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Random walks with absolute negative mobility
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We introduce simple non-Markovian modifications to the standard random walk resulting in absolute nega-
tive mobility, i.e., the response to an external force is always opposite to the direction of the force.
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[. INTRODUCTION excursion is cancelled, i.e., the particle is transferred back to
the original position ofN steps ago, and its memory is
The random walker is a basic paradigm in science that hasleared. Our main purpose now is to study how this limita-
been applied to a wide range of problems in many differention of large excursions impacts the resulting drift velocity.
fields [1,2]. In statistical mechanics and the theory of sto-To do so, we note that the state of the particle is fully de-
chastic processes, it has been studied in great detail and precribed by the knowledge of its position together with the
vides a technically simple and conceptually transparent dislengthl of the last sequence of successive steps in the same
cretized version of the Wiener process. When refering to thelirection (e{=*1,...,=N}). The probabilityP(x,I,n) to
erratic motion of thermally agitated particles, the latter isfind the system in statex(l) aftern steps obeys the follow-
also known as Brownian motion. The rectification of Brown- ing master equation:
ian motion is forbidden by the second law of thermodynam-

ics in a system at equilibrium. However, work can be ex- P(X,N,n)=pP(x+N—1N—-1n-1),

tracted from this thermal motion when operating under

nonequilibrium conditions, as demonstrated explicitly in the P(x,j,n)=pP(x—1,j—1n—1), (1)
various models for so-called Brownian motdB. Another

limitation of equilibrium is related to the linear response -N

properties. Motion on the average in a direction against a p(x,1n)=pP(x—1N,n—1)+p 2 P(x—1m,n—1),
small external force is impossible. In particular, the mobility

coefficient u relating the drift velocity of a Brownian par-
ticle (diffusion coefficientD) in linear response to an exter- With initial conditionsP(x,!,0)= 3 & ¢} - - A similar set of
nal force is positive as made explicit in the Einstein relationequations applies for the steps to the lgftobability =1
w=D/KgT. In nonequilibrium, however, there is no funda- —p). From Eq.(1), one obtains the following exact result for
mental principle that forbids absolute negative mobility. Inthe Fourier transform of the generating function:

fact, electrical networks with negative resistance have been
known for a long time[4]. More recently, various specific

)

examples of Brownian motors have been introduf®] F(k,z)zxzw eikxnzo Z"P(x,n)
that display negative linear mobility. In this paper, we move
away from a detailed physical model to show how very 1
simple non-Markovian modifications of the basic random =f(p K+f(l-p—K—1’ 2
walk can result in absolute negative mobility, thereby putting ’ '
this phenomenon in a much broader context. with P(x,n) =3, P(x,I,n) and
Il. RANDOM WALK MODEL ) 1—(Zp)N
: : f(p.k)=(1-zpe“)——— —. 3
We start from the usual discrete time random walk of a 1—(zpdiN

particle taking steps of size one to the left or to the right with

probabilitiesp and q=1-p, respectively. On average, the In the long time limith— o, the distribution becomes Gauss-
particle will acquire a drift velocity equal to@2-1. Awell  jan and is characterized by the following drift velocityand
known non-Markovian modification is the so-called randomdiffusion coefficientD (see Appendix

walk with persistence, in which the step directions taken by

the walker are correlated with previous ones. In the random _{x(n))

walk modification presented here, it is the stepsizes that are v=lim
correlated, rather than their direction. The rule is the follow- n—e
ing. A particle performs the above described biased random N(1—p)"p  N(1-p)p
walk. We introduce a new parameter, denoted Ny 1, =2p—1+ —

which gives the maximal allowed number of consecutive 1—(1—p)N 1—pN
steps in the same direction. Hence, whenever the particle

hops in the same direction fot successive time steps, this and

: 4
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FIG. 1. The average speedas a function of the biap for

different values ofN. For N=2 and 3 one observes negative mo- FIG. 2. The diffusion coefiicieri as a function of the bias for

different values oN. The solid line represents the diffusion coeffi-

bility. cient for the normal random walk.
~ o (X3(n))—(x(n))? _ . -
D=lim °n with concentrationg, andcg, respectively. They attach to
n—e the polymer with a probability proportional to their relative
3 concentration, i.e., the probability that Arparticle is chosen
- N reads p=[ca/(Ca~tCg) Imixture- When two identical mol-
(1—gWM3(1—p")3 ecules attachsuccessivelythey dimerize and disconnect
from the polymer. If we represent the successioa@indB
{p*" "~ pMg—2pN(p—a)g"+ pq" molecules along the polymer as steps to right and left, re-
—pNg®N T pNg+ pN(p—a)gN—pg™} spectively, of a random walk, we have a realization of our
model withN=2. The long time relative concentrations/Af
N2 versusB in the polymeris given by the drift velocityv
2(1—qM)2(1—p)2 =2[ca/(ca™tCg)Jpoymer— 1. Hence negative mobility im-
plies that the polymer will be rich in the species that is poor
pNg™{pN(2g—p)+qN(2p—q) — 14pq in the mixture.

Second, we turn to an example from physics. A charged

+4_2NN 2+2+ 2N+ 2N
x PTAT(p™+ 7)1+ pa(p ™) particle is performing a cycloid motion in the ) plane

+p"g(4p—3)+pg(49-3) orthogonal to a magnetic field along thalirection, with an
electric field parallel to the axis [7]. At each multiple of

+ 2 N_ 25NN+ g1+ 2pa. half the cyclotron period, one chooses the sign of magnetic
(1- pN)(l—qN)[ paip Pa AT+ 2pa field to be either positive or negative with probabilitgand

5 g=1-p, respectively. The sign of the electric field is
5) switched if that of the magnetic field has not changed, oth-

Equation(4) is a central result of this paper. In Fig. 1, the €rwise it is taken to be positive. Clearly, when the magnetic

dependence aof on the biag is plotted for different values field is switched to a positive value, the particle will rotate to
of N. The key observation is that the particle moves in a@ New position in the positive direction. As long as the sign
direction opposite to the bias fdi=2 and 3. The intuitive  Of this field does not change, the particle will rotate back and

reason is that the penalization of large excursions is strongefqth between this new position and its original position. A
in the direction of the bias. similar dynamics takes place for negative magnetic field, but

For the sake of completeness, we also represent the diffi@king place now in the negativedirection. The position of
sion coefficient as a function gfin Fig. 2, for various val- the particle at half multiples of the period thus undergoes the
ues ofN. Note the development of two symmetric peaks of@Pove described random walk, again wih=2. Negative
increasing height all becomes larger. This increased disper-mobility implies that the drift motion along theaxis will be
sion is due to the large steps corresponding to cancelled efPPOsite to what is expected from the dominant direction of
cursions of sizeN. To have enough probability weight, such the magnetic field.

excursions, however, require a stronger bias wheibe- As a last example, we construct & new paradoxical game
comes large. [8]. A banker offers an investment with, on average, a posi-
tive yearly return. In our random walk model, the probability
IIl. APPLICATIONS for winning a unit of capital igp>1/2. A nervous investor

wants more protection against losses. The banker proposes to
We mention three examples that can be mapped on thisancel the losses iN successive years. But he argues that, in
type of random walk. The first one comes from chemistry. Aall fairness, he then also has to cancel the winBl isucces-
linear polymer is growing in a mixture & andB molecules, sive years. The capital of the investor now undergoes the
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above described random walk with the paradoxical resulbf energy that become availablgpon requestRather than

that the investment will have on average a negative return iflissipating energy supplied by an external force, the walker,
N=2 and 3. which moves in a direction opposite to the force, actually
performs work. Usual Brownian motors also have this capa-
bility, but in the present case energy is only released when
loading takes place. Concomitantly, the direction of the load-

The random walk model introduced above is a prototypeing is irrelevant. Second, whereas usual walkers get trapped
Many variations and modifications can be envisaged. We digh the minima of an external potential, the ones with negative
cuss next, in some detail, possible cooperative versions. Wa&obility move towards the maxima. The roles of stability
cite two prominent mechanisms that may appear quite nattnd instability are thus interchanged. This property might
rally when the walkers interact: crowding and greediness. Agonceivably play a role in triggering a chemical reaction with
an example of crowding, consider a set of Brownian particle$he walker as catalyst. Third, other related results from the
in a channel with a periodic array of gates. Note that such &terature include linear response around nonequilibrium
setup can be easily realized experimentally using, for exsteady states, reconsidered in the light of anomalous re-
ample, latex particles suspended in a flow through fabricate@ponse properties in Refl1], and negative mobility in net-
micropores in silicon waferf9]. The gates should be such Works with dead end$12]. Finally, negative mobility can
that a single particle can easily pass through while the pagilso appear when the force acts, not only on the walkers, but
sage is hampered when several particles are present on talso, directly or indirectly, on the substrate, see, for example,
same side of the gate. Upon application of an external biaghe well known anomalous transport of electr¢s].
such a crowding will appear more frequently on the side of
the gates that is upstream of the force, with negative mobility ACKNOWLEDGMENTS
as apossibleoutcome. We stress that this intuitive argument ] ] )
can be misleading. Indeed, as already mentioned in the In- We thank the Program on Inter University Attraction
troduction, negative mobility is ruled out near equilibrium by Poles of the Belgian Government and NSF Grant No. PHY-
the fluctuation dissipation theorem. One thus either has t§970699 for financial support.
work in the regime of nonlinear response, or linear response
around a nonequilibrium state. An explicit example of the APPENDIX
latter case is given by the model introduced in R,
where the narrow gatérepresented by a barrjeis also
cooled. A biochemical alternative corresponds to a gate th
operates unbiased active transport, which is deactivate
when more then one particle attaches to the same site.

The second mechanism, greediness, is more intricate and o

. .. s . m
possibly more surprising: it involves informed walkers that = _ (x"(2)) . m

. or ng. 1t : (k,z)= >, (ik)™, (A1)
modify their jump statistics in a greedy way in response to m=o m!
the motion of the other walkers. A deterministic analog is the
so-called Braess parad%0], in which it is found that the where we definéx™(z))==,_,(x™(n))z". The asymptotic
addition of a new route to go from one point to anotherbehavior of the moments can be obtained by making use of
actually slows down the traffic in that direction. The openingthe so-called Tauberian theorems. In the case of a power
of the new route makes the original flow pattern unstableseries, such asf(z)=37_,f,z", they state that the
against greedy defectors, who, by choosing a trajectory thasymptotic dependence 6f for n— is closely related to
is faster for them with respect to the original flow pattern, the singular behavior df(z). A useful theorem is the follow-
produce a cascade of modifications leading to a stable bqﬁg [2]: Let f(2)=3%_,f,2", with f, a strictly positive and

suboptimal equilbrium. The paradox is also well known in,nat6nic function ofn. If f(z) is singular in the limitz
macroeconomics where these type of suboptimal states are 4

referred to as Nash equilibria. In short, just like in the traffic

IV. COLLECTIVE EFFECTS

In this appendix, we show how to obtain the veloaity
nd diffusion coefficientD from the Fourier transform
(k,z) of the generating function. Expandifdk,z) around

k=0 gives

problem, the pursuance of individual interests can be the 1

demise of a collective goal. In the context of random walk- L(E)

ers, one can imagine negative mobility to appear when, as a f(z)~ —", (A2)
result of the installation of a bias, walkers greedily choose (1-2)¢

routes that appear, with respect to the existing flow patterns,

favourable to themselves, but effectively result in an overalwith L(x) a slowly varying function anc“L(x) a positive

delay of the motion in the direction of the bias. monotonically increasing function of for largex. Then, in
the limit n—oo,

V. DISCUSSION . ana*lL(n)_i_naL/(n)
n I'i+a)

We close with a discussion of the distinctive features of (A3)

walks with negative mobility and a broad overview of related
results from the literature. First, such walkers are reservoiror the first momen¢x(n)) one finds from Eq(3) and(A1),
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v requires the calculation to the next order in the asymptotic
X(2))~——, (A4)  behavior of(x(n)), namely,
(1-2)?
v C—v
wherev is the speed given by Eq4). Applying the above (x(2))— 2T 1=
theorem fora=2 andL(x) a constant equal to, we con- (1-2)

clude that(x(n))~nv for largen. The diffusion coefficient

_gN _ AN
D can be obtained in a similar way, by consideringn) 1-97(1+Np) _ 1-p (1+Ng)

C=N . (AS)
=x(n)—(x(n)) with D=lim___(y?(n))/2n. Note that this (1—g")? (1—p")2
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