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Exactly solved dynamics for an infinite-range spin system. Il. Antiferromagnetic interactions
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In a previous papefE. Milotti, Phys. Rev. E63, 026116(2001]. | have shown how to derive both
thermodynamical and dynamical properties of an infinite-range Ising spin system with binary ferromagnetic
interactions from the master equation for magnetization obtained from a simple spin dynamics. The same
method can be adapted to different spin interactions: here | discuss the case of antiferromagnetic interactions.
This model permits a study of the static properties of the antiferromagnetic lattice, and it displays very clearly
the differences between the antiferromagnetic and the ferromagnetic case with long-range interactions. The
dynamical behavior of the antiferromagnetic system is simpler, and the magnetization always relaxes expo-
nentially.
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In recent years many efforts have been concentrated oantiferromagnetic system can be well understood with the
the study of the relaxational dynamics of complex systemsformalism described in Refl], but it turns out that now
like spin glasses, glass-forming liquids, and other kinds othere is no direct relationship with bifurcation theory, and
disordered systems. There are common features that emertf@t the antiferromagnetic behavior is conceptually very dif-
from these systems, in particular, it seems that the simpléerent from the ferromagnetic behavior.
exponential dynamics makes place to some more complex The method used in Reffl] can be easily adapted to the
power-law dynamics in the vicinity of critical points. antiferromagnetic case: if a spin configuratien has n

In a previous papdrl] | have studied a simple dynamical “down” spins andN—n “up” spins, then the magnetization
model for an Ising spin system with long-range ferromag-in these long-range models M,=M (o) =(1/N)(N—2n),
netic interactions and | have shown that the assumed spiand the energy is
dynamics(which essentially amounts to a single spin flip per

time step leads to a partial differential equation for the mag- E,=E(0)=— i n(N—n)+ i n(n—1)
netization. This equation gives in turn an ordinary differen- N 2N

tial equation that describes the time evolution of the magne- 3

tization of the spin system: this ordinary differential equation + m(N —n)(N—n—1)—h(N-2n)

is nonlinear, and displays a clear bifurcation, which accounts
for the thermodynamic properties of the spin system. In ad- 3
dition the same equation gives a neat power-law relaxation = —[(N—2n)>~N]—h(N-2n). 2)
near the critical temperature, while otherwise it gives an or- 2N
dinary exponential relaxation.

In this paper 1 consider the case of antiferromagnetic in
teractions, i.e., | take the Hamiltonian

Following Ref.[1] it can be shown that for largethe prob-

ability P(x,t) of finding a fractionx=n/N of the spins in the

down direction at timé obeys the quasilinear partial differ-
J ential equation,

H=Y .EJ: 719 hZ i @ 1 9P oP

EE-}—[J.—ZX—Z f(x)]5=2[1+f’(x)]P(x,t), 3

and | use the same formalism of the previous paper. Just as it

happens for ferromagnetic interactions, the properties of thevhere

B 1-{(1—-x)exd 23B(1—2x)—2Bb]+xexd —2IB(1—2x)+2Bh]}

: 4)
1-x X
——exd2B(1-2x)—2ph]— 7= exf —2JB(1-2x)+2ph]
|
and then, using the method of characterisf@lswe find the Just as in the ferromagnetic long-range mddgl Eq. (5)
ordinary differential equation fox, describes the thermodynamic properties of the system as
well as its dynamics, because the derivat{@emust vanish
1 dX=1—2x—f(x) 5) when the system reaches thermal equilibrium, i.e., the fol-

cdt lowing system of equations must be satisfied:
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y=1-2x, (6) fix)

y="F(x),

wherey is the magnetization in the largé-imit, and this
system can be solved numerically for all values of the exter-
nal field h.

The antiferromagnetic case is very different from the fer-
romagnetic case: while in the ferromagnetic case there was a
supercritical pitchfork bifurcatiof3], now in the symmetri-
cal h=0 case, there is just one solution for all temperatures
[x=1/2,f(x)=0]. Moreover it is easy to see that at very low
temperature,

1/ h Jx)
f(x)~—x if x<§(l—j—), (7)
and
h
f(x)~1—x if x>3 1—3), (8)

while f(0)=f(1)=0 at all temperatures.
Figure 1 shows plots df(x) for different values oh/J at
a fixed temperature; notice thatli=0 the solution of Eg.
(6) is x=13 (this is true at all temperaturgsand that in this
case the derivative df(x) atx=3 is justJg, so that at low
temperature the functiof(x) is very steep neax=3. fx)
The plots in Fig. 1 show that the steepness of the region
of f(x) with positive derivative is determined by the tem-
perature of the system, while the position of this region is
determined by the the magnetic field value, and moreover at
very low temperature the function ness3(1—h/J) is al-
ways very steep, so that the magnetization from the solution
of the system of Eqg6) is just

h
M~1-2x=7, (9)

i.e., the magnetic susceptibility at low temperature yis
=M/h=1/J=constant. Ith/J>1 there is just one fixed so-  fix)
lution (x=0), so thatM =1 andy=1/h.

Both the magnetization and the static susceptibility can be
computed numerically, and then one we also obtain the heat
capacity per unit spin, which is

1 9E
N 4T

1 0E

N oM

oM

1
—C(T,hlJ)= —
N T

h/J h/J

. (10
h/J

h\ oM
=J(M(T,h/J)—3)0—T

Since the magnetization is always 0 for=0, then the heat

-C

1_

0

.5F

1F

1F
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capacity at zero field vanishes for all temperatures, and in- FIG. 1. Plots of the functiorf(x) (thick solid lin@ at fixed
deed the flatness of the heat capacity at zero field is one aémperature (2kT=10) and different values of the magnetic field:
the unrealistic features of the assumed long-range interaca) h=0; (b) h=0.5; (c) h=1; (d) h=1.5. The central straight line
tion, as already remarked ifg]. In a spin system with (thin solid ling is the functiony=1-2x, and the upper and lower
nearest-neighbor interactions the zero magnetization staggraight lines(dashed lingsare the functions-x and 1-x [see
can be either a high-temperature state in which all the spingas.(7) and(8)].
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FIG. 2. Plot of the decay constahtvs h/J for different tem- FIG. 3. Plot of the relaxation time vs h/J for different tem-
peratures: 2/kT=5 (short dashes 2J/kT=10 (long dashes peratures: 2/kT=5 (short dashes 2J/kT=10 (long dashes
2J/kT=20 (dashed dottel and 21/kT=40 (solid curve. 2J/kT=20 (dashed dotted and 21/kT=40 (solid curve.

are at random or a low-temperature one in which there are o .
two ordered checkerboards of spins with opposite orientatior.rfe"?'lxaltlon timer=1/T". .l\.lot|ce that at low temp-erature the.re
and minimum total energy. In the present system with Iong—Is a rather sharp transm_on "0”? a f"?ISt relaxation at low f|g|d
range interactions there is no such difference between higH/_aIues to a slow relax_atlon at high field values: the ftransmon
temperature and a low-temperature zero magnetizatioR€tween the two regimes takes placehad=1 [this is re-
states. This is no longer true when an external magnetic fiellted to the limiting behaviof7) and (8)], and the lower the

is present: in this case the low-temperature configuration ha§mperature, the faster the relaxation at low field values.

a nonzero magnetization and can be distinguished from the The approach described in Rgt] and applied here to the
high-temperature, random configuration. antiferromagnetic long-range case had already been tried

The numerical calculations confirm the known results forlong ago by Griffiths, Weng, and Lang¢b], and further
all the static quantities of the antiferromagnetic systémor-  developed by other authof$,7], however, here and if]
oughly discussed if¢]), and in addition the ac susceptibility both the dynamics and its connection with bifurcation theory
may also be derived. have been clarified.

It turns out that the dynamics of this antiferromagnetic Both the ferromagnetic and the antiferromagnetic long-
system is very simple, i.e., if we let, be the solution of the range Hamiltonians have been well studied in the standard
system of Eqgs(6) then, in the neighborhood of; Eq. (5) thermodynamic framework4,8,9,, and the dynamical ap-
becomes proach to magnetic systems has been pioneered by several
other researchers in addition to the ones mentioned above
(see, e.9.[10,11)), however, the method described in this
and in the companion papd] is straightforward and
intuitive.
and, therefore, the magnetization undergoes a simple Finally it is worthwhile to notice that in the antiferromag-
exponential relaxation—with decay constarf=c[2  netic case there is no phase transition and nelNwint,
+f'(xq) ]—for all temperatures and all field values, unlike because there is no bifurcation in the dynamics, and the mag-
the ferromagnetic case; Fig. 2 shows the decay constant faretization always follows a simple exponential relaxation
some selected cases, and Fig. 3 shows the corresponditayv.

1 dx ,
g~ L2+ 1 (x0)1(x=x0). (1D
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