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Spatial behavior of anomalous transport
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We present a general derivation of one-dimensional spatial concentration distributions for anomalous trans-
port regimes. Such transport can be captured in the framework of a continuous time random walk with a broad
transition time distribution. This general theory includes a Fokker-Planck equation as a particular limiting case.
All of the concentration profiles, as well as the associated temporal first passage time distributions, can be
written in terms of a single special functidithat belongs to the class of Fox functipngn addition, we
consider the first two moments of the spatial concentration distributions, and determine not only their scaling
behavior with time but also the coefficients and correction terms.
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[. INTRODUCTION formula derived in4]. This formula enables one to approxi-
mate an exact solution for large values of the arguniseé
The well-known continuous time random walETRW)  also Appendix A. Thus the accuracy of the McLean and
framework, initially proposed by Montroll and Weig4], Ausman[13] empirical formulas could not be checked rigor—
Scher and Lax§2], Montroll and Schef3], and Scher and ©0usly and was assumed to be reasonable. Moreover, with the
Montroll [4], is inherently suited to characterizing and quan-development of fast computers there is today no reason not
tifying anomalous(non-Fickian transport. Such transport © Use the exact solutions developed here.

cannot be described by classical Gaussian models. In a Spatial profiles have also been obtained fer £<1 us-

CTRW framework one assumes that a moving particleIng a fractional derivatives approadh.g.,[14]). The frac-

(trace) undergoes random transitions in space according tc;[ional derivatives formalism is mathematically equivalent to

in general, a coupled space-time probability density functior?enerahzed random walks, if one focuses on algebraic long-

. ailed transition time and distance distributidiesg.,[7]). We
(PDF?'. Herg, as eIsewher[é},S], we concenj[rate ona W'd.e observe that an unfortunate, “propagating error” appears in
transition time PDRy(t), with an asymptotic algebraic tail

i _ g many papers dealing with CTRW and fractional derivatives:
for long times: () ~t with constantB>0. The case j; is often suggested that the case B<2 is already in the
B>2 leads to Gaussian transport while the intervais®  domain of attraction of the central limit theorefsee[14—
<1 and 1< p<2 lead to different anomalous transport re- 17] and references thergiand thus need not be considered
gimes[5,6]. In the discussion below, we shall refer to this separately. As we show in Sec. Il, this is only true in the case
temporal formulation of the governing PDF as “standard” of no spatial bias, i.e., for symmetric random walks. In gen-
CTRW, in contrast to Ley flight formulations(which arise eral, the infinite second temporal moment ift) when 1
for wide transition length distributions; it is argued[ifi that <3<2 leads to a transport behavior that is different from
Levy flight formulations are inadequate in some physical apthe Gaussian solution distributions and their temporal evolu-
plications, e.g., groundwater hydrologgyr a mixed case of tion.
wide distributions in both space and time. In analogy to a Multidimensional aspects of CTRW are analyzed in
commonly used derivation of a Fokker-Planck equation fron{16,18. As we show in Sec. IlIB, the conclusion ¢16]
a master equation, Berkowitet al. [7] consider a general regarding the peak position at the origin is inexact.
CTRW and obtain a Fokker-Planck equation as a particular In this paper we develop one-dimensioraD) spatial
case. concentration distributionéSCDs for all possible values of

A physical picture of particle transport, emphasizing tem-5 which follow from “standard” CTRW. We show their in-

poral aspects at small length scales, has been applied s _rconne_ction and present a}ll the c_listributions, including
cessfully to laboratory and field experimental data, as well a PTgé,Dm_terms of done special fugctlon. W? ntpte hehr$ tqa‘t
to numerical simulations of particle transport in geological e IS a residence-averaged concentration whiie the

; . FPTD is a flux-averaged concentrati¢im the case of no
medla[_8—_12]. TO dgte, known reSL_lIts of CTRW prOV'd.e tem- backflow). Spatial profile concentrations assuming no back-
poral distributiondi.e., so-called first passage time distribu-

. ) . flow are developed in Sec. Ill, while SCDs with backflow are
tions (FPTDS)] fqr a_II pqssmle values oB [4'.51 and .s.patlall discussed in Sec. IV. One of the major characteristics of the
concentration distributions for some specific waiting time

tracer transport is the appardpt effective dispersivity and

=1 3
Plng an(lj va:jue_s O’i_ 2 af“?' 2 I[?]. M(I:Le?n and _A:Jsman its behavior in the course of time. We present and develop
[ ] eveloped simple empirical formuias for spat|a.con.cen-the “standard” CTRW-based predictions of this quantity in
trations, for 6<B<1. These authors used approximationsgg.

(so-called no backflow, see Sec) lsimilar to what we
present here, but neglected the steepest descent asymptotic || NON-GAUSSIAN BEHAVIOR FOR 1 <g<2

In this section we show that non-Gaussian propagators
*Electronic address: brian.berkowitz@weizmann.ac.il arise in cases where<1B<?2 if there is a bias [(#0)
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present, i.e., we show that the first momenif (t) being ingtoD=0 and adfunction in Eq.(4)], thenSy,=1N(t) is
finite is not sufficient to have Gaussian behavior. The correchot deterministic and will display some spreading depending
(Up to the Ieading terl)rbehaVior of the standard deviation of on w(t) Of course, foﬂ_zo no such prob|em arises and one
the propagatorr(t) was first calculated by Shlesingel,  j,yeed recovers Ed4) but for 1#0 the “correction” to the

showing that, for +8>2, o7 (t)~ 1t ~#" grows faster than = Gaussian is the leading term. The calculations for the spatial
tY2. However, this result remained unnoticed later; here wenoments in the case<1B<2 for the decoupled space-time
present an argument given in one such pdfét and show single transition function are given in Appendix B. It can be
its error. First, we note that it is reasonable to assume that €een there that even for the case of a finite second temporal
two similar values of3 are used to describe the same trans-moment of y(t), when indeed the Gaussian is approached
port process, with one value slightly smaller than 1 and theysymptotically, there are two distinct contributions to the
othe_r value sllghtly larger than_ 1, the resultlng b_ehaVIor, 'n‘varianceo-f(t) of the propagator—one comes from the dis-
cluding the scaling of the spatial moments with tlmBe, shouldyipytion of single transition lengths and the other from the
be similar. Since for & 8<1, the scaling isr|(t)~t", the  gjstribution of single transition times. We thus conclude that
gxponent of should be qlose to laic;ébotﬂ/l andg\1; the case ¥ 8<2 with 1#0 does not lead to a Gaussian
n (\:/Smrast, Lor a tGaUSS'an Wehh f ’ Shiesi I.[15] distribution and constitutes another anomalous regime lying
5060 r?gr?a;ﬁe ;A(I)?npea(r)arl?riﬁgl iortg?on bes(;lu@rse'm. ’ between the self-similar case okQB<1 and the Gaussian
P- e P 9 gn Y ours. (B>2). In other words, in the presence of a bias, in the case
An important random variable representing the randomB<2 the contribution to the dispersion coming framt>0
walk is the sumSy , where is of secondary importance for long times. Furthermore, the
Sy=Xi+ o+ Xy, (1) fo_rmuIaSN(t)= IN(t) is correct for anyy(t), including.those
with 0<B8<1, as long ass7=0; when we determine the
and theX; are identically distributed random variables eachSCDs for a no-backflow approximatidisee beloyw we ac-

with mean| and variancea% If the variance is finite then tually calculate the distribution of N(t), i.e., Fscp (L

the central limit theorem can be invoked to obtain the Gauss= Sy ;t).
ian probability density, say in one dimension,
IIl. SPATIAL CONCENTRATION DISTRIBUTIONS

f(x)=lim Prox<Sy/ \/N<X+ dx] WITHOUT BACKFLOW
N— o
) ) A. Derivation of SCD
— -1/2 2
=(2moy) T exp( — X [207). 2 When tracer enters a medium, and is subject to a 1D flow

_ field (i.e., transport is under the influence of a potential gra-
We have set =0 and will do so for the rest of the analysis dieny, it spreads initially in all directions, but then eventu-
because one can define a new variaBleX—1 that has a ally migrates along the preferred flow directiéecreasing
zero mean. Also we will only discuss one-dimensional casepotentia). After some time, most of the tracer will be dis-
here. placed forward of the starting point, i.e., at this time, there is
One may further introduce a probability densitft) gov-  effectively no backflow. The same is obviously true for any
erning the time between the everXs, and study the sum position in the medium: most of the particles found at some

Sn(y» Where position will advance after some time in the forward direc-
tion.
Sniy=X1+ -+ Xy (3) When neglecting backflow, it is in fact quite straightfor-

] ward to obtain a SCD of a tracer at a given time. For the case
The random variabl&(t) represents the number of events g< 1 neglecting backflow is a good approximation for suf-
that have occurred in thg time intervid, t]. If (t) has a ficiently long times: the first and centered second spatial mo-
finite first momentt and o<, then again the central limit ments both scale with time 4% (e.g.,[6]), which means that

theorem can be used to show thé there is, on average, no back movement because the forward
advection compensates for the backward spread. The extent
f(x,t)=lim Prot[x<SN(t)/\/f<x+ dx] of the backflow is defined by paths having velocities oppo-
t—e site to the mean flow direction. It is natural to expect these
=(47-rDt)*1’2exp(—x2/4Dt) 4) paths to have limited lengtifotherwise, there must be a

“macroscopic” gradient opposite to the mean flow direc-
whereD = o&/50.” tion), which defines a b.ackflqw.distance. We observe also
et ) ) ] . that molecular diffusion is of limited extent in the presence
The problem with this argument is that if one considersyf the gradient. This condition is easily checked in an experi-
Eq. (3) with | #0, one recognizes that there are two differentment: if the backflow distance from the input point is small
mechanisms of dispersion: one is due to the positivend  compared to the forward tracer extent, then the no-backflow
the other is due to the uncertainty in determining the numbeapproximation is appropriate.
of transitionsN for a given timet, because\(t) is not a For the case ¥ B<2, the no-backflow assumption is
deterministic(single-valued function. Even ifo7=0 [lead-  even simpler to justify. Here, the mean displacement scales

031101-2



SPATIAL BEHAVIOR OF ANOMALOUS TRANSPORT PHYSICAL REVIEW 55 031101

ast while the standard deviation scales 83 A2 With  wheret=1/7, r=t/t, g=IbsT, bgi=c,/tP, andI=LIl,

increasing time, the advection forward will overcome thewherev_ is some fixed Charécterisﬁc Ve|ociﬁ0r examp|e,

backward spread, as in the Gaussian case. the carrier fluid velocity, L is the distance from the input
We emphasize that the derivations and notation in thigosition, andt is time elapsedsee[5]). Note that the first

section are similar to those [B]; the reader is referred there temporal moment ofi(t) is infinite andt is defined through

for more dgtalled explangnons. .We deﬂﬂ? as a(sm_gle the (arbitrary choice ofv. One can use these connections to
transition distance. Then in the interpretationydft) given o gimensional variables measured in or fitted to experi-

in [5], and in the no-backflow approximation, we have thatyenis for data analysis. Further, it can be seen that
the mean single transition distante=(l) since no transi-
tions back are allowed. g Bl L\#
In the no-backflow approximation, there are two ways to X=T87 Bt -
derive the SCD of the propagator. First, in a direct approach,
we note that the spatial profile is a residence-weighted masghereu,_ is the effective tracer velocity at the distarigeand
distribution. It is well known that the waiting time before the \ve used the relatiom, =vb, /#. Also B=by . L tis a
next transition takes place is givéim Laplace spadeas(l  constant of motion independent bf(for a fixedv); one can
—* (u))/u where y(t) is a single transition time distribu- gee thaiC=B/3? is independent of the choice of (chang-
tion and the asterisk denotes Laplace transform with variablf,hg , while keepingu, constant, will changé,, and thus
u. Thus the spatial concentration distribution as a function o§3’ exactly to makeC invariany (see[5,11]). To relateC to
distance from the origiinumber of transition$) is given by  the mean travel distandg(t)) we note that Eq(B3) yields,
1— ¢* (u) using the above definitiong|(t))=t#/[CT'(8+1)].

LFscr i) =[¢* (u)]' T , (5) Similar results are obtained for<13< 2. In this casé5],

to,

g* (U)~ 1—tu+caub~e oo’ 9
where LF 5¢p denotes the Laplace transforme§cp. Using
the usual long-time approximation @f(t) in the two differ-  and the result is
ent cases & 8<1 and 1<B<2 leads to the desired solu-

tions, given below. Foo 1 T_—|+1 i _h n L(/B) . an
A second approach, which yieldsbviously the same SCO™ 3B | I nzl( ) T " B’
result, is to use conservation of mass. For &m0 and 7 (10)
=0
where h=(1—7)/g'/#. There are two approximations: as
| . h Ao,
120 FSCD(j§T)+fO Fepro(7';)d 7' =1. h\ BI(B—1)
exp —(B—1)| =
11 XF{ " )(B) ]
Defining the cumulative FPTOICFPTD as Fepprd7;l) Fsco~ I 3 Tk (11
= [Fepro(7:)d7 it follows that Feegl;7)= -7 B \/277(/3—1) B\PP
—(dld)Fcpprd 7). B h
In the case 68<1,
while ash™,—©
* ~1_— B~p—C uf .
yru=1-cgu~e W, © 11 1 T(Bn+1)
seo™ =" 3l > (—h) T SinmAN.
for smallu (see[5]; ¢4 is a constant and the result of using m T Blli=1 (n+1)
either of the two approaches is (12

L "I We use the definitionsr=t/t, I=L/I, w=I/t, and g
n N . . . i
IFecg(l)=— = E (_ %) sinmBn (7) —Ibﬁl.to tran.sf.orm.to dimensional variables. Here, how
Tn=1 T I'(n) ever,t is the(finite) first moment ofy(t).
For B>2, we find that
and, asymptotically,

—h2/4 - e—h2/4 wt
_ . F — 14| =T — |1+ —
(@ 1/[2(1-B)] eXF{ - 1_B (@ 1U(1-B) SCD‘B>2 4\/7T_g I 4\/m L
B\ _ _
IFscol)= BV2n(1-B) : since hereg=BL/1%. Note thatl should be dropped from

the last expression to obtain the PDF form of the SCD.
We observe that for & 8<2 there is also a possibility to
g> 1 ) obtain a different, converging asymptotic expression when
¥ ' h\, — e, instead of the diverging asymptotic series presented
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above. Then the FPTD approximation for this case can bsumed normal spatial behavior of single transitions, i.e., the

obtained also from considering mass conservation. From Eaqarrow spatial distribution of a single transition distance,

(5) when all spatial moments are finite, as in a Gaussian. We
chose above &@function distribution, allowing single transi-

1 - tions only in one direction and of equal length. It is also
~ ra—lst+gsf n—b,sP Tt y q g
Fsco 27i Lsdsé € e (13 easily found using Eq$A1) and/or(A2) that the peak of the
distribution is at the origin fo3<3 and starts moving for
and for large ¢—1) "o (i.e.,h\ —x), B> 3. Finally, we remark looking at Eq$15) and(A1l), that
the amount of tracer at the input point decreases with time as
1 - t=h.
Fsco™ 2_7TiJc dsexf(7—1)s—bgs" 1] The no-backflow approximation for the SCD in the case
s of 1<B<2 yields
1 _ . B-1
T 2mi(r I)f dze FecpidL) E f(h 1) (17)
- c, = n A
scp1 BA B
178 < WInE—n) sinmgn, (14 whereh=(L—R)/A, R=wt, A=(LB)“6, B=L# b, is

m(r=1) =1 I'(n) a constant of motion independent df, and E=(tw

—L)/(BL)+1=1-hA/(BL). The corresponding CSCD is
where z=s(7—1), n=bgz/(7—1)#~" and Cs and C, are JI(BL) (BL) P g

corresponding complex-plane contoursee, e.g.,[5]). 1 1
This series is convergent and for large enough Fescpidl)= Efc(h’ /3’)
time » becomes small. The leading terrm=1) is

[—1/(T—I)ﬁ][b51“(,8)/w]sin m3 and is identical to the lead- Note that becauseE(A)dL=dh, from Eq. (A4) we have
ing term of Eq.(12). that

(18

B. Unified expressions for SCD and FPTD fthscoliL)dL:

The solutions derived above are similar to the FPTD so- B

lutions (see, e.g9.[5]). Below we present the SCD and FPTD Since [ FscpiL)dL=1, the relation(A5) appears. In this

solutions in the form of probability density functions. We case, for any positive timé) is defined from minus to plus
stress that corresponding SCD and FPTD solutions are ex-.. .’ y postr . o p

; . . ; infinity, for L=0. Given g, B, andR, the spatial profile can
pressed in terms of the same functidout with different . .

LT be plotted as a function df. It should be noted that in order
arguments The no-backflow approximation for the SCD C .
- . . for the plume distribution at time zero to resemblé pulse,

(which is a residence average in contrast to the flux average

) : we require thatLy<<L for all lengthsL of interest, where
< - . .
::eZT;DS) in the case of &2 8<1, denoted-gcpo1, can be writ Lo=BY(E-1)_ This can be seen by looking & as t=0.

Finally, at the injection point,

1 /L
F L=—f(—; ) 15 B—1 [Lo|P1
SCDOi ) R R B ( ) FSCDliLZO): 1'*(2_,8) E L_O
where R=tA/C=(I(t))T'(B+1), (I(t)) is the mean dis-
placement an€ is the constant of motion defined preceding
Eq. (10). The corresponding cumulative SGDSCD for a §
pulse of tracer is

decreases with time ds#, as in the case @8<1.

Figure 1 presents the temporal evolution of SCDs for sev-
eral values ofp. It can be seen that for smallgg more
particles stay close to the origin, while gsncreases a back-

L ward (“heavy”) tail appears. This tail becomes less distinct
chcooi'—)=fc(—;ﬂ)- (16) as B approaches the value of 2. Such profiles of the SCDs
R have been observed in studies of chemical transport in geo-
i i i i logical formationg[19].
The functionsf and . are defined in Appendix A. Only  “\we note here parenthetically that graphs of the spatial

non-negativex are possible and thus E¢A4) is relevant. _profile (15) are similar to the Poisson-like distribution
The FPTDs are also expressed in Appendix A through this

function f(x; v), with X=(tmean eft)?, Wheretean erris the utRigm#
effective mean time, or a shift factor along the temporal axis P(L)= NR(1+L/Ry)’ (19)
. . . . . 1 1
to be defined when transforming the solution to dimensional
time. Thus, for any fixed length and timet, we have that in the case8<3. By equating the two expressionslat 0,
X= (tmean ef)’=CU? S0 thatt nean e (CL)M2. we can choos®;=R/N and u=InT'(1—pB), whereN is a
One can see that there is an essentially expongiiéli-  normalization factor depending gmand growing to 1 ag
ally, a stretched exponentjatiecrease in the concentration increases. AB= 3 when the slope of Eq15) at the origin is
distribution for long distances. This is the result of the as-zero, u~0.572 365; this value is very close to the value
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FIG. 1. Temporal evolution of spatial concentration distributions for different valugs efere, R=t#/C=(I(t)) T'(8+1) for 0<p3
<1 andR=wt for B> 1, wheret is time,C andL, are constants of motiogl(t)) is the mean displacemerit,is the gamma function and
w is the (asymptotig velocity of the tracefin the case3>1). (a) 8=0.4,(b) 8=0.8, (c) B=1.2, (d) B=1.7.

u=e" YE~0.561459(yg being Euler gamma for a zero n
slope of Eq.(19). This similarity breaks down fop>3. P(l:n)=| n—I
Note, however, that both the Poisson distribution and the A Rl
SCD derived here tend to the Gaussian distributiop asd 2
B grow. The reason why Eq19) is similar to Eq.(15) for

B=<3 might be that the transition probabilities are very Also, if we want to consider backflow, the Laplace transform
small, while for3>3 they increase. It can be shown, using aof the probability” of makingn transitions in timet is given
lognormal transition time PDFL2], that the value oB=3 is by Eq.(5)
identified with reaching a time equal to the mean single tran-

sition time; this fact also explains why the peak of the dis-

tribution advances fo8> 3, while for <3 it remains at the

origin.

p(n+hi2g(n=Dr2,

1_ *
P = (20)

wherer=t/t is a nondimensional tim@s in Sec. Il) and by
#(t) we mean a single transition PDF over a distagige

. ) , Now | =(p—q){l). Thus
We now consider the SCD solutions when backflow is not

neglected. Such solutions are of particular value for early
(relatively) times and/or SCD’s near the particle inlet.

If there is a probabilityp to the forward transition and
for the backward transitiofobviously, p=q) then the non-
dimensional displacememt=L/{l) of the particle from the
origin aftern transitions is given by the binomial distribution The Laplace transform of this expression is

I\V. DERIVATION OF SCD WITH BACKFLOW
Fscoll;m)= 2” Pi(1;n)P(n; 7). (21)
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172 =
CFeellin = () 2 ;I [ Vpa]”
1\ 2
C1-y* (p\"? | 1+|I] 2+ 1]
s (a) X F(TT
+|I|;4x2), (22)

where * =* (u), s=tu is the nondimensional Laplace
variable,x=¢* \Jpq and ,F, is a hypergeometric function.
Formula (15.1.14 of [20] gives ,Fi(a,3+a;2a;z)
=2%a"Y1-7)"Yq1+1—-z]*"?2, so that in our case the
spatial profile for the positive forward displacemémtan be
obtained by calculating

— ‘r/’*
Sy

:ﬁ—ll

*\ |
2py ) 23

1+y

FSCD(|>O;T)

wherey=\1—4pq(¢4*)?.
The same formula can be obtained usii&. Formula
(37) of [3] reads

—1//()

LFsc(lit)= —————G[l,¢* ()], (29

while formula(12) of [3] is
N

i

N &1

e27-r|sI/N

G(| zZ)= T(k)z

wherek=27s/N, A(k)=2,p(1)e ™. In our casep(—1)
=q, p(1)=p, and all other probabilities are zero. Using
relations in Appendix C of3] to calculateG, one obtains

1—W}'

2zq

Vi—4paZ

G(',Z)—)

in the limit N—, so that
-y 1-y?

1
2q¢*’ =§{Zq¢*<1+y>

| 1 |
517
and from Eq.(24) we again recover E(q23).
It can be seen from Eq22) also that for anyl>0 it
follows that

Fseol; M/Fsedl =1, 7)=(p/a)',

wherep=p,;, andq=q;, are the probabilities for transitions
of length(l). Thus, we can write

<p<|> (pn |>)
C1n<|

dqy
which can be brought into the form

2py*
1+y

G[Ly*(w]— ¢ [

PHYSICAL REVIEW E 65031101

1

1 n-
1+ ——1)
Pay

Pn(y=

For example, if we start gb,=0.6 thenpg,~0.962 and
p15<|>~0.998.

Consider the case<0B8<1. Using a first-order smak
expansion in powers o, for bs®<1 it is well known that
J* =1—bs? (cf. Sec. Il). Thus @*)%2=1—2bs” and

8qu38} 1/2

whereb=bg , andu=+1-4pgq=2p—1 for p=1/2. Here
two cases arise:

(@ 8pgbP/u?>1 so that y=8pqbd?=.2bsf?
(since in this casep~q). Since bs’<1 we ignore it
compared to \2bs??>bs?, and so obtain 1/(1y)
~exd —2bs#?]. Then Eq.(23) becomes

Fsco(|>0;7)=3£7Y2bsP2 Lexq —1/2bsP2]}.
(25)

This is exactly the form of the no-backflow case, wih2
<% standing forg in the expression that can be obtained
trivially by substituting Eq(6) into Eq. (5). From there it is
known that the peak of the distribution will in this case stay
at the origin. The factor of in front of the formula appears
because here the forward part is identical to the backward
one and is one-half of the total. Note that settwg 1 in Eq.
(25) leads to a regular diffusionlike transport in this approxi-
mation (with zero slope at the orign Thus, at relatively
short times, transport will be diffusionlike dominated and
anomalous, i.e., the diffusion is a particular case of the
CTRW approach used. As time advances the transition to the
next case will occur and@qb<’/u?~1 can be used to de-
termine this transition time.

(b) 8pgb<’/u?<1 so thaty=pu(1+4pqb</u?). This
is correct for anyp>q ast— and will be considered fur-
ther below. We obtain Y~=exp(—\s’)/u, where \
=4pgb/u? and 1/(1+y)=exp(rvs’)/(1+u), where v
=4pqb/[ u(1+ w)]. Upon substitution into Eq.23)

Feed|>0;7)~ L YwsP leles)

b
(P—Qw

wherew=b+v+\/I1=b(1+2q/(p—q)+4pg/[(p—q)?])
is a function ofl. The last inverse Laplace transform is al-
ready known from the no-backflow approximatisee Sec.
I, Egs. (5) and(6)].

For 1<B<2 a similar analysis yieldg/* ~1—s+bs?
for s<1 andbs?<s, (4*)?~1—2s+2bsf and

8pgqs(1—bsf 1)\ 2
y~u|l 1+ ————=| .
o
Again two cases arise:
(@) 8pgs(1—bs? 1)/ u?>1 so that
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bsf~1 11)?
~vhcl2l 122 | Al 1 L—nl
y~v2s (1 5 ) V2s P.(L:n)= exp(( )>. (26)
n

2 2
2mNno

2no-
|

(here we also assumédss®~1<1, this is always true when

the smalls expansiony* ~1—s+bs? is valid). This case is The expressioli21) can be rewritten in the form

identical to the caséa) for 0<B<1, if one substitutes there

=b=1 [see Eq(29)]. *
B (b) [SF)[qq:l.—qb(Sﬂz]l]/M2<l so that FSCD(L;T)%JO dn PL(L;I’I)P(n;T), (27)
y~u| 1+ 4pas(1-bs’ ™Y which together with Eqs(20) and (26), and for 0<8<1 is
- wu? ' identical to formulag37)—(39) in [14]; these latter formulas
follow from one of the Galilei variant transport models dis-
We obtain cussed therein. We note thatrifin Eq. (27) is considered to
be some parameter, not necessarily the number of transitions,
1 exgd—As(1—sP~ l)] then Eq.(27) may represent a general expression for the
§~ w spatial profile concentration, with a coupled space-time tran-
sition function. Some particular cases include using (26)
wherex=4pg/u? and or a more general expression for a Levy flight,&unctions
of different arguments in place d?(n,7) and/orP (L;n).
1 exd —vs(1—bsf71)] As many of the fractional derivative equations considered in
1+y2 Tt , the literature admit solution by the separation of variables

method(see, e.g.[14,17) then Eq.(27) will be a general
solution of such equations with being related to eigenval-

where v=4pqg/[ w(1+ w)]. Substituting these expressions ues of the problem.

into Eq. (23) gives

1 V. SPATIAL MOMENTS
Fseo|>0;7)~ —— L Y (1-bs ™) _ _ _
pP—q We consider now the first and second spatial moments of
% s 1—bsf1 an evolving particle plume, as a func_tlons of travzlahln.g time
exf —lws[1-bs" ]} (cf. [6]; also our Appendix B Using the definitions

1 1- 1//* . of velocity wv(t)=d{l(t))/dt and dispersion D(t)
=~ p_qﬁ (") =3{do?(t)/dt}, where(l(t)) denotes the mean travel dis-
tance ando?(t) is the variance of the particle plume, the
where quantityD/v can be calculated. In the biased Brownian mo-
tion picture this quantityD/v will be approximately equal
2ql 4pq (neglecting molecular diffusiorto the dispersivity constant
lo=l+vI+N=l+—+ T and is thus called apparefur effective dispersivity. For 0
P=q (P™q <B<1 the result for the leading term {see Appendix B
The last transform is already known from the no-backflow 2T2(B+1)
approximationsee Sec. Ill, Eqs(5) and (9)]. _~<| ) 1|, (28)
We now return to Eq(21) and look at it from a different r'2p+1)

point of view. First note that in the cage-1, which is of

interest here, the binomial distribution converges to a Gausd-€-, the apparent dispersivity grows linearly with the mean
ian and since part|cle displacement. The proportionality coeffici¢int the

square bracketslecreases from 1 fg8=0 to 0 for=1. In

(k—np) ) some cases, the full expressigoontaining an additional

(n)pkqn—k F{
k \/27rnp 2npq

asn—o, with k=(n+1)/2, it follows that D (,8 1)

term) might be needed, as discussed in Appendix B.
For 1< <2 the leading term igsee Appendix B

T Banpg 8npq '

Transforming to dimensional variables and using(l)(p

i.e., in this case the dispersivity also grows with the mean
displacement, but sublinearly. As usual, f&r2 we substi-
tute =2 [5] and find that the dispersivityD/v=B

= y — =bg-, L=const. We stress here that the correction terms,
—q), 12=(1)?, o;=1>=12=4pq(l)* I=L/(l), and Pdl  given in Appendix B, may be critically important particularly
=P, dL yields as N\ 1.
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VI. CONCLUDING REMARKS * (n/v)

r
. —n/v

A physically based approach for describing transport phe- N X I'(n)
nomena in heterogeneous media exists, which generalizes a
random walk formalism. This CTRW approach includes theAt v=3 Eq. (A2) becomes exact, while EqA3) will be
Fokker-Planck equation as a specific case of a more genera¢ro. This last serie¢A3) is, in general, diverging in the
picture. The CTRW is relatively simple to treat, yet it pro- interval 0<»<1 and defines an asymptotic series. The func-
vides qualitative and quantitative explanation and predictioriion f is considered here only in this interval and is normal-
of experiments because the initial model concept captureiged:
the main features of “anomalous” transport.

In this paper we presenteql a s_tra_ight_forward and easy fwf(x;v)dx=1 (A4)
derivation of spatial concentration distributions of a tracer as
it travels through highly heterogeneous media. The temporal
and spatial profiles are all written in terms of the same speand
cial function. The first two spatial moments of the concen-
tration distribution were also calculated. While here we dis- f
cussed 1D solutions, multidimensional generalizations are
conceptually similar.

We have focused on widéemporal distributions (the
“standard” CTRW, which also might be called “lwy flights x
in time”), but note that the mathematics remain similar if we fc(X;V)EJ f(x";v)dx’
assume widespatial and normal(narrow) temporal distribu- X
tions (i.e., the usual Ley flights). In this case(in the pres- T'(vn)
ence of spatial bigsthe spatial and temporal concentration =1+ — E (—=X)"=——=sin7vn. (AB)
formulas presented in this paper must be interchanged. F(n+1)

The interested reader is invited to download the computer
codes performing spatial and temporal distribution calcula SX/+,
tions developed and described here from the web: http:// 1

exp[ - (——1) (vx)YE—v J

n
sin—. (A3)
14

oo

vi(x;v)dx=1. (A5)

Similarly,

www.weizmann.ac.il/lESER/People/Brian/CTRW. This web-

site also includes other solutions. We note also that fo(X;v)=
generalized FPTDs and SCDs have been developed for the V2m(1—v)(wx) YY)
case 0.58<1[12].

(A7)

and asx\,—x,

0
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APPENDIX A:  FUNCTIONS f(x;») AND f.(x;») We note thaf can be written in terms of the Fox functions

It is convenient to represent the spatial profile distribu-(see’ €.9.[14.21)) as follows:

tions and also the FPTD distributions derived and presented (0, 1 (0,v)
in [5,11] for all values of 6<B8<2, B#1 in terms of the f(x;v)ETHﬂ[ Wy (0,1/) E—XH { (0,1)
following functions. By definition, ' v
" (—v,v) 1 (1—v,v)
- Lo S LI Rt
. [ _ n-1"_ " "7 & y
f(x;v)= 772’1 (—X) T Snmvn (A1)

We also note that the following form of EqA2) can be

and it has the two approximations. As” +, helpful: definingy?=[1/»—1](»x)"*"" leads to

~ —y2
(vx)@2v=Dl2(1-)] expl’ _ (%_ 1)(VX)1/<1—V)] fly(x)]dy \/Ee dy,
s V27 (1-v) ' which is similar to the definition of the error function

(A2)

f 2 fz *de
erf(zy=— | e .
and asx\,— o, (Z) \/; 0 Y
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In terms of these two functions, the FPTD and CFPTD4* (u), but only on its asymptotic form, the correction terms
solutions as functions of experimental time are written fordo depend on it and one must be careful to take this into
0<pB<1 as account. This point was neglected[iB).

First consider the case<QB< 1. As the functiony* (u)
FFPTDm(t)— PX f(x;8) (A9) =€ e - cguf is used in the SCD and FPTD calcula-
tions, we also use it here. We denate — cﬁuﬁ and we are
interested in the smak-properties of the moments. Thus,

and
x2 X3
Ferproodt) = fe(X8), (A10) JF(u)=1+x+ >+ €+O(x4),
wherex=CL/tP=(tean e#t)?, and for 1< <2 similarly ;s
X2 X
w 1 1 1—¢*(u)=—x—3—€+0(x4),
Frproidt) = (h ) —l_f<h ),
BA B Blmea B ,
All 4x
(ALD [¢*(u)]2=e2"=1+2x+2x2+?+O(x4),
and
1 1 [1=¢* (W]P=1+[¢* (W)]*=2¢* (u)=X[1+x+O0(x?)],
Ferprpidt) = —fc(hi —), (A12)
p p 1 1 X
Y - —*:—{1——+0(X2) ;
whereh=(1—t/tpead/bg’ B . As noted in[11], bg L should 1-¢*(u) —x 2
be small enought(y{" B’> 1) for these formulas to apply. B
This condition is requ|red because, strictly speaking, 1 _ i _ 2 J_i _ 2
Feprpidt) is normalized to 1 for—o<t<, which is an  [1=¢* (W x2j20[ X+O(x) ) =1 =x+0(x)].

artifact, but for sufficiently smalbg , , the integral from—ce

to 0 is negligible. Substituting these expressions into the above formulaf*for
The expressions for the spatial profiles were given in Secandg* yields

.

X cgu?
1+5+0(x%) 1--E2—
APPENDIX B: DERIVATION OF THE APPARENT o 2 2
u)= ~~
DISPERSIVITY () — XU cpuftt

The mean displacement and the variance of the propaga-

tor can be calculated from formulat) and (10) in  and
Shlesingei ], . 1+x+0(x?) 1—czuf
_ P*(u) =" Tt
1O)=1 L T T (B1) ?
(In [6] effectively z,/x*(u)El—cBuB was used, which led to
< (t )) [¢* (u )]2 similar expressions fof* andg* but with the coefficient of
|(t) 2 o121 < (t ))2 the second term in the numerators twice langer.
uf1—¢*(u) After taking the inverse Laplace transform, we obtain
(B2)
where and 12 are first and second moments of a single <|(t)>%d cal(B+1) E) B3
transition length, disregarding the time needed. In the case of
no backflow, obviouslyf =(1). We thus need to determine and
¥* (u) T2t28 2 1 tA(12-12)
-1 — r-1
£ u[l—lﬁ*(u)]_ﬁ ) of ()= c2 |T(28+1) T B+1) e L(B+1)
B B
and 2
(It +W {Zrz(ﬁﬂ) 1|+(1? I_2<It +W
571 [¢*(u)]2 Eﬁilg*(u). - < ( )> 2 F(ZB"F]_) ( ) < ( )> 2/
ufl—y* (i (B4)

It is important to stress that although the leading terms/Ve use the natural assumption of the applicability of the
found below do not depend on the exact expression oﬂerlvatlons(l(t))>l to arrive at
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oAt [2r?(p+1) 12 " )P
AP — 2 (yu)l+qu| +o(u)
(I())? [ T(2p+1) 1{1()) S
o (1= y*(u)? t2u?
2l [ T4(B+1
+ ( (B )—1). (B5) mm
() \r(2B+1) > Y w42 9u+0(u)
i=0 /=0
In the casd2>12 the last term can be droppgj. 2u?
Now consider X 3<2. We denotey=cz/t ande=p m _
—1. We could consider 2 (j+21)(yu®)! +2nu+o(u)
i=0
22 t2u?
JF(U)=e~ W = 1 TU Htuf+ —— + O(uftY),
2 so that
but instead we consider the somewhat more general expres- . T (j+1)y] oi-3 2(p—1t) s >
sion ¢* (u)=1—tu+ ytuf+ ntu+ O(u’*) with 7 to be 9 (u)zzo 2 uT ot T +o(u™)
specified later. It follows that * ¢* (u)=tu[1—yu®—nu
+0(uf)], and
°° i+ 2(5-1)
u+ pu+O(uf) ] gt)~2, — El—
1 2’ L™+ Y I=0 t2I'(3—¢j) t2
1-y*(u) tu

Now we calculatef?(t) and the lowest power of interesttis

% j . r
j J 2 r+e(j—r) £\r m ng2—en N

= . n=0 2 i=0l'(2—ei)[2—&e(n—i)]

tu

t
—+o(t).
t

7,
t

+2
Sincej=r and we are looking only for terms up toin the

numerator(higher order terms will give corrections decreas-
ing with time) then onlyr=0 is relevant, plus the cage These preliminary calculations lead to
=r=1, andO(u®) can be dropped. We define a positive
integer numbem=[1/¢] [i.e., me<1 and (m+1)e>1].

m

: E 2(j+1)
We obt 204y = — 12 ej| 2 7
e obtain o (t) t_z r(3—e))
m , j
> (yu*)+ puto(u) E ! ]
R, , 0 T(2-en)0 (2~ e(j—1)
1-4*(u) tu
t 27
+_{|2+ —2)|2 (B6)
mo t t

J
f*(u)wjzo éu81‘2+(2—1) ut
Ut

t Note that the term with=0 is zero. To guarantee the posi-

tiveness of this expression in all possible ca&esluding
y=0 and 12=12) we require that 2/t—2=—1, which
meansn=1t/2 (so one might conclude that this property will
be fulfilled for any function with the asymptotic expansion
yiti—el ( 7 ) used abovg In the particular case of an exponential form of

Taking the inverse Laplace transform,

J* (u) proposed abovey=1t/2 and from here on we use this
value. Note that using the truncated expansion #6i1(u)
(equivalent to choosingy=0) leads to a physically wrong
Again, considering terms up toin the numerator, last correction term. AB\1 (¢ \,0, gives ad pulse, all the
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coefficients of different powers df greater than 1in Eq.
(B6)] go to zero, i.e., the dispersivity approaches Zéwono
backflow), as is physically correct.

Consider finally 3>2 (thus, effectively, use8=2). In
this case the second temporal moments¢f) exists and we

must haveWZ:(er n)t_[this foII_ows from the smalls ex-
pansion ofy* (u)]. Thusy= a%/Zt, alsom=1, so that

where we denoted2=x2—x2.
Calculating the apparent dispersivity leads to

>

k=o' (2—ek)I'[2—&(j—Kk)]

2t

V=

w0 T, § ),

dt 1 g‘l F(l—sj))'

PHYSICAL REVIEW 55 031101

—&

EIE_( 1- L) +0(t~28),
v I'(l—¢)

and fore<0.5,

D Iy, [ 1+2e e2—1 )
—~ T ————— gt E + ,
v 1 r2-e¢) ['(2—2e) T?2-¢)
while for e=0.5,
D I_y t |_y2 3 0%
—~—=\/" T( -t
vt Tt 27| 2l
and fore>0.5,
D |_)/8t17‘9 0%
v tr(2-g) 21

ConsideringB~1, we note that the above expressions for
o(t) (both for 0<B<1 and for < 3<2) cannot be used

We see that foe not very close to zero the velocity reaches simply with 8=1. Inserting 8=1 would lead to#* (u)

its limiting value ofw=1/t fast enougHtrivial substitution
shows thatyt™*=bg7~°, which already should be a small
number for the validity of the above approximatipnsor
the first two terms

=e %Y so thaty(t) is a & function, rather than a function
Y(t)~t~ 2 ast—oo. Unfortunately, to the best of our knowl-
edge, no CTRW solutions exist fg@=1, wherey™* (u)~1
+ulnu—cyu.
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