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The Lagrange-mesh method is an approximate variational calculation which resembles a mesh calculation
because of the use of a Gauss quadrature. In order to analyze its accuracy, four different Lagrange-mesh
calculations based on the zeros of Laguerre polynomials are compared with exact variational calculations based
on the corresponding Laguerre basis. The comparison is performed for three solvable radial potentials: the
Morse, harmonic-oscillator, and Coulomb potentials. The results show that the accuracies of the energies
obtained for different partial waves with the different mesh approximations are very close to the variational
accuracy, even in the presence of the centrifugal singularity. The same property holds for the approximate wave
functions. This striking accuracy remains unexplained.
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[. INTRODUCTION accuracy, in spite of the fact that they become only approxi-
mately orthogona]9—11]. This property is particularly im-

The Lagrange-mesh method is an approximate variationgdortant in treating the singularity of the centrifugal term
calculation which resembles a mesh calculation. This propwhen the orbital momentum is not zero.
erty is obtained by using a basis of Lagrange functions, i.e., The aim of the present paper is to describe the present
orthonormal functions which vanish at all points but one inStatus of our knowledge of the Lagrange-mesh method. To
an associated mesh, and the Gauss quadrature correspondifig €nd we shall concentrate on the example of the Laguerre
to this mesh. The number of mesh points is equal to the basf§eshes. We shall show that different meshes based on La-
size. The name Lagrange functions was introduced in Refuerre polynomials can all give very accurate results with
[1] because of the resemblence to a basic property of th@ther small numbers of mesh pOintS. To evaluate the effi-
Lagrange interpolation polynomials. However, contrary tociency of the method, we shall compare the results of the
those po'ynomia'S, Lagrange functions are indefinite'yl_agrange'mesh calculations with those of the exact varia-
differentiable. tional calculations performed with the same Lagrange basis

Before describing the Lagrange-mesh method in more dd-11,7l. We shall emphasize the striking property that the
tail, let us first clarify one point. This method is sometimesGauss approximation, which is the main difference beween
considered[2] to be identical to the discrete-variable- Poth types of calculations, does lead to a very weak loss of
representatiofDVR) method[3]. In fact, in some cases, accuracy in spite of the fact that the accuracy of the Gauss
both approaches lead to the same mesh equations. Howevékadrature on individual matrix elements is rather poor. We
we think that they follow different philosophies. The DVR shall also exemplify the qualitative differences of utility be-
method is designed to provide mesh equations and the séveen meshes with tiny technical differences. Our hope is
lected mesh points can, in principle, be arbitra). The that the present analysis will stimulate mathematical results
Lagrange-mesh method is valid only for meshes for which dn the Lagrange-mesh approach. o _
Lagrange basis exists, i.e., for which the Lagrange conditions The Lagrange-mesh method is summarized in Sec. Il. Dif-
are satisfiedsee Eq.(7) below]. These conditions usually ferent Laguerre meshes, i.e., different meshes based on zeros
ensure high accuracy. Therefore, the Lagrange-mesh meth&j Laguerre polynomials, are presented in Sec. Ill. The ac-
is a subset of the DVR method for which the Lagrange confturacies with energies of solvable or approximately solvable
ditions provide an unusually high, and yet unexplained, acpc_mtentials are prgsented and djscussgd in Sec. IV. Accurgcies
Curacy_ The Lagrange mesh equations have often been reo‘ﬂlth wave funCtlonS arF.,' ConSIdered in Sec. V. Conclud|ng
tained in different contexts. A recent example is given infémarks are presented in Sec. VI.
Ref. [5].

Lagrange functions can be associated with every family of
classical orthogonal polynomial4]. In this case the associ- Il. LAGRANGE-MESH METHOD
ated Gauss quadrature is well knoyd]. Recently, it has
been shown that nonclassical orthogonal polynomials cal
also lead to useful Lagrange meshi@&$ The corresponding
bases offer much more vast possibilities. They can, for ex-
ample, provide an orthogonal basis equivalent to a set of [T+ V(X)](x)=E (). (1)
shifted Gaussian$7,8]. In this case, nonstandard Gauss
guadratures appear. An even more surprising property of the
Lagrange bases is that they can be regularized, i.e., multifo approximately solve this equation, we consider a varia-
plied by some convenient factor, without losing their hightional approximation withN basis functiond;(x),

Let us consider a one-dimensional Salinger equation
With kinetic energyT=—d?/dx? over some intervalg,b),
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N N
lp(x):i; ¢ fi(x). 2 ,Zl [T+ V(x)8;—E8;lc;=0. (11)
The corresponding variational equations read The kinetic energy matrix elements can also be calculated at

the Gauss approximation s~ — A ”’f](x;). The resulting
expressions only depend on tReandx; . As discussed be-
low, the Gauss approximation is often exact for the kinetic
energy with Lagrange functions based on classical orthogo-
where nal polynomials.
Now we turn to a radial Schdinger equation of the form
Nij=(filf;), (4) (1) with a variabler defined over the intervgl0,«[. Over
such an interval, it is possible to scale a given mesh in order
Tij=(fi|TIf)), (5)  to adjust it to the physical problem. Th¢ basis functions
then read

N
121 [Tij-f—Vij—ENij]Cj:O, (3)

Vi =(fi|V|f;). (6)
i =(VIT) F.(r)=h"Y2,(r/h). (12)

The calculation of th&/;; may be tedious or time consuming. ] ]

The resolution of Eq(3) is more delicate when the basis is 1he scale factoh can be treated as an approximate nonlinear

not orthogonal. variational parameter. The wave function is then expanded as
Let us now define a Lagrange bagld. Such a basis is N

defined in relation with a set dfl mesh pointsx; e (a,b), r)= C.F.(r 13

called a Lagrange mesh. The Lagrange functionsNar@- v 21 i), a3

thonormal functiond;(x) verifying at theN mesh point;
the Lagrange conditions As before, this approximation and a Gauss quadrature over

/ [00°[ lead to the mesh equations
—1/2
fi(x)) =\ 75, (7) N
-2 —
i.e., each functiorf;(x) vanishes at all mesh points except at le [h™“Tij+V(hx) & — E;;]C;=0. (14
X; . These conditions restrict the possible sets of mesh points.

The constanta; appearing in Eq(7) are the weights of the Notice that a radial wave functiog(r) is subject to the
Gauss quadrature approximation associated with the meshhoundary condition

b N (0)=0. (15)
j g00dx~ 2 Mg(x)- ®)

a =
Il. LAGUERRE MESHES
As a result of the Lagrange conditioiig), the basis func-
tions f;(x) are orthogonal at the Gauss approximation. They .
are even exactly orthonormal when the Gauss quadrature R
exact for products of Lagrange functions, Ya()=x"exp —x/2), n=1,...N—1 (16)

The radial equation can be solved variationally with the
mple (but nonorthogonalbasis,

N
b B B (xe[0s0]). The simplicity of this basis has recently been
L fOOf () dx= kzl MFix0fi() =8 ) emphasized in Ref12]. However, because of the redun-
dancy between the basis states, the size of this basis cannot
This is, for example, the case when Lagrange functions argiuch exceed=20. The basi¢16) is equivalent to a subset
constructed from orthogonal polynomiéls. The first equal- ~ Of the orthogonal basis
ity in Eq. (9) is then exact, because ARpoint Gauss quadra- B B
ture is exact for the product of the weight function with a er(X¥)=Lx(x)exp—x/2), k=0,...N-1. (17

polynomial of degree up tor2—1. In fact, the basis functionél7) do not vanish at the origin

The philosophy of the Lagrange-mesh method is to aIOIOI%md a constraint must be added to verify conditidf). An-

the Gauss _approxmathn . th_e .potenuallmatrlx elementsother basis, exactly equivalent to bagls), and with basis
The approximate potential matrix is then diagonal,

(16) as a subset, is the orthonormal Lagrange-Laguerre basis
N

b
fa FOOVOOFi00dx= 5, My (40 V(X0T; (%) = V(X0 ;. foo=(-1x2 M ez i1 N (g

X—X;
(10)
with the mesh points, to xy given by
With Egs.(9) and(10), the approximate variational calcula-
tion (3) resembles a mesh calculation Ln(x)=0. (19
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Thg Gauss-Laguerre quadrature is then obtained with the L(Nz)(;(i)zo (26)
weights
o and the Gauss weights §3]
Ni=————. (20 o
" OxlLAO0 T < e

(27)

Notice that the\; are not needed in the mesh equations but tLEN :
only in the expression of the wave function. Since the basi
functions (18) do not satisfy conditior{15), the kinetic en-
ergy matrix elements must be written &g=(f/|f;) in or- T, = (9% 2+S, (28)
der to keep Hermiticity. These expressions can be evaluated ! ! '

exactly at the Gauss approximation usifig=f;(0)f{(0)  and, fori #i,

$he exact kinetic-energy matrix elements réag

—(filf}) as ,
Ti=(12%) " 4(4N+2)x,— x2— 20] (21) Ty = (=17 S0ax) Y40 X H =S| (29
and, fori#j, with
L _ 1 1 1 Xi+Xj 1
Ti=(=D"I(xx) YN+ 5 ——— —+ ——|. (32 30
2% X; (Xi_xj)2 S” (X'XJ) k;,j ;(k(;(k_;(i)(;(k_;(j). 30

22 The corresponding mesh equations take the foid). As

shown below, this mesh is excellent for thevave. However,
the Gauss quadrature & priori very bad for 1/? so that
higher partial waves are not expected to be accurately treated

for I >0 since the integrals do not converge. Another basisc;notmii::nhesl‘a%\ll? dszfgt]drgige:eg]uﬁsshisr a;ﬁnzzgsgg erdpfootren-
must be used fdr>0. We shall compare three different ways tials. This solution has the drawback that different partial

of solving these problems. In each case we shall compare thv(\?aves correspond to different meshes and that coupled-
mesh approximation with exact variational calculations Perannel or thrZe-bod roblems cannot be considered P
formed with the same basis. yp :

First we can define the basis A third approach starts from the nonorthogonal basis,

Although it may accidentally give good resuliee the next
section, this mesh approximation is not fully satisfactory
since the basis does not satisfy conditi@s). It is not valid

f_i(x):fi(x)_(_1)N_i(XN/Xi)1/2fN(X)v i=1,...N—1. gok(x)Zka(x)exp(—x/2), k=0,... N—1 (31)

(23) which is equivalent to Eqs(16), (23), (24), and (25). As
established implicitly in Ref{9] and explicitly in Ref.[14],
With Eq. (18), one easily verifies that conditioid5) is sat- an equivalent Lagrange-Laguerre basis can also be defined as
isfied by each basis function. The price to pay is that the
basis is not orthogonal. However, a generalized eigenvalug X i —1/2 XLn(X) -
; ; - . i(X) fi(x)=(—1) X; e , 1=1,...N
problem involvingN—1 mesh equations can easily be de- i X=X
rived from the mesh equatiori4) of the previous case. (32

A second orthonormal basis strictly equivalent to basis . ) ) ) ) )
(16) reads with x; given by Eq.(19). An important difference with basis

(25) is that the Gauss quadrature with the samas in Eq.
() =h XL (x)exp —x/2), k=0, ... N—1, (20) is here exact for the centrifugal form factord/An-
other difference is that bas{82) is nonorthogonal. Its exact
(24) overlap matrix elements are easily obtained as explained in
the appendix of Ref9],
whereL(? is an associate Laguerre polynomial amg- (k
+1)(k+2) [13]. Each basis functior_1 satisfies condition N; :f fi(x)?j(x)dx: 5 +(_1)i—j(xixj)—1/2. (33)
(15). As proposed in Ref[1], an equivalent orthonormal 0
Lagrange-Laguerre basis is given by
The Gauss approximatiohc=—\"%"(x;) for the kinetic
2) . J J
XLy~ (%) - energy matrix elements reafts0]

Ti(x)=(—1)'(x;/hy)*? . i=1,...N.

25) Te=(2d) ar@N+2x X (34

i
Here the mesh points are given by and, fori#j,

026701-3



D. BAYE, M. HESSE, AND M. VINCKE PHYSICAL REVIEW E65 026701

T (— 1)V i (xx )" Y2 % + %) (x: — X ) 2. 35 TABLE I. Energies of then, =0 andn,=5 states of the Morse .
7= (= 1)06x)) A X)) (%= X) (35 potential. In thd =0 case, the values are deduced from the analyti-

The exact kinetic energy matrix elements can be calculatef?! €xPression39). Thel=1 andl =2 energies are obtained by a

: : : ; . agrange mesh calculatiqi4) with N=60 mesh point$19), ki-
Zﬁggﬂgi)f(rg?llqtg&g?a}ruhs;ya:gg(rjoxmatlon as explained in th(%etic energy(34) and(35), and the scale factdr=0.05.

I n,=0 n,=>5

SR | o
Ti=To— = (1) I(xx;) Y2 36
" g 4( ) J) (36) —0.097 307 739 656 379 —0.051949842 102521

0
1 —0.097040301141149 —0.051735382273815
2

With the exact eXprESSiomg3) and(36), the mesh equations —0.096 507 541 478 194 —0.051 308 827503 494

take the form

numerically. Typical energies are gathered in Table I. The

Morse potential has also the advantage that its matrix ele-
i.e., lead to a generalized eigenvalue problem. However, agnents can be calculated exactly for the different bases dis-
cording to Eq(9), the basig32) is orthonormal at the Gauss cussed above. For the oscillator and Coulomb potentials, we
approximation. When this approximation is used for thecompare the results with the standard expressions in natural
overlap and for the kinetic enerd¥qs.(34) and(35)], one  units, i.e..E, =2n,+1+ 2 andE, =(n,+1+1)"?, respec-
recovers the nongeneralized eigenvalue prollefh As ob- tively. ' '
served in Ref[10], this additional approximation does not  Eqr the three Lagrange meshes discussed above, we com-

cause any real loss of accuracy. However, the main advaikare exact variational calculations with the Lagrange mesh
tage of the so-called regularized mesh, under the f87 | o5its for the same number of points and values of the scale
or under the S|mpler.Gauss foridd), is tha_lt it now alloyvzs US  parametem. In fact, the variational based6), (23), (24),

to accurately treat.smg_ular terms behaving a$ an_dr at (25 (31), and(32) being equivalent, they should provide the
the Gau_ss approximation. The_refore the regular_lzed mesh §3me variational results. The equivalent badd and (18)

also valid forl >0. In fact, looking at the expressidB2) of 4y different since the spanned vector space contains an ad-
the basis functiong;(x), one observes that the matrix ele- ditional component proportional t,(x) and should not be
ments(;|r ~1|f;) and(f;|r ~2|f;) are exact at the Gauss ap- relevant here. On the contrary, the three mesh calculations

N
Z [h’Z'T'ij+V(hxi)5ij—ENij]Cj:0, (37) for n,=0 to 15. Forl>0, the eigenvalues are calculated
=1

proximation. based on Eqgs(23), (25), and (32) are expected to provide
different results.
IV. ACCURACY OF ENERGIES IN SOLVABLE EXAMPLES All the results from exact variational calculations ob-

tained withorthogonalbases are identical and are displayed
In this section, we illustrate the properties discussed in theis “var.” in Tables I1-VII. The results obtained with the
previous section with different solvable potentials: theweakly nonorthogonal baség3), (31), and(32) are essen-
Morse, three-dimensional harmonic oscillator, and Coulomhially identical. Those obtained with the strongly nonorthogo-
potentials. The selected Morse potenfia0] is regular ev-  nal basig(16) are also identical foN<10 but their accuracy
erywhere and displays a strong repulsive barrier at the origirbecomes less good beyond that value. Rer20, the accu-
The oscillator potential is also regular but vanishes at theacy on the ground state is only>x3@0 6. BetweenN=10
origin. The Coulomb potential provides an example of sin-and 20, the accuracy is progressively degraded because the
gularity. We can thus compare the mesh methods under pr@verlap reduction algorithm behaves worse and worse. Be-
gressively more difficult conditions. yond N=20, numerical problems appear with the positive
As in Refs.[10,11,7, the Morse potential is defined as  character of the overlap matrix.
Four different mesh calculations are compared in Table I
V(r)=D{exd —2a(r—re)]-2exg —a(r—re)l}, with the variational results for ths, p, andd waves of the
Morse potential. The scale factor is fixed fat 0.05. This
(38 value corresponds to a rough optimization of the meshes.

_ _ _ _ Finely tuned optimizations depending on the state and partial
\évc\g\?g t_h(i)sllp?c?tgr?t’i;el_isz\'/:r; %‘lgiéatgdsg?\;at?sGI't Tg;;h;ctlywave might improve the results but the improvement is usu-
solvable over }-o, + [ [15]. Over[0,+ o[, the strong ex- ally not important. The errors on the energies are defined as

ponential barrier forces the wave function to be exponen-
tially small at the origin. The eigenvalues are given ex-
tremely accuratelyi.e., with an accuracy much better than
10719 by for the different approximations. The different columns suc-
cessively correspond to the variational calculat{8h with
one of the equivalent orthogonal Laguerre bases, the mesh
calculation(14) modified according to Eq23) with meshx;
(39 and T;; given by Egs.(21) and (22), the mesh calculation

en, = EPPO-E, (40)

2

1 1
En=-D+|n+3 a(2D/m)2— N+ a%/2m

r
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TABLE Il. Errors e, [Eq.(40)] in the energies of the, =0 andn, =5 states of the Morse potential in the
s, p, andd waves obtained foh=0.05 with the variational equation®), with x; and T;; in the mesh
equations(14) modified according to E¢23), with x; andT;; in the mesh equationd4), with x; and T;; in
the mesh equation87), and withx; and:ri(j3 in the mesh equationd4). The powers of ten are indicated in

square brackets.

l Ny N var. i, Tij) (xi rTij) (i j—ij) (Xi :r.(,s
0 0 20 3.8-7] 1.6 -6] 44 -7] 6.3—-7] 4.2-7]
40 <1[-14]  1.4-14] <1[—14] 1.4-14] 1.4 —14]
5 20 4.0-3] 1.9-2] 5.9-3] 8.0 —4] 9.4 —-4]
40 1.1-9] 4.0-9] 3.0-9] —-4.94-9] —-4.4-9]
1 0 20 41-7] 1. -6] 49-7] 7.0-7] 5.0-7]
40  <1[-14] 1.4-14 <1[-14 14-14] 1.4 —14]
5 20  4.4-3] 1.-2] 5.7 —3] 1.0-3] 1.7-3]
40  1.1-9] 4.0-9] 3.0-9] —4.9-9] —4.7-9]
2 0 20 45-7] 1.7-6] 5.0-7] 8.1-7] 6.9-7]
40 <1[-14] 15-14] <1[-14] 1.9-14] 1.6 —14]
5 20 4.7-3] 1.71-2] 6.0 —3] 1.9 -3] 1.7-3]
40 1.1-9] 4.4 -9] 3.1-9] -3.4-9] -3.241-9]

TABLE IIl. Errors e, [Eg. (40)] in the energies of tha,=0 andn,=5 states of the harmonic oscillator
potential obtained in different casésee Table Il for h=0.1.

I N N Var. i, Tij) M) i, Tij) C
0 0 20 31-14 89-14] 31-14  1.3-13 1.0 13]
40  2.8-14] -3.0-13] <1[-14] 14-14] —4.9-14]
5 20 12-4] 4.4 4] 9.4 5] —37-3] -35§-4]
40  <1[-14] -41-14] 6.6-14] —18-14 -57-14]
1 0 20 12-12] 1.1-13] —0§-7] -224-12] —14-12]
40 33-14] -34-14 -14-7] —-47-14 -3.4-14]
5 20 2.6-4] 2.7-3] 1.9-4] ~75-3]  6§-4]
40 33-13 27-13 ~16-6] -81-13] -3.4-13]
2 0 20 88-12] 3.§-11 74-12)  -674-11 -27-11]
40  <1[-14] 6.3-14] <1[-14]  1.A-13] —14-14]
5 20 17-3] 34-3] 1.5-3] 2.9-3] 3.4-3]
40  34-13] 2.8-12] 14-13] -1§-12] 85-13]

TABLE IV. Errors €, [Eqg. (40)] in the energies of the,=0 andn, =5 states of the Coulomb potential
obtained in different casdsee Table Il for h=1.5.

I Ny N Var. i Tij) (i, Tip) (i, Tij) O
0 0 20 24-100 75-10] 2d-2] 210-10]  —4.0-10]
40 <1[-14] <1[-14] 89-3] <1[-14] 3.4-14]
5 20  3.6-8] 1.5-7] 1.3-4] 3.6-8] 7.4-8]
40  <1[-14] <1[-14] 41-5] <1[-14] <1[-14]
1 0 20 <1[-14] <1[-14] -92-5] <1i[-14] <1[-14]
40  <1[-14] <1[-14] -13-5] <1[-14] <1[-14]
5 20  2.0-5] 4.9-5] 1.6-5] 2.0 -5] 3.40-5]
40  <1[-14] <1[-14] -4q9-7] <1[-14] <1[-14]
2 0 20  <1[-14] <1[-14] <1[-14] <1[-14 <1[-14]
40 <1[-14] <1[-14] <1[-14] <1[-14] <1[-14]
5 20 46-4] 7.5 4] 4.6 4] 4.6 —4] 5.9 4]
40 14-11]  47-11]  14-11] 14-11]  24-11
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TABLE V. Comparison of errorsy [Eq. (41)] in the wave functions of the,=0 andn,=5 states for the
Morse potential: exact, variational, angj (‘T’ﬁ) Lagrange-mesh calculatiori32) with h=0.05.

n,=0 n,=5

| N Mesh/ex. Var./ex. Mesh/var. Mesh/ex. Var./ex. Mesh/var.
0 20 1.9-4] 4.4 —-4] 5. 4] 0.15 0.10 0.09

40 3.3-9] 2.4 —8] 2.7 -8] 4.4 —-6] 2.4 -5] 3.7 -5]
1 20 5.5—-4] 8.9 —2]

40 2.7-8] 3.1-5]
2 20 5.4—-4] 8.3 —2]

40 2.7-8] 3.0 -5]

(14) with meshx; and'~l'ij given by Egs.(28) and (29), the  Presented without and with Gauss approximation for the

mesh calculation37) with meshx, and T, given by Eq overlap and kinetic-energy matrices. The first calculation is a
I I . . . . .

(36). and the mesh calculatiofid) with mJeshx and ¢ geqerallzed eigenvalue probIe[tEq._(S?)] Wl_th the exact ki-

give'n by Egs.(34) and (35). The first mesh CaiculatiorI\J is netic gnergy(SG). Th? seconq one is the eigenvalue problem

related to basi$23) and requires solving a generalized ei- (14) with the approximate Kinetic enerdg4) an(_j (35). The .

genvalue problem of dimensidi— 1. The other ones corre- accuracy is excellent in both cases and the simpler approxi-

spond to dimensiofl. The accuracy of the mesh calculations mate approach is sure!y not less good than the other one.
is limited by the accuracy on the zeros of the Laguerre poly- L€t us now emphasize that all these very accurate results
nomials which is itself restricted by the computer accuracy®f the mesh calculations are obtained in spite of the fact that
For this reason, we do not explicitly show the errors that wehe Gauss approximation is not very good for individual ma-
have obtained when they are smaller than #0The errors  trix elements of the potentiaindeed, when comparing the
on the variational calculation are always positive as expecte@Xact potential matrix elements calculated for the variational
when the computer accuracy is not reached, but the errors dilculation with those of the regularized-mesh b&38, for
the mesh calculations may be negative. Let us start the digxample, one finds that the relative accuracy on diagonal
cussion with thes wave. matrix elements is never better than 2% fd=20 and
The accuracy of thex(,T;;) calculation is only slightly 0.05% forN=40, and is often far worse. Nondiagonal matrix
poorer than the accuracy of the variational calculation. Surelements which are approximated by zero at the Gauss ap-
prisingly, identical results are obtained with the mesh correproximation cannot be given a relative accuracy but their
sponding to basigl8) which does not satisfy conditiofl5).  absolute accuracy is not better than for diagonal elements.
However, this property is not true for the other potentials.Hence the excellent accuracy obtained witk 40 (absolute
This can be understood as follows. The results obtained witRyror of about 10 for the ground stateis obtained with
the mesh equations derived from bagk) and(23), respec-  potential matrix elements with absolute errors not better than
tively, correspond to even and odd solutions of the Morse w1076, This property must be taken into account when
potential symmetrized over-]=,+oo[. Since this potential  interpreting the Lagrange-mesh method. The accuracy of that
has a strong repulsive barrier at the origin, even and odghethod isnot due to a high accuracy of the Gauss approxi-
solutions are degenerate to a high accuracy. The same reasgftion on individual matrix elements.
explains why Eq(39) provides essentially exact values for  ajl the different Laguerre meshes might not withstand the
the present radial Morse potential. introduction of a singularity at the origin under the form of a
The results obtained with the mesl; (T;;) are even centrifugal barrier. The results for tipeandd waves are also
slightly better. For the regularized me¢h9) derived from  compared with the exact variational results in Table 1l. One
basis(32), two different calculations with the mesh are  hardly sees a difference of accuracy with theave case. As

TABLE VI. Comparison of errors; [Eg. (41)] in the wave functions of the, =0 andn,=5 states for the
harmonic oscillator potential: exact, variational, arxd,frﬁ) Lagrange-mesh calculatioi82) with h=0.1.

n,=0 n.=5

| N Mesh/ex. Var./ex. Mesh/var. Mesh/ex. Var./ex. Mesh/var.
0 20 8.3—-10] 8.3—-9] 8.4 —9] 1.9-4] 6.9 —4] 7.9 —-4]

40 <1[-14] <1[—14] <1[-14] 2.4-10] 5.4 -9] 5. -9]
1 20 3.9-9] 5.71-8] 6.1 —8] 5.1 4] 5. —4] 8.9 —4]

40 1.3-14] 1.9-13] 1.9-13] 5.9 —10] 1.9 -8] 1.4 -8]
2 20 1.3-8] 1.9-7] 1.6-7] 7.0 —4] 1.9-3] 2.3-3]

40 <1[—14] 4.3-13] 4.3-13] 1.4 -9] 1.4-8] 1.9 -8]
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TABLE VII. Comparison of errorsp [Eq. (41)] in the wave functions of tha,=0 andn,=5 states for
the Coulomb potential: exact, variational, and (Tﬁ) Lagrange-mesh calculatiori32) with h=1.5.

n,=0 n,=5

| N Mesh/ex. Var./ex. Mesh/var. Mesh/ex. Var./ex. Mesh/var.
0 20 6.4-8] 1.4-6] 1.9-6] 1.1-5] 2.9-5] 3.4 -5]

40 3.89—-14] 2.4 -12] 2.4 -12] 6.7 —14] 6.9 —13] 7.2 -13]
1 20 1.5-14] 4.4 —-13] 4.4 —-13] 1.9-3] 9.4 —4] 7.0 —-4]

40 <1[—-14] <1[—14] <1[—14] 2.4 —10] 1.7-9] 1.9-9]
2 20 <1[—14] <1[—14] <1[—14] 1.3-2] 1.7-2] 2.9 -3]

40  <1[-14] <1[-14] <1[-14] 7.4-8] 3.0-7] 3.9-7]

we shall learn from the other examples, this is due to thél'his definition is based on the values at mesh points only.
strong repulsive barrier of the Morse potential. We have also considered distances based on equally spaced
The results for the harmonic oscillator are displayed inpoints but the results are qualitatively similar, so that we do
Table IIl for the same conditions. The scale factor is fixed athot show them in detail.
h=0.1. For thes wave, the accuracies behave similarly to  The distances for the Morse potential are given in Table
those of the Morse potential except that the convergence 8. A comparison with the “exact” analytical wave function
faster. For the ground state, the accuracy is already close e only possible for the wave. For a variational calculation,
the computer accuracy fak=20. A difference, however, the accuracy on the wave function is less good than the ac-
appears for thp wave. The mesh’% vrrij) is far less accurate Ccuracy on the energy, i.e., the error on the wave function is
than the other ones. This difference can be attributed to théxpected to be of the order of the square root of the error on
centrifugal term whose value is not given exactly by thethe energy. This rule seems to be followed qualitatively. One
Gauss quadrature in that case. Surprisingly, this problem digbserves that the mesh wave function seems to be slighly
appears for higher partial waves: ttievave results are again More accurate than the variational one.
very similar for all meshes and very close to the variational More information can be obtained with the harmonic-
accuracy. oscillator (Table VI) and Couloml(Table VII) potentials be-
The resu|ts for the C0u|omb potential are presented ir{:ause the exact wave functions are available for all pal’tial
Table IV. The scale factor is fixed At=1.5. For theswave, Waves. Here the errors on the mesh and variational calcula-

the accuracies behave similarly as those of the other poteions are sometimes restricted by the computer accuracy. For
tials except for the meshx(,¥;;) whose accuracy is very both states of both potentials, one observes that the mesh
poor. Again this problem is ,relllated to the singularity of the Wave function is systematlcally shghtly bette_r than th? varia-
Coulomb potential. As before, it becomes less serious WitﬁIonal one. However, this property IS only Vf.i“d for_a distance
increasing ' calculated from values at mesh points. With a distance cal-

We conclude this section by noting that several Lagrange(-:UIated with 200 equally spaced mesh points located be-

mesh calculations are able to provide the same accuracy i\,geen 0 andhxy, the accuracies on the variational wave

the corresponding variational calculation. One of the meshe unctions do not char_lg(_a much from_ tho_se shown in Tables
~ o~ i ) | and VII but the variational approximations are now often
(xi, Tij), may be less accurate in the presence of a singula

. . ; X Elightly better than the mesh approximations.
ity. Among the other ones, the simplest one is the regularize

mesh with full Gauss approximatiorx;(T{;) because it
leads to a nongeneralized eigenvalue problem. We consider VI. CONCLUSIONS

only this mesh in the next section. In order to analyze the accuracy of the Lagrange-mesh

method, different variants based on the zeros of Laguerre
V. ACCURACY OF WAVE EUNCTIONS polynomials are compared with exact variational calculations
based on the corresponding Laguerre basis. Tests are per-
In previous works, we only considered the accuracy informed on radial equations, where the wave function has to
energies. Now we extend the analysis by considering thganish at the origin, for three solvable potentials: the Morse,
accuracy of the Lagrange-mesh wave functions. We compangarmonic-oscillator, and Coulomb potentials.
the results of meshx(,Tﬁ’) to the exact wave functions as  The results show that the accuracies of the energies ob-
well as to the corresponding variational approximation. Wetained for different partial waves with the different mesh
define the distance between t@xact or approximajevave  approximations are very close to the variational accuracy,
functionsy, and ¢, as even in the presence of the centrifugal singularity. We ob-
serve that the same property holds for the approximate wave
N functions. It must be stressed that the Gauss approximation is
n:N—lz ls(hx) — ()] (41) far less accurate on i_ndividual mz_itrix elements t_han on ener-
i=1 gies and wave functions. We think that DVR-like calcula-
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tions require that the Lagrange conditions be satisfied, exertheless, the Lagrange-Laguerre mesh makes it possible to
actly or almost exactly, in order to be highly accurate. accurately treat various physical problems such as semirela-

The different mesh equations usually provide similar ac+ivistic two-body systemg16] or atomic and molecular
curacies. However, when the Gauss approximation does ntiiree-body systemsl7].
exactly treatr ~* and r 2 singularities, the accuracy may
drop._ Strangely, in the .examples considered, the lost accu- ACKNOWLEDGMENTS
racy is recovered whehincreases.

The simplest mesh is the regularized Laguerre mesh with This text presents research results of the Belgian program
full use of the Gauss approximation. The eigenvalue problen?4/18 on interuniversity attraction poles initiated by the
is not generalized and the accuracy is excellent. This mighBelgian-state Federal Services for Scientific, Technical and
arise from the consistent use of the Gauss approximation i@ultural Affairs. M.H. acknowledges the FRIA for financial
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