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The unexplained accuracy of the Lagrange-mesh method

D. Baye,1 M. Hesse,1 and M. Vincke2,1
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The Lagrange-mesh method is an approximate variational calculation which resembles a mesh calculation
because of the use of a Gauss quadrature. In order to analyze its accuracy, four different Lagrange-mesh
calculations based on the zeros of Laguerre polynomials are compared with exact variational calculations based
on the corresponding Laguerre basis. The comparison is performed for three solvable radial potentials: the
Morse, harmonic-oscillator, and Coulomb potentials. The results show that the accuracies of the energies
obtained for different partial waves with the different mesh approximations are very close to the variational
accuracy, even in the presence of the centrifugal singularity. The same property holds for the approximate wave
functions. This striking accuracy remains unexplained.
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I. INTRODUCTION

The Lagrange-mesh method is an approximate variatio
calculation which resembles a mesh calculation. This pr
erty is obtained by using a basis of Lagrange functions,
orthonormal functions which vanish at all points but one
an associated mesh, and the Gauss quadrature correspo
to this mesh. The number of mesh points is equal to the b
size. The name Lagrange functions was introduced in R
@1# because of the resemblence to a basic property of
Lagrange interpolation polynomials. However, contrary
those polynomials, Lagrange functions are indefinit
differentiable.

Before describing the Lagrange-mesh method in more
tail, let us first clarify one point. This method is sometim
considered @2# to be identical to the discrete-variable
representation~DVR! method @3#. In fact, in some cases
both approaches lead to the same mesh equations. How
we think that they follow different philosophies. The DV
method is designed to provide mesh equations and the
lected mesh points can, in principle, be arbitrary@4#. The
Lagrange-mesh method is valid only for meshes for whic
Lagrange basis exists, i.e., for which the Lagrange conditi
are satisfied@see Eq.~7! below#. These conditions usually
ensure high accuracy. Therefore, the Lagrange-mesh me
is a subset of the DVR method for which the Lagrange c
ditions provide an unusually high, and yet unexplained,
curacy. The Lagrange mesh equations have often been r
tained in different contexts. A recent example is given
Ref. @5#.

Lagrange functions can be associated with every family
classical orthogonal polynomials@1#. In this case the assoc
ated Gauss quadrature is well known@6#. Recently, it has
been shown that nonclassical orthogonal polynomials
also lead to useful Lagrange meshes@7#. The corresponding
bases offer much more vast possibilities. They can, for
ample, provide an orthogonal basis equivalent to a se
shifted Gaussians@7,8#. In this case, nonstandard Gau
quadratures appear. An even more surprising property of
Lagrange bases is that they can be regularized, i.e., m
plied by some convenient factor, without losing their hi
1063-651X/2002/65~2!/026701~8!/$20.00 65 0267
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accuracy, in spite of the fact that they become only appro
mately orthogonal@9–11#. This property is particularly im-
portant in treating the singularity of the centrifugal ter
when the orbital momentum is not zero.

The aim of the present paper is to describe the pres
status of our knowledge of the Lagrange-mesh method.
this end we shall concentrate on the example of the Lagu
meshes. We shall show that different meshes based on
guerre polynomials can all give very accurate results w
rather small numbers of mesh points. To evaluate the e
ciency of the method, we shall compare the results of
Lagrange-mesh calculations with those of the exact va
tional calculations performed with the same Lagrange ba
@11,7#. We shall emphasize the striking property that t
Gauss approximation, which is the main difference bewe
both types of calculations, does lead to a very weak loss
accuracy in spite of the fact that the accuracy of the Ga
quadrature on individual matrix elements is rather poor.
shall also exemplify the qualitative differences of utility b
tween meshes with tiny technical differences. Our hope
that the present analysis will stimulate mathematical res
in the Lagrange-mesh approach.

The Lagrange-mesh method is summarized in Sec. II. D
ferent Laguerre meshes, i.e., different meshes based on z
of Laguerre polynomials, are presented in Sec. III. The
curacies with energies of solvable or approximately solva
potentials are presented and discussed in Sec. IV. Accura
with wave functions are considered in Sec. V. Conclud
remarks are presented in Sec. VI.

II. LAGRANGE-MESH METHOD

Let us consider a one-dimensional Schro¨dinger equation
with kinetic energyT52d2/dx2 over some interval (a,b),

@T1V~x!#c~x!5Ec~x!. ~1!

To approximately solve this equation, we consider a va
tional approximation withN basis functionsf i(x),
©2002 The American Physical Society01-1
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c~x!5(
i 51

N

ci f i~x!. ~2!

The corresponding variational equations read

(
j 51

N

@Ti j 1Vi j 2ENi j #cj50, ~3!

where

Ni j 5^ f i u f j&, ~4!

Ti j 5^ f i uTu f j&, ~5!

Vi j 5^ f i uVu f j&. ~6!

The calculation of theVi j may be tedious or time consuming
The resolution of Eq.~3! is more delicate when the basis
not orthogonal.

Let us now define a Lagrange basis@1#. Such a basis is
defined in relation with a set ofN mesh pointsxiP(a,b),
called a Lagrange mesh. The Lagrange functions areN or-
thonormal functionsf i(x) verifying at theN mesh pointsxi
the Lagrange conditions

f i~xj !5l i
21/2d i j , ~7!

i.e., each functionf i(x) vanishes at all mesh points except
xi . These conditions restrict the possible sets of mesh po
The constantsl i appearing in Eq.~7! are the weights of the
Gauss quadrature approximation associated with the me

E
a

b

g~x!dx'(
k51

N

lkg~xk!. ~8!

As a result of the Lagrange conditions~7!, the basis func-
tions f i(x) are orthogonal at the Gauss approximation. Th
are even exactly orthonormal when the Gauss quadratu
exact for products of Lagrange functions,

E
a

b

f i~x! f j~x!dx5 (
k51

N

lkf i~xk! f j~xk!5d i j . ~9!

This is, for example, the case when Lagrange functions
constructed from orthogonal polynomials@1#. The first equal-
ity in Eq. ~9! is then exact, because anN-point Gauss quadra
ture is exact for the product of the weight function with
polynomial of degree up to 2N21.

The philosophy of the Lagrange-mesh method is to ap
the Gauss approximation to the potential matrix eleme
The approximate potential matrix is then diagonal,

E
a

b

f i~x!V~x! f j~x!dx'(
k51

N

lkf i~xk!V~xk! f j~xk!5V~xi !d i j .

~10!

With Eqs.~9! and ~10!, the approximate variational calcula
tion ~3! resembles a mesh calculation
02670
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(
j 51

N

@Ti j 1V~xi !d i j 2Ed i j #cj50. ~11!

The kinetic energy matrix elements can also be calculate
the Gauss approximation asTi j '2l i

1/2f j9(xi). The resulting
expressions only depend on thexi andxj . As discussed be-
low, the Gauss approximation is often exact for the kine
energy with Lagrange functions based on classical ortho
nal polynomials.

Now we turn to a radial Schro¨dinger equation of the form
~1! with a variabler defined over the interval@0,̀ @ . Over
such an interval, it is possible to scale a given mesh in or
to adjust it to the physical problem. TheN basis functions
then read

Fi~r !5h21/2f i~r /h!. ~12!

The scale factorh can be treated as an approximate nonlin
variational parameter. The wave function is then expande

c~r !5(
i 51

N

CiFi~r !. ~13!

As before, this approximation and a Gauss quadrature o
@0,̀ @ lead to the mesh equations

(
j 51

N

@h22Ti j 1V~hxi !d i j 2Ed i j #Cj50. ~14!

Notice that a radial wave functionc(r ) is subject to the
boundary condition

c~0!50. ~15!

III. LAGUERRE MESHES

The radial equation can be solved variationally with t
simple ~but nonorthogonal! basis,

xn~x!5xn exp~2x/2!, n51, . . . ,N21 ~16!

(xP@0,̀ @). The simplicity of this basis has recently bee
emphasized in Ref.@12#. However, because of the redun
dancy between the basis states, the size of this basis ca
much exceedN520. The basis~16! is equivalent to a subse
of the orthogonal basis

wk~x!5Lk~x!exp~2x/2!, k50, . . . ,N21. ~17!

In fact, the basis functions~17! do not vanish at the origin
and a constraint must be added to verify condition~15!. An-
other basis, exactly equivalent to basis~17!, and with basis
~16! as a subset, is the orthonormal Lagrange-Laguerre b

f i~x!5~21! ixi
1/2LN~x!

x2xi
e2x/2, i 51, . . . ,N ~18!

with the mesh pointsx1 to xN given by

LN~xi !50. ~19!
1-2
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The Gauss-Laguerre quadrature is then obtained with
weights

l i5
exi

xi@LN8 ~xi !#
2

. ~20!

Notice that thel i are not needed in the mesh equations
only in the expression of the wave function. Since the ba
functions~18! do not satisfy condition~15!, the kinetic en-
ergy matrix elements must be written asTi j 5^ f i8u f j8& in or-
der to keep Hermiticity. These expressions can be evalu
exactly at the Gauss approximation usingTi j 5 f i(0) f j8(0)
2^ f i u f j9& as

Tii 5~12xi
2!21@4~4N12!xi2xi

2220# ~21!

and, for iÞ j ,

Ti j 5~21! i 2 j~xixj !
21/2FN1

1

2
2

1

xi
2

1

xj
1

xi1xj

~xi2xj !
2G .

~22!

Although it may accidentally give good results~see the next
section!, this mesh approximation is not fully satisfacto
since the basis does not satisfy condition~15!. It is not valid
for l .0 since the integrals do not converge. Another ba
must be used forl .0. We shall compare three different way
of solving these problems. In each case we shall compare
mesh approximation with exact variational calculations p
formed with the same basis.

First we can define the basis

f̄ i~x!5 f i~x!2~21!N2 i~xN /xi !
1/2f N~x!, i 51, . . . ,N21.

~23!

With Eq. ~18!, one easily verifies that condition~15! is sat-
isfied by each basis function. The price to pay is that
basis is not orthogonal. However, a generalized eigenv
problem involvingN21 mesh equations can easily be d
rived from the mesh equations~14! of the previous case.

A second orthonormal basis strictly equivalent to ba
~16! reads

w̃k~x!5hk
21/2xLk

(2)~x!exp~2x/2!, k50, . . . ,N21,

~24!

whereLk
(2) is an associate Laguerre polynomial andhk5(k

11)(k12) @13#. Each basis function satisfies conditio
~15!. As proposed in Ref.@1#, an equivalent orthonorma
Lagrange-Laguerre basis is given by

f̃ i~x!5~21! i~ x̃i /hN!1/2
xLN

(2)~x!

x2 x̃i

e2x/2, i 51, . . . ,N.

~25!

Here the mesh points are given by
02670
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LN
(2)~ x̃i !50 ~26!

and the Gauss weights by@13#

l̃ i5hN

ex̃i

x̃i
3@LN

(2)8~ x̃i !#
2

. ~27!

The exact kinetic-energy matrix elements read@1#

T̃ii 5~9/4!x̃i
221Sii ~28!

and, for iÞ j ,

T̃i j 5~21! i 2 jF3

2
~ x̃i x̃ j !

21/2~ x̃i
211 x̃ j

21!2Si j G ~29!

with

Si j 5~ x̃i x̃ j !
1/2 (

kÞ i , j

1

x̃k~ x̃k2 x̃i !~ x̃k2 x̃ j !
. ~30!

The corresponding mesh equations take the form~14!. As
shown below, this mesh is excellent for thes wave. However,
the Gauss quadrature isa priori very bad for 1/r 2 so that
higher partial waves are not expected to be accurately tre
on this mesh. In Ref.@1#, other meshes are proposed forl
.0 which provide accurate results for nonsingular pote
tials. This solution has the drawback that different part
waves correspond to different meshes and that coup
channel or three-body problems cannot be considered.

A third approach starts from the nonorthogonal basis,

ŵk~x!5xLk~x!exp~2x/2!, k50, . . . ,N21 ~31!

which is equivalent to Eqs.~16!, ~23!, ~24!, and ~25!. As
established implicitly in Ref.@9# and explicitly in Ref.@14#,
an equivalent Lagrange-Laguerre basis can also be define

f̂ i~x!5
x

xi
f i~x!5~21! ixi

21/2 xLN~x!

x2xi
e2x/2, i 51, . . . ,N

~32!

with xi given by Eq.~19!. An important difference with basis
~25! is that the Gauss quadrature with the samel i as in Eq.
~20! is here exact for the centrifugal form factor 1/r 2. An-
other difference is that basis~32! is nonorthogonal. Its exac
overlap matrix elements are easily obtained as explaine
the appendix of Ref.@9#,

Ni j 5E
0

`

f̂ i~x! f̂ j~x!dx5d i j 1~21! i 2 j~xixj !
21/2. ~33!

The Gauss approximationT̂i j
G52l i

1/2f̂ j9(xi) for the kinetic
energy matrix elements reads@10#

T̂ii
G5~12xi

2!21@41~4N12!xi2xi
2# ~34!

and, for iÞ j ,
1-3
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T̂i j
G5~21! i 2 j~xixj !

21/2~xi1xj !~xi2xj !
22. ~35!

The exact kinetic energy matrix elements can be calcula
starting from the Gauss approximation as explained in
appendix of Ref.@9#. They read

T̂i j 5T̂i j
G2

1

4
~21! i 2 j~xixj !

21/2. ~36!

With the exact expressions~33! and~36!, the mesh equation
take the form

(
j 51

N

@h22T̂i j 1V~hxi !d i j 2ENi j #Cj50, ~37!

i.e., lead to a generalized eigenvalue problem. However,
cording to Eq.~9!, the basis~32! is orthonormal at the Gaus
approximation. When this approximation is used for t
overlap and for the kinetic energy@Eqs.~34! and ~35!#, one
recovers the nongeneralized eigenvalue problem~14!. As ob-
served in Ref.@10#, this additional approximation does no
cause any real loss of accuracy. However, the main ad
tage of the so-called regularized mesh, under the form~37!
or under the simpler Gauss form~14!, is that it now allows us
to accurately treat singular terms behaving asr 21 andr 22 at
the Gauss approximation. Therefore the regularized mes
also valid forl .0. In fact, looking at the expression~32! of
the basis functionsf̂ i(x), one observes that the matrix el
ments^ f̂ i ur 21u f̂ j& and^ f̂ i ur 22u f̂ j& are exact at the Gauss a
proximation.

IV. ACCURACY OF ENERGIES IN SOLVABLE EXAMPLES

In this section, we illustrate the properties discussed in
previous section with different solvable potentials: t
Morse, three-dimensional harmonic oscillator, and Coulo
potentials. The selected Morse potential@10# is regular ev-
erywhere and displays a strong repulsive barrier at the ori
The oscillator potential is also regular but vanishes at
origin. The Coulomb potential provides an example of s
gularity. We can thus compare the mesh methods under
gressively more difficult conditions.

As in Refs.@10,11,7#, the Morse potential is defined as

V~r !5D$exp@22a~r 2r e!#22 exp@2a~r 2r e!#%,

~38!

whereD50.102 62,r e52, a50.72, and 2m51836. For the
s wave, this potential is very close to solvable. It is exac
solvable over ]2`,1`@ @15#. Over @0,1`@ , the strong ex-
ponential barrier forces the wave function to be expon
tially small at the origin. The eigenvalues are given e
tremely accurately~i.e., with an accuracy much better tha
10215) by

Enr
52D1S nr1

1

2Da~2D/m!1/22S nr1
1

2D 2

a2/2m

~39!
02670
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for nr50 to 15. For l .0, the eigenvalues are calculate
numerically. Typical energies are gathered in Table I. T
Morse potential has also the advantage that its matrix
ments can be calculated exactly for the different bases
cussed above. For the oscillator and Coulomb potentials,
compare the results with the standard expressions in na
units, i.e.,Enr

52nr1 l 1 3
2 andEnr

5 1
2 (nr1 l 11)22, respec-

tively.
For the three Lagrange meshes discussed above, we

pare exact variational calculations with the Lagrange m
results for the same number of points and values of the s
parameterh. In fact, the variational bases~16!, ~23!, ~24!,
~25!, ~31!, and~32! being equivalent, they should provide th
same variational results. The equivalent bases~17! and ~18!
are different since the spanned vector space contains an
ditional component proportional tow0(x) and should not be
relevant here. On the contrary, the three mesh calculat
based on Eqs.~23!, ~25!, and ~32! are expected to provide
different results.

All the results from exact variational calculations o
tained withorthogonalbases are identical and are display
as ‘‘var.’’ in Tables II–VII. The results obtained with th
weakly nonorthogonal bases~23!, ~31!, and ~32! are essen-
tially identical. Those obtained with the strongly nonorthog
nal basis~16! are also identical forN<10 but their accuracy
becomes less good beyond that value. ForN520, the accu-
racy on the ground state is only 331026. BetweenN510
and 20, the accuracy is progressively degraded becaus
overlap reduction algorithm behaves worse and worse.
yond N520, numerical problems appear with the positi
character of the overlap matrix.

Four different mesh calculations are compared in Table
with the variational results for thes, p, andd waves of the
Morse potential. The scale factor is fixed ath50.05. This
value corresponds to a rough optimization of the mesh
Finely tuned optimizations depending on the state and pa
wave might improve the results but the improvement is u
ally not important. The errors on the energies are defined

enr
5Enr

approx2Enr
~40!

for the different approximations. The different columns su
cessively correspond to the variational calculation~3! with
one of the equivalent orthogonal Laguerre bases, the m
calculation~14! modified according to Eq.~23! with meshxi
and Ti j given by Eqs.~21! and ~22!, the mesh calculation

TABLE I. Energies of thenr50 andnr55 states of the Morse
potential. In thel 50 case, the values are deduced from the anal
cal expression~39!. The l 51 and l 52 energies are obtained by
Lagrange mesh calculation~14! with N560 mesh points~19!, ki-
netic energy~34! and ~35!, and the scale factorh50.05.

l nr50 nr55

0 20.097 307 739 656 379 20.051 949 842 102 521
1 20.097 040 301 141 149 20.051 735 382 273 815
2 20.096 507 541 478 194 20.051 308 827 503 494
1-4



e

n

r

l

THE UNEXPLAINED ACCURACY OF THE LAGRANGE-MESH . . . PHYSICAL REVIEW E65 026701
TABLE II. Errors enr
@Eq. ~40!# in the energies of thenr50 andnr55 states of the Morse potential in th

s, p, and d waves obtained forh50.05 with the variational equations~3!, with xi and Ti j in the mesh

equations~14! modified according to Eq.~23!, with x̃i andT̃i j in the mesh equations~14!, with xi andT̂i j in

the mesh equations~37!, and withxi andT̂i j
G in the mesh equations~14!. The powers of ten are indicated i

square brackets.

l nr N Var. (xi ,Ti j ) ( x̃i ,T̃i j ) (xi ,T̂i j ) (xi ,T̂i j
G)

0 0 20 3.8@27# 1.6@26# 4.6@27# 6.3@27# 4.2@27#

40 ,1@214# 1.4@214# ,1@214# 1.4@214# 1.4@214#

5 20 4.0@23# 1.5@22# 5.5@23# 8.0@24# 9.6@24#

40 1.1@29# 4.0@29# 3.0@29# 24.8@29# 24.6@29#

1 0 20 4.1@27# 1.6@26# 4.8@27# 7.0@27# 5.0@27#

40 ,1@214# 1.4@214# ,1@214# 1.4@214# 1.4@214#

5 20 4.4@23# 1.6@22# 5.7@23# 1.0@23# 1.2@23#

40 1.1@29# 4.2@29# 3.1@29# 24.3@29# 24.2@29#

2 0 20 4.5@27# 1.7@26# 5.0@27# 8.2@27# 6.5@27#

40 ,1@214# 1.5@214# ,1@214# 1.5@214# 1.6@214#

5 20 4.7@23# 1.7@22# 6.0@23# 1.5@23# 1.7@23#

40 1.1@29# 4.4@29# 3.1@29# 23.4@29# 23.2@29#

TABLE III. Errors enr
@Eq. ~40!# in the energies of thenr50 andnr55 states of the harmonic oscillato

potential obtained in different cases~see Table II! for h50.1.

l nr N Var. (xi ,Ti j ) ( x̃i ,T̃i j ) (xi ,T̂i j ) (xi ,T̂i j
G)

0 0 20 3.1@214# 8.9@214# 3.7@214# 1.3@213# 1.1@213#

40 2.8@214# 23.0@213# ,1@214# 1.4@214# 24.9@214#

5 20 1.2@24# 4.4@24# 9.4@25# 23.2@23# 23.5@24#

40 ,1@214# 24.1@214# 6.6@214# 21.8@214# 25.7@214#

1 0 20 1.2@212# 1.1@213# 29.6@27# 22.2@212# 21.4@212#

40 3.3@214# 23.4@214# 21.4@27# 24.7@214# 23.8@214#

5 20 2.6@24# 2.2@23# 1.5@24# 27.5@23# 6.6@24#

40 3.3@213# 2.7@213# 21.6@26# 28.1@213# 23.0@213#

2 0 20 8.8@212# 3.6@211# 7.3@212# 26.2@211# 22.7@211#

40 ,1@214# 6.3@214# ,1@214# 1.1@213# 21.4@214#

5 20 1.7@23# 3.4@23# 1.5@23# 2.9@23# 3.4@23#

40 3.4@213# 2.8@212# 1.4@213# 21.5@212# 8.5@213#

TABLE IV. Errors enr
@Eq. ~40!# in the energies of thenr50 andnr55 states of the Coulomb potentia

obtained in different cases~see Table II! for h51.5.

l nr N Var. (xi ,Ti j ) ( x̃i ,T̃i j ) (xi ,T̂i j ) (xi ,T̂i j
G)

0 0 20 2.1@210# 7.5@210# 2.8@22# 2.1@210# 24.0@210#

40 ,1@214# ,1@214# 8.9@23# ,1@214# 3.1@214#

5 20 3.6@28# 1.5@27# 1.3@24# 3.6@28# 7.4@28#

40 ,1@214# ,1@214# 4.1@25# ,1@214# ,1@214#

1 0 20 ,1@214# ,1@214# 29.2@25# ,1@214# ,1@214#

40 ,1@214# ,1@214# 21.3@25# ,1@214# ,1@214#

5 20 2.0@25# 4.9@25# 1.6@25# 2.0@25# 3.1@25#

40 ,1@214# ,1@214# 24.0@27# ,1@214# ,1@214#

2 0 20 ,1@214# ,1@214# ,1@214# ,1@214# ,1@214#

40 ,1@214# ,1@214# ,1@214# ,1@214# ,1@214#

5 20 4.6@24# 7.5@24# 4.6@24# 4.6@24# 5.8@24#

40 1.4@211# 4.2@211# 1.4@211# 1.4@211# 2.4@211#
026701-5
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TABLE V. Comparison of errorsh @Eq. ~41!# in the wave functions of thenr50 andnr55 states for the

Morse potential: exact, variational, and (xi ,T̂i j
G) Lagrange-mesh calculations~32! with h50.05.

nr50 nr55
l N Mesh/ex. Var./ex. Mesh/var. Mesh/ex. Var./ex. Mesh/var

0 20 1.9@24# 4.2@24# 5.6@24# 0.15 0.10 0.09
40 3.3@29# 2.4@28# 2.7@28# 4.4@26# 2.8@25# 3.2@25#

1 20 5.5@24# 8.6@22#

40 2.7@28# 3.1@25#

2 20 5.4@24# 8.3@22#

40 2.7@28# 3.0@25#
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~14! with meshx̃i and T̃i j given by Eqs.~28! and ~29!, the
mesh calculation~37! with meshxi and T̂i j given by Eq.
~36!, and the mesh calculation~14! with meshxi and T̂i j

G

given by Eqs.~34! and ~35!. The first mesh calculation is
related to basis~23! and requires solving a generalized e
genvalue problem of dimensionN21. The other ones corre
spond to dimensionN. The accuracy of the mesh calculatio
is limited by the accuracy on the zeros of the Laguerre po
nomials which is itself restricted by the computer accura
For this reason, we do not explicitly show the errors that
have obtained when they are smaller than 10214. The errors
on the variational calculation are always positive as expec
when the computer accuracy is not reached, but the error
the mesh calculations may be negative. Let us start the
cussion with thes wave.

The accuracy of the (xi ,Ti j ) calculation is only slightly
poorer than the accuracy of the variational calculation. S
prisingly, identical results are obtained with the mesh cor
sponding to basis~18! which does not satisfy condition~15!.
However, this property is not true for the other potentia
This can be understood as follows. The results obtained w
the mesh equations derived from bases~18! and~23!, respec-
tively, correspond to even and odd solutions of the Mo
potential symmetrized over ]2`,1`@ . Since this potential
has a strong repulsive barrier at the origin, even and
solutions are degenerate to a high accuracy. The same re
explains why Eq.~39! provides essentially exact values f
the present radial Morse potential.

The results obtained with the mesh (x̃i ,T̃i j ) are even
slightly better. For the regularized mesh~19! derived from
basis~32!, two different calculations with the meshxi are
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presented without and with Gauss approximation for
overlap and kinetic-energy matrices. The first calculation i
generalized eigenvalue problem@Eq. ~37!# with the exact ki-
netic energy~36!. The second one is the eigenvalue proble
~14! with the approximate kinetic energy~34! and ~35!. The
accuracy is excellent in both cases and the simpler appr
mate approach is surely not less good than the other on

Let us now emphasize that all these very accurate res
of the mesh calculations are obtained in spite of the fact
the Gauss approximation is not very good for individual m
trix elements of the potential. Indeed, when comparing th
exact potential matrix elements calculated for the variatio
calculation with those of the regularized-mesh basis~32!, for
example, one finds that the relative accuracy on diago
matrix elements is never better than 2% forN520 and
0.05% forN540, and is often far worse. Nondiagonal matr
elements which are approximated by zero at the Gauss
proximation cannot be given a relative accuracy but th
absolute accuracy is not better than for diagonal eleme
Hence the excellent accuracy obtained withN540 ~absolute
error of about 10214 for the ground state! is obtained with
potential matrix elements with absolute errors not better t
231026. This property must be taken into account wh
interpreting the Lagrange-mesh method. The accuracy of
method isnot due to a high accuracy of the Gauss appro
mation on individual matrix elements.

All the different Laguerre meshes might not withstand t
introduction of a singularity at the origin under the form of
centrifugal barrier. The results for thep andd waves are also
compared with the exact variational results in Table II. O
hardly sees a difference of accuracy with thes wave case. As
.

TABLE VI. Comparison of errorsh @Eq. ~41!# in the wave functions of thenr50 andnr55 states for the

harmonic oscillator potential: exact, variational, and (xi ,T̂i j
G) Lagrange-mesh calculations~32! with h50.1.

nr50 nr55
l N Mesh/ex. Var./ex. Mesh/var. Mesh/ex. Var./ex. Mesh/var

0 20 8.3@210# 8.3@29# 8.8@29# 1.5@24# 6.5@24# 7.5@24#

40 ,1@214# ,1@214# ,1@214# 2.2@210# 5.4@29# 5.6@29#

1 20 3.9@29# 5.7@28# 6.1@28# 5.1@24# 5.6@24# 8.8@24#

40 1.3@214# 1.8@213# 1.9@213# 5.5@210# 1.5@28# 1.6@28#

2 20 1.3@28# 1.5@27# 1.6@27# 7.0@24# 1.9@23# 2.3@23#

40 ,1@214# 4.3@213# 4.3@213# 1.4@29# 1.4@28# 1.5@28#
1-6
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TABLE VII. Comparison of errorsh @Eq. ~41!# in the wave functions of thenr50 andnr55 states for

the Coulomb potential: exact, variational, and (xi ,T̂i j
G) Lagrange-mesh calculations~32! with h51.5.

nr50 nr55
l N Mesh/ex. Var./ex. Mesh/var. Mesh/ex. Var./ex. Mesh/var

0 20 6.4@28# 1.8@26# 1.9@26# 1.1@25# 2.5@25# 3.4@25#

40 3.8@214# 2.4@212# 2.4@212# 6.7@214# 6.6@213# 7.2@213#

1 20 1.5@214# 4.4@213# 4.6@213# 1.5@23# 9.4@24# 7.0@24#

40 ,1@214# ,1@214# ,1@214# 2.6@210# 1.7@29# 1.9@29#

2 20 ,1@214# ,1@214# ,1@214# 1.3@22# 1.2@22# 2.9@23#

40 ,1@214# ,1@214# ,1@214# 7.8@28# 3.1@27# 3.9@27#
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we shall learn from the other examples, this is due to
strong repulsive barrier of the Morse potential.

The results for the harmonic oscillator are displayed
Table III for the same conditions. The scale factor is fixed
h50.1. For thes wave, the accuracies behave similarly
those of the Morse potential except that the convergenc
faster. For the ground state, the accuracy is already clos
the computer accuracy forN520. A difference, however
appears for thep wave. The mesh (x̃i ,T̃i j ) is far less accurate
than the other ones. This difference can be attributed to
centrifugal term whose value is not given exactly by t
Gauss quadrature in that case. Surprisingly, this problem
appears for higher partial waves: thed wave results are agai
very similar for all meshes and very close to the variatio
accuracy.

The results for the Coulomb potential are presented
Table IV. The scale factor is fixed ath51.5. For thes wave,
the accuracies behave similarly as those of the other po
tials except for the mesh (x̃i ,T̃i j ) whose accuracy is very
poor. Again this problem is related to the singularity of t
Coulomb potential. As before, it becomes less serious w
increasingl.

We conclude this section by noting that several Lagran
mesh calculations are able to provide the same accurac
the corresponding variational calculation. One of the mes
( x̃i ,T̃i j ), may be less accurate in the presence of a singu
ity. Among the other ones, the simplest one is the regulari
mesh with full Gauss approximation (xi ,T̂i j

G) because it
leads to a nongeneralized eigenvalue problem. We cons
only this mesh in the next section.

V. ACCURACY OF WAVE FUNCTIONS

In previous works, we only considered the accuracy
energies. Now we extend the analysis by considering
accuracy of the Lagrange-mesh wave functions. We comp
the results of mesh (xi ,T̂i j

G) to the exact wave functions a
well as to the corresponding variational approximation.
define the distance between two~exact or approximate! wave
functionsc1 andc2 as

h5N21(
i 51

N

uc1~hxi !2c2~hxi !u. ~41!
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This definition is based on the values at mesh points o
We have also considered distances based on equally sp
points but the results are qualitatively similar, so that we
not show them in detail.

The distancesh for the Morse potential are given in Tabl
V. A comparison with the ‘‘exact’’ analytical wave function
is only possible for thes wave. For a variational calculation
the accuracy on the wave function is less good than the
curacy on the energy, i.e., the error on the wave function
expected to be of the order of the square root of the error
the energy. This rule seems to be followed qualitatively. O
observes that the mesh wave function seems to be sli
more accurate than the variational one.

More information can be obtained with the harmon
oscillator~Table VI! and Coulomb~Table VII! potentials be-
cause the exact wave functions are available for all par
waves. Here the errors on the mesh and variational calc
tions are sometimes restricted by the computer accuracy.
both states of both potentials, one observes that the m
wave function is systematically slightly better than the var
tional one. However, this property is only valid for a distan
calculated from values at mesh points. With a distance
culated with 200 equally spaced mesh points located
tween 0 andhxN , the accuracies on the variational wav
functions do not change much from those shown in Tab
VI and VII but the variational approximations are now ofte
slightly better than the mesh approximations.

VI. CONCLUSIONS

In order to analyze the accuracy of the Lagrange-m
method, different variants based on the zeros of Lague
polynomials are compared with exact variational calculatio
based on the corresponding Laguerre basis. Tests are
formed on radial equations, where the wave function has
vanish at the origin, for three solvable potentials: the Mor
harmonic-oscillator, and Coulomb potentials.

The results show that the accuracies of the energies
tained for different partial waves with the different me
approximations are very close to the variational accura
even in the presence of the centrifugal singularity. We o
serve that the same property holds for the approximate w
functions. It must be stressed that the Gauss approximatio
far less accurate on individual matrix elements than on en
gies and wave functions. We think that DVR-like calcul
1-7
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tions require that the Lagrange conditions be satisfied,
actly or almost exactly, in order to be highly accurate.

The different mesh equations usually provide similar
curacies. However, when the Gauss approximation does
exactly treatr 21 and r 22 singularities, the accuracy ma
drop. Strangely, in the examples considered, the lost a
racy is recovered whenl increases.

The simplest mesh is the regularized Laguerre mesh w
full use of the Gauss approximation. The eigenvalue prob
is not generalized and the accuracy is excellent. This m
arise from the consistent use of the Gauss approximatio
all terms. This striking accuracy remains unexplained. N
s

r

02670
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ertheless, the Lagrange-Laguerre mesh makes it possib
accurately treat various physical problems such as semir
tivistic two-body systems@16# or atomic and molecular
three-body systems@17#.
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