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Parameter evaluation from time sequences using chaos synchronization
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Unknown parameters in nonlinear equations are estimated from chaotic time sequences using chaos syn-
chronization. The method is based on a random optimization method. The parameters are randomly searched
for in a sequential manner as the degree of the chaos synchronization is increased. The method is applied for
the parameter evaluation in the Lorenz equation and the Lang-Kobayashi model for the chaotic semiconductor
laser.
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Chaos appears in time evolutions of some kinds of nonparameter values are expected to be the desired parameters
linear equations. It is an inverse problem to predict a govfor the nonlinear equation which generates the chaotic se-
erning nonlinear equation from the chaotic time sequenceguence.

This inverse problem is important but in general very diffi-  Our algorithm for the random optimization is such that
cult [1]. If the form of the governing nonlinear equation is

assumed, the inverse problem is reduced to a simpler prob- (1) We assume a nonlinear equation with a parameter set
lem to evaluate parameters in the nonlinear equation fronja}. We also perform a numerical simulation of E@) with

the chaotic time sequences. There are many attempts for tiilee chaotic force term and the coupling term with sufficiently
parameter estimation in ordinary differential equations andargeD.

partial differential equationf2,3]. These methods are mainly ~ (2) We calculate the difference of the two time sequences
based on the regression analysis between the temporal dedch as

rivatives of the state variables and some polynomials of the

variables and their spatial derivatives. We propose another T 5

method to estimate the parameters using chaos synchroniza- U= fo |X=Xo|"dt.

tion and a random optimization method. The temporal de-
rivatives of the state variables are not necessary in this pa-

. ; 3) Each parameteat in the parameter s¢t} is randoml
rameter estimation method. (3) p p gt} y

. . . . modified as
We assume a nonlinear equation subject to a chaotic force
Xo(1). a'=a+tr,
dx ) ) ] ]
azf(x,{a})+ D(Xy—X), (1)  wherer is a random number which obeys the Gaussian dis-

tribution with small but fixed variance. We perform a nu-
merical simulation of Eq(1) with the modified parameter set
{a'} and obtain a time sequengé(t).

(4) The difference of the two time sequences is calculated
as

whereD(x,—X) denotes a coupling term ard} denotes a
parameter set of the nonlinear equatiorxfobeys the same
form of nonlinear equation:

0 =100} @ T
dt O teeh U’=f X" —xo|?dt.
0

with the same parameter Sety}={a}, the chaotic time se-

guencex(t) is expected to be synchronized by the externaffor the randomly modified values of the parameter set.

force xy(t) for D>D.. The synchronization has been inten-  (5) If the differenceU’ is smaller tharlJ, the parameter
sively studied in chaotic systenig—6]. If the parameter set is changed fronfa} to {a’}. On the other hand, if the
values{a} of the assumed equation are different from thedifference U’ is larger thanU, the parameter set is un-
original parameter valugs,y}, the complete synchronization changed and kept to He}.

cannot occur, however, the differenjpe- x| is expected to (6) The processed)—(5) are repeated until the difference
be small, if the difference of the two parameter sets is smalU becomes sufficiently small. This is a kind of random op-
and D is sufficiently large. We measure the degree of thetimization method and is similar to the Metropolis method
chaos synchronization by the difference of the two time sewith temperature (7,8]. Similar optimization methods were
quences. We search for the parameter valleeg of the  used for more complicated problems such as neural network
nonlinear equation with a random optimization method, asnodels and the traveling salesman problghiQ]. If there

the degree of the chaos synchronization becomes stronger.dfe many local minima iJ as a function of parameters, it
the perfect chaos synchronization is attained, the obtainechay be better to include some stochastic processes as the

1063-651X/2002/6&)/0272014)/$20.00 65027201-1 ©2002 The American Physical Society



BRIEF REPORTS

PHYSICAL REVIEW E 65 027201

400 30 @
300 257 ¢
U
20+
200+ 3 154
<
1 -
100 0 3
5_
0 0 . . b
10 20 30 40 0 5000 10000 15000
c step number
o . b
FIG. 1. DegredJ of the chaos synchronization as a function of 30
¢ andD for the Lorenz equation. 25 ¢
20
Metropolis method with finite temperature. We have not in- o 154
cluded such additional stochastic processes in this paper for § 104
the sake of simplicity. 5. a
We have applied the above algorithm to estimate param- 0- z
eters in some model equations. The first example is the Lo- , , ,
i ion i 0 5000 10000 15000 20000
renz equatiori11]. The model equation is step number
dx FIG. 3. (a) Time evolution ofa, b, andc by the random optimi-
a:a( ~X+y)+D[Xo(t) =x], zation process with noisy signals for the Lorenz equatibnTime

evolution ofa, b, g andd by the random optimization process for a
dy generalized Lorenz equation.
——=-—Xxz+cz—y,
dt guences. The difference takes a minimum value O at
=¢, for D=15 and 9, since the coupling consténis above
the critical value 7.95. A® is increased from 7, the value of
U at c=cy=28 is decreased and becomes 0 D

) =7.95. The pointc=c, is a local minimum point forD
wherea, b, andc are the unknown parameters aBdis a —g gngd 7, that isc is expected to approady, if the initial

coupling constant. Many types of coupling terms are possiblgajye ofc is chosen to be close t, and the above random
for the chaos synchronization, but we have assumed th@ptimization process is applied. FBr=>5, there is no defi-

above form of coupling for the sake of simplicity. The cha- njte |ocal minimum point in the randd.0,40), therefore¢ is
otic time sequence,(t) was generated by the same Lorenz gypected to decrease in a monotonic manner in the optimi-

equation witha=10=a,, b=8/3=b,, andc=28=Co. Di- ~ zation process. These results suggest that the above random
rect numerical simulations show that the complete Chao%ptimization may succeed in obtaining the parametgrif
synchonizationx(t) =Xo(t) occurs forD>D.=7.95 ata  the coupling constar® is sufficiently large.
=10,b=8/3, andc=28 in the forced Lorenz EC(S)-T We have searched for three parameiags by, and c

The differenceU was numerically calculated a[x(t)  with the random optimization method. The variancef the
—Xo(t)]?dt for a=10,b=8/3, andT =40 by changing and  Gaussian distribution for the random modification is as-
D. The integral timeT is larger than a typical period of the sumed to be 0.01 foa, b, andc. The initial values ofa, b,
chaotic oscillation in the Lorenz equation. Figure 1 displaysandc area=3, b=1, andc=5. The Lorenz equation has a
the averaged value o) with respect to many time se- stable stationary solution at the parameter values, that is, the
initial values are sufficiently apart from the parameter values

dz
—=Xy—hz,

dt @
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FIG. 2. Time evolution ofy, b, andc by the random optimiza-

FIG. 4. Chaotic time sequence of powé’lf):ES(t) for the
tion process for the Lorenz chaos.

Lang-Kobayashi equation af,=30 ns'! andJ=2.74x 107,
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(hs) (a) ure Ja) displays the time evolution o0&, b, and c. After
32 11 000 steps, the parameters are close to the desirable values
30+ and are slightly fluctuating around the desirable valags
K 287 by, andcy. It implies that the optimization method is appli-
26 cable for the noisy signals.
24 We have assumed the exact form of the Lorenz equation
in the former simulation. If we do not know the exact form
221 of the equation, we prepare some additional terms at first. If
20+ the parameters of the additional terms become 0 in the pro-
18 ; ; : ' cess of the optimization, the exact form of the equation is
0 200 400 600 800 1000 recovered. We have performed the optimization method for a
P generalized Lorenz equation. The input sigkgis generated
") by the Lorenz equation witlay= 10, by=8/3, andc,=28.
28x10'" ©) We assume a generalized Lorenz equation with the forcing
. term
J -
. dx
2.4x10'- i~ a(=x+y)+dz+D[xo(t) —x],
] dy
2.0x10' - - xErery.
0 200 400 600 800 1000 dz
step number _
Y bz, (4)
(c)
140 wheredzis an additional term. The initial parameter values
120 area=3, b=1, c=5, andd=5. The time evolution of the
u 100 parameter values is displayed in FigbB The parameted
80 for the additional term becomes 0 and the exact Lorenz equa-
60 tion is recovered after 15000 steps.
We have applied the above method to the Lang-
40 Kobayashi mode[12]. The Lang-Kobayashi equation is a
20 model for the semiconductor lasers. Chaotic output appears
0+ ' : ! ' by the optical feedback in this model equation. The control
0 200 400 600 800 1000 of chaotic semiconductor lasers and the information trans-

step number L. . . ..
mission using laser systems are considered to be promising

FIG. 5. Time evolution of« (a), J (b), andU (c) by the random  for the application of the chaotic dynamifk3]. The model
optimization process for the Lang-Kobayashi model. equation is written as

of ag, by, andcy. We have checked that the optimization ﬁ_l N T _

method is successful for several other initial values.ob, at ~ 2{GnINo() = Ne] = ve} Bo(t) + koBo(t=7)C08 ¢o(t)

andc. The differenceJ of the two time sequencegt) and

xo(t) is calculated as)=[T[x(t) — xo(t)2dt with T=40. ~ $o(t=17) + wot],

The differenceU does not take a constant value even for dé

fixed values ofa, b, and c, since the time sequences are -%0_ « _ o

chaotic. A kind of additional stochasticity is naturally in-  dt 2{GNNo(t) = Ne] = ye} =«

cluded in the random optimization process. Figure 2 displays

the time evolution ofa, b, andc. The desirable parameter ~ ¢o(t— 1)+ wot],

values are obtained and nearly perfect chaos synchronization dN

is attained after 11000 steps. The parameter values at the dWNo .o _ -~ 2

15000th step are=28.001,a=9.997, and=2.667. at Yo~ nNo(D) = GnINo(D) = NJE(D, - (5)
We have checked the robustness of this optimization

method with several simulations. The input sigmg(t) is  whereE, is the amplitude of the electrical fieldj, is the

perturbed by some noises in some cases. We have performptase of the electrical fieldy is the carrier number inside

the optimization algorithm in the case of noisy signals. Thethe cavity,Gy is the gain parameteg is the linewidth en-

input signalxy(t) is assumed to be a chaotic time sequencéhancement factory. is the decay constant & by the pho-

by the Lorenz equation witla,=10, by=8/3, andcy,=28 ton life time, x, is the feedback coefficient,is the external

overlapped with the Gaussian white noise of variance 1. Figeavity roundtrip time,w, is the angular frequency of the

Eo(t_ ’T)

msﬂ%(t)
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wave, Ny is the carrier number at transparengy is the
decay constant for the carrigy=1,/e is the generation rate
of the carrier by the bias currehiand the bias curreritis a

PHYSICAL REVIEW E 65 027201

where all components are coupled and the coupling constant
D=500ns !, andEy(t), ¢o(t), andNy(t) are chaotic time
sequences which obey E¢). Complete synchronization oc-

control parameter. The parameter values are assumed in oers atJ=Jo, and x= « for the coupling constant. We have

numerical simulation to b&y=1.5x10 8 ps !, a=5, v,
=500ns?, ko=30ns?! 7r=0.3ns, wy~1.2x10° ps
N.=1.5x 10°, andyy=0.5 ns L. Figure 4 is a chaotic time
sequence at=44 mA. Assuming that we do not know the
parameter values af and «, we search for the parameter
values ofJ and k with the random optimization method. The
model equation with chaotic forcing terms is written as

dE
it = 2{GNIN(D) = Nol = yc}E(1) + kE(t— r)cod (1)
— ¢(t=7)+ wot]+ D[Eg(t) ~E(1)],

d¢_a E(t—7) .
ot =2 {GNIN(D) = No] -~ %}—K?t)swkﬁ(t)

— ¢(t=7)+ wot]+ D do(t) — b(1)],

dN
at =J— ynN(t) = GNIN(t) — No]E(t)?+ D[ No(t) — N(t)],
(6)

measured the degree of chaos synchronization Uas
=fg[E0(t)—E(t)]2dt with T=1.2 ns. The random optimi-
zation method is applied for this model. The initial values
were set to bec=20 ns ! andJ=2x 10" s~ 1. Figures %a)
and 3b) display the time evolution ok andJ. Figure %c)
displays the time evolution of the distante The desirable
parameters,=30 ns ! andJ=2.74x 10'" s~ ! are obtained

in this simulation.

In summary, we have proposed a random optimization
method using chaos synchronization to evaluate parameters
in nonlinear equations, and demonstrated the validity of the
method with the Lorenz equation. We have checked the ro-
bustness of the method for the Lorenz equation. Even if
some noises are overlapped to the chaotic signals, the param-
eter estimation is possible. Even if we do not know the exact
form of the equation, the additional parameter becomes zero
in the optimization process and the desirable equation can be
recovered. We have applied the method to the Lang-
Kobayashi model for the chaotic semiconductor laser, which
may be important for the application of the chaotic dynam-
ics.
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