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Velocity correlations, diffusion, and stochasticity in a one-dimensional system
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We consider the motion of a test particle in a one-dimensional system of equal-mass point particles. The test
particle plays the role of a microscopic ‘‘piston’’ that separates two hard-point gases with different concentra-
tions and arbitrary initial velocity distributions. In the homogeneous case when the gases on either side of the
piston are in the same macroscopic state, we compute and analyze the stationary velocity autocorrelation
function C(t). Explicit expressions are obtained for certain typical velocity distributions, serving to elucidate
in particular the asymptotic behavior ofC(t). It is shown that the occurrence of a nonvanishing probability
mass at zero velocity is necessary for the occurrence of a long-time tail inC(t). The conditions under which
this is at23 tail are determined. Turning to the inhomogeneous system with different macroscopic states on
either side of the piston, we determine its effective diffusion coefficient from the asymptotic behavior of the
variance of its position, as well as the leading behavior of the other moments about the mean. Finally, we
present an interpretation of the effective noise arising from the dynamics of the two gases, and thence that of
the stochastic process to which the position of any particle in the system reduces in the thermodynamic limit.
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I. INTRODUCTION

Exactly solvable ‘‘toy’’ models are important in unde
standing the dynamic behavior of complex systems made
of a large number of particles. They also allow us to estab
and understand the limitations of the approximations use
general to deal with systems of interacting particles, such
the Boltzmann equation. One such model, consisting of id
tical hard-point particles moving on a line and interacti
through elastic collisions, was introduced several deca
ago @1#. Based on the observation that the particles mer
exchange velocities in a collision, Jepsen@2# was able to
calculate explicitly several properties of a gas of such p
ticles. Subsequently, Lebowitz and co-workers@3–5# refined
and extended these calculations to include, among othe
pects, a comparison with the results of the Boltzmann
proximation. Very recently, this model system has been
visited by Piasecki and Gruber@6,7#, their main motivation
being the construction of a one-dimensional analog of
‘‘adiabatic piston’’@8#, with a central particle playing the rol
of a piston separating gases at different temperatures
densities to its left and right. Attention has also been focu
on several related models from the point of view of the a
plicability of the Fourier law for heat flux in one-dimension
systems@9#. Although the main interest in these specific co
texts is in the case of an arbitrary ratio of the masses of
piston and a gas particle, the equal-mass case being a s
lar one in some sense, the analytical tractability of the la
makes it a valuable ‘‘theoretical laboratory’’ from whic
much can be learned. In particular, it offers a model in wh
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~i! one can pass to the thermodynamic limit in a rigoro
manner, and~ii ! the effect of recollisions can becompletely
and exactlytaken into account.

The renewed interest in the model prompts us to revis
and extend its analysis. We focus on the motion of the cen
particle~which we shall refer to as the ‘‘piston’’ for brevity!.
A brief recapitulation of the relevant results from earli
work is given in Sec. II. In Sec. III we compute and study t
stationary velocity autocorrelation functionC(t) of the pis-
ton in the homogeneous case, when the gases on either
of the piston are in the same macroscopic state~i.e., equal
densities and arbitrary but identical velocity distributions!, to
amend and extend earlier results. The explicit express
obtained for certain archetypical velocity distributions he
us analyze the asymptotic behavior ofC(t) to determine ex-
actly when a power-law decay may be expected, and w
the latter is at23 tail. Turning to the inhomogeneous syste
with different macroscopic states on either side of the pist
in Sec. IV we determine its effective diffusion coefficie
from the asymptotic behavior of the variance of its positio
as well as the leading behavior of the other moments ab
the mean. Finally, in Sec. V we show that there is an app
ing and direct interpretation of the effective noise to whi
the many-particle interactions reduce in the thermodyna
limit as far as one-particle dynamics is concerned, and t
of the stochastic process represented by the position of
particle in the system.

II. RECAPITULATION OF EARLIER WORK

For ready reference, we record briefly the relevant res
of earlier work that are needed for what follows, using t
convenient notation employed by Piasecki@7#. One starts
with a system of a finite number of particles, located in t

of
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interval@2L,L# of thex axis, with free boundary conditions
The piston is initially located~without loss of generality! at
X050 and has an arbitrary initial velocityV0 . TheN2 par-
ticles to its left andN1 particles to its right are initially at
uniformly distributed random positions Xj ( j 5
2N2,...,0,...,N1), with independent, identically distribute
velocities Vj drawn from normalized velocity distribution
f6(V), respectively. As the particles merely exchange
locities upon collision, at any instant of time the piston is
one of the ‘‘free’’ trajectoriesXj1Vjt. This, together with
s
ic
e

on
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-

the fact that the particles cannot move across each o
suffices to solve@2# the problem of determining, amon
other quantities, the phase space distribution function of
piston ~or that of any of the other particles! at any timet
.0 by averaging over the initial positions and velocities
the gas particles on both sides of the piston@2,3#. In the
thermodynamic limitL→` and N6→` such that one has
finite densities limN6 /L5n6 on the left and right of the
piston, the conditional one-particle distribution function
the piston is found to be
P~X,V,tu0,V0,0!5exp$2t@n2a~V0!1n1b~V0!#%I 0~2t@n2a~V0!n1b~V0!#1/2!d~X2V0t !d~V2V0!1exp

$2t@n2a~X/t !1n1b~X/t !#%$@n2f2~V!u~Vt2X!u~X2V0t !1n1f1~V!u~X2Vt!u~V0t2X!#

3I 0~2t@n2a~X/t !n1b~X/t !#1/2!1@n2f2~V!u~Vt2X!u~V0t2X!~n1b~X/t !/n2a~X/t !!1/2

1n1f1~V!u~X2Vt!u~X2V0t !~n2a~X/t !/n1b~X/t !!1/2#I 1~2t@n2a~X/t !n1b~X/t !#1/2!%, ~1!

where

a~W!5E
W

`

dU f2~U !~U2W!, b~W!5E
2`

W

dU f1~U !~W2U !, ~2!

and I n is the modified Bessel function of ordern. For V050, this is the result recorded in Ref.@7#.
The velocity distribution of the piston is obtained by integratingP(X,V,tu0,V0,0) overX, and is given by

P~V,tu0,V0,0!5exp$2t@n2a~V0!1n1b~V0!#%I 0„2t@n2a~V0!n1b~V0!#1/2
…d~V2V0!1tE

2`

`

dWexp$2t@n2a~W!

1n1b~W!#%$@n2f2~V!u~V2W!u~W2V0!1n1f1~V!u~W2V!u~V02W!#I 0„2t@n2a~W!n1b~W!#1/2
…

1@n2f2~V!u~V2W!u~V02W!„n1b~W!/n2a~W!…1/21n1f1~V!u~W2V!u~W2V0!

3„n2a~W!/n1b~W!…1/2#I 1„2t@n2a~W!n1b~W!#1/2
…%. ~3!
n of
The stationary velocity distribution to which this tends at
→` is found@7# by using the leading term in the asymptot
expansion ofI n(z) for large argument, and carrying out th
integral over the resulting Gaussian peaked atW5W̄, where
W̄ is the ~unique! root of the equation

n2a~W̄!5n1b~W̄!. ~4!

The normalized asymptotic velocity distribution of the pist
is then found to be

P`~V!5
n2f2~V!u~V2W̄!1n1f1~V!u~W̄2V!

J~W̄!
,

~5!

where
J~W̄!52n2a8~W̄!1n1b8~W̄!5n2ua8~W̄!u1n1b8~W̄!
~6!

is the normalization factor. In general, therefore,P`(V) has
a finite discontinuity atV5W̄. The asymptotic drift velocity
of the piston, defined aŝV(`)&5*2`

` dV VP̀ (V), is then

trivially seen to be equal toW̄ itself, on rewriting the defi-
nition of the latter in Eq.~4! as

W̄5
n2*

W̄

`
dU Uf2~U !1n1*2`

W̄ dU Uf1~U !

n2*
W̄

`
dU f2~U !1n1*2`

W̄ dU f1~U !
. ~7!

In particular, for Maxwellian distributionsf6(V) at tem-
peratures T6, one has W̄:0 according as n2AT2

:n1AT1. Sincen(kBT6)1/2 is essentially the linear friction
coefficient of the corresponding gas, it is thisdynamicprop-
erty, rather than the pressure, that determines the directio
2-2
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VELOCITY CORRELATIONS, DIFFUSION, AND . . . PHYSICAL REVIEW E65 031102
the drift of the central particle. The equalityn2AT2

5n1AT1 as the condition necessary for the piston to hav
drift-free, purely diffusive motion asymptotically, has a
ready been pointed out by Jepsen@2#.

We can proceed to show that, in the limitt→`, every
particle attains the new stationary velocity distributi
P`(V) ~in the thermodynamic limit, of course!. This remains
true even iff25f15f, but n2Þn1. Thus, although the
system under study does not have strong mixing proper
in the sense that the set of ‘‘free’’ trajectories$Xj1Vjt% is
fixed for all time once the initial values$Xj% and $Vj% are
specified, the effect of the collisions of the particles with t
piston and among themselves is to mix the initial veloc
distributions on the right and left of the piston. This happe
by a ‘‘diffusion’’ of the ‘‘interaction front’’ of the piston with
the other particles, through successive collisions. Only in
special case in which

n25n15n, f25f15f, ~8!

i.e., when the gases on both sides of the piston are initiall
the same macroscopic state, doesP`(V) reduce tof(V)
itself. We refer to this as the ‘‘homogeneous system’’ in wh
follows, in contrast to the more general inhomogeneous c
For simplicity, we shall also assume thatf(V)5f(2V)
throughout this paper.

III. VELOCITY AUTOCORRELATION IN THE
HOMOGENEOUS SYSTEM

We now study thestationary velocity autocorrelation
function of the piston, which requires that the initial dist
bution be a stationary one. As mentioned above, this o
happens in the homogeneous case, to which we there
restrict ourselves in the rest of this section. The results to
obtained are in fact valid forany particle in the system.

SinceW̄50 in this case, the autocorrelation function
given by

C~ t !5^V~ t0!V~ t1t0!&

5E
2`

`

dVE
2`

`

dV0 V0VP~V,tu0,V0,0!f~V0!. ~9!

This quantity has been considered in earlier work both fo
Maxwellian f(V) @2# and in more general terms@3#, and
been found to exhibit at23 power-law tail. However, the
conclusions regarding the conditions under which this h
pens require modification; nor is the exponent of the pow
law invariably equal to23. We therefore analyze the que
tion afresh, extending and amending some of these ea
results. We also give a physical interpretation of the circu
stances leading to a power-law decay ofC(t).

On inserting Eq.~3! in Eq. ~9! and simplifying, we obtain
the expression
03110
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C~ t !5E
2`

`

dWexp$2nt@a~W!1b~W!#%

3H I 0„2nt@a~W!b~W!#1/2
…W2f~W!

1nt@a~W!2Wa8~W!#2F @a~W!1b~W!#

@a~W!b~W!#1/2

3I 1„2nt@a~W!b~W!#1/2
…

22I 0„2nt@a~W!b~W!#1/2
…G J , ~10!

where the functionsa(W) and b(W) have been defined in
Eqs. ~2!. It is readily verified that in the special case of
dichotomic velocity distribution

f1~V!5f2~V!5f~V!5 1
2 @d~V1c!1d~V2c!#,

~11!

one obtains from Eq.~10! the exponential decay

C~ t !5c2e22nct. ~12!

Similarly, the known result for a Maxwellianf(V) is also
recovered.

C(0) is of course*dW W2f(W), andC(t) initially de-
creases linearly witht, with a slope that works out to

~dC/dt! t50522nE
2`

`

dW$W2f~W!a~W!1@a~W!

2Wa8~W!#2%. ~13!

In particular, for a Maxwellianf(V) one can evaluate the
integral involved to obtain (dC/dt) t50524n(kBT/pm)1/2.
In the general case,C(t) is a nonmonotonic function oft,
that becomes negative beyond a certain point and eventu
approaches zero from below ast→`. The long-time behav-
ior of the velocity autocorrelation yields valuable inform
tion on the mixing properties and memory effects in the s
tem. The extraction of this behavior from Eq.~10! is
nontrivial. It is helpful to note thata(W) is a nonincreasing
function of W, with a(W);2W as W→2` and a(`)
50; whereasb(W) is a nondecreasing function ofW, with
b(2`)50 and b(W);W as W→`. Further, whenever
f2(V)5f1(V)5f(V), we have b(W)5a(2W)5W
1a(W). An adequate number of terms in the asympto
expansions of the Bessel functions and the other terms in
integrand in Eq.~10! must be retained, consistent with th
fact that nonvanishing contributions to the integral com
from the regionW2t&O(1). As already mentioned, it has
been shown@2,3# that C(t) has a leading asymptotic beha
ior ;t23 for a Maxwellianf(V) @10#. We have corroborated
this, and also extended the result to the next term in
asymptotic expansion: after a very lengthy calculation,
find
2-3
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C~ t !;2
1

~nt!3 S m

2pkBTD 1/2S 12
5

2p D2
1

8~nt!4 S m

2pkBTD
3S 1772

315p

16
2

367

p D2¯ . ~14!

Based on the emergence of at23 tail in the Maxwellian case
~and also for another extended distributionf(V) that falls
off like uVu23!, as opposed to an exponential decay@Eq.
~12!# for the dichotomic distribution, it has been conclud
@3# that C(t) decays exponentially iff(V) is a compact
~‘‘finite’’ ! distribution, and has a power-law tail whenev
the support off(V) is noncompact. However, as we no
proceed to show, the actual criterion for the emergence
power-law tail in C(t) turns out to be theexistence of a
nonzero probability massat V50 in f(V). ~The physical
reason for this will be described subsequently.! The issue is
most clearly elucidated with the help of two simple yet a
chetypical distributionsf(V) for which C(t) can be deter-
mined analytically, and exact asymptotic expansions
tained. These are, respectively,~i! a uniform distribution in
the finite interval2c<V<1c, and ~ii ! a discrete distribu-
tion consisting ofd-functions atV56c and an additional
one atV50. The former has a compact support, and yetC(t)
turns out to have at23 tail; while the latter, in contrast to the
dichotomic distribution of Eq.~11!, leads in fact to an even
heavier tail (;t23/2) for any nonvanishing weight of the
centrald-function. We also extend the result in Eq.~14! to
the case of a generalf(V) that is sufficiently smooth at the
origin.

~i! Accordingly, let us consider the uniform distribution

f~V!5
1

2c
u~V1c!u~c2V!. ~15!

For this distribution,a(W) is respectively equal to2W for
W<2c, and (c2W)2/4c for 2c<W<1c; it vanishes
identically for W.c. Recall also thatb(W)5W1a(W).
Inserting these in Eq.~10! and carrying out the necessa
calculations, we finally obtain a closed-form expression
C(t). In terms of the dimensionless timet5nct, this reads

C~t!5
c2

4 F1

2
2

1

4t
1S 1

4t
112t De2t

1F1S 1

2
;
3

2
;t D G ,

~16!

where 1F1 is the usual confluent hypergeometric functio
The slope at the origin is@dC(t)/dt#t5052 2

5 c2. The ana-
lytic form of C(t) enables us to write down its exa
asymptotic expansion for larget,

C~t!;2c2(
n53

`
~n21!~n22!~2n25!!!

tn . ~17!

As mentioned earlier, this starts with anO(t23) term, al-
though the support off(V) is compact. Figure 1 depicts th
long-time behavior of the correlation function.

~ii ! Next, consider the discrete distribution
03110
a

-

-

r

.

f~V!5md~V!1
12m

2
@d~V1c!1d~V2c!#, 0<m,1,

~18!

which is an extension of the dichotomic distribution of E
~11! to include an additionald-function at V50 with a
weight m. Once again,a(W) vanishes identically forW
.c. For W<c, it is piecewise linear, being given by

a~W!5H 2W, W,2c

1
2 ~12m!c2 1

2 ~11m!W, 2c<W,0

1
2 ~12m!~c2W!, 0<W5<c.

~19!

We obtain in this case~with t5nct as before!

C~t!5c2~12m!e2tH 11~12m!tE
0

1

du em~12u!t

3F12m1mu

g~u!
I 1„tg~u!…2I 0„tg~u!…G J , ~20!

FIG. 1. Asymptotic behavior of the normalized velocity aut
correlationC(t)/C(0) as a function of time~in units of 1/nc!, for a
uniform distributionf(V) @Eq. ~15!#.

FIG. 2. Asymptotic behavior of the normalized velocity aut
correlationC(t)/C(0) as a function of time~in units of 1/nc! for
different values ofm, for the discrete distributionf(V) in Eq. ~18!.
2-4
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where g(u)5$(12m)(12u)@(12m)1(11m)u#%1/2. The
slope at the origin is@dC(t)/dt#t5052(12m)(22m)c2.
The long-time behavior in this case is, however, quite diff
ent from that found in the previous cases. Owing to the s
gularity in f(V) at the origin,a8(W) has a jump atW50.
As a consequence, the integrand in Eq.~10! is now a func-
tion of uWu rather thanW. This leads to the occurrence o
both even and odd powers ofuWu in the small-W expansion of
the integrand, using which the asymptotic expansion ofC(t)
is determined. For the latter, we now obtain

C~t!;2
mc2

t3/2

~12m!1/2

4~2p!1/22
mc2

t5/2

3~322m2!

32~2p!1/2~12m!1/21¯ .

~21!
a
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ThusC(t) now has an evenslowerpower-law decay, starting
with anO(t23/2) term, as long asmÞ0, i.e., as long as there
is a finite probability mass atV50. Whenm50, all the terms
in the asymptotic expansion vanish, andC(t) reverts to the
exponential decay that obtains in the case of the dichoto
distribution, Eq.~12!. Figure 2 shows the long-time behavio
of the correlation function for different values of the weig
parameterm, including ~for ready comparison! the case
m50.

The relative roles of thed-functions inf(V) at V50 and
at V56c may be examined a little more closely. This aspe
is not so transparent in the representation of Eq.~20! for
C(t), but is made more manifest with the help of its Lapla
transform. This enables us to writeC(t) in the form
C~ t !5~12m!c2H e22nct/~11m!

11m
1mL21

sm1@s212snc~12m!#1/2

@~11m!s12nc#$s1m@s212snc~12m!#1/212nc~12m!%J , ~22!
that
at

in

the
in

a
p-
its
whereL21 denotes the inverse Laplace transform. Comp
ing this with the pure exponential decayc2e22nct that ob-
tains for the dichotomic velocity distribution, we see that t
d-function in f(V) at V50 is entirely responsible for the
second term~which vanishes whenm50!. Further, the time
scale in the exponential part is itself modified from the us
correlation time for a dichotomic process, which is (2nc)21

in the present context, to (11m)(2nc)21, as one might ex-
pect on physical grounds.

We are now in a position to understand the physical ori
of the power-law tail inC(t). The particles of the system d
not undergo any systematic drift in the homogeneous c
Going back to an inspection of the manner in which t
particle under consideration skips from one free trajectory
another through collisions, we see that, if the stationary
locity distributionf(V) of the gas particles hasa finite prob-
ability mass at V50, the particle will repeatedly find itsel
on a trajectory with zero slope, i.e., revert to the zero~equal
to average! velocity state. This persistence is like a memo
effect, and it shows up as a slow~power-law! decay ofC(t).
The compactness or otherwise of the support off(V) does
not play a role as far as this aspect is concerned.

It is also possible to find the precise conditions und
which the leading asymptotic behavior ofC(t) starts with a
t23 term: this is so iff(V) is at least twice differentiable a
the origin, and, moreover, bothf(0) andf9(0) do not hap-
pen to be zero.@We recall thatf(V) has been taken to be
symmetric function, so that all its derivatives of odd ord
vanish at the origin.# The general asymptotic expansion
C(t), for a distributionf(V) that is differentiable a suffi-
cient number of times atV50, reads
r-

l

n

e.

o
-

r

r

C~ t !;2
1

~nt!3 @f~0!26a~0!f2~0!2a2~0!f9~0!#

2
1

256a~0!~nt!4 @2315f~0!13456a~0!f2~0!

22880a2~0!f3~0!119840a3~0!f~0!f9~0!

22208a2~0!f9~0!2256a~0!f~ iv !~0!#2¯ .

~23!

This extends the result presented in Eq.~14! for a Maxwell-
ian. Thus, for a distributionf(V) that isregular at the origin
and has a nonvanishing derivative of some finite order at
point, implying that there is a nonzero probability mass
V50, C(t) will certainly have a power-law decay: Iff(0)
Þ0, the leading term is generically;t23; on the other hand,
if f(0)50 and its first nonvanishing derivative at the orig
is its (2r )th derivative, the leading term inC(t) is ;t2r 22.

IV. THE INHOMOGENEOUS SYSTEM

We turn now to the inhomogeneous system, in which
particles to the left and right of the piston are initially
different macroscopic states specified by (n2,f2) and
(n1,f1), respectively. The piston now has, in general,
nonvanishing mean drift velocity that asymptotically a
proachesW̄. However, as we shall see, the variance of
2-5
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position indeed increases linearly with time. The quantity
interest is therefore the effective diffusion coefficientD,
which we shall determine. We also find the leadi
asymptotic behavior of the other moments of the posit
~about its mean value!.

In the homogeneous system,D is of course equal to
*0

`C(t)dt ~this integral being absolutely convergent for t
system at hand!. However, owing to the nonstationarity o
the velocity autocorrelation in the inhomogeneous caseD
must now be computed directly from the long-time behav
of the mean square displacement of the piston. T
asymptotic behavior of the piston does not depend on
initial state. We can therefore setV050 in P(X,V,tu0,V0,0)
03110
f

n

r
e
ts

@Eq. ~1!# and integrate it overV to calculate the position
distribution functionp(X,t) of the piston. Using the fact tha
the derivatives of the functionsa andb are given by

a8~W!52E
W

`

dU f2~U !

and

b8~W!5E
2`

W

dU f1~U !, ~24!

we find
p~X,t !5exp$2t@n2a~0!1n1b~0!#%I 0„2t@n2a~0!n1b~0!#1/2
…d~X!1exp$2t@n2a~X/t !1n1b~X/t !#%

3$@n2u~X!ua8~X/t !u1n1u~2X!b8~X/t !#I 0„2t@n2a~X/t !n1b~X/t !#1/2
…

1@n2u~2X!ua8~X/t !u@n1b~X/t !/n2a~X/t !#1/21n1u~X!b8~X/t !

3@n2a~X/t !/n1b~X/t !#1/2#I 1„2t@n2a~X/t !n1b~X/t !#1/2
…%. ~25!
e

e-
-

eral
The variance of the position is given by

E
2`

`

dX„X2^X~ t !&…2p~X,t !. ~26!

In the long-time limit, ^X(t)&5W̄t. Using the asymptotic
behavior of the Bessel functions inp(X,t), the leading be-
havior of the variance is given by

^~X2W̄t !2&;
t5/2

2~pn2a~W̄!!1/2
@n2ua8~W̄!u1n1b8~W̄!#

3E
2`

`

dW~W2W̄!2exp†2t~W2W̄!2

3$@n2/4a~W̄!#1/2ua8~W̄!u

1@n1/4b~W̄!#1/2b8~W̄!%2
‡, ~27!

which simplifies to 2Dt, with a diffusion coefficient given
by

D5
n2a~W̄!

@n2ua8~W̄!u1n1b8~W̄!#2

5
1

2

n2a~W̄!1n1b~W̄!

@n2ua8~W̄!u1n1b8~W̄!#2
. ~28!
This is the general formula sought.
We first note~as a check! that in the special case of th

homogeneous system, Eq.~28! reduces to

D5
a~0!

n
5

1

n E0

`

dU Uf~U !5
^uUu&
2n

, ~29!

in agreement with the known result@3#. As mentioned earlier,
in this caseD must also be equal to the integral of the v
locity autocorrelationC(t). We have verified that this is in
deed so.

Some interesting special cases emerge from the gen
formula of Eq.~28!. If the densitiesn2 andn1 are such that
the drift velocity W̄50 even though one has different~but
symmetric! distributionsf1(V) andf2(V) on either side of
the piston, the formula forD simplifies somewhat. Since
a8(0)52b8(0)521/2, we find

D5
n2a~0!

~n21n1!2 . ~30!

In particular, if f6 are Maxwellians ~with n2AT2

5n1AT1 to ensure thatW̄50!,

D5
n2

~n21n1!2 S 8kBT2

pm D 1/2

. ~31!
2-6
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On the other hand, iff2(V)5f1(V)5f(V), but the
system remains inhomogeneous becausen1Þn2, then W̄
Þ0. For the compact uniform velocity distribution of E
~15!, we find

W̄5c
An22An1

An21An1
~32!

and

D5
c

~An21An1!2
. ~33!

For the discrete distribution of Eq.~18!, we have

W̄5c
~12m!~n22n1!

n.~12m!1n,~11m!
, ~34!

wheren.5max(n2,n1), n,5min(n2,n1). The correspond-
ing diffusion coefficient is found to be

D5
4cn2n1~12m!

@n.~12m!1n,~11m!#3 . ~35!

It is noteworthy that the interplay of the centrald function in
the velocity distribution and the inhomogeneity due to t
different densities on either side of the piston affects even
diffusion coefficient. Settingm50 in the above yields the
corresponding expressions for the dichotomic distribution
Eq. ~11!.

The leading asymptotic behavior of the higher mome

^(X2W̄t) r& can also be determined. Here we merely qu
the salient result obtained. For the even momentsr 52l , it is
straightforward to show~along the same lines as in the ca
of the variance! that ^(X2W̄t)2l&;O(t l). The calculation is
more involved for the odd momentsr 52l 11, but the final
result is that̂ (X2W̄t)2l 11&;O(t l) as well. As the expres
sions obtained for the precise coefficients are lengthy, we
not write them down here.

V. INTERPRETATION AS A STOCHASTIC PROCESS

We conclude by showing that~in the thermodynamic
limit ! the form of the distribution of the position of the pis
ton, in fact that ofany of the particles in the system, i
effectively that of a stochastic process driven by a noise
can be given a direct physical interpretation.

Conventionally, the stochastic approach to single-part
03110
e

f

s
e

o

at

le

dynamics in a many-body system begins with its model
by a stochastic evolution equation involving noise terms w
prescribed statistical properties. One then extracts the co
sponding properties of the driven variable~s!. Here, however,
we have the converse situation. The exact time-depen
one-particle distributions are known, and the task is to id
tify the stochastic process to which the complicated dyna
ics effectively reduces, at least as far as the one-particle
namics is concerned. What kind of stochastic process d
the positionX(t) of the piston~or any other particle! repre-
sent, after the averaging over the initial states of the
particles is done, and the thermodynamic limit taken? And
what kind of ‘‘noise’’ are the combined effects of the oth
particles in the system encapsulated?

It is evident from the rather complicated expressions
P(X,V,tu0,V0,0) and the reduced distributions derived fro
it that X(t) is unlikely to satisfy any simple or standard st
chastic differential equation; nor doesp(X,t) appear to be
the solution of any simple master equation—in particular,
any obvious partial differential equation of finite order. Intr
cate correlations exist, that cannot be neglected. The eff
of recollisions are obviously significant, a direct instance b
ing provided by the form of the first term in Eq.~1!. This
term represents the probability for the piston to find itself
its initial state at timet. Now, the probability that the initial
state of the piston (X5X050,V5V0) persiststill time t ~i.e.,
the piston suffers no collisions till timet! is easily shown to
be simply exp@2t$n2a(V0)1n1b(V0)%#. Thus the extra factor
I 0 in the term proportional tod(X2V0t)d(V2V0) in
P(X,V,tu0,V0,0) is entirely due to the effects of recollision
@3#. As the concept of an effective noise is only meaning
in the thermodynamic limit and when ergodicity obtains, w
must examine for this purpose the structure of the terms
the solutionsother than the ones arising from the returns
any specific initial state.

The occurrence of the Bessel functionsI 0 and I 1 in Eqs.
~1! and~25! seems to suggest some sort of link with dicho
mic diffusion ~i.e., the integral of a dichotomic Markov pro
cess! and the well-known telegrapher’s equation and its
lution. Indeed, in the homogeneous case, withf(V) equal to
the dichotomic velocity distribution of Eq.~11! and V05
6c, Eq. ~25! for p(X,t) does reduce to the solution corre
sponding to dichotomic diffusion@11#, once again except fo
the extra factor ofI 0(nct) in the ‘‘ballistic’’ term represent-
ing the probability of the occurrence of the initial state
time t. But this does not explain the origin of the Bess
functions in the general case. Nor does it really do so eve
the special case referred to, other than the not-very-hel
observation that the solution of the telegrapher’s equa
involves I 0 and I 1 . As the effective ‘‘noise’’ we seek should
be essentially the same for every particle, our argume
should indeed apply to any of the particles, and not just
piston. Proceeding as in the case of the piston~i.e., averaging
over the initial positions and velocities of all the particl
except the piston, and withX050,V050!, we find the fol-
lowing result for the position distribution of thebth particle
at time t:
2-7
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pb~X,t !5exp$2t@n2a~0!1n1b~0!#%@n1b~0!/n2a~0!#b/2I b„2t@n2a~0!n1b~0!#1/2
…d~X!

1exp$2t@n2a~X/t !1n1b~X/t !#%@n1b~X/t !/n2a~X/t !#b/2$@n2u~X!ua8~X/t !u1n1u~2X!b8~X/t !#

3I b„2t@n2a~X/t !n1b~X/t !#1/2
…1n2u~2X!ua8~X/t !u@n1b~X/t !/n2a~X/t !#1/2I b11~2t@n2a~X/t !n1b~X/t !#1/2

…

1n1u~X!b8~X/t !@n2a~X/t !/n1b~X/t !#1/2I b21~2t@n2a~X/t !n1b~X/t !#1/2
…%. ~36!
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HerebPZ. @Settingb50 one recovers the result in Eq.~25!
for the piston, remembering thatI 215I 1 .# The occurrence
of the Bessel functionsI b11 , I b andI b21 shows quite clearly
that we must look for a link to Bessel functions other th
one via the solution to the telegrapher’s equation.

The example of the dichotomic velocity distribution in th
homogeneous case does provide a valuable clue, though
us therefore examine this case for a moment, focusing on
piston, and takingV0 also to be eitherc or 2c, to mask the
effects of any special initial conditions. The actual ‘‘free
trajectories of all the particles are then straight lines w
slopes restricted to the values6c. A little thought shows that
after its first collision, the piston alternately ‘‘rides’’ on a fre
trajectory belonging to the gas on its right, and one belo
ing to the gas on its left. For brevity, we shall refer to the
as ‘‘right’’ and ‘‘left’’ trajectories. ~Which of these the piston
gets on to first, depends on whether its initial velocityV0 is
equal toc or 2c.! Moreover, the piston is alternately hit b
a ‘‘right’’ particle with velocity 2c and a ‘‘left’’ particle with
velocity 1c. The number of right collisions minus the num
ber of left collisions can only take on the values11, 0, and
21. The resulting zigzag path is precisely that of a parti
whose positionX satisfies the stochastic differential equati
Ẋ5cj(t), where j(t) is a stationary dichotomic Markov
process~DMP! alternating between the values61 with a
certain mean switching ratel. Such a DMP is generated by
stationary Poisson pulse process of intensityl. One could
also regard it as made up of two independent Poisson p
processes, each with an intensityl/2, alternating with each
other. This would seem to be a little more closely linked
the present situation, where one might imagine the two st
of j(t) to be related in some sense to the piston being o
right trajectory and a left trajectory, respectively. But t
connection is still far from obvious, and requires some m
work.

Let n1 and n2 be two independent stationary Poiss
processes with respective intensities~i.e., mean rates! l1

andl2, so that their mean values at timet arel1t andl2t.
It is easily shown that theirdifference(n12n2), which can
take on any integer value, has a time-dependent distribu
given by

Pr~n12n25r ;t !5e2~l11l2!t~l1t/l2t !r /2

3I r~2A~l1t !~l2t !…, r PZ. ~37!

It is this distribution that holds the key to understanding t
structure of the one-particle distributions in the problem u
der consideration. Let the piston be at a positionX.0 at
03110
Let
he

-
e

e

se

es
a

e

n

-

time t, on a ~segment! of a free trajectory. Translating th
entire system to bring the initial coordinate of this trajecto
to the origin, the instantaneous velocity of the piston isX/t
~recall that the trajectories are all straight lines, a direct c
sequence of the equal mass condition!. It can be hit by a left
particle provided the latter has a positive velocity~1c in the
case under consideration! that is greater thanX/t. The mean
rate at which this happens is given by the product of
concentrationn of the gas, the magnitude of therelative ve-
locity (c2X/t), and the probability1

2 that the velocity of the
gas particle isc @see Eq.~11!#: in other words,l25 1

2 n(c
2X/t). Similarly, the mean rate at which the piston is hit b
a right particle is given byl15 1

2 n(c1X/t). Moreover, the
number of right collisions minus the number of left collision
only takes on the values11, 0, and21. Putting in all the
foregoing facts and their obvious extension to the caseX
,0, and transforming from the random variable (n12n2)
to X, we are led to the expression

n

2
e2nct$I 0„n~c2t22X2!1/2

…1„~ct1X!/~ct2X!…1/2I 1„n~c2t2

2X2!1/2
…%u~X1ct!u~ct2X!. ~38!

This is precisely the solution forp(X,t) to which Eq.~25!
reduces in this special case,apart from the contribution from
the initial state. The latter ise2nctd(X6ct) whenV056c,
and e2nctI 0(nct)d(X) when V050. It is also worth noting
how the factors of 2@coming from the formula of Eq.~37!#
and 1

2 ~coming from the ratesl6! cancel out in the argumen
of the Bessel functions in Eq.~38!.

These arguments are extended to the general inhom
neous case as follows. When the piston is at positionX at
time t, collision with a left particle is possible provided th
latter has a velocityU in the range (X/t,`), and the magni-
tude of the relative velocity is (U2X/t). Since the gas on
the left has a concentrationn2, and the velocities of its par
ticles are drawn from the distributionf2, the effective mean
rate of left collisions of the piston is given by

l25n2E
X/t

`

dU f2~U !~U2X/t !, ~39!

which is nothing butn2a(X/t). Similarly, in the same given
state the piston can only be hit by a right particle with
velocity in the range (2`,X/t), and it follows that

l15n1E
2`

X/t

dU f1~U !~X/t2U !5n1b~X/t !, ~40!
2-8
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since it is themagnitudeof the relative velocity that appear
in the mean collision rate. This explains the genesis and f
of the argument of the Bessel functions in Eq.~25!. The extra
factors involvingn2ua8(X/t)u andn1b8(X/t) that appear in
the expression forp(X,t) in Eq. ~25! are just the Jacobian
that arise when we transform from the distribution of (n1

2n2) to that of X. Finally, although the pistoncan have
successive left collisions or right collisions in the gene
case, unlike what happens in the case of the dichotomic
locity distribution, the remarkable fact is that their contrib
tion to the probability distributions seems to vanish in t
system at hand. The number of right collisions minus
number of left collisions only takes on the values11, 0, and
21 even in the general case, presumably as a consequen
the smearing out implied by the averaging and the therm
dynamic limit. Likewise, for thebth particle from the piston,
the difference between the number of times the particle
occupied a right trajectory and the number of times it h
occupied a left trajectory up to any timet predominantly
takes on the valuesb and b61 in this limit. The central
valueb of this difference is in fact a consequence of its init
ordering, that is not altered by the collisions. The forego
provides an understanding of the structure of the terms~other
than the contribution due to the initial state! in Eq. ~36!.
or
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In conclusion, we see that the motion of any particle
the system may be regarded, in the thermodynamic limit
being driven by two independent Poisson pulse proces
representing the effects of the gases on the left and righ
the central particle. The intensities~mean rates! of these pro-
cesses have the direct physical interpretation given ab
with regard to Eqs.~39! and ~40!. As a Poisson processper
se is an uncorrelated pulse process, each particle is ef
tively subjected to two independent noises in this prec
sense. However, as the intensity of each noise is st
dependent@the driven variableX appears explicitly in the
limits of integration ina(X/t) andb(X/t)#, the flow ofX is
not given by any simple stochastic differential equation w
additive or even multiplicative noise, which is only to b
expected.
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