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Stabilization of metastable states

M. Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 15 October 2001; published 11 February 2002!

An exact solution is obtained for a particle moving in a piecewise square nonsymmetric potential of fluc-
tuating height. It turns out that the population of a metastable state increases in the presence of fluctuations
similar to a previously found effect due to an external periodic field.

DOI: 10.1103/PhysRevE.65.031103 PACS number~s!: 05.40.2a
in

n
of
ib
rg
th
nt
n
g
te
fo
ld
nd
p
o

a-
th
se
ac
ry

an
in
th
ai
st

ta
a

rti
.e
o
s
u-
u
e

l
er

n

tial
s to

e

ta-

c-
s

ore

ua-
As is well known@1#, a simple pendulum is stable~meta-
stable! in the vertically downward~upward! position. One
can, however, stabilize a metastable position by apply
high-frequency parametric oscillations to a pendulum~the
‘‘Kapitza pendulum’’!. As was shown both numerically@2#
and analytically@3#, the ‘‘dynamic stabilization’’ of a pendu-
lum can be also performed by adding an additive, and
multiplicative, periodic field. This raises the question
whether this phenomenon is general, and what the poss
ties for stabilization of metastable states are. Due to a la
number of examples of metastable states in science and
applications, this problem may be of practical use. Rece
we considered@4# the impact of an external periodic field o
the populations of two asymmetric energy levels by usin
perturbation expansion in the field amplitude to the mas
equation for discrete, and to the Fokker-Planck equation
space-extended, systems. It turns out that an external fie
able to increase the population of the ‘‘shallow’’ state a
under some conditions, even to transform it into the ‘‘dee
state. In other words, the less stable state may become ‘‘m
stable’’ in the presence of an external field~‘‘stabilization’’ of
the metastable state!. In both the indicated examples the st
bilization of a metastable state was performed through
use of an external periodic field, and the question ari
whether this way is unique, or are there other ways to re
such stabilization. As we know from the very popular theo
in recent years, the phenomenon of stochastic reson
~SR! @5#, an external frequency needed for SR might be
troduced to a system either by an external field or by
fluctuation of some of the parameters of a system. Our
here is to check whether one can stabilize a metastable
by the latter method.

To this end we consider the simplest model of a me
stable state that allows an exact analytical solution. As w
shown in the last 10–20 years many fundamental prope
of a particle moving in a nonlinear potential are generic, i
in particular, they are not too sensitive to details of the p
tential. Therefore, it is worthwhile to consider the simple
potential that allows an analytic solution in addition to n
merical simulations for more complicated potentials. O
model~Fig. 1! involves a particle moving under the influenc
of white noise of strength 2D in the piecewise double-wel
potential restricted by reflecting walls. The potential barri
U1 and U2 are different for the right~stable! and the left
~metastable! states.

The Fokker-Planck equation for the probability functio
P(x,t) for the positionx of a diffusive particle at the timet
is
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P1D

]P

]x G[2
]J

]x
, ~1!

where the probability currentJ is defined in Eq.~1!, andD is
the diffusion coefficient.

For the potentialU(x) shown in Fig. 1,]U/]x50, and
Eq. ~1! reduces to a simple diffusion equation. The poten
barriers enter the matching conditions, namely, one ha
solve Eq.~1! into each region ofU(x)5const, and then to
ensure the continuity ofP andJ on the boundaries of thes
regions. Continuity of probability currentJ, which according
to Eq. ~1! can be written asJ52De2U/Dd/dx(eU/DP),
means that at pointszi of the jumps of potentials,

eUi (z10)/DP~zi10,t !5eUi (z20)/DP~zi20,t !, ~2!

]P~zi10,t !

]x
5

]P~zi20,t !

]x
, ~3!

where fori 51,2, z1,256a.
The matching conditions~2! and ~3! have to be comple-

mented by reflected boundary conditions at the positionszj
56L of the walls,

]P~zj ,t !

]x
50. ~4!

Here and in the following we are interested only in the s
tionary solution of Eq.~1! (]P/]t50). It is easy to check,
that the normalized equilibrium probability distribution fun
tion P(x) has the following form in each of three region
shown in Fig. 1@6#:

P15
exp~U1 /D !

2a1~L2a!@exp~U1 /D !1exp~U2 /D !#
,

P25
1

2a1~L2a!@exp~U1 /D !1exp~U2 /D !#
,

P35
exp~U2 /D !

2a1~L2a!@exp~U1 /D !1exp~U2 /D !#
. ~5!

We assume that two wells have equal widths, theref
the equilibrium populations of the left~metastable! state is
smaller than that of the right~stable! state in the ratio
exp(U22U1)/D.

Let the potential barrier undergo the dichotomous fluct
tions of the heightD with flipping ratea, i.e., the barrier for
©2002 The American Physical Society03-1
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the right ~left! well changes randomly between heigh
U1 ,U11D(U2 ,U21D). The purpose of our calculation is t
check whether the dichotomous fluctuations of the poten
barrier are able~like an external periodic field! to increase
the population of the metastable well, i.e., to stabilize
metastable state. In this case one has to consider two p
ability functions,P6(x), whereP1(P2) defines the prob-
abilities to be at positionx when the potential isUi
1D(Ui). Two functions,P1 and P2 , are related by the
following equations@7#:

D
d2P6

dx2
1a~P72P6!50, ~6!

which is the simple generalization of the stationary form
Eq. ~1! where the transitions between6 states are taken into
account. Differential equations for each of these functio
immediately follow from Eq.~6!,

d4P6

dx4
5b2

d2P6

dx2
, b2[

2a

D
. ~7!

Solutions of Eq.~7! that satisfy Eq.~6! have the following
form:

P6
(1)~x!5a1x1a26a3sinh~bx!6a4cosh~bx!. ~8!

The populationn1 of the region@a,L# is defined as

n15E
a

L

@P1~x!1P2~x!#dx5a1~L2a!212a2~L2A!.

~9!

We added an additional superscript~1! in Eq. ~8! showing
thereby that it relates to the region@a,L# in Fig. 1. In regions
@2a,a# and@2L,2a# the general solutions of Eq.~6! have
the same functional form with different constants,

P6
(2)~x!5b1x1b26b3sinh~bx!6b4cosh~bx!, ~10!

P6
(3)~x!5c1x1c26c3sinh~bx!6c4cosh~bx!. ~11!

The coefficients in Eqs.~8!–~11! have to be found from
the boundary conditions~4! and matching conditions~2!–
~3!. From the boundary condition at the walls, one gets

FIG. 1. Square-well potentialU(x) of width 2a and heightsU1

andU2 subject to dichotomous fluctuations of heightD with reflect-
ing boundaries atx56L.
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a15c150, a352a4tanh~bL !, c35c4tanh~bL !.
~12!

The matching conditions~3! result in

a45
b3 cosh~ba!1b4 sinh~ba!

sinh~ba!2tanh~bL !cosh~ba!
,

c452
b3 cosh~ba!2b4 sinh~ba!

sinh~ba!2tanh~bL !cosh~ba!
. ~13!

Sincea15c150, populations in regions 1 and 3, accor
ing to Eq. ~9!, are defined by the coefficientsa2 and c2,
respectively. After using~12! and ~13!, the five unknown
coefficients,a2 , b2 , b3 , b4, andc2, have to be found from
four equation~2! which, on using Eqs.~8!–~13! take the
following form:

a22Bd15~b21e1!expS U11D

D D ,

a21Bd15~b22e1!expS U1

D D ,

c22Bd25~b22e2!expS U21D

D D ,

c21Bd25~b21e2!expS U2

D D , ~14!

where

B5coth@b~L2a!#, ~15!

and

d1,25b4sinh~ba!6b3cosh~ba!;

e1,25b3sinh~ba!6b4cosh~ba!. ~16!

FIG. 2. Ratio c2 /a2 of populations of metastable and stab
states as a function of the dimensionless fluctuation ratea/a0,
where a05D/2a2. The parameters are:L/a51.1, exp(2U1 /D)
50.2,exp(2U2 /D)50.3, and ~from top to bottom! exp(2D/D)
50.2, 0.25, 0.3, 0.35, and 0.40.
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After simple but slightly tedious algebra one obtains from Eqs.~8!–~16!,

c2

a2
5

u

v
$@16B1B212B2tanh~ab!#%c21@16B1B214~B11B2!coth~ab!14B1tanh~ab!11#c1112B2tanh~ab!

$@16B1B212B1tanh~ab!#%c21@16B1B214~B11B2!coth~ab!14B2tanh~ab!11#c1112B1tanh~ab!
, ~17!
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where

B15Bu, B25Bv, u5expS 2
U1

D D ,

v5expS 2
U2

D D , c5expS 2
D

D D . ~18!

One can check two limiting cases:~1! There are no fluc-
tuations of the barrier (D50 or b50); then the matching
conditions~2!,~3! at once result in Eq.~5!, and Eq.~17! gives
the correct resultc2 /a25exp(@U12U2#/D); ~2! potential bar-
rier is symmetric (U15U2!; then, the matching condition
~2! and ~3! lead to results coinciding with those obtained
Ref. @8# while Eq.~17! givesc2 /a251, as it should be in the
symmetric case.

Analysis of the general equation~17! leads to the follow-
ing conclusions:

~a! One can easily find the limit values ofc2 /a2 for small
and largeD andb.

c2

a2
5

u

v F11
~v2u!B

1116B1B214~B11B2!coth~2ba! S D

D D 2

•••G
for 0,

D

D
,1,

c2

a2
5

u

v F11
2~v2u!Btanh~ba!

112B1tanh~ba!
•••G for

D

D
→`,

~19!

c2

a2
'

u

v F 11

~c21!2S L

a
21D ~v2u!

8uvc~c11!12c~u1v !S L

a
21D ~ba!2

1•••G for 0,ba,1,
e

03110
c2

a2
5

u

v F11
2~v2u!~c21!2

2u~c11!218vc1~c11!~1116cuv !

1•••G for ba→`. ~20!

Sincev.u and L.a, Eqs. ~19! and ~20! show that the
ratio c2 /a2 of the mean populations in the left~metastable!
and right~stable! wells increases with increasing fluctuatio
strengthD or rateb. This corresponds to the stabilization o
the metastable state.

~b! It turns out thatc2 /a2 increases monotonically with
fluctuation strengthD while the dependence on the fluctu
tion rateb is nonmonotonic. The nonmonotonic dependen
of c2 /a2 on b is of special interest within the framework o
stochastic resonance phenomena@5#. The ratio of populations
c2 /a2 at metastable and stable state is shown in Fig. 2 a
function of the dimensionless fluctuation ratea/a0 where
a05D/2a2 for parameters L/a51.2, exp(2U1 /D)
50.2, exp(2U2 /D)50.3, and several values of fluctuatio
strengths.

Additional details concerning these maxima can be fou
from numerical analysis of Eq.~17!. It turns out that the
existence of maximum depends on the width of the poten
well (L2a). Maxima exist forL/a&1.4 and disappear a
larger L/a. For the special caseL/a52 for which B
5coth(ba), this result can be obtained analytically. Th
strong dependence on well widthL2a is not surprising
since, as it was shown in Ref.@9# for the geometry of Fig. 1
with reflecting walls, the characteristic frequency of the s
tem ~Kramers rate! depends onL/a. It is remarkable that the
heights of the potential barriers,a andb, scarcely influence
the height and position of the maximum.

In conclusion, we have shown that an increase in popu
tion of a metastable state~‘‘stabilization’’ of the metastable
state! can be achieved not only by the use of an exter
periodic field, but also by fluctuations of the barrier heigh
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