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Exactly solved dynamics for an infinite-range spin system. II. Antiferromagnetic interactions
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In a previous paper@E. Milotti, Phys. Rev. E63, 026116 ~2001!#. I have shown how to derive both
thermodynamical and dynamical properties of an infinite-range Ising spin system with binary ferromagnetic
interactions from the master equation for magnetization obtained from a simple spin dynamics. The same
method can be adapted to different spin interactions: here I discuss the case of antiferromagnetic interactions.
This model permits a study of the static properties of the antiferromagnetic lattice, and it displays very clearly
the differences between the antiferromagnetic and the ferromagnetic case with long-range interactions. The
dynamical behavior of the antiferromagnetic system is simpler, and the magnetization always relaxes expo-
nentially.
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In recent years many efforts have been concentrated
the study of the relaxational dynamics of complex syste
like spin glasses, glass-forming liquids, and other kinds
disordered systems. There are common features that em
from these systems, in particular, it seems that the sim
exponential dynamics makes place to some more com
power-law dynamics in the vicinity of critical points.

In a previous paper@1# I have studied a simple dynamica
model for an Ising spin system with long-range ferroma
netic interactions and I have shown that the assumed
dynamics~which essentially amounts to a single spin flip p
time step! leads to a partial differential equation for the ma
netization. This equation gives in turn an ordinary differe
tial equation that describes the time evolution of the mag
tization of the spin system: this ordinary differential equati
is nonlinear, and displays a clear bifurcation, which accou
for the thermodynamic properties of the spin system. In
dition the same equation gives a neat power-law relaxa
near the critical temperature, while otherwise it gives an
dinary exponential relaxation.

In this paper 1 consider the case of antiferromagnetic
teractions, i.e., I take the Hamiltonian

H5
J

N (
i , j

s1s j2h(
i

s i , ~1!

and I use the same formalism of the previous paper. Just
happens for ferromagnetic interactions, the properties of
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antiferromagnetic system can be well understood with
formalism described in Ref.@1#, but it turns out that now
there is no direct relationship with bifurcation theory, a
that the antiferromagnetic behavior is conceptually very d
ferent from the ferromagnetic behavior.

The method used in Ref.@1# can be easily adapted to th
antiferromagnetic case: if a spin configurations has n
‘‘down’’ spins andN2n ‘‘up’’ spins, then the magnetization
in these long-range models isMn[M (s)5(1/N)(N22n),
and the energy is

En[E~s!52
J

N
n~N2n!1

J

2N
n~n21!

1
J

2N
~N2n!~N2n21!2h~N22n!

5
J

2N
@~N22n!22N#2h~N22n!. ~2!

Following Ref.@1# it can be shown that for largen the prob-
ability P(x,t) of finding a fractionx5n/N of the spins in the
down direction at timet obeys the quasilinear partial differ
ential equation,

1

c

]P

]t
1@122x22 f ~x!#

]P

]x
52@11 f 8~x!#P~x,t !, ~3!

where
f ~x!5
12$~12x!exp@2Jb~122x!22bb#1x exp@22Jb~122x!12bh#%

12x

x
exp@2Jb~122x!22bh#2

x

12x
exp@22Jb~122x!12bh#

, ~4!
as

fol-
and then, using the method of characteristics@2# we find the
ordinary differential equation forx,

1

c

dx

dt
5122x2 f ~x!. ~5!
Just as in the ferromagnetic long-range model@1#, Eq. ~5!
describes the thermodynamic properties of the system
well as its dynamics, because the derivative~5! must vanish
when the system reaches thermal equilibrium, i.e., the
lowing system of equations must be satisfied:
©2002 The American Physical Society02-1
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y5122x, ~6!

y5 f ~x!,

wherey is the magnetization in the large-N limit, and this
system can be solved numerically for all values of the ex
nal field h.

The antiferromagnetic case is very different from the f
romagnetic case: while in the ferromagnetic case there w
supercritical pitchfork bifurcation@3#, now in the symmetri-
cal h50 case, there is just one solution for all temperatu
@x51/2,f (x)50#. Moreover it is easy to see that at very lo
temperature,

f ~x!'2x if x,
1

2 S 12
h

j D , ~7!

and

f ~x!'12x if x. 1
2 S 12

h

JD , ~8!

while f (0)5 f (1)50 at all temperatures.
Figure 1 shows plots off (x) for different values ofh/J at

a fixed temperature; notice that ifh50 the solution of Eq.
~6! is x5 1

2 ~this is true at all temperatures!, and that in this
case the derivative off (x) at x5 1

2 is just Jb, so that at low
temperature the functionf (x) is very steep nearx5 1

2 .
The plots in Fig. 1 show that the steepness of the reg

of f (x) with positive derivative is determined by the tem
perature of the system, while the position of this region
determined by the the magnetic field value, and moreove
very low temperature the function nearx5 1

2 (12h/J) is al-
ways very steep, so that the magnetization from the solu
of the system of Eqs.~6! is just

M'122x5
h

J
, ~9!

i.e., the magnetic susceptibility at low temperature isx
5M /h51/J5constant. Ifh/J.1 there is just one fixed so
lution (x50), so thatM51 andx51/h.

Both the magnetization and the static susceptibility can
computed numerically, and then one we also obtain the h
capacity per unit spin, which is

1

N
C~T,h/J!5

1

N

]E

]TU
h/J

5
1

N

]E

]MU
h/J

]M

]T U
h/J

5JS M ~T,h/J!2
h

JD ]M

]T U
h/J

. ~10!

Since the magnetization is always 0 forh50, then the heat
capacity at zero field vanishes for all temperatures, and
deed the flatness of the heat capacity at zero field is on
the unrealistic features of the assumed long-range inte
tion, as already remarked in@4#. In a spin system with
nearest-neighbor interactions the zero magnetization s
can be either a high-temperature state in which all the s
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FIG. 1. Plots of the functionf (x) ~thick solid line! at fixed
temperature (2J/kT510) and different values of the magnetic fiel
~a! h50; ~b! h50.5; ~c! h51; ~d! h51.5. The central straight line
~thin solid line! is the functiony5122x, and the upper and lowe
straight lines~dashed lines! are the functions2x and 12x @see
Eqs.~7! and ~8!#.
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are at random or a low-temperature one in which there
two ordered checkerboards of spins with opposite orienta
and minimum total energy. In the present system with lo
range interactions there is no such difference between h
temperature and a low-temperature zero magnetiza
states. This is no longer true when an external magnetic fi
is present: in this case the low-temperature configuration
a nonzero magnetization and can be distinguished from
high-temperature, random configuration.

The numerical calculations confirm the known results
all the static quantities of the antiferromagnetic system~thor-
oughly discussed in@4#!, and in addition the ac susceptibilit
may also be derived.

It turns out that the dynamics of this antiferromagne
system is very simple, i.e., if we letx0 be the solution of the
system of Eqs.~6! then, in the neighborhood ofx0 Eq. ~5!
becomes

1

c

dx

dt
'2@21 f 8~x0!#~x2x0!. ~11!

and, therefore, the magnetization undergoes a sim
exponential relaxation—with decay constantG5c@2
1 f 8(x0)#—for all temperatures and all field values, unlik
the ferromagnetic case; Fig. 2 shows the decay constan
some selected cases, and Fig. 3 shows the correspon

FIG. 2. Plot of the decay constantG vs h/J for different tem-
peratures: 2J/kT55 ~short dashes!, 2J/kT510 ~long dashes!,
2J/kT520 ~dashed dotted!, and 2J/kT540 ~solid curve!.
.
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relaxation timet51/G. Notice that at low temperature ther
is a rather sharp transition from a fast relaxation at low fi
values to a slow relaxation at high field values: the transit
between the two regimes takes place ath/J51 @this is re-
lated to the limiting behavior~7! and~8!#, and the lower the
temperature, the faster the relaxation at low field values.

The approach described in Ref.@1# and applied here to the
antiferromagnetic long-range case had already been t
long ago by Griffiths, Weng, and Langer@5#, and further
developed by other authors@6,7#, however, here and in@1#
both the dynamics and its connection with bifurcation theo
have been clarified.

Both the ferromagnetic and the antiferromagnetic lon
range Hamiltonians have been well studied in the stand
thermodynamic framework@4,8,9#, and the dynamical ap
proach to magnetic systems has been pioneered by se
other researchers in addition to the ones mentioned ab
~see, e.g.,@10,11#!, however, the method described in th
and in the companion paper@1# is straightforward and
intuitive.

Finally it is worthwhile to notice that in the antiferromag
netic case there is no phase transition and no Ne´el point,
because there is no bifurcation in the dynamics, and the m
netization always follows a simple exponential relaxati
law.

FIG. 3. Plot of the relaxation timet vs h/J for different tem-
peratures: 2J/kT55 ~short dashes!, 2J/kT510 ~long dashes!,
2J/kT520 ~dashed dotted!, and 2J/kT540 ~solid curve!.
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