVARIATE PDF

spectively. Note that there is a remarkable interrelation be-
tween|x|“-type multiplicative noises with finite and infinite
intensities. Namely, multiplicative noise with infinite inten-
sity (R=o) and characterized by the exponents o’ and

v leads to the same long-time asymptotic behaviomB(t)
[and ai(t)] as multiplicative noise with finite intensity (0
<R<®) and characterized by the exponeat(1+a’
—¥)/(2— 7). In particular, the action of additive noise with
R=o is similar to the action of multiplicative noise with 0
<R<w anda=(1-7y)/(2— 7).

Having gained a first understanding of the temporal evo-
lution of Eq. (1.1) by studying numerical characteristics of
the PDF, namely, the fractional moments, we now investigate
directly how the univariate PDF evolves with time. Accord-
ing to Egs.(3.21), (3.22, and (4.10 the initial univariate
PDF has the fornk,(x,0)= 8(x— Xg), which agrees with the
initial conditionx(0)=x, for Eq. (1.2). The temporal evolu-
tion of P,(x,t) depends o, i.e., on the state dependence of
the multiplicative noise and in particular on the strength of
the random force near=0. We first study the case<O«

3.a=1, x>0 <1. As discussed in the Introduction, the solution of Eq.

If R=0, then the condition lim,.. o2(t)/t=0 holds, and
according to Eq(4.9) all fractional momentsn,(t) with r
>0 tend to zero and all fractional moments witkcO di-
verge ag—o. Thus if the noise intensitiR vanishes and if

(1.7) is not unique ak=0. We consider here the solution for

which x=0 is a regular point. Nevertheless, both the system-
atic restoring force and the random driving force vanish at
x=0. We, therefore, expect probability to accumulate in the

a=1, the systematic force dominates the random force andeighborhood of this point. This is indeed the case. Equation
drives the particle to the steady state, the minimum of thé€3.21) shows that fot>0 the PDFP,(x,t) has an absolute

potential,x=0. The PDF approaches the Dirac delta func-maximum P,(0t) = at x=0; P,(x,t)~

tion §(x) ast goes to infinity.(The time evolution of the
PDF is studied in more detail in the next sectjoNote that

[x|~* as |x|—0.
The location of other extrema are given by the equation
dP,(x,t)/dx=0, which can be written in the form
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o
2(1-a) _ —ayl—a— ot 2 —
IX| X|x|"*g~ “e” '+ 1—a0q(t) 0. (5.0
This equation has solutions of the form
1/(1- a)
SRV iy R (5.2
X+ (t)=xXqe 2 N34 1-a 20 (0.

only if a?(t)=4al/(1—a). For nondecreasing functions
aé(t), the conditiona?(t)=4a/(1— ) holds if O<t<t,,
wheret, is the solution of the equatioa?(t)=4a/(1— a).
For «>0 this equation always has a solution, and#4er0 a
solution exists if o5()=x5""(1-a)/da. [If o3()
<x21~9(1— a)/4a, then Eq.(5.2 is valid for all t.] At x
=X, (t) andx=x_(t), the PDFP,(x,t) has a local maxi-
mum and a local minimum, respectively. The former(t),
decreases monotonically with time, and the latter(t), in-
creases monotonically with time, i t,. Specifically, in the
short-time limit Eq.(5.2) yields

X4 (t)~Xo(1—«t) (t—0), (5.3
for «>0,
aq(t)
X+(t)"‘X0 1—WW (t—>0), (54)

for k=0, and

(t—0),

1/(1—a)
| s

1/ a
X,(t)"’ X_o qu(t)

for k=0, Whereoé(t) is given by Eq.(4.10. At t=t,, the
local maximum and the local minimum coalesce, andtfor
>ty the univariate PDF has a singl&finite) maximum at
x=0. If the equatiora®(t) =4a/(1— &) has no solution, i.e.,
if to does not exist, then the two local extremaRf(x,t)

PHYSICAL REVIEW B5 031105

1 1
0 0.02 X
FIG. 1. Plot of the PDFP,(x,t) versusx for a«=0.1,«
=0.1,x,=0.01. The correlation functioR(u) has the exponential
form R(u)=R(0)expu/t) with parametersR(0)=0.01 andt,
=1. The curves a and b correspondtte0.2 andt=0.4, respec-

tively.

which is valid for a<1. Here erfg)=1—erfc(z)
=(2/\/;)fédtexp(—t2) is the error function. According to
Eqg. (5.7, we haveW,(0)=0 if e<xq, W, (0)=1 if €
>Xo, W()=erf(e!™ “/\2aq(*)) if k>0, W (*)=0 if
k=0 andoy(*)=02, andW(t)—0 ase—0. Specifically,
the last condition shows that though (0t)=, x=0 is
indeed not an absorbing point.

To summarize, for & o<1 the PDFP,(x,t) evolves as
follows. If x>0 and 0<t<t,, thenP,(x,t) is bimodal(see
Fig. 1, curve & With time, x, (t) andP,(x_(t),t) decrease,
x_(t) and P,(x_(t),t) increase, and at=t, the local ex-
trema coalesce. Fai>t,, the PDFP,(x,t) is unimodal(see
Fig. 1, curve b, and in the large-time limit it approaches the
stationary distributiori4.18. If x=0, then the temporal be-
havior of P,(x,t) depends on the value ofy(>). For
o3()<xg"" (1 a)/4a andt>0, the univariate PDF is
bimodal as shown in Fig. (curve g, andP(x) is given by
Eq. (4.22. For x5 (1- a)/da<oi(»)<= and t<to,
the PDFP,(x,t) is bimodal as shown in Fig. lcurve &,
whereas fot=t it is unimodal as shown in Fig. curve b,
and Pg(x) is given again by Eq(4.22. Finally, for o ()
= the PDFP,(x,t) is bimodal fort<t, and unimodal for

exist for all times. The stronger the random driving forcet=t  put the stationary PDF does not exist an()=0
near zero relative to the systematic restoring force, i.e., thgyr any e.

smaller @ with 0<a<1, the longer the bimodality of the
PDF lasts in time. Only for free particle=0, i.e., only if

We now consider the case where<0, i.e., the amplitude
of the multiplicative noise diverges as the particle ap-

the systematic restoring forces vanishes, can the bimodalityroaches the minimum of the potential well. This is a useful
persist forever. A necessary condition is the vanishing of thenodel for exploring situations where the fluctuations drive

noise intensityR=0, see Eq(4.20.
To gain more insight into the behavior & (x,t) in the
vicinity of x=0, we define the probability

We(t):fj dxPy(x,0), (5.6

that x(t) e (— €,€). For the power-normal univariate PDF
(3.21), Eq. (5.6) leads to the formula

W(t)—ierf<@+ < )
272 V2og()

a(t) el

1
_Eerf(f_ﬁaqm)’

(5.7

the system out of the deterministic steady state, whereas the
systematic force pushes the system towards it. According to
Eq. (3.21), the univariate PDPP,(x,t) has an absolute mini-
mum P,(01)=0 at x=0, P,(x,t)~|x|l*l as|x|—0, and

Eq. (5.1) has the solutions

U1 a)
XT(t)=*xoe

1
_2

At x=x"(t), the PDFP,(x,t) has an absolute maximum,
P, (x"(t),t), and atx=x"(t), it has a local maximum,
P, (X7 (1),1); P, (x*(1),1)>P(x (t),t) for t+. Using Eq.
(5.8), we obtainx™ (t) ~x, (t)(t—0) for x>0,
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| Ué(t)

1+ ——
(1= a)? x5

X" (t)~Xo

) (t—0), (59

for k=0, and

1

|

2

mO'q(t) (t—0), (5.10

X (t)~——

1U(1-a)
X )

for k=0, whereaﬁ(t) is given by EQq.(4.10. In the long-
time limit Eq. (5.8) yields

|al

X (2) =[x ()| = | 7= 74(=) (5.1

) 12(1- a)

for k>0, Wherecrg(OO) is defined by Eq(4.15, and

o

1= % (t—0),

(5.12

for k=0 and oy(*)=c0, where oé(t) is defined by Eq.
(4.19. If k=0 and g4(*)<, Eq. (5.8 yields [x*(»)]|

<o andx*()>|x"()|. If k>0 or k=0 and Eq.(4.20

holds, thenP,(x,t) approaches the stationary P18 or

(4.22), respectively, in the long-time limit. k=0 and Eq.
(4.20 does not hold, thefx ™ (t)|—o ast—c, the station-
ary PDF does not exist, an¥ () =0 for all €.

In summary, for multiplicative colored Gaussian nois
whose amplitude diverges &s-0, the random driving force
dominates neak=0. It drives the particle away from this
point, and the probability density vanishes there. The noi
acts symmetrically with respect =0, which results in
temporal bimodality. Fok>0, the bimodal behavior of the

1/2(1- a)
x+(t)~|x‘(t)l~( )

PDF is stabilized in the long-time limit by the opposing ef-
fect of the systematic force, and the system evolves towards

a stationary PDF. If the systematic force vanishes0, and
the noise intensity of the random force also vanisiiesQ,

PHYSICAL REVIEW E 65 031105

P N ) I ) .
0.4r .
5 a -
02f b 1

L 1 1 1

0 -2 0 2

FIG. 2. Plot of the PDFP,(x,t) versusx for a=-0.5, «
=0.1,xo=1, R(0)=1, t.=1, andt=1 (curve @, t=5 (curve b.

cording to Eq.(3.22), P,(0t) = P,(,t)=0, andP,(x,t) is
unimodal for all times. The maximum is located =at
:Xm(t)v

Xm(t) =X exf — o2,(t) — t], (5.13
and
1 2
Py(Xm(t), )= meXF[UW(t)/2+ kt].
v (5.19

If k=0 ando(°)<oo, thenx,()#0, Py(Xy(®),°)<x,
all fractional momentg4.9) are finite att=o0, and P,(X,t)
approaches the stationary PI4.27) ast—co. In all other
eCases we havexy(t)—0 and Py(Xy(t),t)—e as t—o.
Since P,(0t) =0, the long-time behavior oP,(x,t) in a
small vicinity of x=0 is extremely irregular in those cases.
sdO characterizeP,(x,t) near zero, we write the probability
W,(t), using Egs(5.6) and(3.22), as

i.e., stochastic localization of free particles occurs, then the

bimodal behavior is stabilized by the balance between re-

gions of positive and negative correlations of the ndi@?.
Again, the system evolves towards a stationary PDF If

=0 and the noise intensity is nonzero, then the most prob-
able location of free particles goes to plus or minus infinity

ast—oo, and a stationary PDF does not exist.

To illustrate the behavior of the PDF as a functionxpf
we plot P,(x,t) versusx for different values ofa andt in
Figs. 2 and 3. The correlation function of the Gaussian noi
is again exponential as in Fig. 1. In this cd&e R(0)t., and
the PDFP,(x,t) approaches the stationary P18 ast
— 00,

For the case of additive noise=0, the univariate PDF is
Gaussian according to E€3.21). As before, in this case the

function P,(x,t) evolves with time to the stationary PDF

(4.18 if k>0, and to the stationary PDB.22 if k=0 and

Fo(t)=0(1/t) ast—o. Otherwise the stationary PDF does

not exist.
Finally, we consider the cage=1, where the behavior of
the PDF neax=0 is quite irregular as we will show. Ac-

0311

1 In(elxg) + Kt
We(t): E erfc| —W . (513
We define
In( elxg) + «t 516

= lim——2
Y oD

and taking into account thaiﬁ,(t) grows slower than?, we
obtain ¢y=o if x>0, andy=0 if k=0 andR#0. Since
erfc (— ) =2 in the first case, and erfc() =1 in the sec-
ond case, Eq(5.15 yields W ()=1 andW(«~)=1/2, re-

se

p

0.5

FIG. 3. Plot of the PDRP,(x,t) versusx for a=—2, «=0.1,
Xo=1, R(0)=1, t.=1, andt=0.5 (curve 3, t=2 (curve b.
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spectively. Though we have,(»)=0, P,(Xn(®),%2)=0, e “UF (t)+e “F (t))—F(t;—t)
and W («)=1 for x>0, the limit lim,_ .. P, (x,t)=8(x) rq(t,ty)= T 2

holds only forR=0, when all fractional momentm, () 2[e VFu(UF (1]

with r>0 equal zero. IfR#0, i.e, if regions of positive 64
correlations in the noise dominate, then the long-time behav- R(u)~c,u #[0<pB<1,c,=R(0) for B=0] as u
ior of the PDF is determined by the linear random driving_>0, then forw>0,

force, no matter if a linear systematic restoring force exists,

x>0, or not,x=0. The system will not approach a well- N

defined stationary PDF as—. In other words, a linear Fw(t)“‘mtzfﬁ (t—0), (6.5
systematic restoring force cannot balance the effects of linear

multiplicative colored Gaussian noise, ®#0. The ampli-  \hich after some algebra leads to the expected result that
tude of the noise must grow slower thiq as|x|—=, if & R (t,0)=0 andr,(t,)=0, i.e.,x(t) andx(x) are not cor-

stationary PDF is to exist for systems of ty(ie1l). related for an arbitrary correlation functi®(u) and «>0.
For free particlesx=0, i.e.,w=0, stochastic localization
VI. COEFFICIENT OF CORRELATION can occur, and we expect the correlation betwe@) and

X(t4) to persist fort;—c. For k=0, Eq.(6.4) is reduced to
In the previous two sections we have characterized the

temporal behavior of the Langevin equati@ihl) by study- Fo(t)+Fo(ty) —Fo(t;—1)
ing the single-time PDF and its fractional moments. To ob- rq(t,ty) = " , (6.6)
tain further insight into the effects of colored multiplicative 2[Fo(t)Fo(ty)]

Gaussian noise, we now turn our attention to a two-time . . )

guantity, the coefficient of correlation, in this section, and awhere according to Eq3.9) Fo(2) is defined as

pathwise quantity, the fractal dimension, in the next section. 5

We define the coefficient of correlation of the random pro- Fo(z)=j duR(u)(z—u). 6.7
0

cessx(t) as usual by

We use the relation
RX(tvtl)

oDyt 6.1

rx(t!tl): ty t—t
Folt)—Folti—0)= [ * duRwt-w+t [ " auRw)

ty

where (6.8

R (t,t1) = (X(D)X(t)) — (X(D)(X(t), 6.2 which follows from Eq.(6.7), the formula

ty
is the correlation function, ana?(t) =Ry(t,t) is the disper- jt 7thR(U)(t1_U)—’O (t—), 6.9
sion ofx(t). Our focus here is the dependence of the limiting '
valuer,(t,) on the noise correlation functioR(u). First  gnd the limit
we consider the case of the power-normal distribution (

<1). Using Egs(3.13 and(3.2]) and a transformation of lim Eo(t))/\Fo(ty)=0, (6.10
variables, we obtain ty—o

—@) o e hich for 0<R=<x follows from the conditionsF(t;)

[oq(t) og(ty) ]V (P2 whic . AL

Ry(t,ty)=— qz; Lc dxdye (O ~t;Fo (t2)(t;—) and lim__.. Fo(t;)/t;=0, and forR

=0 from Fo() =R andFy(«)>0, to obtain for finitet,
X [x+a(t)]|x+a(t)|**-

1
X{[V1-ra(t,ty) y+a(ty) ra(t,%2) = 5VFo(t)/Fo(%). (6.11
+1g(tt) X][VI-rg(tty) y+a(ty)

According to this formulary4(t,)=0 if t=0 or Fy(»)

+rg(t x| =, The last condition holds if @R=<% and also forR
1a) =0 if Eq. (4.20 does not hold. In contrast, if the condition
—[y+a(ty)]ly+a(ty)]* "} (6.3 (4.20 holds, i.e., stochastic localization Bft) occurs, then

Fo(®) <ee,rqy(t,>0)#0 and sor,(t,>)#0 for t>0. This re-
Though the integral ovey can be expressed by means of thesult shows that correlations betwerft) andx(t+t,) exist

Weber parabolic cylinder functions, we will use E§.3), indeed even fot;—« in the case of stochastic localization.
which is more suitable for our purposes. Next we consider the case of the lognormal distribution

According to Egs.(3.10 and (3.17), the coefficient of (a=1). For this case we write the correlation function of
correlationr 4(t,t;) is given by X(t) as
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Rx(t,tl)=f0 fo dx dxg XX Py(X,t;Xq,t1) —mq(t)my(tq).

Using Eq.(3.14) and introducing the new variablgsandy,

we can reduce Eq6.12 to the form
Xge—K(H—tl)

270 (D) ay(t) V1—ra(t,t)

Rx(t:tl):

PHYSICAL REVIEW E 65 031105

><J dy dylexp[ywl—

—oJ —®

(6.12
X=Xo& !, x;=xoe¥1" ¥, (6.13
1 y? yi 2r(t,t)
2[1-r2(t,ty)] afv(t)+a§v(t1) ow(t)ow(tl)yyl> Ma(t)my(ty).
(6.14

Performing the integration over andy, in Eq. (6.14 and
using Eq.(4.9 and the relationo2(t)=2F(t), we obtain
the explicit formulas for the correlation function

Ry(t,t1) =my(t)my(t;)[ Rt —1]
=x3 exp Fo(t) + Fo(ty) — k(ty+1)]
X{exd Fo(t) + Fo(ty) —Fo(ty—t)]—1},

(6.15
and for the coefficient of correlation
eRw(tvtl)_ 1
Me(tta)= [(eRW(t,t)_ 1)(eRW(t1,t1)_ 1)]1/2
_exg Fo(t) +Fo(ty) —Fo(ty—t)] -1
- [(e2Fol) — 1) (g2Folt) — 1)]1/2
(6.16

Specifically, ift—0 andR(u)~c,u™? (0<B8<1) asu
—0, then Egs. (6.15 and (6.16 vyield R,(t,t;)
~X0m1(t1)|.:o(t1)t and

1-8)(2—-p8) .
r(tt)~\/ 2(c1<efF§<tl> _ﬁl)Fom)tﬂ’% (6.17)

[c;=R(0) for B=0], i.e., R,(0t;)=0 (t;>0) for all B,

whereasr,(0,t;)=0 only for 0<B<1. According to Egs.

(6.8—(6.10, if t;=o then

gho—1

- [(e2Fol) _ 1) (eZFol)_ 1)]12’ (6.18

ry(t,)

if Eq. (4.20 holds, andr,(t,)=0 otherwise. Therefore, if

stochastic localization ok(t) occurs, thenr,(t,)#0 (t

>0) for the power-normal as well as the lognormal distribu-

tions.

VIl. FRACTAL DIMENSION

The fractal dimensionl; of a random process(t) char-
acterizes the irregularity of(t) and can be defined in vari-
ous wayq 7,14]. Here we use the definitiof84]

In(L,)
In(1/7)’

di=1+ lim (7.0
7—0

where

N
(L)=2, (N> [x(t)—x(t )P, (7.2

is the average length of(t) on the interval {,t+At), N7
=At, tj=t;_,+ 7, to=t, andb is a scaling parameter. In
other wordsd; characterizes the fractal propertiesx¢f) on
the interval €,t+ At). If this interval is small enough, so that
the bivariate PDF ok(t) does not change, then E..2) is
reduced to

At
<|-T>=7(\/(bT)2+[X(t+T)—X(t)]2>- (7.3

Using EQq.(3.13), we can rewrite Eq(7.3) for the power-
normal distribution in the form

At (= (= 1
_ 1U(1—-a)
<LT>—ﬂfmfdedy{b2+§{0'q (t+7)

X[Xrg(t,t+ 1) +yVI-r2(tt+ ) +at+7)]

1/2
—og M W)[x+at) J|x+a(t) )2

x e 0CHyIr, (7.4
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If R(u)~c,u ?(0<pB<1) asu—0, then Egs.(6.4) and VIIl. CONCLUSIONS

(6.5 for 70 yield 1-rg(t,t+7)=7*"*, and Eq.(7.4 We have studied the statistical properties of nonlinear sys-
leads to(L )7~ #"2. As a consequence, we obtain from Eq. tems driven by colored Gaussian noise whose amplitude de-
(7.9 pends on a power of the system staug?. Starting from the
exact solutionx(t) of the Langevin equation, we have ob-
tained the univariate and bivariate PDFsxgf) and shown
that, depending on the exponemnt the solution is described

by the lognormal(if a«=1) or the power-normalif a<1)

This result shows that the random processes with a powedistribution. We have found that in both cases the system can
normal distribution considered here have fractal propertiegxhibit the phenomenon of stochastic localization, i.e., a sta-
only if 0<B<1, i.e., only if the noise correlation function tionary univariate PDF for free particles exists, and we have
R(u) has a singularity ai=0. Note also that for such pro- derived the criterion when this occurs. We have studied in

di=1+BI2. (7.5

cesses the fractal dimensidn does not depend o detail the time evolution of the univariate PDF, found exact
expressions for the fractional momentsxgf), and obtained
and analyzed their short- and long-time asymptotics. Specifi-
cally, the long-time behavior of the dispersion of the particle
position shows that diffusion of free particles can have
anomalous character, and we have determined the conditions
that lead to subdiffusion and superdiffusion.

Using the bivariate PDF, we have obtained an integral
representation for the correlation functié(t,t;) and for
the coefficient of correlatiom,(t,t;) of x(t) for a<1, and
for «=1 we have expressd®](t,t;) andr(t,t;) in terms of
elementary functions. We have shown that if stochastic lo-
calization occurs, ther(t) andx(t+t,) are correlated even
ast;—x, i.e., in the case of stochastic localization the con-
dition r,(t,)#0 (t>0) holds, and,(t,»)=0 in all other
cases. Also, we have calculated the fractal dimendioof

In the case of the lognormal distribution, E@.3) can be
written as

w (o 2
(L= ZA—:Tf_mf_xdxd\+ b2+ %{exF{XUW(t)—Kt]
—exgyou(t+7)y1l— ri,(t,t-i— 7)— k(t+7)

1/2
X0y, (L ) (L, t+ T)]}Z] e (CHYI2 (7.6

Since 1-r2(t,t+ 7)< 72 F for 7—0, Eq.(7.6) yields (L)

«7 P2 and the fractal dimension of random processes withx(t) and established that(t) is fractal, i.e.,d;>1, if the

a lognormal distribution is given by the same formuiab)
as for the power-normal distribution.

noise correlation functiorR(u) has a power singularity at
u=0.
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