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Diffusion in tilted periodic potentials: Enhancement, universality, and scaling
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An exact analytical expression for the effective diffusion coefficient of an overdamped Brownian particle in
a tilted periodic potential is derived for arbitrary potentials and arbitrary strengths of the thermal noise. Near
the critical tilt (threshold of deterministic running solutiona scaling behavior for weak thermal noise is
revealed and various universality classes are identified. In comparison with thépbgential-fre¢ thermal
diffusion, the effective diffusion coefficient in a critically tilted periodic potential may be, in principle, arbi-
trarily enhanced. For a realistic experimental setup, an enhancement by 14 orders of magnitude is predicted so
that thermal diffusion should be observable on a macroscopic scale at room temperature.
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I. INTRODUCTION here, is of relevance in numerous other contggte also
Chap. 11 in Ref[14]), such as Josephson junctidis], the
Within the realm of thermal equilibrium, the overdamped motion of fluxons in superconductof$6], rotating dipoles
force-free thermal diffusion of a single Brownian particle asin external fields[17], the rotation of molecules in solids
considered, e.g., by Einstein in RéL], is always reduced 18], Superionic conductoril9], charge density wave20],
when an additional periodic potential is switched[@h and syn_chronlzatlon phenomeﬂ_jal] ln_electrlcal Gircuits as de-
it is therefore tempting to conjecture a qualitatively similar scn(ljae(il byk_the_Aolller equation or |gn3pha|se locked I?m@;’
behavior at least for time-independent nonequilibrium sys-rgz ed_?fc Ing mf atser gyrozcop@i ]’I plasma ac;:el erafors
tems. A first main conclusion of our present explorations i% ], di usion of atoms and molecules on crystal surtaces
that the opposite is the case: The effective diffusion coeffi 25], particle separation by elggtrophorgﬁﬁ], biophysical
cient of a Brownian particle in a periodic potential that is processes such as neural actiizy] and mtrgcellular trans-
driven away from equilibrium by atatic “tilting force” can port[28], and possibly also for the explanation of the matter-

become arbitrarily much larger than in the presence of the@n:;]mafttetr ta;]sytntwrr]neéry of the un'vt?@]' A!‘sto wc)lrth noting di
mal noise alone. A striking consequence of our finding is thdS the factinat the Brownian motion in a “traveling periodic

possibility to observe thermal diffusion of macroscopic par_potenUaI" (pump OT the form_VO_(x—vt) can be readily
ticles on macroscopic time and length scales at room[napped onto a static tilted periodic poten{iad]. Moreover,

temperature in appropriate tilted periodic structures. our results near criticalit;(marginal stability are universal_

A second main result of our present paper are Sca”néor.general dynamical syst_ems close to a.saddle-.noc.je bifur-
relations for the diffusion coefficient that become asymptoti- at\'/(\)/.rt‘r[lltzh'la’ suchtas fc|)(r mstanctg relaxatollon olsc_lllqtlons.
cally exact in the limit of weak thermal fluctuations and det II Eprfesen wctJr_ v;e gin '_P#e an gxptgln |r;trrr110re
small deviations from the critical tilti.e., the threshold at etail our brief account in Ref31]. The organization of the

which deterministically running solutions set).irFurther- paper is as follows: In Sec. |l we introduce the model and the

more, the asymptotic behavior of the diffusion leads to abaS|c guantities of interest, namely, the average particle cur-

classification into different universality classes with scalingrent and the effective diffusion coefficient. In Sec. Ill we

exponent and scaling function depending on the characteri%%”ve as ou;fﬂr'st ;nalnd rtehsul]s thtet relatiote) bftwiet?] thf? ¢
tics of the potential at the critical tilt. These concepts— ifusion coetficient an € first two moments of the 1rs

assage time distribution. As a consequence, the closed ana-

scaling and universality—are a recurrent theme in manr?fyt_ | ior(22 be inferred. Section IV is devoted
branches of statistical physics, such as, e.g., critical pheno Ica expresspr{ ) can be interred. section [V 1S devote
o the exploration of universality and scaling properties of

ena, hydrodynamics, or low-dimensional nonlinear dynamic% A e Y
[3]. Most closely related to our present findings are the sca the diffusion coefficient near the threshold of deterministi-

ing and universality phenomena as observed in the context &ally_ ru_nning _solutions(critically tilted periodic potentigbs :
so-called deterministic diffusiofi4—8], especially in the predicting a giant enhancement of the free thermal diffusion

presence of noisi9—11], and of noisy systems at a saddle- under suitable conditions. The latter result is exemplified in
node bifurcatione.g rélaxation oscillationg12,13 Sec. V for the special case of a mechanical Brownian particle

At the basis of all our above mentioned findings is anthat moves .in acr?tically tilteq ggome_trical profile. The sum-
exact analytical expression for the diffusion coefficient, ap_mary and discussion of our findings is presented in Sec. V.
plicable to arbitrary periodic potentials, arbitrary tilts, and
arbitrary strengths of the thermal noisze Eq(22) below].

Besides describing a real Brownian particle, thermal dif- We consider the following model for the overdamped
fusion in a tilted periodic potential, as we will consider it Brownian motion of a particle with coordinatet):

Il. MODEL
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px(t)=—V'(x(t))+ &(t), (1) It has been furthermore demonstrated in Refl that D
<Dy, basically by applying the Cauchy-Schwartz inequality
V(x):=Vo(x)—XF, (2)  to the denominator in Eq8).

The evaluation of the diffusion coefficie(®) in the pres-
where 7 is the viscous friction coefficier{static mobility of  ence of both an arbitrary tilE and an arbitrary periodic
the particle and where the total potenti&lx) consists of a potentialVy(x) is not obvious. One of the main objectives of

periodic partVy(x) with periodL, the present work is the derivation of such a general, exact
diffusion formula, analogous to Stratonovich’s result for the
Vo(X+L)=Vo(x), (3 current.

and a homogeneous, static “tilting forc&. Further, thermal

. . . I1l. EVALUATION OF THE DIFFUSION COEFFICIENT
fluctuations are modeled as usy&P] by Gaussian white

noise with zero average and correlation In order to evaluate the diffusion coefficie(®@ we will
take advantage of another quantity that is analytically known
(£(D)€(s))=279KTo(t—s), (4 for the model(1), namely, the moments of the first passage

, , time. To define these quantities, we consider the stochastic
Wher_eg_ls the tﬁmperatur_eltgbls_ the Boltzmann constan_t, antlj procesg1) with an arbitrary but fixed seed0)=x, and we
(- indicates thenonequilibrium average over a statistical yonqte py(x,—b) the time until an arbitrary but fixed point

ensemble of realiza’gions in E@‘)' Finally,_as compareq 00 a s reached for the first time. Then tmth moment of the
full fledged Newtonian equation of motion, an inertia term o4 passage time is the statistical average

mx(t) is missing on the left-hand side of EfL). In other

words, this inertia term is assumed to have a negligibly small Tn(Xg—Db) :=(t"(xo—Db)). ©)
effect in comparison with the other forces appearing in Eq.
(1), hence the name overdamped motja#,32,. In what follows, we will temporarily restrict ourselves to

A first basic quantity of interest is the average particlethe caseF>0 andb>X,, since otherwise the averages in
current in the long-time limit(i.e., after transients due to Eq. (9) may diverge. Then, for the one-dimensional dynam-

initial conditions have died ot ics (1), these moments of the first passage time are given by
the well-known closed analytical recursi¢see, e.g., Sec. 7
] CAx(1) in Ref.[32] and further references thergin
(%):=lim=——. ©)
t—oo

To(Xo—b)= n fbdx eV(X)”‘TfX dy e VKT
The analytical solution for this current goes back to Stra- Do Jx —
tonovich [33] and has subsequently been rederived many
times[see, e.g., Chap. 11 in R4fl4]; the explicit formula XTh-1(y—b) (10
will be given in Eq.(18) below]. The fact that such an exact (. n=12... andith To(y—b)=1. Note that the conver-

closed solution can be given without any further restrictions ; - -
) ; ) ; . gence of the integrals in Eq10) is guaranteed by our as-
in the model(1) is rather exceptional and has given th|sg g 410 is g y

. o sumption thaf >0 andb>X,. In principle, it is quite plau-
modellthe status of a *hydrogen atom” in the context of sible that all properties of the stochastic procégsshould
Brownian motion theory.

In our oresent studv. th ntity of central interest will b be expressible in terms of the momerii€) and, in this
the e?fgctFi)vzsdeiffuzignyéoe?ﬁ?:lijeant y ofcentratinteres esense, available in closed analytical form. In practice, the
explicit connection between a given quantity of interest and
204\ _ 2 the moments is, however, not at all obvious.
(X5(1) = (x(1) i atal
- 7 (6) We now come to the first main point of our paper, namely,
2t the derivation of an exact expression for the diffusion coef-
_ _ _ ~ ficient D in terms of the mean first passage tirig(xg
Exact analytical results are known in two special cases. First,, b) and the so-called first passage time dispersion
in the absence of the periodic potentig(x) in Eqg. (1) a
straightforward calculation yields the so-called Einstein rela- AT,(Xg—b):=(t3(xg— b)) — (t(xg—b))?

tion =T,(Xo—b)—[Ti(Xe—b)]% (12

D:=lim

t—oo

D=kT/n=Dg if Vo(x)=0 (M 7o this end, we denote bg an arbitrary point betweer,

andb. Then the time(x,—b) that the stochastic process in
Eqg. (1) needs to travel fronx, to b can be decomposed into
the time to travel fronx, to a, plus the time to travel from
to b. For a white noise driven proces$), the latter two

for arbitrary values of the static tilF [34]. Second, in the
absence of a tilF, the following analytic prediction for the
diffusion coefficient is due t¢2,35]

Dy times are statistically independent of each otf&8]. Fur-
D=— I g if F=0. (8) ther, since the proces$) is homogeneous in time, all statis-
J —Z eVo/kT J _ye—Vo(y)/kT tical properties ot(x,—b) are exactly the same as those of
oL oL t(xo—a)+t(a—b) with t(x,—a) andt(a—b) being sta-
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tistically independent of each other. It then follows readily (11) is straightforward and one sees that the relations
from the definitions in Egs(9) and (11) that the mean first (14), (15) are indeed fulfilled. But from our conclusion at the
passage tim& ,(xo—b) and the dispersioAT,(xo—b) are  end of the preceding paragraph, it now follows that E4)

additive quantities, i.e., and(15) are also satisfied for a proceds with an arbitrary
periodic potentialVy(x). We remark that here and in the
T1(Xo—b)=Ty(xo—a) +Ty(a—b), (12 following, the reference pointis arbitrary.
By introducing Eqgs.(10) and (11) into Eg. (15 an ana-
ATo(Xo—b)=ATy(Xo—a)+ATy(a—b).  (13)  |ytical formula for D is recovered within our so far used

restriction that=>0 (otherwise several terms in this formula
would diverge. To remove this restriction we first rewrite
they integral in Eq.(10) with n=1 as

As a second consequence it follows théty—Xy+IL) is
statistically equivalent to a sum dfindependent, random
variables t(xo—Xp+L),....t(Xg+ (I —1)L—Xxy+IL), and
due to the periodicity(3), they are identically distributed.
Invoking the central limit theorem, the distribution of the f dy e V(W”‘T—E dy e VO-ILKT (1)
first passage timexy,— Xo+1L) thus approachedor large x-L

[) a Gaussian distribution with mean vallig; (Xo— X+ L) According to Egs.(2) and (3) we have thatV(y—IL)

and Va”anCéATZ(gOHXOJF b) ¢ o« V(y)+ILF, so that a geometrical series arises in @6);
Next, we introduce a discrete set of “coarse-grainedy .an’he summed to yield

states” along thex axis {X,:=Xo+mlL}__.. with mutual
distancellL, wherel is a large butfixed integer[37]. The Viy) /KT
proces(t) is said to be in a certain “state” from the instant f dye

of time it hits the associated poirg, until the moment it hits f dy e VW)’”——LFM— (17
one of the adjacent neighboring points- . It follows that 1-e

both the curren{x) and the diffusion coefficierd are iden-
tical for the original procesx(t) and its coarse-grained
counterpart due to the long-time limits in the respective defi-

Using Eq.(14) with Eq. (10) we thus recover Stratonovichi’'s
formula for the particle curreriB3],

nitions (5) and (6). Next, we note that “backward transi- _ 1— e LF/KT
tions” x—Xm_1 require climbing up an “energy ramp” of ()= xorL dx ) (18
heightILF by thermal activation and are thus suppressed by f Tli(x)

X0

a Boltzmann factotbarometric formulpexp{—ILF/KT} com-
pared toX,—Xm+1, I.€., “sliding down the ramp.” For suf-
ficiently largel we, therefore, can safely neglect transitions
Xm—>Xm—1. The remaining “forward transitions” between 1

neighboring “states’,, andx,,; are identically distributed L (%)= ev(x)/kTJ dy e VKT, (19
random event§38] with a probability distribution that is 0 L

identical to the first passage time distribution for the original 1

processx(t). In particular, the moments of the first passage I_(x) :=—e*V<X)/kTJ dy e/W/kT, (20)
time T,(Xm—Xm+1) are thus identical for the original pro- Do x

cessx(t) and its coarse-grained counterpart. On the other
hand, we have seen above that for sufficiently largall
these moments and hence the entire coarse-grained proces
completely fixed by the mean first passage timéx,— Xg
+L) and the dispersioA T,(Xqg— Xg+L). As our main con-
clusion we thus find thaf two processes (1) yield the same
values of T(Xg—Xg+L) and AT,(xg—Xo+L) then (X)
and D will also be the same in the two cases

where we have introduced

and where 1.." indicates that thendex may be chosen to be
|ther“ +" or “ —". The equivalence of these indices in Eq.
? @) follows by interchanging in the denominator the order
of the two integrations in combination with some additional
steps (see also Appendix A We remark that the well-
established formulél8) can also be used, by reversing steps,
as a derivation of Eq14). For later use, we also note that

With the above construction at our disposal, we may con- Ldz
clude[31] that I .(X):= J; D—Oexp{t[V(x)—V(xI 2)]/kT}. (2D
(x)= L (14) By similar manipulations as used in the derivation of Eq.
T1(Xp—Xo+L)’ (18) (the details of which are given in Appendix) Awe
obtain for the diffusion coefficientl5) a central result of this
L? ATp(Xo—Xo+L) 15 paper, namely31],

T2 [Tixo—Xo+ D ?

xo+L dX
The proof of these relations follows from the consideration Jxo L (01 001 -(x)
of the special case with a potentisly(x)=0 in Eq. (1), D=Dy oL dx o (22)
implying (X)=F/#n and Eq.(7). The evaluation ofT{(Xq [j Tli(x)
—Xp+L) andAT,(xg—Xg+L) according to Egs(10) and %o
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with arbitrary reference points, and arbitrary indices .. 20 ' ' . ' '
both in the numerator and the denominator. So far, we have P
restricted ourselves tacitly t6>0. It is not difficult to see .
that our results above for both the current and the diffusion { \
coefficient remain valid also fdf < 0. Moreover, for both of 15¢ I
them, the limitF—0 does not give rise to any problems: In I' |
Eqg. (18) one recovers the obvious res(ik)=0 [28] and by °° ‘.
observing that in Eq9419) and (20) they integral isx inde- - [
pendent one readily recovers H&) from Eq. (22). (] 107 , ‘\

In other words, the above closed expressions for both the " N
current(18) and the diffusion22) are exact analytical results ’ \
for arbitrary periodic potential§y(x) and arbitrary force§. '
While the current formula has been known for more than 30
years, the corresponding compact expression for the diffu-
sion coefficient has, to the best of our knowledge, been de:
rived here for the first timgsee also the discussion in Sec. 0
VI).

For Vy(x)=0 one recovers from Ed22) by means of a
straightforward calculation the Einstein relatigh. For non-
trivial potentialsVy(x), the above general analytical expres- ~ FIG. 1. Diffusion coefficient(6) versus the tiltF for the over-
sion is still rather complicated. One may evaluate it numeri-d@mped model(1)—(4) with a sinusoidal periodic potentidP3).
cally for arbitrary potentialsVy(x), and one may try to Using dimensionless units, the pargr_nete_r vaIuesw&J():l_,L_
simplify it analytically for some special limits. A particularly =~ 27 KT=Do=0.1. Note that the critical tiltonset of determinis-
interesting such limit will be considered in the next section.ically running solutions in Eq(1)] occurs af =F¢=1. Solid line:
We remark that an analytical discussion of other limits in Eq'analy’tlcal prediction(22). Filled dots: numerical simulations with

. : . an estimated relative uncertainty of 0.01. Dashed line: analytical
gzlszzjItshzlsrgrggflflgleel’c)\?vug\rI]thhgo\fvggkplégsilsjgcliﬁi?her hievee approximation(24), (18). Dashed-dotted line, filled squares, and

. - . dotted line: same as solid line, filled dots, and dashed line, respec-
As far as the numerical evaluation of our formyg®) is tively, but now forkT=Dy=0.01.

concerned, a representative example for the sine potential

We finally remark that, for both numerical and analytical
purposes, the reformulatio(22) of the original analytical
result in Egs.(15) and (10) simplifies matters a lot in the
‘weak noise limit, since only a very sma#lind usually quite
eviden} region ofz values then contributes significantly to

Vo(X)=Ugqsin(2mx/L), (23

is depicted in Fig. 1. The purpose of this figure is threefold
First, it confirms within the numerical accuracy of the simu-

lations that our _analytical prgdictio(_?Z) Is indeed exact. .. the integrals in Eq(21). The most involved case is the near-
fSe<_:ond, It ?fqnta":s a cortr|1par|son W't(;‘ atl)for(r:'nulatfort.the dnc'critical regime treated in detail below. In any other case, the
usion coetficient recently proposed by Lonstantini anquak noise limit can be handled rather straightforwardly by

Marchesoni39] of the form standard steepest descent-type methods.

d
D= kTEO(), (24) IV. UNIVERSALITY AND SCALING NEAR

THE CRITICAL TILT

with (X) given by Eq.(18). This prediction is expected to We now turn to the case of a critically tilted periodic
capture the correct qualitative behavior Df under rather potential, i.e., we choosg=F, such thatV(x) in Eq. (2)
general conditions and can be shown to become asymptotéxhibits a strictly monotonic behavior with the exception of
cally exact in any of the three IlimitsF—0,F—oo, exactly one inflection point within each peridd In other
Vo(X)/kT—0. As far as the quantitative behavior@funder  words, the tilted potential just ceases to display any local
general conditions is concerned, our findings in Fig. 1 shownaxima and minimasaddle-node bifurcatiopl3]), corre-
that the formula from Eq.(24) is at most a rough sponding to the threshold beyond which deterministically
approximation—see also the discussion at the end of the nextinning solutions set in. When looking upgms a phaselike
section. Third, the most interesting feature in Fig. 1 is thevariable, we may also speak of relaxation oscillations in this
resonancelike behavior of the diffusion coefficient aroundcontext.

that value of the tiltF for which the potential in Eq(2) Without loss of generality we assume that>0 (poten-
ceases to exhibit local extrema, which apparently gets morgal “tilted to the right”) and that the inflection point is at
and more pronounced as the thermal noise strek@tand  x=0 (modulo L), i.e., V(x) is strictly monotonically de-
thus the bardforce-freg diffusion coefficientD,=kT/# in creasing,V'(x)<0, unlessx is a multiple of L. Next we
Eqg. (7) decreases. In the next section we will consider inassume that for

more analytical detail this special limit of weak noise in

combination with a tiltF close to its critical value. F=F.+e with F.>0 and e small, (25
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the potentialM(x) can be written in the general form ent kinds of behavior of the corresponding mean first passage
. times forg>2 andq<2 are expected also for asymptoti-
V(x)= = psgrix)|x|—ex=—ux|X|9" —ex, (26)  cally small but finitekT (but still e=0) [40]: For q>2 the
motion of the particle(1) is dominated by the passage
through the vicinity ok= 0, where Eq(31) is valid, whereas
for q<<2 one expects that the passage through this region is

in the vicinity of the critical pointx=0. We furthermore
restrict ourselves to the cases

w>0, gq>1, (27)  hegligible, and outside this region the influence of the noise
can be ignored. A similar behavior is still expected for finite
implying differentiability with e-values, provided they become sufficiently smallkdsap-
proaches zero, while otherwise again fundamentally different
V' ()=~ uglx| e (28)  realms may be encountered. In the following subsections, a

) ) _ more rigorous, quantitative version of these heuristic argu-
In the remainder of the intervdl—L/2,L/2], the potential ments will be elaborated.

V(x) may be an arbitrary strictly monotonically decreasing Regarding the casg<1 we restrict ourselves to the spe-
smooth function, while outsidg—L/2L/2] it is fixed by  cific example of a critically tilted piecewise linear potential.
Egs.(2),(3). An example withg<<1 is given at the end of this \jore precisely, we consider the diffusion of particles in a
section. . . step-type potential, i.eVY(x) decreases proportional to the
We remark that in the generic case we have integer part of—x/L, with kKT much smaller than the poten-
, , tial step. This problem is priori not simple at all, and was
9=3, V'(0)=Vy(0)=Fc=0, in fact 'tJhe quegtion that m%tivated the epntire present investi-

V"(0)=V/(0)=0 gation. However, with the general framework developed
0 ' above now at hand, one readily finds from E@2) and(15)
Vg (0)=—6u<0. (290  the resultD=2Dy/3 for small kT, i.e., the free diffusion

coefficient is reduced by the factor 2/3.
For instance, this is so whenev¥p(x) in Eg. (2) is an
analytic function ofx. Nevertheless, more genemlvalues
are also worth studying, as our results below will demon-
strate. They can be readily realized experimentally by tailor- In this subsection we derive our central res8)—(55)
ing the form of Vy(x) accordingly. We finally notdusing  for the scaling behavior of the effective diffusion coefficient.
Egs.(2),(3)] thatV(L/2)—V(—L/2)=—FL. Assuming that We first focus on the evaluation of the integral
Eq. (26) is a rough approximation fo¥(x) in the entire fioﬂ'Xmi(X) appearing in Eqs(18) and (22). To keep
interval [—L/2L/2] it follows that —2u(L/2)%— el 0
~—FL and hence

A. Evaluation of the diffusion coefficient

things simple, we temporarily focus on the index ™ and
make the specific choice,=—L/2, but it is clear that the
pu~F(L/2)19. (30) final result will be valid for both indices ar_1d an. Be_— _
cause of Eq(31) one can replace the lower integration limit
Our second main assumption throughout this section i¥—L in Eq. (19) by — to a very good approximatiofsee
that the thermal energiT is small, in the sense that also Eq.(A1) in Appendix Al. Next we evaluate a part of the
integral f~'2 ,dx I (x), namely[cf. Eq. (21)],

KT<LF,. (31)
e e 1 (e V(X) = V(x+2) kT
Our main goal in what follows is to determine the behavior fﬁuzdx L (X)= ,L,deD_ fﬁxdz gV -Vix+JkT,
of the diffusion coefficienD for asymptotically smalk and 0 33)

KT.

It is instructive to extend for a moment the approximation
(26) to the entirex axis and to consider the corresponding Where we have introduced
dynamics (1) for e=0 and in the zero temperature limit
£(1)=0, i.e,

a:=A

kT\Y@ AL ([2kT\'
" (34)

w T 2 \LF,

()= ”—flx(t)l‘*l. (32

HereA is a dimensionless number, and in the second relation
A straightforward calculation then shows that in order toin Eq. (34) we have exploited Eq30). In the following, we
reach the inflection point=0 from a seek(0)<<0, an in-  will always assume thaA is very large, whilea is so small
finite amount of time is needed ¢=2, while a finite time is  that Eq.(26) can be applied in the regiojx|<a [such a
sufficient wheng<<2 (but still g>1). On the other hand, for choice of A and a is guaranteed to be possible due to Eq.
x(0)— — a finite time suffices to reach a small neighbor- (31)]. Observing that for smaKT only z values very close to
hood ofx=0 for q>2, while this traveling time diverges for zero contribute notably in the second integral in E2B), a
g=<2. Analogous results are recovered for the traveling time§aylor expansion of the integrand abaust 0 yields after a
in the regionx>0. As a consequence, fundamentally differ- straightforward calculation the result
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(39

—a B —a 7]
f*L/ZdX I+(X)_fl_/zdx|V'(X)|
:J_a dX {1+ O(A~9)}
e V(0| '

In the last identity we have exploited the fact tlzain Eq.
(34) belongs to the region where E6) applies ifkT be-
comes sufficiently small, and that within this regipn (x)|

PHYSICAL REVIEW E 65 031104

[’

CdXK(£X,7), 42)

Gi(v)=

up to a relative error that approaches zerck@slecreases
and provided that also decreases such that the dimension-
less numbery in Eqg. (39) remains constant. Note that Eq.
(41) has the form of a scaling law with a completely univer-
sal, dimensionless scaling functi@y for any given value of
the “critical exponent”qg. The equivalence of both signs in

will be much smaller than it is outside it. In the same wayEQ. (42) is obvious, but we have kept both of them in order

one finds that

W) L2
dxly(x)= dx

a a

7

V(] 39

{1+O(A™9}.
In the remaining integral

a a 1 0
J dx I+(x):f dx_J dz V00~ Vix+2 kT
—a —a DO — %
37

again only very smalk values contribute significantly and
one thus may exploit Eq26) in the entire integration do-
main. After changing integration variables tdX
=x(u/kT)¥, Z:= — z(u/k T)¥@ and then dropping the tildes,
one finds that

a A
f_adx I, (x)= Fq[kf’rﬁﬁfﬂdx K(x,y), (39

where[cf. Egs.(19),(21)]

yi=€l[ pMI(kT)E Y], (39

o

dzexp{—x|x|97 1+ (x—2)|x— 2|97 1= yz}

K(X.7)==f

0

:e—X(IXIq*ﬂ)fX dy /¥y, (40)

Note thatK(x,7y) is a dimensionless function and that both
its argumentgx and y) are dimensionless as well. We also

remark that if we had worked with_(x) instead ofl , (x)

then the result$35) and (37) would have been recovered
without any modification, while on the right-hand side of Eq.
(38) the integrand (—x, y) would have appeared, which of

course gives the same result E{x,y) after integration
over X.
Upon adding up the three contributiori85), (36), (38)

one sees that fog>2 the last one dominates for any small

but fixed choice ofa in Eqg. (34) as kT becomes small. In
particular, the latter contributio88) converges fok T— 0,

which is basically a consequence of the fact that the mean

first passage time to infinity is finite far>2. Recalling that
the final result does not depend on the specific chaice
=—L/2 and the index %", we can conclude thaft31]

fXO+Ld| ~ 1Ga(y) for q>2
A U

(41)

to indicate the effect of the two possible signs in E4f).

In the opposite casgq<2 things are more complicated
since later we will be interested not only in asymptotically
small kT and e with y from Eq. (39) kept fixed, but also in
the case of negative values such that the corresponding
negativey values divergdogarithmically askT approaches
zero. To this end, we henceforth set

A:=(L9u/KT)?A, (43)

In this way,A>|y| askT—0 anda form (34) tends to zero
[other choices than in Eq43) with the same properties
would also be possiblelt follows that the contributions of
orderA™ 9 in Egs.(35) and(36) can be neglected for asymp-
totically smallkT. By closer inspection one further can de-
duce that in the remaining integral85) and(36) a y value
that diverges at most logarithmically wikkT has an asymp-
totically negligible effect as well, i.e., we can formally set
€=0 in those integrals. The remaining integrals in E§%)
and(36) converge if one formally leta tend to zero, imply-
ing the asymptotically exact approximation

fx"“d L) 7G1(v)
X1+(X)= —
%o =T W PokT A

fxoﬂ mdX o 1<gqe2
—— for ,
o FomVi(X) a

(44

where

. A
Gq(y):= fﬁAdX K(=X,7y). (45)

Note the implicitkT dependence (ftal via Eq. (43). In spite

of this dependence, one finds that the first term on the right-
hand side of Eq(44) is negligible in comparison with the
second for asymptotically smalliT with the possible excep-
tion of very large, negativey values. In the latter case, we
may evaluate Eq(45) by means of a saddle point approxi-

mation with the resulG,(y)=S(y), where

27| ylq|2-D/E=D)
aq—1)

—1)|y/q|¥97 1},

S(y)=0(—7) exp2(q
(46)

The Heaviside step functio®(—vy) has been introduced in
order to makeS(y) well defined for arbitraryy. Closer in-
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spection shows that the differené®, (y)—S(y) is for all ~ AS in Eq.(42), we have kept in Eq(51) both signs, though
values ofy negligible in comparison with the second term on their equivalence is obvious. Moreover, fgr-4/3 a saddle
the right-hand side of Eq44). In other words, we obtain the Point approximation for large negativevalues in Eq.(51)

result again leads to the same expresdi6(y) ]%/2 as appearing in
Eq. (52). For the “crossover” casg=4/3, see Appendix B.
J’X0+'-d I 7S(y) The implications of the above results for the diffusion in
X1 (x)= —
o +(X) WZUKT]E 28 Eq. (22) are
2lq
xo+L  pdx 3 (LC‘M) Gs(y)
_ e D=D for g>2, (53
<g<2. 0
Jy Em orasase | P
(47) L9% 3—4lq
D:Do(ﬁ)
As already noticed, for positive or moderately negative
values the second term on the right-hand side dominates. Gs(y)
Since the quantity47) is basically equivalent to the mean X KT\ 23T oL dx uLT 213
first passage tim&; (xg—Xxo+L) [cf. Eq.(A3)] this approxi- T) S(y f 0 '“—,
matekT independence in Eq47) is in agreement with our L xo  Fe=Vo(X)
heuristic discussion abo\eee also below Eq31)]. On the for 4/3<q<2, (54

other hand, for sufficiently large negativevalues, the first
term on the right-hand side in E47) takes over, reproduc- 4q-3 2 3 3q—4
ing the expected Arrhenius-type behavid6) for the escape ( kT ) [S(v)] + f XOHdX'“—Ijs
time over a potential barrid32]. Finally, we note that also L% 2 xo [Fe=Vo(X)]
in the casay>2 a saddle point approximation for large nega- D=Do [( KT )Zlq—l JXOJrL dx pLd-2]3

Y

tive y values in Eq.42) leads to the very same res®fvy)

as in Eq.(46). L o FemVolX)
The above results imply for the curre(i) in Eqg. (18) for 1<q<4/3. (55)
that
We recall thatG,(y), S(y), andGs(vy) from Egs.(42), (46),
Do (L)% and(51), respectively, are dimensionless scaling functions of
(0= L\ KT/ Gi(y) for g>2, 48 their dimensionless argumer®9) that are completely uni-
versal for any givery value. Similarly, the fractioh.9u/kT
Dyl 1 as well as all the integrals appearing in E(¢#9)—(55) are
<X>_T KT 7T kT 201 xorL dxX L0 2 Q|men5|onless ngmbers._Under th.e qpproxmatlve assump-
<_) 5(7)+f _— tion that Eq.(26) is valid in the entire interval —L/2,L/2]
L% xo  Fe=Vo(¥) one obtains for those integrals the result
for 1<g<2. (49 xo+L dX L 92 2a-1
f o= , (56)
The “crossover” cas@=2 requires a separate treatment that xo Fe=Vo(x) a(2—q)
is relegated to the Appendix B.
For the evaluation of the numerator in E§2) one pro- JXO*L dxpL®*  gi7t 57
ceeds in exactly the same way as for the denominator, and o [Fe—Vo(¥)1® a4-3q)°

we only report here the final results,
5 The special “crossover” valueg=2 andq=4/3 are ad-
XotL 7°Gs(y) dressed in Appendix B. Basically, thesevalues continu-
Lo dx 1 ()1 OO - (%)= w[KT)3 4 for q>4/3, ously (but not smoothly match together the result$3)—
(500  (59), involving certain logarithmic corrections similarly as it
is the case for crossover exponents in the context of critical

o phenomena.
Go(y)= | axK(=x K PK(=x,7), (51
B. Discussion and examples
Xo+L 73 [S(y)]%/2 In this subsection we discuss E¢53)—(55).
L dx 1 ()1 )1 - (x) = PR SNEREL] As far as the result53) for q>2 is concerned, the most

0 remarkable feature is the divergencelfD, whenkT tends
XotL 73dx to zero for any fixedy value. In other words, weecover a
+ JXO m giant enhancement of thermal diffusi¢ef. Fig. 1). Specifi-

cally, for q=3, i.e., the most important case in practjct
for 1<qg<4/3. (52 Eq.(29)], the scaling functiorG(y) :=G3(y)/G3(y) appear-
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FIG. 2. Bold solid line: Dimensionless scaling functi@y)
::G3(y)/G:1"(y) in Eq. (53) for q=3 versus its dimensionless ar-
gumenty from Eq. (39) by numerically evaluating Eq$42),(51).

PHYSICAL REVIEW E 65 031104

100

G, (1)
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FIG. 3. Bold solid line: Dimensionless scaling functi@y(y)
in Eq. (54) for q=3/2 versus its dimensionless argumeritom Eq.
(39 by numerically evaluating Eq51). Other lines: The quantity

Full and dashed-dotted lines: Same as the respective lines in Fig. {D/D,)(kT/L%)3~ 4 [297Y/q(2—q)]° [cf. Egs. (54),(56), and

but now plotted in the form@/D) (KT/L9)?4 [cf. Eq. (53)] ver-
susvy [cf. Egs.(25),(39)] with g=3 [cf. Egs.(23),(29)].

ing in (53) is depicted in Fig. 2. From this plot it follows that
the scaling form53) is rather well satisfied already for mod-

erately smalkT values and that the enhancement of diffusion

is most pronounced fori values in Eq.(39) of the order
unity. A similar behavior is recovered for any othgr2. In
other wordsfor q>2 the diffusion coefficient as a function
of F exhibits a pronounced peak at=H~. with a height of
the order Dy(L9u/kT)? and a widthAF = A€ of the order
wMkT]E Y [cf. (39)]. Exploiting thatD o< T [cf. (7)] we
have, in particular, that

D (Yma ~Dg~ #1226, (58)

Ymac=0. (59

Further, we note that for large negatiyevalues one can
exploit in Eq. (53) the saddle point approximatio@6) for
G4(y) and the corresponding approximatips(y)]%/2 for
G;(y) as discussed beloyb?2).

Returning to the height of the peak in the special agase
=3 the numerics from Fig. 2 in combination with EG3)
implies that

3

213
W) for g=3, F=F.. (60

D:O.0696D0<

We remark that in the present special cgse3, the integra-
tions in Eq.(42) can be exchanged and the integral oxer
performed, with the result

Gy(y)= J:dx o i), (61)

main texi with D from Eq. (22) versusy [cf. Eq. (39)] for a po-
tential V(x) that is given by Eq(26) for all xe[—L/2,L/2] while
outside[ —L/2,L/2] it is fixed by Egs.(2),(3). Parameter values in
dimensionless unitst =2,u=1,7=1,kT=D,=103 (dotted, kT
=Dy=10 5 (short dasheskT=D,=10"" (long dashes

Similarly, the integral ovex can also be performed in Eg.
(51). Further analytical simplifications are only possible for
v=0. In this case, Eq61) can be expressed as
G,(0) =237 (1/6)/3%2=2.39, (62
where I'(z):=[5dtt* 'e™' is the Gamma function with
I'(1/6)=5.57. Due to a remarkable mathematical identity by
Sigeti and HorsthemkEL2] one further finds for the scaling
function in Eq.(51) the result
G3(0)=[G1(0)]%/6. (63)

By means of this result one analytically recovers Ef).
Note also the difference between the relati68) for y=0
and the asymptotic behavid®;(y)=[G;(y)]%/2 for large
negativey values as discussed below E§2).

Next, we turn to the discussion of the res(84) for 4/3
<< 2. The salient difference in comparison with E§3) is
a competition between the two terms in the denominator on
the right-hand side of Eq54). For any fixedy value, the
first term is negligible wheT becomes sufficiently small.
ThusD/D, increases proportional {kT]*9~3, i.e., we find
again a giant enhancement of thermal diffusion. More subtle
is the behavior of Eq(54) as a function ofy for a small but
fixed KT value. For arbitrary positive as well as for moder-
ately negativey values it is still the second term in the de-
nominator that dominates and thus theependence db is
governed byGs(vy). These predictions are confirmed by
comparison with a direct evaluation of the exact formula
(22), see Fig. 3 for an example. In contrast to the cgse
=3 (cf. Fig. 2) the asymptotic scaling forrntb4) with S(y)
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—0 is approached only for rather sm&ll values in Fig. 3.
On the other hand, for large negatiyevalues we can make 0.1r
use of the saddle point approximatip8(y)]%/2 for G5(y)

as discussed below E¢2). SinceS(y) from Eq. (46) in-
creases very fast with decreasingthe right-hand side of

Eq. (54) increases very fast as long &s(y) governs they
dependence. However, again due to this fast increase, th
first summand in the denominator starts to compete with the@
second summand and ultimately takes over, leading to a de
crease oD proportional to 1%(y). Thus a peak appears at a
(negative vy value for which both terms in the denominator
are of the same order of magnitude. The detailed quantitative
calculation is straightforward and leads to the result

2 L9%[ [xottdxpld72]71 ‘ ‘ .
D(¥mad =Do5z 17 v Fo-Vix)| (64) 0.5 0.6 0.7 0.8 0.9 1
F

where ynax IS defined via the transcendental equation o o . )
FIG. 4. Diffusion coefficient22) versus the tilf for a potential

KT | 2a-1 Xo+L dxm_qu V(x) defined via Egs. (25),(26) with q=3/2 for all x

(LT) S(Vma) = 2f F——V'(X) (65) e[ —L/2L/2] while outside] —L/2,L/2] it is fixed by Eqs.(2),(3).

M Xo c Yo Using dimensionless units, the parameter valuesragrd L =2, u

. . ) =1, F.,=1. The five curves with increasingly sharper peaks corre-
For smallkT one thus obtains with E¢46) the leading order  gpond to the following five values dT=D,: 3x 1072, 1072,

solution 1073, 1074, and 10°5. The theoretically predicted peak height for
asymptotically smalkT from Eq. (68) is 0.1

2—q | (Lq'u”l—l/q
Yma= "9 29(q—1) "\ KT <0 (69 Finally, we turn to the discussion of the res(86) for 1
_ _ <(g<4/3. For positive and moderately negatiyaalues the
The width Ay of the peak is found to be of the order two integrals on the right-hand side of H§5) dominate and
1q—1) thus the diffusion coefficient is essentially constant. Conse-
Ay~ q K) _ (67) quently, the diffusiorD is proportional to the bare valug,
~ Yma and in the limitVy(x)—F.+ €, corresponding t@—1, the

correct behavioK7) is also recovered. On the other hand,
First of all, we note the logarithmi&T dependence in Eq. with increasingly negative values, the first term in the nu-
(66). In other words, the peak region is self-consistently demerator in Eq(55) takes over, while in the denominator the
scribed by our calculations, see above E§). Second, tak- integral is still dominating. In other words, we essentially
ing into account Eq(7) we see that the maximal effective recover the same behavior as in E84). Especially,a peak
diffusion coefficient in Eq(64) is in factindependent of KT  of the form(64)—(68) arises for anyl<q<2, cf. Fig. 4.
In other WOde, the maximal enhancement of diffusion is In the Casa}>2 the approximation by Constantini and
even stronger than far>2, see Eq(58). Under the approxi-  Marchesoni in Eq(24) can be evaluated by means of Egs.
mative assumption that E(R6) is valid in the entire interval (18),(32),(39), and(41), leading to
[ —L/2,L/2] one obtains with Eq(56) the explicit resul{31]

a, \Myr—g!
L“) S 1S 2R q>2. (69

kT | [Gin]T?

, i L Comparison with the exact asymptotic3) shows that this
mdep_endent of_ kTThese asymptotic predictions f&iT— 0 approximation does not capture the correct scaling functions
are nicely confirmed already for moderately sndllvalues 4 exponents. A similar disagreement is obtained foigl

by comparison yvith. a direct numerica_l evaluation o_f f[he €X-—2_On the other hand, one readily finds that the nepiali-

act for_mula(22) in Fig. 4. Note that while the MaximiziNg  ¢5tive features are correctly reproduced in all cases.

value in Eq.(66) tends to—« askT—0, the corresponding
tilt e=F—F; in Eq. (39) tends to zero. Whil&kT may be-
come arbitrarily small, the casel'=0 is not included in our
above calculations, basically since this limit is singular in  The basic physical mechanism responsible for the en-
Eq. (10) and thus in Eq(22). The basic physical reason for hancement of the thermal diffusion may be understood along
this singularity is the fact that the passage time through théhe following heuristic argument. As discussed below Eq.
interval [ —L/2,L/2] remains finite for any finit&kT but be-  (32), for q>2, e=0, and smalkT, the noisy dynamics§l) is
comes infinite fok T=0. dominated by the passage through the “dynamical bottle-

22799(2—q) L% D=D (
D(?’max): 27 77 1 (68) 0

C. Basic physical mechanism
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neck” located at the inflection point=0, cf. Eq.(26). Since
€=0, a very small perturbation due to thermal noise is al- %\
ready sufficient to kick the particle across the inflection point :~:\:~:\, h

\\\\\\\\\'

x=0. This small variation in comparison with an unper- zsinanzss

turbed particle is subsequently greatly enhanced by the fur,E:;,;,;:E,;,E,E,E::,E,E,, ™~
ther dynamical evolution. The result is a huge dispersion for:~:\:::::::::::::::::::::::::E:g
a statistical ensemble of particles subjected to different real-2AAIAANNNRIIN L
izations of the noise. It is quite suggestive that the same it nn i o
basic mechanism subsists also for nonvanishinglues at e A A A AN
least as long as they are so small that the corresponging A A A i
values in Eq(39) remain finite wherkT approaches zero. :I:I::E:::::;::::~:~:~:\:~:~:~:~:~:~:~:\:~:~:~:~:~:\:\:\:\:\:~:\ N
Due to the same mechanism, one expects a very Stronn,*»,*»,*:;,:,;,::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;:::;g’

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
change of the particle CUfI’E(ﬁ) upon small changes Of the s S S A NS WSS A
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

N N N N A N S N A N A SN A SN NS NN NN

N T i T I i

N N A A N N N N N N N N N N N A A A N A N N N N N N N N A N N A A NN NN NN

c- s A L AU T T T
B R I N N AN
R NN

D N A A N A N A N N N N A N A A N A N N N N N A A N AN N NN N NN NN NN

like in Eq. (24) is expected to be correct at least qualitatively. == s m i i AL A AL A AL AR
However, it is clear that this heuristic argument can be ap- gG. 5. A spherical Brownian particle in a liquid, rolling down a
plied only forq>2, because only then the “bottleneck” near critically tilted, periodic surfacér(y) under the action of gravita-
x=0 dominates the dynamigsf. the discussion below Eq. tjon, see also Eq71).
(32)]. Since we have found an enhanced diffusion also for
€=0 and 4/3=q=2 we have to conclude that such a simple Q becomes very small, while for large negatiyene finds
argument only captures a part of the essential physics anghat Q approaches unity. Fag=3 andy= 0=y, [Cf. Eq.
that a relation of the fornt24) cannot be strictly corredcf.  (59)] the relation(63) implies Q=1/3, whereas for 2q
Fig. 1 and the discussion below E§9)]. >1 and y= yma [cf. Eq. (66)] one finds thatQ=2/9. In
Interestingly enough, a similar heuristic explanation inother words, in the most interesting regime close to the maxi-
terms of dynamically enhanced thermal fluctuations seemgmum of the diffusion coefficient the particle dispersion
again applicable for 2g>1 near the peak in the diffusion (x?(t))—(x(t))? is comparable toL times the mean dis-
coefficient described by Eq#64)—(68): As discussed above placementx(t)) and similarly the first passage time disper-
Eq. (64), in this peak region both summands in the denomi-sjon is comparable to the square of the mean first passage
nator of Eq.(54) are comparable, reflecting the fact that thetjme.
passage time through a very small neighborhooda-e0 is
comparable to the traveling time through the remainder of V. MACROSCOPIC THERMAL DIFFUSION
[ —L/2,L/2]. On the other hand, the large negativealue in
Eq. (66) and the concomitant Arrhenius-type form of Eq. In this section we consider the thermally induced diffu-
(46) indicate that the former time scale is governed by asion of a real mechanical particle of spherical shape that
thermally activated escape process across a potential barri@foves in a liquid under the action of gravitation along the
On this basis, it is quite plausible that the dynamical enZigid surface of a critically tilted periodic geometrical profile,
hancement of these thermally inducédre) escape events See Fig. 5.
will be maximal when both time scales are comparable. The position of the particle is described by its coordinate
The discussion below Eq32) implies that forq>2 the Yy along some horizontal axis and its vertical positian
mean first passage tim'él(xo_>xo+ |_) is dominated by a Gravitation is pointing in the negativre direction and the
small neighborhood of the inflection poimt=0, while for ~ motion is constrained by a rigid surface accordingzto
2>q>1 the region outside this small neighborhood is no=h(y), whereh(y) has the shape of a periodic profile with
longer negligible. From our results in Eq&0),(52) we can  periodLg that is critically tilted “to the right,” i.e.,
conclude that a similar crossover occurs for the first passage
time dispersiom T,(X,—Xo+L) at g=4/3. In view of our h(y+Lo)=h(y)—ho, 7D
central relationg14) and (15) the need to distinguish be-
tween twoq regimes for the currer{x) in Eqs.(48),(49) and
threeq regimes for the diffusio in Egs.(53)—(55) is then
immediately clear.
We finally note that a suitable comparison between th
directed and the diffusive transport is provided by the dimen
sionless numbe41]

— -1
2D ATy(xg—Xe+L) (D))= (x(1)? h(y) == naylyl*™*. (72
Q'_L<>'<> [T1(Xo—Xo+L)]? tm L{x(t)) ’ Physically, it is quite plausible that for asymptotically
(70) small kT, the constrainz=h(y) can henceforth be replaced
by z=h(y) without changing the dynamics along thedi-
where the second equality follows from Ed44),(15 and rection. A more detailed mathematical justification of this
the third from Eqs(5),(6). For large positivey one finds that  step is possible but not further elaborated at this place. At

\\\\\\\\\\
PN I ICas

with hy>0, see Fig. 5. The motion along the third spatial
direction (perpendicular to botly andz) decouples from the
motion in they-z plane and can, therefore, be ignored. With-
out loss of generality we assume thty) has an inflection
epomt aty=0 and thus satisfies for smalla relation analo-
gous to Eq.(26) with €=0, i.e.,
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every given positiofy,h(y)], the thermal noise acting on by the thermal noise&(t) in Eq. (1). Finally, we assume
the particle consists of a perpendicular and a tangential comncompressibility of the liquidand the particlesuch that the
ponent relative to the geometrical profidy). Under the densitiesp andp, are constant, and we exclude temperature
assumption that the thermal fluctuations can be modeled bgradients.
Gaussian white noise, these two components are statistically Finally, we should justify the assumption that the inertia
independent at any given time and position. Furthermore, theerm m(t), missing on the left-hand side of E({), is in-
perpendicular component has no effect because of the codleed negligible, at least in those aspects of the dynamics that
straint z=h(y). In order to achieve an effective one- are responsible for the asymptotic behavior in EGS)—
dimensional description of the forifi) the appropriate ap- (55). In practice, this is a very delicate question and a truly
proach is thus to work with the path-lengthalong the satisfactory answer seems only possible by means of a com-
geometrical profile as our generalized coordinate. The infiniparison with numerical simulations that fully take into ac-
tesimal line elementlx is then specified by the obvious re- count these small but finite inertia effects. Intuitively, we
lation dx?=dy?+ dh? and the sign convention in the relation expect that there is a range of small but still macroscopic
dx=+ (dy?+dh?)¥2 Without loss of generality we choose particle sizes for which the overdamped descriptidn
the sign convention such thax=dy(1+[h'(y)]?)*? and  would be admissible. A closely related question concerns the
the x origin such that omission of memory effects both in the noise and the dissi-
pation, which can be justified by closer inspection under the
condition that the particle densifyis much larger than the
liquid densityp, .

In the important casg= 3, and with

xy)= [ dyasin @ 73

The potential energy of the particle with densjyand
radiusr due to the effects of gravitation and the buoyancy of g=981 cm/$, (79)
the surrounding liquid with density, is given in terms of the

generalized coordinate by =102 g/em $= vy, (80)
V(x)=Fgh(y(x)), Fg=(4m3)r¥(p—p)g, (74 p:=10g/cnt  [pyon=7.9 glcnt], (81
wherey(x) is the inverse ofk(y) (which obviously exists f:=0.1cm, (82
and whergg is the acceleration due to gravity. Observing that .
h’(0)=0 in Eq.(73) it follows thatV(x) is a critically tilted ho:=1.5cm, (83
periodic potential that satisfies E@6) for small x with .
T:=293°K [room temperaturg (84
€=0, wu=Fguo. (75
the free diffusion coefficien{7) can be written, using Eq.
With Egs.(2), (3), (71), (73), and(74) it follows that (78), as
FeL=V(x)=V(x+L)=Fgho, (76) T o fen?
Do=2.14x10 ¥2— — - —, (85)
Lo T Vet I' S
L= [ dyasin @ 7

Further, one obtains from Eq60) for the diffusion coeffi-

- . ., cient at the critical tilt the formula
We assume that the frictional force acting on the particle

under consideration is of the Stokes forx(t) with friction - (T) 1/3( 22

S

p—pi L3uo

coefficient D:4_99><10*3_V; _ P
b 4

1_

Vei I
N=6Tvel, (78

for q=3. (86)
wherevy is the effective viscosity of the surrounding liquid.
For a spherical particle that does not rotate and that is suith the actual experimental realization, which is presently un-
rounded by an unbounded reservoir of liquidy is given by  der construction in the labs of one of the present authors
the bare viscosity of this liquid. A rigorous quantitative (H.L.), each fraction appearing in E(85) and(86) is of the
theory describing the thermal motidnote that# also ap- order of unity[44]. In particular, for typical shapes(x) one
pears in Eq(4)] of the actual setup we have in mind should finds thatL%uy/29 th, is a dimensionless number of the
include the effects of rotational degrees of freedom and therder of unity[cf. Egs.(30),(75),(76),(77)], independently of
quite intricate boundary effects, both mechanical and hydrothe actual value of Llt follows that the diffusion coefficient
dynamical[42]. Here, we shall adopt the simplifying as- in the critically tilted periodic potential86) is enhanced in
sumption[43] that all these effects are approximately cap-comparison with the free thermal diffusion coefficidB6)
tured by an appropriately renormalized viscosiiyg. by about nine orders of magnitude, so that it may well reach
Further, we assume that all kinds of fluctuations within themacroscopically observable values. The width of the peak of
liquid (density, temperature, ef@re approximately captured the diffusion coefficient with respect to variations of the po-
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tential tilt has been estimated above E§8), namely,AF presence of white thermal noi§&1]. Our first main result is
=u*[kT]*~ % This width of the peak may be used to the compact and exact expressi@?®) for the diffusion co-
estimate the experimentally admissible deviatibh, from  efficient, valid for arbitrary tilted periodic potentials and ar-
the exact “critical” hy value in Eq.(71). Due to Eq.(76) we  bitrary strengths of the thermal noise. At the basis of this
see thatAF=AhgF4/L, yielding the following theoretical result lies Eq(15), connecting the diffusion coefficient with

estimate forAhg: the mean first passage time and the dispersion of the first
. 13 L\ 28, passage times. The relatiofisd) and(15) have been previ-
Ahg 1ol Lm0 T p r ously proposedwithout prooj in the context of random
- = 1.2x10 - = - (87) . .
Ao 4hy Tp-p| T walk theory on discrete latticd46], and they are also well-

known asymptotic relationships in the particular case of so-

Since the fractions on the right-hand side are again of th&alled renewal processes, see, e.g., formtldsand(16) in
order of unity, this theoretically required precision is thusChap. 5 of Ref[47]. While all these works are concerned
extremely high. with models in discrete space, the use of the above relations
As discussed in the previous section, the largest enhancr the continuous problem at hand has in fact been advo-
ment of thermal diffusion is expected for2)>1. From Eq. ~ cated(without proof in Ref. [11], and an independent alter-

(64) we then find for the maximal diffusion coefficient the native derivation of Eq(15), based on the results from Ref.
result [47], has recently been presented in RéB]. Note also that

a different expression for the diffusion coefficigi24) was
recently proposed in Ref39], which is, in general, only
— — approximatively valid(see Fig. 1 and Sec. WAs a side
p 297 th, remark we mention that our result has nothing to do with the
relation between the diffusion coefficient and the Lyapunov
exponent in certain chaotic dynamig#9]. In particular, the
q(2—q) o concept of Lyapunov exponents is useless in our context
o a7 o for 2>g>1, (89 since it focuses on infinitesimal deviations between trajecto-
fxoﬂ dxuL S ries, while the diffusion coefficient here is governed by de-
xo  Fe—Vg(X) viations ranging over many periods
It seem likely that a relation analogous to E@5) can
see also Eqs(56) and (68). Again, all the fractions in the also be derived under more general conditions, e.g., in higher
right-hand side are of order unity. In other words, if the fab-dimensions or beyond the overdamped lifd@9,50. While
rication of such a specially tailored profilgy) with 2>q in these cases the mean first passage times and the dispersion
>1 is possible with the necessary precision, then the enef the passage times are generally not known in analytical
hancement of thermal diffusion can be further improved byform, such a relation may still be useful for speeding up the
another five orders of magnitude as compared to the gase numerical determination of the diffusion coefficient. For spa-
= 3. For the required precision to hit the corrégtvalue in  tially discrete, periodic, one-dimensional systems, an exact
Eqg. (71) one obtaind45] expression for the diffusion coefficient has been derived by
Derrida in Ref[51], see also Ref52] for various generali-
Ah, q(g—1) L%, zations. It is clear that Derrida’s result will become equiva-
——=| 0.06 - lent to Eq.(15) or Eq. (22) in the continuous space limit.
ho 2-0 297 th, Conversely, by considering periodic potentialg(x) with
- A3) 1-1/g very high barriers between neighboring local minima
(89

» r2p—p, LAY
D=2.42¢10q(2—q) — 5 -+ — 20
Veﬁr

20-1

1/q

X ( 1.3x10" st P T (“states”), an effective spatially discrete model is recovered.
Tp—-prd Again, it is clear that in this way our result will become
equivalent to Derrida’s discrete random walk result. In prac-

In comparison with Eq(87), this theoretically required pre- tice, our compact expressi¢a2) for the diffusion coefficient
cision is considerably lower, especially fqivalues close to  is, however, considerably simpler than Derrida’s.
unity. In contrast to thiglobal precisionAhy, the necessary ~ Turning to our second main result, we recall that quantum
local precision of the profileh(y) may be a more serious mechanics is generally appreciated to be indispensable for
problem in practice. Finally, we remark that the maximally the explanation, e.g., of the stability of atoms, molecules, and
enhanced diffusion in Eq64) and hence in Eq(88) is not  solids. Yet, verifying and exploiting basic quantum mechani-
reached exactlyt the critical tilt, cf. Eq.(66). The corre- cal effects “more directly” on a macroscopic scale is cur-
sponding(negative deviation from the criticah, value in  rently attracting much attention. A somewhat similar situa-
Eq. (71) is of the same order of magnitude A%, in Eq.  tion arises with respect to the random microscopic

(89), see also Eq(67). fluctuations at the basis of statistical mechanics. As detailed
in Sec. V, the present study suggests a very elementary ex-
V1. DISCUSSION periment that would make those microscopic fluctuations

“visible” on a macroscopic scale. In contrast to the quantum
In this paper, we have addressed the problem of ovemnechanical case, here the word “macroscopic” literally
damped Brownian motion in a tilted periodic potential in themeans “observable by the naked eye.”
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We note that somewhat related phenomena are also 1 % I_(x)
known in other far-from-equilibrium systems. For example, I-(x) =D~ e—voo/ka dy ev(y)/kT:mﬁ-
the spreading of particles can be enhanced by the critical 0 X
fluctuations in the vicinity of a nonequilibrium phase transi-
tion to a convective state, resulting in a diverging diffusion . o o
coefficient D~ (T—T,) 2, wherez is a dynamical critical The last identity in Eq(A1) foIIov_vs from_Eq.(17) and simi-
exponen{53]. Another well-known example is the enhance- larly for Eq. (A2). Next, we rewrite the first two moments in
ment of dispersion by turbulence. Diffusion can also be amEd: (10) as
plified by the coupling to a convectivgaminap process as
exemplified in the well-studied example of Taylor dispersion b 1 b
with a characteristic diffusion coefficient given IBy~D,* T1(Xoﬂb)=f dx I.(x)= ?LF,HJ dx 1,(x),
~T71, whereDy, is the usualbare molecular diffusion co- o o (A3)
efficient: see Refl.54] for a review. In contrast to our present
case, in those examples strong nonequilibrium fluctuations
and/or gradients of the temperature and the velocity of the T _ ij

. . . . . Z(XOH b)—
surrounding medium are a crucial ingredient. Two other ex- D
amples that come closer to the situation of interest to us are,
respectively, the Suzuki scaling law for relaxation from a .
marginally stable statg55] and the transient bistability in Xf dz1,(2)+R. (A4)
explosive system§56]. In these cases, the dispersion is in- y
creased by the amplification of the initial thermal spreading
in the close vicinity of a metastable point through the subsepereR is given by
guent fast dynamical evolution away from this point. From
this point of view, our present problem may be considered as 2 b « b
the dispersion of particles in a potential displaying a spatially R::_f dx eV(x)/ka dy e—V(y)/ka dz1,(2)
periodic repetition of marginally stable states—recall also Do Jx o X
our qualitative explanation of the effect below E§5). Fi- b b
nally, we mention that a somewhat similar, resonancelike zgf dx~l+(x)f dz1,(2)
enhancement of the free thermal diffusion has also been re- Xg x
ported for various systems in the presence of a time- b «
dependent external driving for¢67—61. While the behav- ZZ[TI(XOHb)]Z_zf dx~l+(x)f dzl,(2)
ior of the diffusion coefficient there is reminiscent of the Xo a
present case, the underlying physical mechanisms are once

. . . b ~ b -~
again quite different. =2[T1(xoﬂb)]2—2f dx I+(z)f dx 1,(x)
X0 z

(A2)

b
dx eV(x)/kaX dy e V)IKT
0 —

X
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By choosingb=x,+L and interchanging the order of inte- Finally, using Eqs(A3), (A8), (A12), and(A14) in Eq. (15

gration, we finally obtain

2 Xo+L
ATz(Xo—>Xo+L)=[1_TL(;r@f d71.(2)1%1-(2)
Xo

=2DOJXXO+Ldz[~I+(z)]ZT,(z).

With the definitions

H(x)::fx dy e VKT,

K(X) = jwdy eV(y)/kT'
X

we can rewrite Eq(A3) as

1 XxptL
Tl(xo—>xo+L)=—f dx[ =K' (X)H(x)].

Do

X0

(A8)

(A9)

(A10)

(A11)

Using the fact that the produé¢(x)H(x) is L periodic, a

partial integration yields

1 Xg+L

X0

=fXO+de~I_(x)

X0

1 Xo+L
Zmﬁf dx 1_(x).
X0

Similarly, Eq.(A8) can be rewritten as

2 (Xot+L
0 0

(A12)

X[=K'(2H(2)]*H' (2)K(2).

Since H'(2K'(2)=1 the integrand
(1/2)H?(2)dK?(z)/dz integration by parts yields

2 (Xo+L
AT (Xg—Xo+L)= D_Sj dZ —H'(2)K(2)]?
Xo
X[=K'(2)H(2)]
~20, [ " daT @17, (2
Xo

2D,

Xp+L

(A13)

equals

:[1_e7LF ), dZ1_(2)]%.(2).

(A14)

leads to the result22).

APPENDIX B

In this appendix we discuss in some detail the special
casesq=2 andq=4/3 that have been omitted in the main
text in Sec. IV.

In the caseq=2 we may choose, similarly as in the dis-
cussion below Eq(43), a large value ofA and then approxi-
mately sete=0 and A" 9=0 in Eg. (35. The remaining
integral does not converge far—0 but we may introduce a
convergence-inducing term according to

a —a
f dxl+(x)=f dx
—L/2 —L/2

a "
+ dX—F.
f—uz 2u|X|

The first integral converges fa—0 and by actually per-
forming this limit we make an error that vanishes fof

—0, see EQq(34). The second integral in E4B1) can be
performed, with the result

f*a q fo q 7 7
I =
P A e, Fo—Vo(x)  2u[x]

n

tou

7 Yl
Fc_Vé(X) 2:“’|X|

(B1)

LF.

| e
2™ 2kT

+In oF.

|-

(B2)
where we have used E@34). Exactly the same result is

recovered for Eq(36). Turning to Eq.(38), a convergence
inducing term forA— may be introduced according to

a n A
f dxl+(x)=—f dx
-a MJ—A

A 1 1
—Zf dxz .
Mmoo —A 21+|X|

Indeed, the first integral now converges whien: oo, while
the second one can be performed. Neglecting all contribu-
tions that tend to zero whefv—, we thus obtain

1
K(X.V)—§1+—|X|

(B3)

Jadl —andK L L 7pa
X +(X)—; . ax (X,)’)—§1+—|X|—;n :
(B4
Putting together everything, we finally find that
O ax L 00= 2 i EE ) & +c| for g=2
. X t(X)—; >IN 57 TGV + or =2,
(B5)

where we have introduced
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& - 1 L2 Gs(y)
G )::J dx K(X,y)— = —|, (B6) - ® 3 -
= xy) -3 17X D=D, e PR TR 5 for q=2,
—In +Gy(y)+C
( ul L2 L 2 \2kT
C:=In +f dx| —————=—|. (B7 B9
I P L VeI (B9
. . ~ . . . 81 [F.L
As in the case of5,(y) in Eq. (42), G,(y) is again a uni- —1In
versal, dimensionless scaling function of its dimensionless D=D 128 1 2kT for g=4/3. (B10)
argumenty. Further, the saddle point approximati@¥6) can O [xo+L dxuL 2R3 '
be applied for large negative values. Finally,C is a con- o Fo—Vo(X)

stant of order unity that depends on the details of the poten-
tial Vo(x). For instance, when the for26) is exactly valid
on the entire interval —L/2,L/2] then we haveC=0.

A similar calculation yields the result

The detailed discussion of the res(#9) can be carried
out in complete analogy to the one for-21>4/3 below Eq.
(55). In particular, for sufficiently smalkT, the second and
2\ (F.L third term in the denominator are negligible for positive and

) n(%) moderately negative values, while for large negative the

K saddle point approximatior(46) for G;(y) and Gs(y)
for q=4/3, B8) =[S(7)]%/2 can be applied. In EqB10) only the leading
order terms for smakT have been kept. Thus the discussion
where we have restricted ourselves to the leading order terof the dependence for a fixdd upon variation ofy is not
in the weak noise limikT/F.L—0, i.e., higher order terms possible on the basis of E4B10) but it is clear that this
analogous to those on the right-hand side of 8%) have dependence will be of exactly the same form as the one for

Xp+L 81
J Xmi(X)|+(X)|—(X):§8

X0

been omitted. 4/3>qg>1 discussed below E68). Especially, Eqs(64)—
For the resulting diffusion coefficieri22) one obtains (68) can be taken over fog=4/3 without any change.
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