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Random walks with absolute negative mobility
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We introduce simple non-Markovian modifications to the standard random walk resulting in absolute nega-
tive mobility, i.e., the response to an external force is always opposite to the direction of the force.
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I. INTRODUCTION

The random walker is a basic paradigm in science that
been applied to a wide range of problems in many differ
fields @1,2#. In statistical mechanics and the theory of s
chastic processes, it has been studied in great detail and
vides a technically simple and conceptually transparent
cretized version of the Wiener process. When refering to
erratic motion of thermally agitated particles, the latter
also known as Brownian motion. The rectification of Brow
ian motion is forbidden by the second law of thermodyna
ics in a system at equilibrium. However, work can be e
tracted from this thermal motion when operating und
nonequilibrium conditions, as demonstrated explicitly in t
various models for so-called Brownian motors@3#. Another
limitation of equilibrium is related to the linear respon
properties. Motion on the average in a direction agains
small external force is impossible. In particular, the mobil
coefficientm relating the drift velocity of a Brownian par
ticle ~diffusion coefficientD) in linear response to an exte
nal force is positive as made explicit in the Einstein relat
m5D/kBT. In nonequilibrium, however, there is no fund
mental principle that forbids absolute negative mobility.
fact, electrical networks with negative resistance have b
known for a long time@4#. More recently, various specifi
examples of Brownian motors have been introduced@5,6#
that display negative linear mobility. In this paper, we mo
away from a detailed physical model to show how ve
simple non-Markovian modifications of the basic rando
walk can result in absolute negative mobility, thereby putt
this phenomenon in a much broader context.

II. RANDOM WALK MODEL

We start from the usual discrete time random walk o
particle taking steps of size one to the left or to the right w
probabilitiesp and q512p, respectively. On average, th
particle will acquire a drift velocity equal to 2p21. A well
known non-Markovian modification is the so-called rando
walk with persistence, in which the step directions taken
the walker are correlated with previous ones. In the rand
walk modification presented here, it is the stepsizes that
correlated, rather than their direction. The rule is the follo
ing. A particle performs the above described biased rand
walk. We introduce a new parameter, denoted byN21,
which gives the maximal allowed number of consecut
steps in the same direction. Hence, whenever the par
hops in the same direction forN successive time steps, th
1063-651X/2002/65~3!/030101~4!/$20.00 65 0301
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excursion is cancelled, i.e., the particle is transferred bac
the original position ofN steps ago, and its memory i
cleared. Our main purpose now is to study how this limi
tion of large excursions impacts the resulting drift veloci
To do so, we note that the state of the particle is fully d
scribed by the knowledge of its positionx, together with the
length l of the last sequence of successive steps in the s
direction (l P$61, . . . ,6N%). The probabilityP(x,l ,n) to
find the system in state (x,l ) after n steps obeys the follow-
ing master equation:

P~x,N,n!5pP~x1N21,N21,n21!,

P~x, j ,n!5pP~x21,j 21,n21!, ~1!

P~x,1,n!5pP~x21,N,n21!1p (
m521

2N

P~x21,m,n21!,

with initial conditionsP(x,l ,0)5 1
2 dx,0d l ,6N . A similar set of

equations applies for the steps to the left~probability q51
2p!. From Eq.~1!, one obtains the following exact result fo
the Fourier transform of the generating function:

F~k,z!5 (
x52`

`

eikx(
n50

`

znP~x,n!

5
1

f ~p,k!1 f ~12p,2k!21
, ~2!

with P(x,n)5( l 561
6N P(x,l ,n) and

f ~p,k!5~12zpeik!
12~zp!N

12~zpeik!N
. ~3!

In the long time limitn→`, the distribution becomes Gaus
ian and is characterized by the following drift velocityv and
diffusion coefficientD ~see Appendix!:

v5 lim
n→`

^x~n!&
n

52p211
N~12p!Np

12~12p!N
2

N~12p!pN

12pN
, ~4!

and
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D5 lim
n→`

^x2~n!&2^x~n!&2

2n

5
N3

~12qN!3~12pN!3

3F $p2N11qN2pNq22pN~p2q!qN1pqN

2pNq2N11%$pNq1pN~p2q!qN2pqN%
G

1
N2

2~12qN!2~12pN!2

3F pNqN$pN~2q2p!1qN~2p2q!214pq

1422pNqN~p21q2!%1pq~p2N1q2N!

1pNq~4p23!1pqN~4q23!
G

1
N

~12pN!~12qN!
@2pq$pN22pNqN1qN%#12pq.

~5!

Equation~4! is a central result of this paper. In Fig. 1, th
dependence ofv on the biasp is plotted for different values
of N. The key observation is that the particle moves in
direction opposite to the bias forN52 and 3. The intuitive
reason is that the penalization of large excursions is stron
in the direction of the bias.

For the sake of completeness, we also represent the d
sion coefficient as a function ofp in Fig. 2, for various val-
ues ofN. Note the development of two symmetric peaks
increasing height asN becomes larger. This increased disp
sion is due to the large steps corresponding to cancelled
cursions of sizeN. To have enough probability weight, suc
excursions, however, require a stronger bias whenN be-
comes large.

III. APPLICATIONS

We mention three examples that can be mapped on
type of random walk. The first one comes from chemistry
linear polymer is growing in a mixture ofA andB molecules,

FIG. 1. The average speedv as a function of the biasp for
different values ofN. For N52 and 3 one observes negative m
bility.
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with concentrationscA andcB , respectively. They attach to
the polymer with a probability proportional to their relativ
concentration, i.e., the probability that anA particle is chosen
reads p5@cA /(cA1cB)#mixture. When two identical mol-
ecules attachsuccessively, they dimerize and disconnec
from the polymer. If we represent the succession ofA andB
molecules along the polymer as steps to right and left,
spectively, of a random walk, we have a realization of o
model withN52. The long time relative concentrations ofA
versusB in the polymeris given by the drift velocityv
52@cA /(cA1cB)#polymer21. Hence negative mobility im-
plies that the polymer will be rich in the species that is po
in the mixture.

Second, we turn to an example from physics. A charg
particle is performing a cycloid motion in the (x,y) plane
orthogonal to a magnetic field along thez direction, with an
electric field parallel to they axis @7#. At each multiple of
half the cyclotron period, one chooses the sign of magn
field to be either positive or negative with probabilitiesp and
q512p, respectively. The sign of the electric field
switched if that of the magnetic field has not changed, o
erwise it is taken to be positive. Clearly, when the magne
field is switched to a positive value, the particle will rotate
a new position in the positivex direction. As long as the sign
of this field does not change, the particle will rotate back a
forth between this new position and its original position.
similar dynamics takes place for negative magnetic field,
taking place now in the negativex direction. The position of
the particle at half multiples of the period thus undergoes
above described random walk, again withN52. Negative
mobility implies that the drift motion along thex axis will be
opposite to what is expected from the dominant direction
the magnetic field.

As a last example, we construct a new paradoxical ga
@8#. A banker offers an investment with, on average, a po
tive yearly return. In our random walk model, the probabil
for winning a unit of capital isp.1/2. A nervous investor
wants more protection against losses. The banker propos
cancel the losses inN successive years. But he argues that
all fairness, he then also has to cancel the wins inN succes-
sive years. The capital of the investor now undergoes

FIG. 2. The diffusion coefficientD as a function of the biasp for
different values ofN. The solid line represents the diffusion coeffi
cient for the normal random walk.
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above described random walk with the paradoxical re
that the investment will have on average a negative retur
N52 and 3.

IV. COLLECTIVE EFFECTS

The random walk model introduced above is a prototy
Many variations and modifications can be envisaged. We
cuss next, in some detail, possible cooperative versions.
cite two prominent mechanisms that may appear quite n
rally when the walkers interact: crowding and greediness.
an example of crowding, consider a set of Brownian partic
in a channel with a periodic array of gates. Note that suc
setup can be easily realized experimentally using, for
ample, latex particles suspended in a flow through fabrica
micropores in silicon wafers@9#. The gates should be suc
that a single particle can easily pass through while the p
sage is hampered when several particles are present o
same side of the gate. Upon application of an external b
such a crowding will appear more frequently on the side
the gates that is upstream of the force, with negative mob
as apossibleoutcome. We stress that this intuitive argume
can be misleading. Indeed, as already mentioned in the
troduction, negative mobility is ruled out near equilibrium b
the fluctuation dissipation theorem. One thus either has
work in the regime of nonlinear response, or linear respo
around a nonequilibrium state. An explicit example of t
latter case is given by the model introduced in Ref.@6#,
where the narrow gate~represented by a barrier! is also
cooled. A biochemical alternative corresponds to a gate
operates unbiased active transport, which is deactiva
when more then one particle attaches to the same site.

The second mechanism, greediness, is more intricate
possibly more surprising: it involves informed walkers th
modify their jump statistics in a greedy way in response
the motion of the other walkers. A deterministic analog is
so-called Braess paradox@10#, in which it is found that the
addition of a new route to go from one point to anoth
actually slows down the traffic in that direction. The openi
of the new route makes the original flow pattern unsta
against greedy defectors, who, by choosing a trajectory
is faster for them with respect to the original flow patte
produce a cascade of modifications leading to a stable
suboptimal equilbrium. The paradox is also well known
macroeconomics where these type of suboptimal states
referred to as Nash equilibria. In short, just like in the traf
problem, the pursuance of individual interests can be
demise of a collective goal. In the context of random wa
ers, one can imagine negative mobility to appear when,
result of the installation of a bias, walkers greedily choo
routes that appear, with respect to the existing flow patte
favourable to themselves, but effectively result in an ove
delay of the motion in the direction of the bias.

V. DISCUSSION

We close with a discussion of the distinctive features
walks with negative mobility and a broad overview of relat
results from the literature. First, such walkers are reserv
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of energy that become availableupon request. Rather than
dissipating energy supplied by an external force, the wal
which moves in a direction opposite to the force, actua
performs work. Usual Brownian motors also have this ca
bility, but in the present case energy is only released w
loading takes place. Concomitantly, the direction of the lo
ing is irrelevant. Second, whereas usual walkers get trap
in the minima of an external potential, the ones with negat
mobility move towards the maxima. The roles of stabili
and instability are thus interchanged. This property mig
conceivably play a role in triggering a chemical reaction w
the walker as catalyst. Third, other related results from
literature include linear response around nonequilibri
steady states, reconsidered in the light of anomalous
sponse properties in Ref.@11#, and negative mobility in net-
works with dead ends@12#. Finally, negative mobility can
also appear when the force acts, not only on the walkers,
also, directly or indirectly, on the substrate, see, for exam
the well known anomalous transport of electrons@13#.
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APPENDIX

In this appendix, we show how to obtain the velocityv
and diffusion coefficientD from the Fourier transform
F(k,z) of the generating function. ExpandingF(k,z) around
k50 gives

F~k,z!5 (
m50

`
^xm~z!&

m!
~ ik !m, ~A1!

where we definêxm(z)&[(n50
` ^xm(n)&zn. The asymptotic

behavior of the moments can be obtained by making us
the so-called Tauberian theorems. In the case of a po
series, such asf (z)5(n50

` f nzn, they state that the
asymptotic dependence off n for n→` is closely related to
the singular behavior off (z). A useful theorem is the follow-
ing @2#: Let f (z)5(n50

` f nzn, with f n a strictly positive and
monotonic function ofn. If f (z) is singular in the limitz
→1,

f ~z!;

LS 1

12zD
~12z!a

, ~A2!

with L(x) a slowly varying function andxaL(x) a positive
monotonically increasing function ofx for largex. Then, in
the limit n→`,

f n;
ana21L~n!1naL8~n!

G~11a!
. ~A3!

For the first moment̂x(n)& one finds from Eq.~3! and~A1!,
1-3
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^x~z!&;
v

~12z!2
, ~A4!

wherev is the speed given by Eq.~4!. Applying the above
theorem fora52 andL(x) a constant equal tov, we con-
clude that^x(n)&;nv for largen. The diffusion coefficient
D can be obtained in a similar way, by consideringy(n)
[x(n)2^x(n)& with D5 lim

n→`
^y2(n)&/2n. Note that this
,

alk

P

,

03010
requires the calculation to the next order in the asympto
behavior of^x(n)&, namely,

^x~z!&2
v

~12z!2
;

C2v
12z

,

C5NF12qN~11Np!

~12qN!2
2

12pN~11Nq!

~12pN!2 G . ~A5!
h-
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