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We consider the motion of a test particle in a one-dimensional system of equal-mass point particles. The test
particle plays the role of a microscopic “piston” that separates two hard-point gases with different concentra-
tions and arbitrary initial velocity distributions. In the homogeneous case when the gases on either side of the
piston are in the same macroscopic state, we compute and analyze the stationary velocity autocorrelation
function C(t). Explicit expressions are obtained for certain typical velocity distributions, serving to elucidate
in particular the asymptotic behavior @f(t). It is shown that the occurrence of a nonvanishing probability
mass at zero velocity is necessary for the occurrence of a long-time @{t)n The conditions under which
this is at 2 tail are determined. Turning to the inhomogeneous system with different macroscopic states on
either side of the piston, we determine its effective diffusion coefficient from the asymptotic behavior of the
variance of its position, as well as the leading behavior of the other moments about the mean. Finally, we
present an interpretation of the effective noise arising from the dynamics of the two gases, and thence that of
the stochastic process to which the position of any particle in the system reduces in the thermodynamic limit.
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I. INTRODUCTION (i) one can pass to the thermodynamic limit in a rigorous
manner, andii) the effect of recollisions can beompletely
Exactly solvable “toy” models are important in under- and exactlytaken into account.
standing the dynamic behavior of complex systems made up The renewed interest in the model prompts us to revisit it
of a large number of particles. They also allow us to establisi#nd extend its analysis. We focus on the motion of the central
and understand the limitations of the approximations used iRarticle(which we shall refer to as the “piston” for brevity
genera| to deal with systems of interacting partidesy such aé\ brief recapitulation of the relevant results from earlier
the Boltzmann equation. One such model, consisting of iden¥ork is given in Sec. II. In Sec. Ill we compute and study the
tical hard-point particles moving on a line and interactingstationary velocity autocorrelation functidt) of the pis-
through elastic collisions, was introduced several decadei®n in the homogeneous case, when the gases on either side
ago[1]. Based on the observation that the particles merelyf the piston are in the same macroscopic state, equal
exchange velocities in a collision, Jepsm was able to densities and arbitrary but identical VelOCity dlStrlbUtanS
calculate exp||c|t|y several properties of a gas of such paramend and extend earlier results. The eXpIiCit eXpreSSionS
ticles. Subsequently, Lebowitz and co-workg8s-5] refined ~ Obtained for certain archetypical velocity distributions help
and extended these calculations to include, among other ays analyze the asymptotic behavior@(t) to determine ex-
pects, a comparison with the results of the Boltzmann apactly when a power-law decay may be expected, and when
proximation. Very recently, this model system has been rethe latter is &2 tail. Turning to the inhomogeneous system
visited by Piasecki and Grub6,7], their main motivation  With different macroscopic states on either side of the piston,
being the construction of a one-dimensional analog of thén Sec. IV we determine its effective diffusion coefficient
“adiabatic piston”[8], with a central particle playing the role from the asymptotic behavior of the variance of its position,
of a piston Separating gases at different temperatures arab well as the Ieading behavior of the other moments about
densities to its left and right. Attention has also been focuse&e mean. Finally, in Sec. V we show that there is an appeal-
on several related models from the point of view of the aping and direct interpretation of the effective noise to which
plicability of the Fourier law for heat flux in one-dimensional the many-particle interactions reduce in the thermodynamic
systemg9]. Although the main interest in these specific con-limit as far as one-particle dynamics is concerned, and thus
texts is in the case of an arbitrary ratio of the masses of thef the stochastic process represented by the position of any
piston and a gas particle, the equal-mass case being a singearticle in the system.
lar one in some sense, the analytical tractability of the latter
makes it a valuable theorgtlcal I_aboratory from'wh|c.h Il. RECAPITULATION OF EARLIER WORK
much can be learned. In particular, it offers a model in which
For ready reference, we record briefly the relevant results
of earlier work that are needed for what follows, using the
*Permanent address: Department of Physics, Indian Institute afonvenient notation employed by Piase¢Ki. One starts
Technology—Madras, Chennai 600 036, India. with a system of a finite number of particles, located in the
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interval[ —L,L] of thex axis, with free boundary conditions. the fact that the particles cannot move across each other,
The piston is initially locatedwithout loss of generalityat ~ suffices to solve[2] the problem of determining, among
Xo=0 and has an arbitrary initial velocity,. TheN~ par-  Other quantities, the phase space distribution function of the
ticles to its left andN™ particles to its right are initially at piston (or that of any of the other particlesit any timet
uniformly  distributed  random  positions X;  (j= >0 by averaging over the initial positions and velocities of
—N7,...,0,...N"), with independent, identically distributed the gas particles on both sides of the pisf@®]. In the
velocities V; drawn from normalized velocity distributions thermodynamic limitL —c and N*—o such that one has
¢~ (V), respectively. As the particles merely exchange vefinite densities liN=/L=n" on the left and right of the
locities upon collision, at any instant of time the piston is onpiston, the conditional one-particle distribution function of
one of the “free” trajectoriesX;+V;t. This, together with the piston is found to be

P(X,V,t|0Vo,00=exp{—t[n~ a(Vo)+n*B(Vo)IHo(2t[n~ a(Vo)n™ B(V) 1Y) 8(X—V,t) 8(V—V,) + exp
{—tIn"a(X/t)+n*BXIDTHIN™ ¢~ (V) O(VE—X) O(X—Vot) +nT T (V) B(X— V1) O(Vot—X)]
Xlo(2t[n~ a(X/H)n"BXI) 1Y) +[n~ ¢~ (V) (VE—X) O(Vot—X)(nT B(X/t)/In~ a(X/t))Y?
+nT T (V) O(X— V1) O(X—Vot)(n~a(X/It)/n* BXI) Y21 (2t[n~ a(XI)n* B(XI) YD), (D)

where

LS w
a(W)=deU ¢ (U)(U-W), ,B(W)=f_de ¢ (U)(W-U), (2)

and|l, is the modified Bessel function of ordar For V,=0, this is the result recorded in R¢T].
The velocity distribution of the piston is obtained by integrat®(@X,V,t|0,V,,0) overX, and is given by

P(v,t|o,vo,0)=exp{—t[n*a(vo)+n*ﬁ(vo)]}l0(2t[n*a(vo)n+3(v0)]1’2)5(V—vo)+tfichexp{—t[n*a(W)

+n* BW)THINT ¢~ (V) 8(V=W) B(W—V) +n* ¢ (V) B(W—V) 8(Vo—W) Tl o2t n~ a(W)n* B(W)]"?)
+[N" ¢~ (V)OV=W) 8(Vo—W) (N BW)/n~a(W))2+n" ¢™ (V) (W—V) 6(W— V)
X (N~ a(W)/n* B(W) ]I, (2t[n~ a(W)n* B(W)]*)}. 3

The stationary velocity distribution to which this tendstas E(V_V)z —n’a’(V_V)+n*,B’(V_V)znfla’(V_\/)|+n*,8’(V_V)
— oo is found[7] by using the leading term in the asymptotic 6
expansion ofl ,(z) for large argument, and carrying out the

integral over the resulting Gaussian peakeWVat\W, where s the normalization factor. In general, therefoRe,(V) has

W is the (unique root of the equation a finite discontinuity av=W. The asymptotic drift velocity
of the piston, defined aév(«))=[_.dV VP,.(V), is then
n*a(V_V)zn*,B(V_V). (4) trivially seen to be equal tdV itself, on rewriting the defi-

nition of the latter in Eq(4) as

The normalized asymptotic velocity distribution of the piston _ _ w
is then found to bey P y P V_V—n J@dUUg™ (W) +n* Y. duug* ()

n"fodU ¢ (U)+n* Y. dU¢* (L)

n"¢ (V)OV—W)+n"¢"(V)o(W—-V) . : o
P.(V)= — , In particular, for Maxwellian distributionsp=(V) at tem-
E(W) peratures T*, one has W=0 according asn T~
(5 =n*T7. Sincen(ksT*)"2is essentially the linear friction
coefficient of the corresponding gas, it is tlignamicprop-
where erty, rather than the pressure, that determines the direction of
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the drift of the central particle. The equalitp™ VT~
=n*{T™ as the condition necessary for the piston to have a

PHYSICAL REVIEW B55 031102

C(t)=f dWexp[—nt[ (W) + B(W)]}
drift-free, purely diffusive motion asymptotically, has al- -
ready been pointed out by Jepdén.

We can proceed to show that, in the liniit>o0, every X
particle attains the new stationary velocity distribution

lo(2Nnt[ (W) B(W) VW2 (W)

P..(V) (in the thermodynamic limit, of courseThis remains ) , La(W)+B(W)]
true even if¢~=¢"=¢, butn~#n*. Thus, although the Fnfa(W)=Wa'(W)] [a(W)B(W) ]2

system under study does not have strong mixing properties,
in the sense that the set of “free” trajectori¢X;+ V;t} is
fixed for all time once the initial valuegX;} and{V;} are
specified, the effect of the collisions of the particles with the
piston and among themselves is to mix the initial velocity
distributions on the right and left of the piston. This happens
by a “diffusion” of the “interaction front” of the piston with ~ where the functiongy(W) and B(W) have been defined in
the other particles, through successive collisions. Only in th&qgs. (2). It is readily verified that in the special case of a
special case in which dichotomic velocity distribution

X112t a(W) B(W)]H9)

—2|o(2nt[a(W)B(W)]1’2)H, (10)

& (V)= ¢~ (V)= $(V) = [ 8(V+c)+ (V—0)],
n=nt=n, ¢ =¢ = ®) i (12)

i.e., when the gases on both sides of the piston are initially i?"e obtains from Eq.10) the exponential decay

the same macroscopic state, ddes(V) reduce to¢(V)
itself. We refer to this as the “homogeneous system” in what
follows, in contrast to the more general inhomogeneous case.
For simplicity, we shall also assume thai{(V)= ¢(—V) Similarly, the known result for a Maxwelliag(V) is also
throughout this paper. recovered.
C(0) is of coursefdW WP¢p(W), and C(t) initially de-
creases linearly with, with a slope that works out to

C(t)=c?e 2nct, (12)

Ill. VELOCITY AUTOCORRELATION IN THE
HOMOGENEOUS SYSTEM ®
(dC/dt)t:0=—2nf dWIW2 (W) (W) + [ (W)
We now study thestationary velocity autocorrelation —w
function of the piston, which requires that the initial distri-
bution be a stationary one. As mentioned above, this only
happens in the homogeneous case, to which we therefore _ _
restrict ourselves in the rest of this section. The results to b# particular, for a Maxwelliang(V) one can evaluate the
obtained are in fact valid foany particle in the system. integral involved to obtaindC/dt),— o= —4n(kgT/7m)"2

SinceW=0 in this case, the autocorrelation function is In the general case(;(t) IS @ nonmonotonic function of
given by that becomes negative beyond a certain point and eventually

approaches zero from below &s>~. The long-time behav-
ior of the velocity autocorrelation yields valuable informa-
tion on the mixing properties and memory effects in the sys-
tem. The extraction of this behavior from E@10) is
nontrivial. It is helpful to note that (W) is a nonincreasing
function of W, with a(W)~—-W as W— —« and a(x)
=0; whereasB(W) is a nondecreasing function &¥, with
B(—»)=0 and B(W)~W as W—oo. Further, whenever
This quantity has been considered in earlier work both for ap~ (V)=¢ " (V)=¢(V), we have B(W)=a(—W)=W
Maxwellian ¢(V) [2] and in more general term8], and  +«a(W). An adequate number of terms in the asymptotic
been found to exhibit a3 power-law tail. However, the expansions of the Bessel functions and the other terms in the
conclusions regarding the conditions under which this hapintegrand in Eq.(10) must be retained, consistent with the
pens require modification; nor is the exponent of the powefact that nonvanishing contributions to the integral come
law invariably equal to—3. We therefore analyze the ques- from the regionW?t=0(1). As already mentioned, it has
tion afresh, extending and amending some of these earlidreen showri2,3] that C(t) has a leading asymptotic behav-
results. We also give a physical interpretation of the circumior ~t =2 for a Maxwelliang (V) [10]. We have corroborated
stances leading to a power-law decayGCif). this, and also extended the result to the next term in the
On inserting Eq(3) in Eg. (9) and simplifying, we obtain asymptotic expansion: after a very lengthy calculation, we
the expression find

—Wa'(W)]?}. (13

C(t)=(V(to)V(t+to))

=f dvf dVo VoVP(V,t

0V0,.006(Vo). (9)
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1 m |2 5 1 m C/C(0)
Ct)~- (nt)3\ 27kgT 27 8(nt)*| 2mksT 0.01¢
| 177 3157 367 14
6 : (14 o.005}
Based on the emergence of & tail in the Maxwellian case o t
(and also for another extended distributigitV) that falls 2 4 6 8

off like |V|~%), as opposed to an exponential ded&g.
(12)] for the dichotomic distribution, it has been concluded 0
[3] that C(t) decays exponentially ifp(V) is a compact
(“finite” ) distribution, and has a power-law tail whenever
the support ofé(V) is noncompact. However, as we now _, 4, |
proceed to show, the actual criterion for the emergence of a
power-law tail in C(t) turns out to be theexistence of a FIG. 1. Asymptotic behavior of the normalized velocity auto-
nonzero probability masat V=0 in ¢(V). (The physical correlationC(t)/C(0) as a function of timéin units of 1hc), for a
reason for this will be described subsequepffine issue is  uniform distributioné(V) [Eq. (15)].

most clearly elucidated with the help of two simple yet ar-

chetypical distributionss(V) for which C(t) can be deter- 1-u

mined analytically, and exact asymptotic expansions ob-$(V)=ud(V)+——[8(V+c)+s(V-c)], Osu<l,
tained. These are, respective(y) a uniform distribution in (18)
the finite interval—c<sV<+c, and(ii) a discrete distribu-
tion consisting ofé-functions atV=*c and an additional
one atvV=0. The former has a compact support, andgt)
turns out to have & 2 tail; while the latter, in contrast to the
dichotomic distribution of Eq(11), leads in fact to an even
heavier tail (-t~ %?) for any nonvanishing weight of the
central 5function. We also extend the result in Ed4) to

.005 ¢

which is an extension of the dichotomic distribution of Eq.
(11) to include an additionals-function at V=0 with a
weight 4. Once again,a(W) vanishes identically folW
>c. ForW=c, it is piecewise linear, being given by

the case of a generdl(V) that is sufficiently smooth at the -W, W<-c
origin.
(i) Accordingly, let us consider the uniform distribution a(W)=1 2(1-w)c—3(1+u)W, —c<W<0 (19

1 2(1—u)(c—W), 0O=sW==<c.
d(V)= ¢ O(V+c)o(c—V). (15
We obtain in this caséwith 7=nct as beforg¢

For this distribution,a(W) is respectively equal te- W for

W=<-c, and c—W)%4c for —c<W=+c; it vanishes 1
identically for W>c. Recall also that3(W)=W-+ a(W). C(r)=c¥(1—pu)e " 1+(1—,u)7’f du eti-wr
Inserting these in Eq(10) and carrying out the necessary 0
calculations, we finally obtain a closed-form expression for 1—p+ pu
C(t). In terms of the dimensionless time=nct, this reads [Wll(rg(u))—lo(rg(u)) ) (20
2
cc|1 1 1 13
B BT _ -7 -0, C(1)/C(0)
C(’T) 402 4T+ 4T+1 T)e 1F1(2,2,T> y 0 02
(16)
where ;F, is the usual confluent hypergeometric function. 0.01
The slope at the origin iBdC(7)/d7],-o= — 2¢2. The ana-
lytic form of C(7) enables us to write down its exact 0
asymptotic expansion for large
-0.01
" (n—1)(n—2)(2n—-5)!!
C(r)~—c2> . . (1D -0.02
n=3 T
-0.03

As mentioned earlier, this starts with &7 3) term, al-

though the support op(V) is compact. Figure 1 depicts the  FIG. 2. Asymptotic behavior of the normalized velocity auto-

long-time behavior of the correlation function. correlationC(t)/C(0) as a function of timin units of 1hc) for
(ii) Next, consider the discrete distribution different values ofu, for the discrete distributiog(V) in Eq. (18).
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where g(u)={(1—w)(1—W[(1— )+ (1+x)ul}*2 The  ThusC(t) now has an eveslowerpower-law decay, starting
slope at the origin i§dC(7)/d7],_o=—(1—u)(2—u)c?  with anO(t~*? term, as long ag.#0, i.e., as long as there
The long-time behavior in this case is, however, quite differ-is a finite probability mass &= 0. Whenw =0, all the terms

ent from that found in the previous cases. Owing to the sinin the asymptotic expansion vanish, a@¢t) reverts to the
gularity in ¢(V) at the origin,a’ (W) has a jump aWW=0.  exponential decay that obtains in the case of the dichotomic
As a consequence, the integrand in Etp) is now a func-  distribution, Eq.(12). Figure 2 shows the long-time behavior
tion of W rather thanW. This leads to the occurrence of of the correlation function for different values of the weight
both even and odd powers [0 in the smallw expansion of ~ parameteru, including (for ready comparisonthe case
the integrand, using which the asymptotic expansio@ @ u=0.

is determined. For the latter, we now obtain The relative roles of thé-functions in¢(V) atV=0 and
) 1 5 ) gtVz *c may be examined a little more cllosely. This aspect

Clr)~— pe” (1—w)™*  pc 3B—2p) is not so transparent in the representation of &) for
P2 a2m T P2 32m 1)1 : C(t), but is made more manifest with the help of its Laplace

(21 transform. This enables us to wri€t) in the form

o 2nc(1+ ) su+[s?+2sno1—pu)]Y?

_ _ 2 —
CO=A=p)e) g tul l[(1+,L)s+2nc]{s+ﬂ[s2+2sno(1—,L)]1’2+2nc(1—ﬂ)}’

(22

where £~ ! denotes the inverse Laplace transform. Compar- 1
ing this with the pure exponential decage 2"°! that ob- C(t)~— W[¢(0)—6&(0)¢2(0)—a2(0)¢"(0)]
tains for the dichotomic velocity distribution, we see that the
S-function in ¢(V) at V=0 is entirely responsible for the
second termwhich vanishes whep. = 0). Further, the time _
scale in the exponential part is itself modified from the usual 256a(0)(nt
correlation time for a dichotomic process, which i€ !
in the present context, to (Au)(2nc) %, as one might ex- —2880%(0) $3(0) +19840+3(0) p(0) " (0)
pect on physical grounds.

We are now in a position to understand the physical origin —2208¢%(0) $"(0) — 256a(0) 1V)(0)]—--- .
of the power-law tail inC(t). The particles of the system do
not undergo any systematic drift in the homogeneous case. (23)
Going back to an inspection of the manner in which the
particle under consideration skips from one free trajectory to
another through collisions, we see that, if the stationary veThis extends the result presented in Etf) for a Maxwell-
locity distribution ¢ (V) of the gas particles hasfinite prob-  ian. Thus, for a distributio(V) that isregular at the origin
ability mass at \=0, the particle will repeatedly find itself and has a nonvanishing derivative of some finite order at that
on a trajectory with zero slope, i.e., revert to the zergual ~ Point, implying that there is a nonzero probability mass at
to averagp velocity state. This persistence is like a memory V=0, C(t) will certainly have a power-law decay: t(0)

)3 [—3154(0) + 3456x(0) $*(0)

effect, and it shows up as a sldpower-law decay ofc(t).  #0, the leading term is genericaltyt~®; on the other hand,
The compactness or otherwise of the supporty¢¥) does if ¢(0)=0 and its first nonvanishing derivative at tbeﬁgrlgm
not play a role as far as this aspect is concerned. is its (2r)th derivative, the leading term iB(t) is ~t""*.

It is also possible to find the precise conditions under
which the leading asymptotic behavior 6{t) starts with a
t~2 term: this is so if¢(V) is at least twice differentiable at
the origin, and, moreover, both(0) and¢”(0) do not hap- We turn now to the inhomogeneous system, in which the
pen to be zerofWe recall thate(V) has been taken to be a particles to the left and right of the piston are initially in
symmetric function, so that all its derivatives of odd orderdifferent macroscopic states specified by (¢~) and
vanish at the origif. The general asymptotic expansion of (N*,¢"), respectively. The piston now has, in general, a
C(t), for a distribution¢(V) that is differentiable a suffi- nonvanishing mean drift velocity that asymptotically ap-
cient number of times &¥=0, reads proachesW. However, as we shall see, the variance of its

IV. THE INHOMOGENEOUS SYSTEM
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position indeed increases linearly with time. The quantity of(Eq. (1)] and integrate it ovel to calculate the position
interest is therefore the effective diffusion coefficiedt  distribution functionp(X,t) of the piston. Using the fact that
which we shall determine. We also find the leadingthe derivatives of the functions and 8 are given by
asymptotic behavior of the other moments of the position
(about its mean valye , _ * _

In the homogeneous syster®, is of course equal to « (W)__deu ¢~ (U)
J5C(t)dt (this integral being absolutely convergent for the
system at hand However, owing to the nonstationarity of and
the velocity autocorrelation in the inhomogeneous c#ise,

must now be computed directly from the long-time behavior LA JW N
of the mean square displacement of the piston. The AW _mdU ¢ (), 249
asymptotic behavior of the piston does not depend on its
initial state. We can therefore sé=0 in P(X,V,t|0V,,0)  we find
|
p(X,t)=exp{—t[n~a(0)+n*B(0)]}H(2t[n"a(0)n* B(0)]¥)8(X)+exp —t[n~ a(X/t)+n* B(X/t)]}
X{[n~6(X)|a’ (XIt)|+nta(—=X)B" (XIt)]1o(2t[n~ a(X/t)n" B(X/1)]¥?)
+[n~0(=X)|a"(XIt)|[n* BXI)IN~ a(XIt)]*2+n* 6(X) B’ (X/t)
X[~ a(X/t)/n" B(XI1) Y212t n~ a(X/t)n" B(X/1)]Y)}. (25)
|
The variance of the position is given by This is the general formula sought.
We first note(as a checkthat in the special case of the
jm dX(X— (X(D)2p(X,1). (26) homogeneous system, E@8) reduces to
. - — . . 1 (=
In the long-time limit, (X(t))=Wt. Using the asymptotic D:ﬂ:_f du U¢(U)=M, (29)
behavior of the Bessel functions p(X,t), the leading be- n nJo 2n
havior of the variance is given by
5/2 in agreement with the known res(i&]. As mentioned earlier,
(X=Wt)2)~ ——————[n"|a’(W)| +n" 8" (W)] in this caseD must also be equal to the integral of the ve-
2(7rn*a(V_V))1’2 locity autocorrelationC(t). We have verified that this is in-
deed so.
Some interesting special cases emerge from the general
« fw dW(W—V_V)Zexp[—t(W—V_V)Z formula of Eq.(29). If the densitiesn™ andn* are such that

the drift veIocityV_V=0 even though one has differe(tiut
symmetri¢ distributionsg * (V) and¢ (V) on either side of
the piston, the formula foD simplifies somewhat. Since

x{[n~l4a(W) 13 o' (W)] a'(0)=—B'(0)=—1/2, we find

+[n"/4B(W)]28' (W)}2], 27
which simplifies to Dt, with a diffusion coefficient given D= —zr[ a(0+) . (30
by (n"+n")
.y In particular, if ¢~ are Maxwellians (with nJT-
D= i (W) — =n*{T" to ensure thaw=0),
[n"[a’(W)|+n"B"(W)]?
_ l n_a(V_\/)+n+ﬁ(V_V) . 29 . n- <8kBT)1/2 a1
2[n"[a'(W)|+n*B' (W] T2 Tam 3
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On the other hand, iy (V)=¢" (V)=¢(V), but the dynamics in a many-body system begins with its modeling

system remains inhomogeneous becanse: n—, then W by a stochastic evolution equation involving noise terms with
+0. For the compact uniform velocity distribution of Eq. Prescribed statistical properties. One then extracts the corre-

(15), we find sponding properties of the driven variafgle Here, however,
we have the converse situation. The exact time-dependent
— \/n_’— \/n_+ one-particle distributions are known, and the task is to iden-
—c Jn+n* (32) tify the stochastic process to which the complicated dynam-

ics effectively reduces, at least as far as the one-particle dy-
namics is concerned. What kind of stochastic process does
the positionX(t) of the piston(or any other particlerepre-
and sent, after the averaging over the initial states of the gas
particles is done, and the thermodynamic limit taken? And in
what kind of “noise” are the combined effects of the other
c particles in the system encapsulated?
b= m (33 It is evident from the rather complicated expressions for
P(X,V,t|0V,,0) and the reduced distributions derived from
it that X(t) is unlikely to satisfy any simple or standard sto-
chastic differential equation; nor doggX,t) appear to be
For the discrete distribution of E418), we have the solution of any simple master equation—in particular, of
any obvious partial differential equation of finite order. Intri-
cate correlations exist, that cannot be neglected. The effects
— (l=w)(n —n") (34) of recollisions are obviously significant, a direct instance be-
Nno(l—pw)+n_(1+u)’ ing provided by the form of the first term in EQL). This
term represents the probability for the piston to find itself in
its initial state at time. Now, the probability that the initial
) state of the pistonX=X,=0,V=V,) persistdtill time t (i.e.,
wheren. =max@",n"), n.=min(n",n"). The correspond- the piston suffers no collisions till tim® is easily shown to

ing diffusion coefficient is found to be be simply exp—t{n~a(Vo)+n* B(Vy)}]. Thus the extra factor
o in the term proportional toS(X—Vgt)d(V—Vy) in
—nt1 P(X,V,t|0,V,,0) is entirely due to the effects of recollisions
dcnn(1—pw) X N .
D= 1 TR (35  [3]. As the concept of an effective noise is only meaningful
[n-(1=m)+n(1+p)] in the thermodynamic limit and when ergodicity obtains, we

must examine for this purpose the structure of the terms in

It is noteworthy that the interplay of the centfunction in  the solutionsother than the ones arising from the returns to
the velocity distribution and the inhomogeneity due to the@ny Specific initial state. . _
different densities on either side of the piston affects even the The occurrence of the Bessel functidgsandl, in Egs.
diffusion coefficient. Settingu=0 in the above yields the (1) and(25) seems to suggest some sort of link with dichoto-
corresponding expressions for the dichotomic distribution ofmic diffusion (i.e., the integral of a dichotomic Markov pro-
Eq. (11). cess and the well-known telegrapher’s equation and its so-

The leading asymptotic behavior of the higher momentdution. Indeed, in the homogeneous case, wily) equal to

((X—Wt)") can also be determined. Here we merely quotehe dichotomic velocity distribution of Eq(11) and Vo=
the salient result obtained. For the even moment&l, itis ~ *¢, Eq. (25 for p(X,t) does reduce to the solution corre-
straightforward to showalong the same lines as in the casesponding to dichotomic diffusiofil1], once again except for

of the variancgthat((X—Wt)2)~O(t'). The calculation is the extra factor of y(nct) in the “ballistic” term represent-
more involved for the odd moments=2I+1, but the final INg the probability of the occurrence of the initial state at
result is that((x_wt)2I+l>~o(tl) as well. As the expres- time t. But this does not explain the origin of the Bessel

sions obtained for the precise coefficients are lengthy, we di!nctions in the general case. Nor does it really do so even in
not write them down here. the special case referred to, other than the not-very-helpful

observation that the solution of the telegrapher’s equation
involvesl, andl, . As the effective “noise” we seek should
be essentially the same for every particle, our arguments
We conclude by showing thatin the thermodynamic should indeed apply to any of the particles, and not just the
limit) the form of the distribution of the position of the pis- piston. Proceeding as in the case of the pigt@n, averaging
ton, in fact that ofany of the particles in the system, is over the initial positions and velocities of all the particles
effectively that of a stochastic process driven by a noise thagxcept the piston, and witky=0,V,=0), we find the fol-
can be given a direct physical interpretation. lowing result for the position distribution of theth particle
Conventionally, the stochastic approach to single-particlet timet:

V. INTERPRETATION AS A STOCHASTIC PROCESS
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po(X,t)=exp{—t[n"a(0)+n* B(0)]}[n* B(0)/n" a(0)]”?2t[n~ «(0)n* B(0)]YHS(X)
+exp[—t[n~ a(X/t)+n* B(XI)]Hn" BXI) N~ a(XI1)]P2[n~6(X)|a’ (XIt)|+n*o(—X)B" (X/t)]
X2t N~ a(X/t)n* BXI) YD) +n~6(— X)|a’ (XIV)|[n* BXI) N~ a(XIt) 1Yy, (2t[n~ a(X/t)nt B(X/1)]Y?)
+ntaX) B (XI)[ N~ a(X/t)In* BXI) Yy (2t[n~ a(X/t)nT B(X/1)]¥D)}. (36)

Hereb e Z. [Settingb=0 one recovers the result in E@5  time t, on a(segment of a free trajectory. Translating the
for the piston, remembering that ;=1,.] The occurrence entire system to bring the initial coordinate of this trajectory
of the Bessel functionk, . 1, I, andl,_4 shows quite clearly to the origin, the instantaneous velocity of the pistoiXis
that we must look for a link to Bessel functions other than(recall that the trajectories are all straight lines, a direct con-
one via the solution to the telegrapher’s equation. sequence of the equal mass conditidhcan be hit by a left
The example of the dichotomic velocity distribution in the particle provided the latter has a positive velodityc in the
homogeneous case does provide a valuable clue, though. Lesdise under consideratipthat is greater thaX/t. The mean
us therefore examine this case for a moment, focusing on thete at which this happens is given by the product of the
piston, and taking/, also to be eithec or —c, to mask the concentratiom of the gas, the magnitude of tmelative ve-
effects of any special initial conditions. The actual “free” locity (c—X/t), and the probability} that the velocity of the
trajectories of all the particles are then straight lines withgas particle isc [see Eq.(11)]: in other words\ ~=3n(c
slopes restricted to the valuesc. A little thought shows that  — X/t). Similarly, the mean rate at which the piston is hit by
after its first collision, the piston alternately “rides” on a free a right particle is given by * = 3n(c+ X/t). Moreover, the
trajectory belonging to the gas on its right, and one belongaumber of right collisions minus the number of left collisions
ing to the gas on its left. For brevity, we shall refer to theseonly takes on the values 1, 0, and—1. Putting in all the
as “right” and “left” trajectories. (Which of these the piston foregoing facts and their obvious extension to the c¥se
gets on to first, depends on whether its initial velodftyis <0, and transforming from the random variable™( v™)
equal toc or —c.) Moreover, the piston is alternately hit by to X, we are led to the expression
a “right” particle with velocity —c and a “left” particle with
velocity +c. The number of right collisions minus the num- n
ber of Blleft collisions can only ?ake on the valued, 0, and Eefnﬁ{l0(”(Czt2_xz)l/2)+((CHX)/(Ct_X))UZ'1(n(C2t2
—1. The resulting zigzag path is precisely that of a particle
whose positiorX satisfies the stochastic differential equation ~ — X))} 6(X+ct) 6(ct—X). (39
X=cé&(t), where &(t) is a stationary dichotomic Markov . i i ,
process(DMP) alternating between the valuesl with a | NS is precisely the solution fop(X,t) to which Eq.(25)
certain mean switching rate Such a DMP is generated by a '¢duces in this special casngjgtcirom the contribution from
stationary Poisson pulse process of intenaityOne could "€ 'n'_t:fcllt state. The latter ie” "*'5(X £ ct) whenVo=*c,
also regard it as made up of two independent Poisson puld'de "“lo(nct) 5(X) whenVy=0. It is also worth noting
processes, each with an intensii2, alternating with each howlthe factors of 2coming from the formula of Eq(37)]
other. This would seem to be a little more closely linked to@ndz (coming from the rate’ ~) cancel out in the argument
the present situation, where one might imagine the two state® the Bessel functions in E¢38). _
of £(t) to be related in some sense to the piston being on a 1h€Se arguments are extended to the general inhomoge-
right trajectory and a left trajectory, respectively. But the'€0US case as follows. When the piston is at posiXoat
connection is still far from obvious, and requires some mordiMe t, collision with a left particle is possible provided the
work. latter has a velocity in the range X/t,«), and the magni-
Let »* and v~ be two independent stationary Poisson tude of the relative velo_cit)i isyY —X/t). Sinc_:(_e the gas on
processes with respective intensitié., mean ratds * the left has a concentratl(m , _anq th§ velocities _of its par-
and\ ~, so that their mean values at timare\ *t and\ —t. ticles are drawn from the distributiop™, the effective mean
It is easily shown that theidifference(v* — »~), which can  rate of left collisions of the piston is given by
take on any integer value, has a time-dependent distribution

given by A’zn*JTdU ¢ (U)(U—X/t), (39
X/t

P +_ - 1) = —(\THA)t ANt r/2
-y =ri=e ( ) which is nothing buth™ «(X/t). Similarly, in the same given
X1 (2y(NT)(NTT), rel. (37 state the piston can only be hit by a right particle with a
velocity in the range {0, X/t), and it follows that
It is this distribution that holds the key to understanding the
. Y . Xt
structure of the one-particle distributions in the problem un- )\+:n+f dU ¢ (U)(X/t—U)=n*B(X/t), (40)
der consideration. Let the piston be at a positkr0 at % '
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since it is themagnitudeof the relative velocity that appears  In conclusion, we see that the motion of any particle in
in the mean collision rate. This explains the genesis and fornthe system may be regarded, in the thermodynamic limit, as
of the argument of the Bessel functions in E2f). The extra  being driven by two independent Poisson pulse processes
factors involvingn™|a' (X/t)| andn™ B’(X/t) that appear in  representing the effects of the gases on the left and right of
the expression fop(X,t) in Eq. (25 are just the Jacobians the central particle. The intensitiémean ratesof these pro-
that arise when we transform from the distribution of"( cesses have the direct physical interpretation given above
—v7) to that of X. Finally, although the pistortan have  ith regard to Eqs(39) and (40). As a Poisson procegeer
successive left collisions or r|ght collisions in the generalse is an uncorrelated pu'se process, each partic|e is effec-
case, unlike what happens in the case of the dichotomic veively subjected to two independent noises in this precise
|0City distribution, the remarkable fact is that their contribu- sense. However, as the intensity of each noise is state-
tion to the probability distributions seems to vanish in thedependen[the driven variableX appears explicitly in the
system at hand. The number of right collisions minus thaimits of integration ina(X/t) and 8(X/t)], the flow ofX is
number of left collisions only takes on the valued, 0, and  not given by any simple stochastic differential equation with

—1evenin the general case, presumably as a consequencegfditive or even multiplicative noise, which is only to be
the smearing out implied by the averaging and the thermogypected.

dynamic limit. Likewise, for théoth particle from the piston,
the difference between the number of times the particle has
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