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Purification of correlated reduced density matrices

David A. Mazziotti
Department of Chemistry, Princeton University, Princeton, New Jersey 08544
(Received 3 August 2001; published 18 January 2002

The notion of purification is generalized to treat correlated reduced density matrices. Traditionally, purifi-
cation denotes the process by which a one-particle reduced density (daRRM) is made idempotent, that
is, its eigenvalues are mapped to either 0 or 1. Purification of correlated RDMs is defined as the iterative
process by which an arbitrary RDM is forced to satisfy several necebkegpresentability conditions. Using
the unitary decomposition of RDMs and the positivity conditions, we develop an algorithm to purify the
2-RDM. The algorithm is applied within the solution of the contracted Stihger equation CSE for the
2-RDM [D. A. Mazziotti, Phys. Rev. A7, 4219(1998]. Previous attempts to solve the CSE by powerlike
methods have frequently produced divergent energies, but we show that the purification process eliminates the
divergent behavior for systematic and reliable convergence of the contracted power methodl{oattiele
energy.
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[. INTRODUCTION N-particle density matrixb¥* | whereW (the preimaggis
. . an N-particle wave function[18,25,26. Any idempotent
The two-particle reduced density mat(@RDM) for at- 1 _pp\ is N representable with a unique Slater-determinant
oms and molecules has recently been computed directlreimage. Within the linear-scaling literature the 1-RDM
without the wave function through the 2,4-contracted Schromay be directly computed with unconstrained optimization
dinger equation(CSE) and density-matrix reconstruction where iterative purification imposes thé-representability
[1-19. The CSE is a contraction of the-electron Schre  conditions [22—24. Recently, we have shown that these
dinger equation onto the space of two quasielectrons. Whilenethods for computing the 1-RDM directly are related to the
the CSE contains not only the 2-RDM but also the 3- and theolution of the 1,2-CSE by a contracted power metth@-
4-RDMs, a strategy for solving the CSE has been develope§SE s the contraction of the Schiiager equation onto the
by reconstructing the 3- and the 4-RDMs from the 2-RDM _one—partlcle spag€g27]. While purification for noninteract-

o - ing 1-RDMs was first pioneered by McWeeny in the late
through cumulant theory. Application of the CSE with 1950s[21], the concept has not been previously extended to

deq5|ty—matr|x reconstruction has yielded the correlation enz rrelated density matrices. We defiperification of corre-
: o fated RDMs as the iterative process by which an arbitrary
spin models and random Hamiltonians. _ p-particle density matrix is projected ontopaRDM, which
From these calculations two general strategies havgpeys several necessary conditions forrepresentability.
emerged for the solution of the CSE after reconstruction: Note that the worchecessanjis used since the full set of
self-consistent iteratioi2—9] and (i) Newton’s method for  N-representability conditions for the-RDM (p>1) is not
nonlinear equationg5,6,19. For BeH, Valdemoro, Tel, and  known. Although there is considerable literature on minimiz-
Perez-Romero obtained good convergence of the CSE witing the energy with respect to a 2-RDM, which is con-
self-consistent iteratiop4], but Yasuda and Nakatsuji found strained byN-representability condition§17,18,25,26,28—
that a self-consistent strategy often produced divergence &3], the literature on correcting a 2-RDM, which is nidt
the CSE and its energf]. Hence, Yasuda and Nakatsuji representable, is not lardd,14,34,3% The need for such
performed their calculations with a Newton’s method, which,techniques is suggested by the iterative nature of the CSE.
however, is more expensive and not without convergencdhe extension of purification to the 2-RDM plays a role in
issues[5,6,19. We showed that the self-consistent iterationthe solution of the 2,4-CSE, which is analogous to the role of
of the CSE could be connected with the power method fort-RDM purification in the solution of the 1,2-CSE.
eigenvalues, and we employed a contracted power method to MCWeeny's purification of the 1-RDM may be derived
solve the CSE for Lipkin's quasispin model. After examining with calculus or polynomial theor}27,36,317, but the devel-
various approaches for the CSE’s solution, we recently deopment .Of purlflcat|o.n me.thods_ for corre!ated RDMs re-
quires different machinery including the unitary decomposi-

signed a contracted power method that exhibits consisteqlon of RDMs [38—44, cumulant reconstruction of RDMs
and reliable convergence to theparticle solution20]. The 8,9,12,15,19,45 and ihe known 2-RDM positivity condi-
success of the contracted power method depends upon t%‘ans for N representabilityf 17,46. These concepts will be
purification of correlated RDMs that will be developed in | oyiewed as we develop an iterative algorithm for purifying
this paper. . ) . correlated RDMs. The final method is illustrated by purify-

The concept of purification is well known in the linear- jng a nonN-representable two-particle density matrix that
scaling literature where it denotes the iterative process byas obtained as an intermediate during a CSE calculation on
which an arbitrary one-particle density matrix is projectedH,0, and then we show that purification after each iteration
onto an idempotent 1-RDNR1-24. An RDM is said to be  of the CSE dramatically improves the convergence of the
pure Nrepresentable if it arises from the integration of ancontracted power method.
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Il. THEORY effect this purification:(i) set all of the negative 1-RDM

e . . . eigenvalues to zerdji) correct the trace by decreasing the
Purification of the 2-RDM begins with checking that the . X .
2-RDM contracts to a 1-RDM, which 8l representable. occupation number for the highest occupied orbifl) set

After the 1-RDM is adjusted as shown in Sec. Il A, the cor—t0 1 all 1-RDM eigenvalues that are greater than 1, @y

responding 2-RDM may be updated through the unitary Clegorrect the trace by increasing the occupation number for the

o . lowest unoccupied orbital. We decrease the highest occupied
fr?emsgiiglronafr:?jriusgﬁllall:’]? d-gzcem%-igi?i/loggtzirfrgp::t th;?gggprbital and increase the lowest unoccupied orbital since these
the 2—RDI\)/II In Sec. 11D the remaFning two-particle [:?ortion changes are unlikely to produce occupation numbers outside
of the 2-RDM is purified through positivity conditions for the [0,1] interval. This is only one reasonable approach to

i ) . ; g ) ensuring that the occupation numbers of the 1-RDM Mre
th_e z RDM' SpeCIaI c0n3|_de_rat|ons_ for purlfylng a 2-RDM representable; many variations on this simple strategy may
with spin are discussed within the final section.

also be employed. Once the 1-RDM has been adjusted to be
o N representable, we need a method for modifying the
A. N representability of the 1-RDM 2-RDM so that it contracts by Eql) to the updated 1-RDM.
Some of the most importamN-representability conditions The appropriate modification of the 2-RDM may be accom-
on the 2-RDM arise from its relationship with the 1-RDM. A plished through the unitary decomposition of the 2-RDM,
2-RDM must contract to a 1-RDM that N representable, ~ which we discuss in the following section.

2 . "
1y — 12 B. Unitary decomposition of the 2-RDM

Any two-particle Hermitian matrix?’A may be decom-
The operatorl.%, defined in the Appendix, denotes the con- posed int_o three components that exist in different subspaces
traction operator that maps the 2-RDM to the 1-RDM. The®f the unitary group. These components reveal the structure
factor of (N—1)/2 arises from the normalization of the of the matrix with respect to the contraction operation

1-RDM and 2-RDM toN andN(N—1)/2, respectively. The [18,38-42
N-re_presentability_ conditions for the 1-RDM arise from the 2A=2p+2A,+2A,, (6)
particle-hole duality{17,47,48. The expectation value of the
anticommutation relation for fermions, where
ajal +ajaj=4j, 2 .. 2Tr?A), @
. 0= _ ’
yields the relation between the elements of the 1-RDBI, , r(r=1)
and the elements of the one-hole RDFD! , , 4 [ ATICA),
- Ay=— ADH — =21, ®
1Dl +1Di=1 |, 3 r rir=2)
where !l is the identity matrix. Any 1-RDM is ensemblé and
representable if and only if it is Hermitian with tradeand 4 2 Tr(2A)
both the 1-RDM and one-hole RDM are positive semidefi- 2D, =2A— —AON + ——— 2. (9)
nite [17,18,25,47,4B which is denoted by r-2 (r=1)(r-2)
D=0 (4)  The one-particle matrix'A is the contraction of the two-
particle matrix2A,
and
'A=L;(°A), (10)

1p=o. (5)
the symbolr denotes the rank of the one-particle basis set,
A matrix is positive semidefinité and only if all of its ei-  the wedge produdt is defined in the Appendix, and
genvalues are non-negative. Because the 1-RDM and the

one-hole RDM share the same eigenvectors, these two posi- 21=404. (12)
tivity restrictions are equivalent to constraining the occupa-
tion numbers of the 1-RDM to lie between 0 andi2b]. The zeroth componerftA, contains the trace information for

Purification of a trial 2-RDM with the 1-RDM conditions  2A,
may be accomplished by contracting the 2-RDM as in Eq.
(1) and checking that the eigenvalues of the 1-RDM lie be- LI(?A0) =Tr(*Ag) =Tr(?A), (12
tween 0 and 1. If the eigenvalues fall outside this interval,
neither the 1-RDM nor the 2-RDM can B¢ representable. and the first componerftA; contains the one-particle infor-
Any method for adjusting the 1-RDM occupation numbersmation for ?A except for the trace
must preserve the trace of the 1-RDM, which is the number 10 5 L
N of particles. We have employed the following algorithm to Lo(“Ag+"Ag)="A. 13
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The two-particle component ofA carries information that The trace and the one-particle components of the connected

vanishes upon contraction, 2-RDM are completely determined by the 1-RDM. Hence, it
1o is the two-particle unitary subspace of the connected 2-RDM
L2(“A2)=0, (14)  that may require further purificatian
Similarly, the cumulant decomposition for the two-hole

where 0 in this equation represents the zero matrix.

The unitary decomposition may be applied to any Hermit-
ian, antisymmetric two-particle matrix including the 2-RDM, 2D=1pOD +2A, (21)
the two-hole RDM, and the two-particle reduced Hamil-
tonian. The decomposition is also readily generalized to trealvhere the elements of the two-hole RDM are
p-particle matriceg42—44. The trial 2-RDM to be purified o
may be written as Dy =3(¥|ajaala| ). (22)

M is

’D=°Dy+°D;+°D,. (15  with the anticommutation relation for fermions in E)
o o and the second-quantized definitions, it has been shown that
Note that if “A="D in Egs.(7), (8), and(9), then from EQS. {he connected portions of the two-particle and two-hole

(1) and (13) we have that RDMs are equa[1’7,4q,

1A= (?) 1p. (16) 2A=2A (23

. ) It follows forthwith that
Using Eg.(8) and the adjusted 1-RDM from the preceding

section, we can construct a modified one-particle portion of 2A,=2A,. (24)
the 2-RDM2D%. Then the appropriate 2-RDM that contracts
to the adjusted 1-RDM is readily expressed as Therefore, we have the important fact tifat a fixed 1-RDM
any correction to the 2-RDM will also be a correction to the
’D*=?Dy+°Di+7D;. (170 two-hole RDM In the following section we use this fact in

urifying the 2-RDM to satisfy twoN-representability re-
Both the trace and one-particle subspaces of the 2-RDM a'%tricft)i/ongs. bt P y

now N representable. Does the 1-RDM tell us anything about

the two-particle component of the 2-RDM that vanishes

when it is contracted to the one-particle space? Before ex-

amining additionaN-representability conditions, we address  Two significant N-representability conditions on the

this question in the following section. 2-RDM are that both the two-particle and the two-hole
RDMs must be positive semidefinite,

D. N representability of the 2-RDM

C. Cumulant decomposition of the 2-RDM 2p=0 (25)

The unitary decomposition is not the only approach for
expressing the RDMs in terms of lower RDMs. Recently, inand
the context of the CSE, the 3- and the 4-RDMs have been _
reconstructed from the 2-RDM through particle-hole duality ’D=0. (26)
[1,2], the Green’s function theor}5,6], and the cumulant o o B
theory[8,9,12,15,19,4p Each of these approaches yields the!n the N-representability literature these positivity conditions

same decomposition for the 2-RDM, are known as theD and theQ conditions[17,26,46,4&
More details on positivity may be found in R¢fL7], where
2D=1DO'D+2A, (18)  the concept of positivity and its connection to the generalized
uncertainty relations is developed. The two-particle RDM
where the elements of the 2-RDM are and the two-hole RDM are linearly related via the particle-
2Dyl =3(¥|aalaa ). (19 hole duality
’D=?1-2 D% +°D. (27)

The portion of the 2-RDM that may be expressed as a wedge
product of lower RDMs is said to benconnectedThe un- i the trial 2-RDM does not obey thB condition, then it has

connected portion of the 2-RDM contains an important por- set of eigenvector&;} whose associated eigenvalues are
tion of the two-particle component from the unitary decom-pegative. Hence, we can construct a set of two-particle ma-
position ?D,, and similarly, the trace and one-particle trices{20;}

unitary components contain an important portion of the con-

nected 2-RDM?A, which corrects the contraction. Both de- 20i=viviT, (29)
compositions may be synthesized by examining the unitary
decomposition of the connected 2-RDM, for which

2A=2Ap+2A,+32A,. (20) Tr(?0,; ?D)<0. (29
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Each member of the s¢tO;} is said toexposethe 2-RDM L _

[18,50. Similarly, if the trial 2-RDM does not obey th® ?D,=2D+2 B %Oz, (36)
condition, then the two-hole RDM has a set of eigenvectors '

{vi} whose associated eigenvalues are negative. The bar in yhose coefficients are determined from the system of linear
simply distinguishes the eigenvectors of the two-hole RDMgqyations

from those of the 2-RDM,; it does not denote the adjoint. A

set of two-hole matrice§’0;} may be generated, Tr(?0; ?D,)=0 Vi. (37
26i zﬁf , (30) One possibility for imposing both tHe and theQ conditions
is to update the 2-RDM via Eq$33) and(34), convert the
for which 2-RDM to the two-hole RDM, update the two-hole RDM via
Egs.(36) and(37), and then to repeat this process until con-
Tr(25i 2D)<0. (31  vergence. However, this alternating approach does not usu-

ally show good convergence since the 2-RDM changes often
damageQ positivity and the two-hole RDM changes often
adversely affecD positivity. A better approach would be to
impose both théd and theQ updatessimultaneously

A simultaneous purification with respect to both end

e Q conditions may be achieved by using the fact that for a
fixed 1-RDM any correction to the 2-RDM will also be a
correction to the two-hole RDM and vice versa. This sug-
gests that we write the adjusted 2-RDM as

As with the D condition, each member of the sg1O;} is
said to expose the two-hole RDM.

The 2-RDM may be made positive semidefinite if each of
the negative eigenvalues is set to zero, but this alters not onlt¥]
the positivity but also the contraction of the 2-RDM to the
1-RDM and even the 2-RDM trace. How can we modify the
2-RDM to prevent it from being exposed by the $é0;}
and yet maintain contraction to tierepresentable 1-RDM?
Again we can employ the unitary decomposition. For a ma- _
trix 20; the decomposition is 2Da:2D+2i @ 20i;2+2i Bi 202, (39)

2 _2 2 2
0i="0i;0+"0i;1 +70i2. (32 where the expansion coefficients are determined by solving

the linear equations in both Eq$34) and (37) simulta-
neously. Note that the linear mapping between the 2-RDM
and the two-hole RDM must be employed in Eg§7). The

the 2-RDM. However, this also changes the trace and th : : i ; :
underlying 2-RDM becaus@O; contains the zeroth and the ?esultmg aZdJUSted.Z .RDM will not be exposed by e@er the
operatorg20;} or, in its two-hole form, the operatof40;}.

first components of the unitary decomposition. jWe CanRepeated application of this purification produces a 2-RDM
modify the two-particle component only by addmgjﬁ@i;z that satisfies, to a specified tolerance, theand Q condi-

rather than20;. The adjusted 2-RDM may then be ex- i
pressed as 1ons.

Making the 2-RDM eigenvalue associated withequal to
zero is equivalent to adding an appropriate amourt@fto

E. Spin of the 2-RDM

The RDMs for atoms and molecules have a special struc-
ture from the spin of the electrons. To each spatial orbital, we
where the set of coefficients is determined from the systemassociate a spin of either or 5. Because the two spins are

ZDa:2D+Z ' Zoi;z, (33)
I

of linear equations orthogonal upon integration of thé-particle density matrix,
only RDM blocks where the net spin of the upper indices
Tr(?0; ?D,)=0 Vi. (34)  equals the net spin of the lower indices do not vanish. Hence,

a p-RDM is block diagonal with p+1) nonzero blocks.

Although the adjusted 2-RDM is not exposed by any of theSpecifically, the 1-RDM has two nonzero blocks, ablock
matrices in the sgfO;}, in general, there will be new eigen- and ap block,
vectors with negative eigenvalues. However, these negative i Y
eigenvalues are, in general, smaller than those of the unad- D,j#0, "Dpj#0, (39)
justed 2-RDM. Hence, by repeating this procéssatively,
the 2-RDM may be purified so that th# condition is satis-
fied without modifying the contraction.

Analogously, the two-hole matrices in the $80;} may ZD?};Z’I# 0, ZDZ’};-%T# 0, 2Dg,}:_/g,ll<¢ 0. (40
be decomposed, o e e

and the 2-RDM has three nonzero blocks,dn block, an
ol B block, and aB/B block,

o . . The spin structure enhances computational efficiency since
20,=20;,p+20;.1+20;.,. (35)  each of the blocks may be purified separately.
For the remainder of this section we treat closed-shell
To impose only theQ condition, we have an adjusted two- atoms and molecules where theand theg spins are indis-
hole RDM tinguishable. Because theand theg blocks of the 1-RDM
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are equal, we need only purify the eigenvalues for one of 1. APPLICATIONS
these blocks. As in Sec. Il A the eigenvalues of the 1-RDM

must lie in the interval0,1] with the trace of each block h h th luti ¢ the CSE by th q
equal toN/2. Similarly, with thea/a and thes/g blocks of through the solution of the y the contracted power

the 2-RDM being equal, only one of these blocks requiredethod. In each iteration of thi-particle power method, a
purification. The purification of either block is the same as inn€W trial wave function is produced through the application
Sec. 11D with the normalization bein§l(N/2—1)/4. The of the Hamllto'nlan to the current trial wave functi¢pfl].
unitary decomposition ensures that taéx block of the Analogously, in each iteration of the contracted power
2-RDM contracts to thex component of the 1-RDM. The method we generate a new trial 2-RDM by applying the
purification of Sec. Il D, however, cannot be directly appliedHamiltonian to the current 2-RDM through the CSE with
to the o/ block of the 2-RDM since the spatial orbitals are reconstruction(7,20. We employ the second-order correc-
not antisymmetric; for example, the element with upper in-tion for the 3-RDM in Refs[12,15. After each iteration of
dices a,i,B,i is not necessarily zero. One possibility is to the CSE we apply the purification algorithm to improve the
apply the purification to the entire 2-RDM. While this pro- positivity of the two-particle and the two-hole RDMs.
cedure ensures that the whole 2-RDM contracts correctly t&nown as theD and theQ conditions, respectively, these
the 1-RDM, it does not generally produce a 2-RDM whosepositivity constraints are necessary for a 2-RDM to corre-
individual spin blocks contract correctly. Usually the overall spond to arN-particle density matrix. Additional details con-
1-RDM is correct only because th&a-spin block has a cerning the contracted power method for solving the CSE
contraction error, which cancels with the contraction errory|| pe presented elsewhef@0]. Here we focus orfi) dem-
from the a/B-spin block. 3 . onstrating the 2-RDM purification algorithm ard) illus-

A better strategy is to introduce a modified unitary de-yaiing its role in stabilizing the convergence of the con-
composition for thea/g block. An appropriate decomposi- tracted power iterationéor CSE iteration

The purification of correlated RDMs may be illustrated

tion Is With the contracted power method for the CSE, the water
Tr(2D ) molt_ecule is treated in its equilibrium geome[rS_Q] where
D=2, (41  theintegrals for a split-valence double-zeta basi¢5#tare
r's computed withPC GAMESS[54], an implementation of the

guantum chemistry packageamESS (USA) [55]. From the
final iteration of the CSE Fig. (&) reports theD- and the
Q-positivity errors in thea/a block of the 2-RDM as func-
tions of the purification iterations; Fig.(d) gives these er-
rors for thea/B block. TheD-positivity error in a spin block
' (42) is the magnitude of the block’s most negative eigenvalue
after the block has been mapped to the two-hole RDM by
and Eq. (27). With just eight iterations, the purification decreases
the errors in théd and theQ conditions for thew/a block by
2pgh=2p*f-_2peh_2pek (43)  an order of magnitude to less than£0 and with 20 itera-
tions the errors in thé and theQ conditions for thea/B
wherer ¢ denotes the number of spatial orbitals, which equaldlock are decreased by almost two orders of magnitude.
half the number of spin orbitals. Like the unitary decom- The purification algorithm also improves the positivity for
position for antisymmetric matrices in Sec. Il B, the zerotheach molecule given in Tables | and Il. All molecules are

2DT’IB:_

S

llz

llﬂ
B

[e3

1 Tr(*D?)
[lDa_

S

1nB
+£1|a Dﬁ_LDﬁ)lp’D’
r B rs B

a
S

componentZDg'B contains the trace information computed with equilibrium geometri¢s2] in a split-valence
double-zeta basis sg53] except for N and CO, which are
LY(?D§P)=Tr(?Dg#)=Tr(?D*F), (44)  treated with Slater-type orbitals expanded in six Gaussians

[54,55. From the final CSE iteration for each molecule,
and the first componemD$# contains the one-particle in- Tables | and Il give the positivity errors in tH2 and theQ
formation except for the trace conditionsbeforeand after purification. The purification al-
gorithm consistently decreases the error in Ehand theQ
conditions by more than one order of magnitude. Purification
of the o/« block generally requires fewer iterations than the
purification of thea/B block. Further details of these calcu-
The two-particle component ofD*# carries information lations and the contracted power method that are not specific

N
L3(*Dg#+?D1#) = = D5, (45)

that vanishes upon contraction, to purification will be presented elsewhd290].
The data presented demonstrates the effectiveness of the
L3(?°DgP)=0, (46)  purification algorithm as a general tool for imposing

N-representability conditions iteratively upon the 2-RDM.
where the 0 represents the zero matrix. The purification proMore specifically, we now examine the effect of purification
cess for the 2-RDM’s/B block remains the same as de- on solving the CSE by the contracted power method. For the
scribed in Sec. 11D except that the decomposition in EqsH,O molecule Figs. @ and 2Zb) report theD- and the
(41)—(43) is employed. Q-positivity errors in thea/B block as functions of the CSE
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FIG. 1. From the final iteration of the CS@) the D- and the
Q-positivity errors in thea/a block of the 2-RDM are reported as
functions of the purification iterations(b) the D- and the
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the correlation energy, the CSHEthout purification obtains
only 71.2% of the correlation energy before diverging. Al-
though the unpurified energy increases after its minimum in
the case of water, the energy without purification has also
been observed to decrease significantly below the full-
configuration-interaction energy. The contracted power
method with purification, overcoming the convergence prob-
lems reported by Yasuda and Nakatdqi§i10,19, displays
consistent and reliable movement towards Kaparticle so-
lution at each CSE iteration.

IV. CONCLUSIONS

Purification, both as a concept and an algorithm, has been
developed for correlated reduced density matrices. The term
purification typically refers to the process of making a
1-RDM idempotent. This kind of purification, originating in
McWeeny's work[21], is significant in the modern linear-
scaling literaturg¢22—24 where it enforces 1-RDNN repre-
sentability. Every idempotent 1-RDM I8 representable with
a unique preimage, which is &particle Slater determinant.
We definepurification of correlatedRDMs to be the iterative
process by which an arbitramy-particle density matrix is
projected onto @-RDM, which obeys significant necessary
conditions forN representability. In this paper we developed
a purification algorithm for the 2-RDM although the ideas
presented are readily extended to the purification of higher
RDMs.

The purification procedure for the 2-RDM first checks
whether it contracts to alN-representable 1-RDM. If the
1-RDM requires adjustment, the 2-RDM is updated through
the unitary decomposition, which reveals the portion of the
2-RDM that contributes to the 1-RDM via contraction. When
combined with the cumulant formula for the 2-RDM, the
unitary decomposition determines all of the 2-RDM except

iterations. Both thé- and theQ-positivity errors reveal that the two-particle unitary portion of the connected 2-RDM.
purification increases significantly with the number of CSEThe remaining 2-RDM portion may be further purified
iterations. By the final iteration the two-particle and the two-through the satisfaction of 2-RDM positivity conditions. We
hole RDMs are purified by nearly two orders of magnitude.employ theD condition and theQ condition (from particle-

Figure 3 shows the ground-state electronic energy £ Hs
a function of the CSE iterations bothith and without puri-

hole duality on the 2-RDM although additional conditions,
such as thés condition, may also be incorporatgti7]. The

fication. While the CSE with purification captures 92.8% oftrial 2-RDM and its two-hole RDM have negative eigenval-

TABLE |. Purification of two-particle and two-hole RDM&/« block

Lowest eigenvalue

Number of paa 2pa
purification ' i
Molecule iterations Initial Final Initial Final

BeH, 15 —8.81x10°° —8.55x10°6 —4.19x10°* —9.09x10°©
BH 13 —1.74x10°4 —9.45x10°6 —4.30x10°* —6.74x10°©
CH, 18 —3.95x10°4 —9.65x10° 6 —2.83x10°* —8.91x10°©
co 5 5.71X10°° —1.29x10°1? —1.18x10°* —6.87x10°°
H,0 19 —2.18x1074 —1.21x107° —1.82x10°*4 —7.65<10°°
HF 7 —9.93x10°° —8.62x10°° —7.13x10°° —7.50x10°©
N, 5 8.33x10°° —4.16x10 *? —1.43x10°* —6.78x10°©
NH, 13 —2.92x10°4 —9.27x10°8 —3.25x10°* —7.65x10°©
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TABLE Il. Purification of two-particle and two-hole RDMa/3 block

Lowest eigenvalue

Number of Zngg 2paB
purification ' il
Molecule iterations Initial Final Initial Final

BeH, 20 —5.21x1074 —4.86x107° —4.95¢10°4 —2.92x10°°
BH 14 —7.04x10°4 —8.51x10°° —5.95x10 4 —7.10x10°®
CH, 20 —1.19x10°3 —1.35x10°° —5.77x10 % —1.24x10°°
co 8 1.35¢10°4 —1.03x10 = —1.16x10 % —9.75x 10 ©
H,O 17 —1.08x10 3 —2.44x10°° —9.82x10* —1.76x10°°
HF 18 —6.99<10 4 —9.69x10° 6 —5.77x10°* —9.48x10°©
N, 20 1.77x 104 —2.50x10 = —1.07x10°* —9.90x 10 ©
NH, 20 —1.06x1073 —1.16x10°° -9.26x10°* —1.03x10°°

ues whose eigenvectors correspond to the two-particle matrthe 4-RDMs to enable the solution of the 2,4-CSE for
ces that expose the 2-RDM. Through the unitary decompoN-particle information. While other schemes for solving the
sition a procedure is developed whereby the 2-RDM is2,4-CSE by self-consistent iteration have exhibited conver-
adjusted, without modifying its contraction to the 1-RDM, to gence problemf5,10,19, the contracted power method with
prevent it from being exposed by a certain set of operatorsurification moves systematically and reliably towards
Repeating this process systematically purifies the 2-RDM. N-particle energies and 2-RDMs. The change in the 2-RDM

The contracted power method employs purification inin the contracted power method is essentially a “gradient,”
solving the 2,4-CSE for the 2-RDM. Purification of corre- which minimizes theN-particle energy20]. The purification
lated 2-RDMs works with the reconstruction of the 3- anddoes not interfere with this “gradient” but rather improves it
through the removal of the portion that does not presétve
representability. The good CSE convergence for Bel-
tained by Valdemoro, Tel, and Perez-Romero is most likely
due to an implicit purification of the 2-RDM present in their
RDM *“renormalization” methods, which fix the trace and
the positivity of the diagonal elemenfd,14,19. Applying
the contracted power method for the moleculgOHvithout
purification produces a premature minimum in the energy,
which is followed by divergence while the same calculation
with purification yields an accurate, stable solution of the
CSE. Further results and details of the contracted power
method will be presented elsewhgg9].

More than a useful tool in solving the CSE, purification

L (a)

371 — Not Purified

-= Purified

42}

log, ,( Positivity Errorin D )

_5'2 Ll 1] 1l Il 1] 1l 1l [ 1l 1 1 L
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58
Number of CSE Iterations
-76.01 Hartree-Fock
—_ - (b) \ 3 7603 F
[ < .
g 320 5 76.05 - CSE (NOT Purified)
= i ~ \4
o [ T -76.07 |
= 37 e —
(g [ -+ Not Purified 5]
= » ~76.09 F
s - -= Purified 2o
5 A2p g 7601 ¢
z m 613 CSE (Purified)
A~ e Full-CI
— 4.7 !
_— y _’76.15 Il Il i i Il Il Il Il Il i Il i
2 i 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
Dw ™ ! ‘ ‘ Number of CSE Iterations

2 6

FIG. 2. TheD- and theQ-positivity errors in thea/ block are

10 14 18 2
Number of CSE Iterations

2 26 30 34 38 42 46 50 54 58

FIG. 3. The ground-state electronic energy faxCHs shown as

a function of the CSE iterations bothith andwithout purification.

The CSE with purification captures 92.8% of the correlation energy,

reported in(a) and (b), respectively, as functions of the CSE itera- but the CSEwithout purification achieves only 71.2% of the corre-
lation energy before diverging.

tions.
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offers a general approach for imposimgrepresentability 2cih=1(albl—alb]—alb|+alb}). (A2)
conditions on reduced density matrices. Traditional work on ’

energy optimization with the 2-RDM employs the |n general, the elements of the wedge product may be ex-
N-representability conditions as constraints on the minimizapressed as

tion [30—32. While new techniques for positive semidefinite

programming have been recently developed by the appliegiiiz.--ip gpip+1:--in

mathematics communify66,57], constrained optimization of ~ 11J2:--Jp p+a.y

the N-particle energy is still computationally challenging

[17,33. Linear-scaling algorithms for Hartree-Fock and _( 1\2
N

> 6(77')6(0')71'0'ai1’i2 """ lpp'pr iy , (A3)

density-functional theories were realized when purification = iz dp gy

permitted the incorporation of 1-RDMN-representability
conditions into an unconstrained energy minimizatiaa—
24]. Similarly, purification of correlated 2-RDMs provides an

where represents all permutations of the upper indices and

: . . represents all permutations of the lower indices while the
lterative, uncqnstramed .approac.h to the. enforcement 0ﬁlrmction e(m) returns-1 for an even number of transposi-
N-representability conditions, which promises further ad-

vances in reduced density-matrix methods for CorrelateéionS and—1 for an odd number of transpositions. The total
y umber of permutations iS\!) %; hence, the division by this
many-body systems.

factor for normalization. If elements of the matrices and
N=PB are assumed antisymmetric, then the total number of
ACKNOWLEDGMENTS distinct permutations is[N!/(p!(N—p)!)]?, which we

The author expresses his appreciation to Professor Hewould employ for the normalization. Other symmetries may
schel A. Rabitz, Professor Dudley R. Herschbach, and Dr@lso be incorporated into the definition with an appropriate
Alexander R. Mazziotti for their support and encouragementchange in the normalizatiofi.e., whenPA="N""B).

The NSF is gratefully acknowledged for support. A tool complementary to the wedge product in many-
body theory is the contraction operator, which we denote by
APPENDIX: WEDGING AND CONTRACTING L. Consider the contraction of M-particle matrix A to a

p-particle matrixB,
An important tool in many-body theory is the antisymme-

trized tensor product, known as the wedge Grassmann PB:Lﬁ(NA)_ (Ad)

product[7,18,58, which is denoted by the symbal. Con-

sider the wedge product between two matricésand ‘B,  The contraction operator generates the elemenfBofrom
2C—1AMB. (A1) the elements of'A by the prescription

The elementsy} of 2C may be computed froraj andb] by pirizeip S gitedpidpriein, (A5)

summing the distinct products arising from all antisymmetric Idzeedp Ty T et eI

permutations of the upper and the lower indices. For the
wedge product of one-particle matrices there are only foufhe operatot provides a convenient notation for discussing
distinct possibilities, the contraction mapping without a plethora of indices.
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