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We analyze the shape and stability of localized states in nonlinear cubic media with space-dependent
potentials modeling an inhomogeneity. By means of a static variational approach, we describe the ground states
and vortexlike stationary solutions, either in dilute atom gases or in optical cavities, with an emphasis on
parabolic-type potentials. First, we determine the existence conditions for soliton and vortex structures for both
focusing and defocusing nonlinearity. It is shown that, even for a defocusing medium, soliton modes can exist
with a confining potential. Second, step potentials and boundedness effects in hollow capillaries are investi-
gated, which both proceed from a similar analysis. Finally, we discuss applications of this procedure to charged
vortices in dilute quantum gases and to Bose-Einstein condensates trapped in the presence of a light-induced
Gaussian barrier.
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I. INTRODUCTION a stable, stationary object described by the stationary modes
of the GP equation. In that case, a criterion of stability for
Excitations described by the nonlinear Sainger(NLS) BEC ground states is given by the derivative of the number
equation and by the Gross-PitaevdkiP) equation have at- of bosonic particles with respect to their chemical potential.
tracted significant interest during recent years. Their behavfhis derivative must be negatiy22,24].
ior under the influence of spatial inhomogeneities is now the On the basis of these results, we can already observe how
scope of intensive investigations. On the one hand, the NL$#e dynamics of nonlinear light beams propagating in a cubic
equation including space-dependent potentials currentlynedium with a density profile is close to that of BECs con-
models the slowly varying complex envelope of wavesfined by a magnetic trap. From this resemblance, it was re-
evolving in a dispersive nonlinear medium with a densitycently proposed that a “photon fluid” could behave as a
profile. It applies, for instance, to light beams trapped insuperfluid having a Bogoliubov-type dispersion relation, ca-
waveguides with graded indé¢g,2], to the optical Kerr self- pable of forming stable two-dimension@D) condensates of
focusing in a parabolic mediufi8], and to molecular exci- light in appropriate medid25]. Briefly speaking, photons
tations in the vicinity of impuritieg4]. For an optical focus- behave as bosons and they may condense in atom vapors.
ing medium, it is expected that the beam can relax to a stabl8uperfluidity of photons could be brought to light by means
solitary-wave structure, usually called “soliton,” which is of an incident plane wave traversing a nonlinear medium
the nodeless, ground-state solution of the NLS equdfdn inside a Fabry-Aet cavity with a cylindrical obstaclg26].
These states are then stable if their power intedrainorm) A strong single moding in a cylindrical Fabry-@¢ resona-
does not exceed the critical threshold for self-focusing, and itor filled with atomic Rb vapor was already reported in Ref.
the variation of this integral versus the soliton parameter i$27].
positive[6—8]. Otherwise, they collapse at a finite distance From the pioneering worfs] that displayed the existence
by diverging in amplitud¢3,9—14. Close to this property is of the so-called Townes modes, many works have been de-
the behavior of light beams in hollow capillary waveguides.voted to find, at least numerically, these elementary soliton-
In this context, the potential does not follow from spatial like excitations and to test their stability. Townes modes, i.e.,
variations in the density profile, but from appropriate bound-“bright” localized solitons, are not the only candidates for
ary conditions. By imposing the beam envelope to be zersupporting condensate distributions. For a defocusing me-
beyond the core radius of the capillaf$5-18, a robust dium with no external potential, we already know that no
waveguide can form and propagate along several Rayleiglocalized solution exists and such media only promote delo-
lengths in the capillary. On the other hand, the GP equatiogalized travelling-wave solutions named dark solitons
provides a model equation for describing the collective dy{28,29. However, we shall here show that, in the presence of
namics of Bose-Einstein condensat®EC) in ultracold  a confining potential, “bright” solitons also exist for a defo-
atomic gase$19-24. This equation is nothing else but the cusing medium. Furthermore, localized vortex modes carry-
NLS equation supplemented by a quadratic-in-space potering an orbital angular momentum can arise as elementary
tial related to the magnetic trap. When bosons undergo asolutions to the 2D NLS equation. These structures do not
tractive interactions—which induce a focusing nonlinearitypossess the radial symmetry in general. They exhibit a ring-
in, e.g., Li atom gases—the macroscopic wave function oshaped field distribution with a rotating spiral character re-
the condensate collapses, as the mean number of particlited to the azimuthal angle. In the absence of a trap, exis-
exceeds a critical value agdif1]. Otherwise it may relax to tence conditions for such objects have been established in
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Ref.[30] in the scope of nonlinear optics. In this context, it poses onto the magnetic potential a nonaxisymmetric, dipole
was numerically discovered and proven that, although stablpotential created by a stirring laser beam. The combined po-
against radial perturbations, ringlikeortexlike) modes in  tential leads to a cigar-shaped harmonic trap with anisotropic
saturable focusing media are unstable against azimuthal peransverse profile, which is rotated and allows for vortex
turbations and they can decay intgn® nodeless solitons, nucleation. With the latter setup, up to four vortices have
where m denotes the azimuthal indeXcharge”) number  been produced at fast enough rotation frequencies. Observa-
[31,32. With a parabolic-type potential, similar modes may tion of scissors modes, excited by a sudden rotation of the
exist. At lowest order, some of them are radially symmetricanisotropic trap, has also been reported in similar mtha
(m=0), which have numerically been identified in Ref. Let us recall again that these different basic structures may
[22]. Let us recall that these different structures can mutuallynutually interact and evolve into each other, as in optical
interact. For instance, experiments showing the attractiobulk materials. For instance, the interaction of a trapped
and fusion of 3D bright spatial solitons resulting from the ground state and a vortex has numerically been shown to
modulational instability of an optical vortex have been re-give rise to fringe patterngl6]. A phase slip in the fringes of
ported in Ref[33] for saturable focusing rubidium vapors. the interference pattern characterizes the vorticity, which was
Besides, the decay of vortices with high “charge” number proposed as a sure diagnostic for detecting vortices in Bose-
into an aligned array o vortices of unit charge that repel Einstein condensates. Dislocation in the fringe pattern, that
each other has been experimentally realized in anisotropigives the signature of the presence of vortices nucleated by
photorefractive crystalg34]. In the same material, two ini- laser stirring, have been experimentally measured in Ref.
tially round Gaussian beams were moreover observed to cof47]. Vortices can also emerge from the flow of an object
verge towards bound dipole solitary solutidid3s]. Defocus-  through a dilute Bose-Einstein condensate trapped in a har-
ing media favoring the formation and the interaction of darkmonic well[48]. The BEC wave function is then modeled by
solitons have been extensively studied from the experimentahe 2D GP equation with a Gaussian barrier that describes a
point of view, which the interested reader can find reviewednacroscopic “light-induced obstacle.” This model can serve
in Ref.[36]. for proving the superfluid nature of the condensate, where
Analogous structures can also be produced in confinedtrong dissipation arises when the relative velocity between
qguantum gases. In Ref37], the properties of the ground the object and the fluid exceeds a critical value proportional
stationary states of BECs were determined by means ab the speed of sound. The superfluid flow then becomes
variational arguments and the validity of the Thomas-Fermunstable against the formation of vortex pairs with opposite
approximation, neglecting the kinetic energy of the conden<irculation, which signals the onset of a new, dissipative re-
sate for large particle numbers, was justified. In additiongime. This property has been verified experimentaig],
vortex lines with closed path and phase undergoingvthd- ~ when the macroscopic object was simulated by a blue de-
ing were expected to be triggered by rotation of the traptuned laser beam repelling atoms from its focus. The same
with an angular momentum above a critical va|3&]. For  experimental setup also allowed for displaying evidence of a
repulsive interactions, excitations of vortex states have beecritical velocity for the onset of a drag force between the
classified in Ref[38] and their stability has been investi- laser beam and the condensate. These properties were earlier
gated in Refs[39-42, within and beyond the Thomas- numerically predicted in Ref.50] for superfluids having a
Fermi approximation. Through minimization principles ap- defocusing(repulsivg nonlinearity and no trap. It is impor-
plied to the energy functional, it was shoy#0,41] that at  tant to recall that Landau theory for a critical velocity below
zero temperature a quantum vortex with lowest possible cirwhich a superfluid evolves without dissipation basically con-
culation (i.e., with charge number equal to unityhould be  cerns microscopic objects, instead of macroscopic ones. To
stable, whereas higher-order vortices withj>1 should un-  prove superfluidity of BECs in this sense, impurity atoms
dergo instability. In particular, vortex with, e.gn=2 can were used if51]. It was observed that collisions between
split into two distinct vortices withm|=1, symmetrically  impurity and the stationary condensate were significantly re-
dispatched. A rotating trap may, however, stabilize the sysduced with impurity velocities below the condensate speed
tem [39], and at finite temperature a singly charged vortexof sound, in agreement with the Landau criterion for super-
can only decay in the presence of dissipafiég]. Note that fluidity. By comparison with nonlinear optical media, we fi-
vortex stability was mainly studied for condensates with re-nally mention that quasi-1D dark solitons have also been
pulsive interactions, apart from a perturbative treatniéhf, experimentally created in cigar-shaped BECs®®b by a
which predicts stability of the single vortex state with weakphase imprinting metho@52]. Detailed comparison of ex-
attractive interaction and instability of higher-order modes.perimental data with theory and numerical simulati¢s3]
Stability of quantum vortices with attractive interaction thusallowed for identifying dark solitons travelling with almost
deserves numerical confirmation, which we address in theonstant velocity smaller than the speed of sound.
forthcoming analysis. In view of the above results, the key point is to identify
Quite recently, vortices have been experimentally createahich kind of steady-state/stationary structure can serve as
in 8Rb atom gases following two distinct methods. The firstan attractor providing a stable nonlinear mode, that could
method[43] uses a combination of a laser and a microwavesustain a long-living condensate. This issue cannot be
field to print the desired velocity field onto the atomic wave cleared up through extensive numerical simulations only. We
function, which generates a condensate rotating around rreed a way to determine analytically the characteristic length
second, stationary one. The second methdd] superim- and amplitude of such steady-state modes. Therefore, this
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paper is aimed at proposing a systematic procedure for find-— +c0 and all spatial derivatives af vanish at boundaries.
ing the approximate shapes of soliton and vortex solutions ofn these conditionsg obeys the differential equation
the NLS equation

[0+ V 2+ o Y| 2p—U(F) =0, 1) ~Np=i7-V+V2p+a]d[?¢p-U(N¢=0. (3

where i denotes either a macroscopic BEC wave functionFor further convenience, we emphasize that the eigenrgode

evolving in time(in which caset is a time variablg or the  realizes a critical point§S=0) for the general functional

slowly varying envelope of a nonlinear light field propagat- R

ing in an inhomogeneous Kerr mediuiim which caset re- S=H+AN-v-P, (4)

fers to a propagation variableThe LaplacianV? expresses

in spherical geometry a€2=r'"Pg,r° 14, with space di-

mension numbeD. In 2D (D=2), we shall examine vortex

solutions for whichV?=r~"4,rd,+r 243, 6 being the azi- NEJ |y|2dF (5)

muthal angle. In Eq1), o is the nonlinearity coefficient that

is positive (negative for attractive (repulsive interactions

between bosons or for a focusiridefocusing optical me-

dium. U(r) represents a space-dependent potential. For the . o

sake of simplicity, we shall restrict our analysis to localized HEJ [valz— §|¢|4+U(F)|¢|2] dr (6)

nonlinear modes decaying to zero at infinity and assume that

the potentiall always preserves their initial centroid. is the Hamiltonian which is conservative for real-valued po-
The paper is organized as follows: Sec. Il provides SOM&antialsU. and

general existence conditions for the localized stationary non-

where

is the power integral or number of particles for Edy);

linear modes of Eq(1). It also expounds a static variational o . .
approach, which describes the shape, amplitude, and radius P= Ef (YV ™ — > Vydr (7)
of discrete NLS modes. Emphasis is then given to a para-
. . 2 . . .
bolic profile U(F)~r in Sec. Ill. For this case, the time s the linear transverse momentyfmmeans complex conju-

evolution of solutions revealed in, e.g., REf3] are refound  gatg. Three particular modes can then be investigated,
and generalized for any test function. Their stationary verpgmely:
sion then supplies the soliton modes(r,t) = ¢(7)e™, (i) The ground stategGS), being positive, nodeless, radi-

whose chargctenstm_ integrals vary with the paramater _ally symmetric with maximum located &t=0, and possess-
These variations, estimated analytically, are shown to be in

. . _ ~ 2
remarkable agreement with direct numerical computations"9, N9 VDel_%C'tY- This leads us to sef=0 and V
ForD=2, Sec. IV presents similar results for a step potentia™""_ ¢~ ¢y in Eq. (3). Such modes arise in the field of
U(f)=—eH(R—r), whereH is the usual Heaviside func- nonlinear optics and Bose-Einstein condensations as well, as

tion, e and R are the height and diameter of the potential, (€ Most elementary solution serving as a “bright” soliton.
respectively. In Sec. V, we propose an analogy with hollow! NeY consiltute critical p0|_nts for the vinan:nal groPlem
capillary waveguides, whose spatial effects originate fromP(H+AN)=0 resolved at fixed numbe =Ns= [|$|“dF".
appropriate boundary conditions, such #&7|=R)=0. In For a f_ocu_smg med|ur_nGS are ggneral_ly stable whenever
that case and for a step potential as well, we numericalljh€ derivative dXd, with N=N, is positive, and when the
verify that the same criterion for soliton stability holds. Vor- curvature of the potential U is positive around the soliton
texlike solutions carrying an angular orbital momentum arec€ntroid [6]. They must also satisfy NN to avoid col-
next studied in Sec. VI for both cases= + 1, by means of |2PSe _ _ _

the same variational procedure. Their stability is numerically (i) The travelling-wave solutioneTWS) being the analo-
tested and thoroughly discussed for attractive interactiongJ0Us of the previous modes, but they carry a nonzero veloc-
Finally, we apply our analytical method to the BEC groundity v # 0 and propagate inside the medium. They are charac-

states interacting with an external Gaussian obstacle, as motkrized by a nonzero transverse momenterand solve the

eled in Ref[48]. variational problems(H—g-P)=0. In 1D a stability crite-
rion for such structures may be given b/dv <0, at least
Il. GENERAL RESULTS for dark solitong28,29. Travelling-wave solutions will not
be thoroughly investigated in the present analysis, except
along the following general discussion.
We determine the conditions for the existence of both (i ) The vortex solutiongVS) [60,32 having the form
stationary and travelling-wave solutions of K, expressed H(F—ot) = x(F,0)e™ with azimuthal angles and model
in the canonical form index m. They possess a nonzero angular momentum
W(F ) =p(F—it\)eM, 2) L= /dF(Fx p) wherep is the Qens_it)_/ of the transverse mo-
mentum(7). For the sake of simplicity, we shall restrict the
with velocity ¢ and soliton parametex. Here, all functions ~analysis of such objects to two-dimensional structur@s (
¢ are assumed to be localized in space with-0 as =2) with no velocity ¢ =5). These states then obd§/

A. Existence conditions for localized discrete eigenmodes
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:6 and||:|:|m|0 They exhibit a ring shape, ie., they are ary- n"!OdeS. With thlS aim, we follow the baSi(‘: StepS of a
zero at center and reach a maximum at a nonzero transver¥ariational method, i.e., we use the functiordl, in which
coordinate, while they possess a constant orbital motioriVe insert an appropriate function. More precisely, we employ
Their radial profiley is governed by Eq(3), in which the -
t\/\éo_-dlfnlensmnal 2Lazplauan operator must be replaced by Sd:Ef [|V¢|2—§|¢|4+U(F)|¢|2 df
Ve=r"29,rd,—m-/r-.

To start with, we consider E@3) for any arbitrary num-
ber D and potentiall. On the one hand, we multiply it by +)\f |p|2dF—5 - |5¢, (12
¢* and integrate the result in the whole spatial domain to
find wherel5¢ means the transverse momentum for TWS. When

. - - b velocity v is zero, we plug into Eq(12) the trial function
—AN+v-P—f |Vl dr+<ff |9 dr—f Ulg[?dr=0.  p=Ad,(r/a) with test functions,, amplitudeA and width
(8) @ This transforms the above functional into

On the other hand, after multiplying E¢B) by F-V ¢*, se- S,= aAZaD—Z_ﬂA4aD+A2aDJ U(&)| o|2dE+\ 5AZaP,
lecting the real part of the result and integrating over space,
we obtain (13

Do . whereé=f7/a, and the integral coefficients read
D)\N—Tf |¢|4dr—f Ur-V|e¢|%dr

* * o= [ Vo0t =7 | 1oiaz, o= [ 16,
+(D—2)f |V ¢|2d7—(D—1)i-P=0. 9 (14

Combining the two relationé8) and (9) then yields For TWS, the argument in the trial function has to be ex-
tended to the generalized variable—<(ot)/a. For vortices

- - oD R (VS) with no velocity, the same step in the procedure applies.
U P—Zf |V |2dF+ 7[ || *dF+ f |¢|?F-VU dF=0.  The main changes occur within the shape of the test function
(10)  %a, Which will be commented on below. The second step
consists in performing the differentiations
Note that when we apply the above relations to vortex solu-

tions, we have to express the tersV|¢|? and |V ¢|? in
the integrands asd,|x|?> and |d,x|2+m?|x|?/r?, respec-

9S,19a=3S,19A=0. (15)

. ) Al . By doing so, we get the equations for the amplitude and

tlvgly. Equatlong(B) to (10 are quite instructive and lead us width of the steady-state modes, expressed as functions of

to I'Sf[ the following properties: . the soliton frequency. The constraint of a positive power
With U=0, ground state, travelling wave, and vortex so-y — sa2aP then yields some restrictions on the rangenof

lutions can exist for attractive, focusing media%0). In o \yhich localized modes exist. This relation finally pro-
particular, GS and VS modes with no velocity make SeNsgijes the variation curvll =N, vs \, from which, by apply-

for. A>0 only. In the repl_JIsive, defocusing .caser<(0), ing the stability criteriordN/d\ >0, we access the stability
neither of these modes exist, even for negalitse regions of the nonlinear modes.

With U=#0, the prgvious constraints can be relieved 0 | et us now discuss the choice of a suitable candidate for
some extent, depending on the spatial shape of the potenuqhe test functiong, . For single-humped solitong), can be

Because we mainly focus on parabolic mhozmggeneltles, W€hosen among current functions. GS modes may indeed be
sha_ll comment on potentials of the forah=Qgr _/4, where 1 odeled by Gaussian shapesi,=exp(—&/2), which
Q, is related to the trap frequen¢$,22,24. In this context,  present several advantages. First, they are technically conve-
the important result follows: For a defocusing medium (' pient to track with and related integral coefficients are, e.g.,
<0), both ground states and vortices can exist whenever i, op: 4= 5= 7 while B=oml4. In 3D, we haven=35/2,
B=c6%2(2m)%? where 6= %2 Second, up to a relative
Q%f r2|¢|2dr>|g|DJ | p|*dF. (11)  margin less than 10%, their power integhaf®**=41 is
close to the minimum threshold for collapse with= +1,
Ne=11.7[55]. Third, in the special case of a parabolic po-
tential U~r?, soliton modes exhibit Gaussian tails, i.e.,
Gaussians are exact solutions of E8). in the limit c—0,
whatever the sign ofr may be. Gaussians thus appear to be
suitable candidates, when the contribution from the potential
We now elaborate on a variational principle, inspired byin the GS mode is expected to dominate over the nonlinear-
Anderson, Bonnedal, and Lis@§&4], in order to approximate ity, as emphasized by E¢L1). Alternatively, we may choose
the characteristic shape, length and amplitude of the statiorthe ground-state solutions of the untrapped NLS equation,

This inequality means that these nonlinear modes exist if th
confining trap dominates over the nonlinearity.

B. The variational procedure
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given by Eq.(3) whenU=0. ForA>0, it has the symmetry A. Collapsing wave packets in nonlinear parabolic media

B(r,\) =\ (VA1) that reduces to the unity. Takingsg As is already known from optical and BEC literatyifie2—

as test function leads to the integral coefficients & 14,20—22,24 a wave functiony obeying Eq.(1) with po-

=N, B=oN. for D=2, and 6=N;=18.9, «=3N¢, B tentialU(r)=02%%4 ando=+1 is condemned to collapse

=20N, for D=3 (see, e.g., Refd56,57). We recall that i, finite time when, e.g., its initial datum makes the Hamil-

the free NLS ground-state mode can be approximated in turgynianH negative. This imposes that the integhamust be

by sech test function$54,58. As special attention will  gph5ye the threshold valug,. For N<N,, the wave func-

be paid on parabolic inhomogeneities, the functiosgl jon y either oscillates with period@, [4,13] or it can attain

will depend on potential integrals agU(é)|¢a’dé  a stationary state, which is orbitally stabledi/dx >0 [24].

= (Q%/4)a2y, where Let us briefly perform a time-dependent variational approach
depicting these main dynamical aspects. For this purpose, we
derive from Eq{(1) the identity for the mean-square radius of

y= f &% ol 2dE (16) ¥ (see, e.g,, Ref9]),
%dffr2|¢|2dfzzf |§w|2df—?f |¢,|4dr+f U(f)

X[D+F-V]|y|%dF, (18)

takes the valuer (37%%2) for 2D (3D) Gaussians or
87X 0.55(20.312 for the 2D(3D) free GS test functiop,.
Furthermore, we shall apply our variational procedure to
the identification of single vortex solutions. Their radial pro-
files are characterized by a minimum at cerjté{0)=0],
whereas they exhibit one maximum at a finite radiusook-
ing for the asymptotics of solutiong in the form ¢
=x(r)e'™? in Eq. (3) with a parabolic ?otential, we observe (F,
that the radial componentbehaves as ™ nearr=0 and as
the Gaussiae %"/ at large distances. We shall, therefore, . ) R -
select the class of trial functions=Anxa m(r/am) with with  7(t)=fodu/L(u) and S(Ft)=Ar—Lr/4L (dot
’ meansd/dt). SelectingU as parabolic and taking as ex-
actly self-similar, i.e.,p=Ad¢(f/L), we find that the time-

g o ;
Xam(€)= B pn e €2 ¢=rla,, 17) gspendent scale length(t) of the wave packet is governed
m

which is valid for a real-valued potenti&l. We then intro-
duce the self-similarlike substitution

LD ory

ECE 19

1 .. D
whereA,,, B,, anda,, are positive Lagrange parameters for —L3L— eL4=E( 1- 5 p ) (20
Y

5 D=2
fixed azimuthal indexm. 4 al

where the integral coefficients, B, y follow the same nota-

lll. PARABOLIC INHOMOGENEITIES tions as in Eqs(14) and(16), after changingp, anda by E

. . , . . . andL(t), respectively. From Eq20), it is readily seen that
Parabolic density profiles are widespread in physics. The}éollap(sc)a occSrs wher{ev@r,8>2c(£LD)*2 which rT)(ust be sat-
can indeed be found in the field of nonlinear excitations W'thisfied, in particular, by the initial length ,=L(t=0) for

impurities [4], when an "exponential trapping\J(r)= beams with no initial contraction rate|;_,=0). Let us

_ 202 - 2.2 .
€ exp(=r/ry), reduces tdJ(r)=e(r"/rg—1) for a radius then focus our attention on the 2D ca8es=2. In this con-

of the ‘”.‘p.“”ty COréfo, F“”Ch larger than_ the soliton width. figuration, Eq.(20) is exactly solvable. After defining the
Parabolic inhomogeneities are also met in plasma phj3ics ratio N over critical by8/a=N/N,, a simple integration of

and in nonlinear opticg2], when the plasma density profile . :

or a graded-index optical medium varies parabolically anngEq' (20 yields the solutiorj4]

one privileged direction. In BEC physics, a spatially qua- AA 172

dratic potential is naturally prov_ided_by th(_a co_nfining trap in L(t)={u2(t)+ —sz(t)} , (21)
dilute atom gasef20]. Keeping in mind this wide range of W

applicability, we first examine the action of a parabolic po- ) _ )
tential, U(r)=Q§r2/4, with trap frequency),y, from both where (,v) is a fundamental set of solutions to the equation
the dynamic and stationary viewpoints. The centroid of thel + Q3L =0; W denotes the Wronskia/= v —uv, and

beam,R(t)=N"1fF|4|?dF, is known to vary a§+93§ AT(‘_V/?’)El_'j/yc]- :§|(3t0tl(;lg _Inltle:Ih dati-xlti Ii1‘<139|2n/|‘t1|a|
=0 [4]. In what follows, we shall consider a beam with zero&eeof(i::g’ li-0=0, and introducing the ratid;=Lo(/4,
initial velocity and initially fixed at center, which leads us to

set R(t)=0. Centroid motions and their influence on the L A
nonlinear beam dynamics and soliton relaxation can be L(t)=—0[(1——
found studied in, e.g., Reff4,10,11. V2 Ac

1/2

cog2Qot)+1+—| . (22
A
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This relation provides the characteristic dynamics. When Qg
A>A., which impliesN<N., the solution periodically os- a
cillates with period 2, and starts by increasing with

>0. WhenA=A., L(t) is frozen on a stationary fixed point respectively. Simple combinations of these equations then
that again satisfiesl<N.. WhenA<A., eitherA is posi- enable us to determine
tive, in which case oscillations still develop by decreasing

(D+2)ya*—D(BA2—\d)a’+(D—2)a=0, (25

from Lo with L<O0, or A is negative, in which case collapse Al :[2>\5+4a/az vz [2x 5+02%a%y|¥? 06
occurs withL(t)—0 in finite time. This latter singular evo- B(4+D) B(4—D) '

lution requiresN>N.. The collapse time is given by,

=, arctan(/—A./A) and it is always smaller than its 2\/(DX6)2+ Q2 ya(D+4)(4—D)—2Dr 5|
counterpart forQ,=0. These results recover those previ- a(n)= (D+4)Q2y

ously established by Karlsson and co-worKdr3], who used 0 (27)

a similar variational(averaged-Lagrangiamethod applied

to a Gaussian test function. Here, we have extended theBoth soliton amplitude and width are explicit functions)of
results to any test function that may be Gaussian, sech, ®ote in this respect that Eq&24) and (25) provide Ax\/?
even given by the G®, of the free NLS equation. In Ref. anda scales likex 2 in the limit of no potential),—O0,

[4] it was observed in the diffractive/oscillation regime thatwhich reflects the variations of the soliton widtl=a with

the choice of a sech test-function, known as the best fit forespect ton for the free NLS equation. With a parabolic
the free NLS ground state, yielded variational results thapotential, these elementary variations become more tricky.
were in excellent agreement with direct numerical computaThe HamiltonianH and integralN both computed on the
tions. Choosingp as the free ground staig,, which lines  soliton mode indeed express as

up the critical power for collapse onto its minimal value

- - i A%(M)aP(\)
N.=11.76, should improve this agreement to some extent. Ho(\) = ya— [(D—2))\5+Q(2,a2y], (29)
B. Stability of GS modes 5aD()\) 5 v
The previous analysis emphasizes the possibility of form-  Ns(\) =A%(A)a’(\) 6= 2-D (27‘ B +anzﬁ) ’

ing a stationary state from initial sizes of wave packets fixed (29)
at Lo=2/Q0[ (a/y)(1—N/N.) Y4 This result shows that
for appropriate integraN and beam siz&,, a soliton can where the index &” henceforth means that integrals are cal-
form, which, however, does not resolve the question of itsculated on the stationary solition. Fat>0, the positiveness
stability. For solving this point, it is necessary to apply theof Ng imposes a lower bound in the rangeXgfi.e., soliton
criterion dN/d\ >0 [6] and, thus, to access the variation of modes exist, provided that does not decrease below a cut-
N versus\. The first question is to identify the link between off value, \*, given byA2(A*)=0, namely,
the soliton sizely and the soliton parametar;, and then to
infer the curveN(\) with N computed on the GS mode. In NS %\/a—
the framework of the free NLS equation, this point is easily - ) v
cleared up, as a soliton state corresponds to a static trial
function with sizel , being equal to the inverse of the squareIn the opposite limit\ — +c and forD=2, a? behaves as
root of A >0, which also follows from the dilation invariance the vanishing ratiax/’A 6 and Ng reaches the limiva/g. For
d— \/X(ZSO(\/Xr) Nonetheless, this equivalence does not apo= +1 and Gaussian test functions, we thus find
ply to a parabolic potential. To identify the variations of the = — Qg andNg(\) tends toNS?S= 4 at largeh. With test
soliton width with respect ta in that case, we use the static function given by the GS of the free NLS equatiafy, we
variational method expounded in Sec. Il. Regarding GSind \*=—1.0869), and Ng(\) tends to the minimum
modes for the potentiall(r)=0Q2r?/4, we employ single- bound for collapseN.=11.7 as\ — +. For D=3, a? still
humped trial functionsp=Ad¢,(r/a), so that the functional vanishes asa/3\6), while asymptoticallyNg(\) attains the
S, [Eq. (13)] explicitly reads limit value (2/8)(a/3)¥?\/5/\. For Gaussian test functions,
A* =—30,/2 andNg(\)—47%% /X at large\. For GS test
functions ¢y, \* =—1.798), and Ng(A\)—N./\, where
N.=18.9 in 3D. These asymptotics indicate that the soliton
(23)  size decreases at growing until the effect of the potential
becomes negligible fox>1 and the GS mode recovers the
The variational equationd5) of S, for the amplitudeA and ~ characteristics of an untrapped NLS soliton. In this limit,
sizea yield dNg/d\ becomes zero foD=2 and negative folD=3,
which leads to soliton instability. For other permitted values
of \, the integralNg(\) is a monotonically increasing func-
tion of N for D=2. For D=3, it increases from* to a
maximum valueN™ attained at—0.7<\,=—0.5, then

(30

QZ
Sa= aAZal 2 - BAtal+ 7 yAZaD T2+ ) 5A%R.

QZ
Toya“—(Z,BAZ—)\&)aZJra:O, (24)
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FIG. 1. Soliton masdNg vs A determined from direct integra-
tions of Eq.(3) with a parabolic potentialsolid curve$ and com-
puted from the variational equations involving Gaussidash-
dotted line$ and the free NLS GS modglashed linesas selected
test functions(a) D=2; (b) D=3. The left-hand side of the curves
refers to a defocusing mediunr €& —1A<\*) and their right-
hand side to a focusing mediunor€ +1A>\%).

decreases to zero at largkis. Consequently, all the GS
modes are stable fare ]\*, + o[ with Ng<N; in 2D. They
are stable only foh belonging to the intervalN* ,\ 5,/ and
Ng<N{¥<N, in 3D.

Figures 1a) and Xb) show direct comparisons between
the numerically computed soliton modes of Ed) (solid
curves and Eq.(29) computed with Eqs(26) and (27) for
test functions taken as Gaussi@ash-dotted lingsand as
the free NLS modeg, (dashed lines Those are reproduced
for p=2 in the dimensional cased8=2 [Fig. 1(a)] and

PHYSICAL REVIEW E 65 026611

\*. This partly justifies why Gaussians are trustworthy can-
didates in the variational approach.

For a defocusing mediumo(=—1), A?>(A\)>0 makes
sense for the inequality opposite to E¢B0), N<\*
=—(Qq/8)Jay. Soliton modes for a defocusing medium
thus exist in the range of, which is complementary to that
for a focusing medium. This result basically agrees with the
numerical identifications of solitary modes in Fig. 1. In the
opposite limit\ — — o, for which localized GS modes exist
with 0<0, the same expressiofi26) and (27) formally ap-
ply andNg(\) is found to diverge as (8/903y)|\|%/|B| in
the 2D case and d&|®/2*%/| 8| in general. It is worth notic-
ing that in this region ground-state test functighgbecome
poor candidates for approachifdy(\). In contrast, Gauss-

ians ~Ae " fit better the domain of large-amplitude
ground states. Approximating the nonlinear term efficient at
smallr with o|¢|?=0oA%(1—2yr?) in Eq. (3), it is readily
found that the only positive exponentreads for largeA
>\Qq/o] as y=Q35/8/c|A?, which corresponds to nega-
tive A\~ —|o]A%2<—Q,. So,\ decreases to larger negative
values as the soliton amplitude increases in the eas®.
Ignoring the diffraction term in this limit¢ may also be
given by ¢=[(A+U)/c]*? referred to as the Thomas-
Fermi approximation in the 1D cag@3]. Here, we geiNg
=220 7|\ |2 Y[ |o|D(D+2)Q5] at dimensions D=2,
which is close to the Gaussian limits plotted in Fig. 1 for

— —oo. Similar properties characterize 1D ground states of
the Gross-Pitaevskii equation, for which higher-order modes
were investigated by means of Hermite-Gauss polynomials
in Ref.[23].

IV. STEP POTENTIAL

We now apply the above procedure to other potentials
capable of stabilizing the collapse of wave functions with
integral N below critical. Because the coming examples
mainly apply to the field of nonlinear optics where the role of
timet is played by the propagation distarnz;eve will select
the space dimension numbBr=2. To start with, we study
the action of a step-potential on NLS ground states. This can
be viewed as a smoothed version of the circular step poten-
tial well for light-guiding media as, e.g., optical fibers that

D=3 [Fig. 1(b)]. We can observe the good agreement beirap the beam energy within a core of finite dimension. Fol-
tween the variational predictions and the numerics, whicHowing [10], we consider a medium with a step potential in
emphasizes in particular that 3D soliton modes are stable upquare form,

to the point Ng'™=14.45)\,,=—0.72) in the (g,\)
plane. Slight discrepancies arise in the valuebl gf,, at the
location of the cut-off\*, and in the asymptoticd\g

—>N20=0=NC/)\(D*2)’2 at large\ for Gaussian test func-

U(r = (3D

—eH(R-T),

wheree>0 andR are the amplitude and core radius of the
trap. For soliton widths much less than the core raéiuthe

tions. Despite these differences, the variational procedure apyotential U reduces to the quadratic form e(r2/R2—1)
pears to be actually efficient for determining the variations i“through simple series expansion. The analogy with the pre-

the soliton size and amplitude with respect Xp and for
identifying the stability regions fixed by the criterion
dNg/d\ >0 within a reliable approximation. Note that, with

viously studied parabolic profile is thus obvious for narrow
wave packets. In this approximation, the domaim dér Eq.
(3) with potential(31) is shifted to the right compared with

NS< NC , Eq (3) has a I’elatively weak n0n|inearity. Gaussian the case of a parabo”c potentia|,)es$ep= Aparabolic"‘ €. When

functions in the form¢=Ae" 7% With constantsA, y thus
provide exact solutions of Eq3) in the limit c— 0, when-
ever y=Qy/4=—A\/2D, which yields the cut-off parameter

this limit is not satisfied, i.e., for a beam with typical waist of
the order ofR, the square form in Eq31) must fully be
employed. Inserting this into the function@ld) thus yields
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S,=aA?aP 22— BA*aP — eA?aPy(a) + N 5A%aP, (32)
a

where, for axis-symmetric beams,
R/a b_1 ) N
y@=2n | T g oPee @9 :

The variational equation€l5) are straightforward to estab-
lish,

—ey(a)a?—(2BA2—\d)a’+ a=0, (34)

—ea?[D+ad,]y(a)—D(BA2—\6)a’+(D—2)a=0,

(35) 6 T T T

| (b) wf

whered,y(a)=—2P 17RPa P~ 1 ¢,(R/a)|?. An elemen- o of /

tary combination provides the relations linking the soliton = 4r- N S
sizea and amplitudeA to the soliton parametex, namely, = L o o1 02
22aP ?2=DA%aPB+2° 17eRP| ¢ (R/A)|%.  (36) Z, B e e TN
For D=2, the expression for the soliton power follows: I | | 1
S % ' 10 ' 20 ' 30
NS\ = gla— emRe do(Ria)|7], (37 )

which can be compared with its equivalent form for a para- dFIRG' f-z(s)(;\‘st(") vs )(‘j f?r a square _poTe_nttiaI Witt_ﬁ)zz-ff Eé)

bolic potential:N.(\) = ( 8/ —QZ a4/4 see Eq(26)]. an = 1. etermine rom numerical Integrations O

In bOtFF)] ex I‘eSSi(s)(nS) th(e (fe)[gndenocyei(m)] i[nducegga )t]he (solid curve$ and from the variational model with Gaussian test

potential rFr)wdifies t,he varigtion il Versus\ Comp);red functions(dashed curvgs Note that for a defocusing medium GS
S

ith the f . - . h modes exist within a restricted range ®f valued around O(b)
with the free NLS equation €=0). Imposing now the |4(r=0,)|? versus time foir= + 1 and Gaussian initial conditions

Gaussian Shapd?a(x):eﬁZ/z: we obtain #(r,0)=1.5xe "2 with N#N.<N, (dashed curjeand y(r,0)
A - =4xe "2 with N>.N.c. (dash-qgtted curve in the ingeThe solid
Ng(\)= 7[1_ eR%e~R7a7], (39 curve refers to the initial conditioN=Ng for A =1.
Whereaz()\) is chosen among the roots of tial (31 forD=2,e=1,0==*1, andR=1.25(solid curves.
This is compared witiNg versusA resulting for the same
o R2a? 2R—2+1 1 7\_5+ a (39) parameters from a parametric numerical integration of Egs.
a’ me mea’ (38) and (39). The agreement can be seen to be actually

good, apart from the discrepan®yf®**=47>N.=11.7 at

For o>0, the positiveness dfl4(\) requires the constraint large \. Typically, for o=+1, the curvex=f(R/a) in-
a’(\) <R?/In(eR?) and, therefore, some bound in the rangecreases with the rati®/a from the valuex* =0.07 and the
of A\ for which GS modes exist. With Gaussian test functionsstab”ity region determined bygN./d\>0 is limited to X
the cutoff\* is defined fore~R7/a°=1/eR?, and it takes the <3, corresponding tdR/a<2, while d,Ns—0 for higher
value \* = e—R ™9 1+In(eR?)]. From Egs.(38) and (39),  \’s. Direct numerical integration of Eq1) with initial con-
we find that the ratidR/a increases fronR/a=1 with the  ditions close to such soliton modes shows thét,t) relaxes
parameteh. WhenevelR/a>1, Ng(\) tends to its untrapped to a robust shape and undergoes no collapse in that case.
counterpart é=0). In other words, when the radius of a Figure 2b) represents the numerically computed amplitude
square potential becomes very large in front of the solitorof ¢ atr =0, starting from Gaussians with input powers be-
width, there is no efficient effect stabilizing the collapse. Forlow and above critical, which do not belong to the curve for
this range,a®=a/(S\ — me) makes the soliton exist fox ground states. We observe that the resulting solution oscil-
> el 6 only and it behaves as the free NLS square width inlates (dashed curveor collapses at a finite distanc¢dash-
the limit A\— +o. For 0<0, Ny exists within the opposite dotted curve, whenever the power in the initial condition is
region 0<sA<\* andR/a<1. In this domain, Eq(39) in-  subcritical or supercritical, respectively. However, the solu-
dicates thatx cannot access the domain of large, negativeion integrated from a GS mode at, e.y5 1 (solid curve
values. WithR/a— 0, the solutions become infinitely broad, preserves its shape. Similarly to anterior results for a para-
which limits the existence of localized ground states. bolic trap[24], small perturbations around the ground state

Figure 2a) shows the variations dlg(\), which result do not increase in time, which confers orbital stability
from numerical integrations of E¢3) with the square poten- (d,N¢>0) to such soliton modes.
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V. HOLLOW CAPILLARY WAVEGUIDES basic model thus consists of the free NLS equatibrnwith
U=0, restrained to the bounded domair=0<R, i.e., ¢
satisfies y(r =R,t)=0, where the time variable has the
eaning of a propagation variable. In this prescription, the

We focus our attention on hollow capillary waveguides,
for which stabilization of collapse does not directly proceed

from the external action of a space-dependent potential, by ecomposition of the electric field in discrete, quasilinear

rather originates from the limitation of the wave diffraction odes is abandoned and the beam is expected to behave as a
by proper boundary conditions. For this purpose, let us firsf" X pect :
coherent, fully nonlinear monomode. From this model, it has

recall that theoretical investigations of light beams propagat- : . ;
ing in hollow fibers are currently based on coupled-mod numerically bee_n shown_ that 2D beam_s_ in a capillary col-
qapse when their power is above the minimum threshold for

oy 15, T ceralon of e souplecmode SN i focusing wi 1o Uaph - 117 (1. I was moreove
observed that, for initial data witNl below critical, the so-
.1 t ) 2N, o .. lution ¢ oscillates, instead of dispersing, as the wave does
VXVXE- —z&ff dt'n?(r,t—t')E(t")= — d?|E|?E, not diffract freely due to the boundedness of the capillary
¢ - ¢ that produces a mode confinement.Mapproachesl. from
(40 below, the period in the oscillations becomes larger and
. . larger. This dynamics thus resembles that induced by a para-
where n and n, are the linear and nonlinear components

. 2 = . Polic trap. Therefore, we suspect the possibility of forming
in the refractive index, respectively. In the absence 9%stable steady-state GS modes in capillaries, whose character-
Kerr nonlinearity, the solution of Eq(40) consists of a y P '

. o . , istics are detailed below.
linear superposition of eigenmodes, decomposed into a By applying our variational method, the functional

discrete set of leaky modes and a modal field. As leaky .
modes are expected to determine the field in and close troeads as that for the free NLS equatiGd]:

the bore, the electric fielE is usually represented in
terms of discrete leaky modes asE(r,¢,zt)

= (L2)2 V(1. @) Ajp(z, ) eir(O? ”iotJrC-C-v where the \yhere the integral coefficients,, 8., and8,, previously
integers) andp are the mode indice¥/;, refers to the trans-  defined by Eq(14), are now taken over the rescaled variable
verse mode profile andl;, denotes the longitudinal complex &=r/a with r lying in the bounded domain€r<R. These
envelope with central wave numbley,(0)=2w/\ and fre-  integrals thus depend explicitly on the ratR/a. In the
quencywg. For a capillary of radiu® such as\q/R<1,the  present scope, let us henceforth focus our attention on the
leaky-mode solutions of a hollow fiber can be approximately,aseD = 2. For a Gaussian test functio¢a=Ae‘r2’zaz, the
descritEed]by a complete set of transverse linearly polarizeg]tegrm coefficients in Eq.(41) express asa,=m[1
modeg[16]. In this basis, a group of modes indexed [bis TR2/a2 2 2 _ _9R%/a2

preferably excited. In cylindrical geometry, those are defined © (LFRYa%)], fa=(om/4)(1-e ), and 3,

- PO, o =w(1—e*R2’aZ). However, unbounded Gaussians alone
by Vip(r,¢)=3J;j(Ujpr/R)[sin( ¢).cos,f¢)] for r<R and may be poor candidates for modeling the ground states of the

Vjp=0 for r>R, whereX denotes the unit vector in the  pounded NLS equation, since they cannot satisfy = R)
direction, andJ; o > __is the Bessel function of ordgrwith  ~0 for broad condensates characterized by moderate ratios
Ujp-1.2,.. being thepth root of the equatiod;(u;,)=0. The  R/a. To overcome this problem, we first examine the simple
modeJ, is referred to as the fundamentéiifl,;)) mode with  ansatz¢(r)=A(\)(1-r?R?) with constant radius in the
u;=2.405. For solid-core fibers, the electric field of the pounded spatial domain<Or<R. Elementary calculations

mode is multiplied by the factor-e™ "' after a propaga- then yield S=wA%(2+\R2/3)— o wA*R2/10, from which
tion distanceL and damping of the laser intensity is mini- e easily deduce

mized for input beams shaped on the fundamental mode
Jo(2.405/R). In recent experiment§l7], Gaussian input 5.
beams focused on the entrance plane of a tube were observed Ng(\) = =—(2+\R?/3). (42
to convey up to 98% of the incident energy through the cap- 3o
illary over several tens of Rayleigh lengths, when the input
beamE(r)NefrZ/wg, having w,/R=0.6435, optimized the Equation (42) shows thatNg(\) increases Ilnearly with\
i . . * — 2

coupling with the fundamental mode. In these observationdTom the cutoff valuex™=—6/R". For a defocusing me-
the nonlinearity, however, played a minor role, as the Ker@dium (U<O)v2 Ns increases to large values ascovers the
effect was of little influence in the low-pressure gases fillingrange[ —6/R",—=[. For a focusing medium«>0), N
in the tube. Also, the above theory assumed a first-orde®|SO increases with to N¢, below which collapse cannot
expansion of the nonlinear terms in the higher modes, whiclCccur. '2I'h|s limits the range of validity of42) to N* <A\
enters a set of coupled equations governing each modéo-wR; ) . )
viewed as scalar. A first estimate emphasized a power for Keeping thesgz ozbservatlons in mind, we propose the an-
self-focusing in capillaries exceeding<d, [15]. satz ¢(r)=Ae "2 (1-r?/R?), that insuresp(r=R)=0.

When the Kerr effect becomes a key player at highLogically, this trial function should correctly describe the
enough input powers, it is, however, necessary to keep atlange of low\’s at small ratiosR/a, for which the Gaussian
wave components in the Kerr response. For a scalar field, @duces to the unity as above, and that of large positivat

S.=A%aP2a,— A%aPpB,+\A2aPs,, (41)

026611-9



TRISTRAM J. ALEXANDER AND LUC BERGE PHYSICAL REVIEW E 65 026611

high R/a, for which Gaussians can model narrow GS. Forsize less than the capillary radius, it is natural to consider the
this test function, simple calculations lead to the action inteaction  functional S= [{|V ¢|?— (a/2)| #|*+\| p|2}dFT,

gral whose integrals are taken over the whole spatial domain, and
) AR2 subtract the same integrals taken feKr<+o. In this
_ _m range, the NLS ground state asymptotically tends to the
Sa= Rajga F1(R/2) ~ o propmoFa(R/a) function
252 _Rpyr—12 _
+2m\ PRI, 43 Po(r)~Br"Texp(—r) (48)

, 2 a2 at large distances&1), where
where F1(X)=2+x"—2(1+x%)e ", Fy(X)=3(1—e™ )

—6x%2+6x*—4x5+2x8, and F3(x)=1—e"‘2—x2+x4/2. 7 V2 e 3., N
The variational equations fok anda then follow as B= E) PolrMo(rridri=3.52,
R4 A2aq2 R* . . . .
—F,(Rla)—o F,(R/a)+2\a?— F5(R/a)=0, and |l is the zeroth-order modified Bessel function. Since
a 4 a ¢o(r) does not satisfypy(r=R)=0 at finite R>1, it is
(44) moreover requested to weight it with, e.g., the step function
R4 R4 2.2 H(R-r). Thus, we insert the test functiong(r)
4—| Fy(Ria)— —4(1+e*R2’az) - F.(R/a) =A()\)g{?0[r/§1()\)]H(R—r) into S. In the gradient norm of
a a 2 the action integral, the integrand expresses |asp|?
R4 =[d,poH(R—1)— 8(R—r) p]?>, Where the second term
+2)\a2¥F5(R/a)=O, (45) mainly contributes to this integral at=R only, with ¢q(r

=R) close to zero ¢y/d,¢g|,—r<1). Approximating
|9, $|2= (9 o) *H(R—1) = S(R—T)H(R—1) 5, ¢, We de-
F1(R/a)+2\a’F4(R/a) 2R

rive S, in the form
. (46
F,(R/a) —oA*a?{N,— 7B*I'[0,4R/a]}

For R/a<1, Eq. (46) tends to the limit(42), i.e., for large +\A2a%{N.— 7B? exp(—2R/a)}, (49
radiusa, the soliton is close to that modeled by the function

A(1-r?/R?). Its localization only proceeds from the walls whereI'[0x] is the standard gamma function. Performing
of the capillary. In the opposite limitR/a>1, one hasNg  the functional variations ob, with respect toA anda then
=(2wlo)(1+\a?), wherea’—1—-8a*R* andNg in- leads to

creases to the self-focusing threshold for Gaussians, as ex-
pected. At small amplitude®\— 0, the cutoff parametex*
separating the existence domains for soliton modes in focus-
ing and defocusing media is given by

with F,(x) = (15/2)(1— e~ 2%) - 3x2(4+ e~ ) + 9x*— 4x°
+x8 and Fg(x)=6—4x2+x4—2(3+x%)e . From these
relations, we then obtain the variation Nf versush,

exp —2R/a)—-T'[0,2R/a]

a
SazAZ[ N+ WBZ{S( 1+ —

8w
No() = —F5(R/a)

a
1+ 3R exp —2R/a)—T'[0,2R/a]

N.+7B?%{ 3

—20A%a%(N.— wB*TI'[0,4R/a])
(R/a)? F,(R/a)
*

- 2N ~R2 _ _
AT = 2R2 Fx(R/a)’ (47) +Na‘[N.— 7B exp(—2R/a)]=0, (50)

Computing\* in the limit of small ratiosR/a restores\*
=—6/R?. 2Pushing R/a to 1 we moreover find\*
=—5.79R*. For ¢>0, the variations oR/a versus\ in-
deed show a monotonous increasenofclose toa=5R/a — mB%exp(~4R/a) +2I'0.4R/a]})
—8, as the ratioR/a is augmented fronR/a=1. So, the +2N\a[N,— mB?(1+R/a)exp —2R/a)]=0.
range of low\ concerns moderate values Bfa. For o
<0, GS modes with positivdNg exist wheneverR/a<1, (51
which corresponds to the domainXrdecreasing from* to
larger negative values.

To cure the discrepancy between the Gaussian threshold

27B? exp(— 2R/a)— oA%a%(2N,

L. 3R, 3a
‘a 4R

Therefore,

[N.— 7B2exp(—2R/a)]

N.=4m/o and the exact threshold for self-focusirg Ng(\) = (N.+ 7B%3(1
=11.7k in the range of large, positiva>0 (R/a>1, ° 20(N.—mB*T[0,4R/a]) ~ ¢ {
o=+1), we model the ground state for a capillary with the +al2R _oR/a)—TT0.2R/

free NLS ground state¢,, which satisfies the equation /2R)exp a)~To.R/a]}

— o+ V2¢ho+ ¢3=0. Since we look for solutiongs with +1a?[N.— wB? exp(—2R/a)]). (52)
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FIG. 3. (@ Ng vs A for a hollow capillary waveguide witfR=1.25. Numerical integration of E¢3) with U=0 is represented by the
solid curve; the dash-dotted and dashed curves represent the variational approximations using truncated Gaussians and free NLS GS,
respectively. The parametric regionsArfor which d,Ns>0 are restricted td <3, which leads tdR/a;;;=2.2. (b) Numerically identified
GS modes for differert =\* = —5.78R? are plotted by solid lines faR=1.25(\ = — 3, lower profile, A =0, upper profilg. They lie close
to the Bessel functiomJy(2.405/R) (dotted curvesat weak amplitudes only\(= —3,A~1.12) and depart from it at higher amplitudes
(A=0,A~2.8). For comparison, truncated Gaussian trial functions are plotted by the dashed line for thessdmey(r =0,)|? versus
time for o= +1 and initial conditions using truncated Gaussigits) ~Ae~"%2°(1—r2/R?) with N=5.17# N.<N, (A=3, a=0.5, dotted
curve, and withN=4N, (A=9.028,a=0.5, dash-dotted curve in the top inséthe solid curve refers to the initial conditidsi= N4 for
A=0.

Similarly to the previous Gaussian modeling,monotoni- lustrated by Fig. ®). In that case, the variational trial func-
cally increases from-2.5 to infinity asR/a grows from the tion employing the truncated Gaussian ansatz almost com-
value R/a=1.41. At largeR/a, it is found that the soliton pletely superimposes with the fundamental mode at low
size behaves lika *(\)=/\, as expected. near the cutofi\*. For higherNg (A=0), the solutiong,

We have superimposed the results obtained from thetill corresponding to stable waveguides, departs from the
Gaussian modeling and its asymptotic correction ugiggn ~ Bessel mode to reach the ground state of the unbounded NLS
Fig. 3(a) for the bore radiu®k=1.25. The analytical result equation J=0).
again exhibits a good agreement with the numerics that Figure 3c) shows the amplitude ofs centered ar =0
solves Eq.(3) with U=0 and ¢(r=R)=0. The cutoff pa- resulting from a direct numerical integration of Ea) with
rameter revealed numerically\*=—5.78R?, perfectly Gaussians having input powers below and above critical,
agrees with that evaluated from truncated GaussiansoFor Which do not belong to the curve plotted in FigaB As
= +1, the power in a stable self-guided mode must be beloveXpected, we observe that the resulting solution either oscil-
the critical self-focusing threshold, and numerical calcula-lates (dotted curve or collapses at a finite distan¢dash-
tions show thatl,Ns>0 is fully satisfied forx* <\<3. At  dotted curvg Note that, owing to the boundary conditions,
relatively weak nonlinearities\(<0), the ground state is radiation trapped in the waveguide bounces back and forth,
close to the linear fundamental modg(2.405/R). The which introduces a perturbative noise affecting the evolution
sloped, N is maximum, which may justify why the Bessel Of the peak intensity. In spite of this, the solution initially
mode is capable of promoting a quasiperfect monomod&ned up on a ground state 0) keeps a robust shapeolid
guiding over spectacular distances in hollow capillaries.CUfVQ-

Comparatively, the variational approach emphasizes that

Amax=3 bounds from above the range of stability of GS  VI. VORTEX STATES AND FLOWING OBSTACLES

modes, which yield&/a,,;,=2.2. This value restores the ra-
tio v2a/R=w,/R=0.6435, which was claimed to optimize
the coupling of optical Gaussian beams with the fundamental In focusing media with saturable nonlinearity, single vor-
mode. At moderaté\, the Bessel mode ensuring the besttex states are stable fad =0 against radial perturbations
entrance coupling with the capillary is attained, which is il- wheneverd, Ns>0, and unstable against azimuthal perturba-

A. Pure vortex states
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tions that break the cylindrical symmetf31]. Azimuthal oo g2\m\+1e—§2

perturbations are furthermore able to split higher-order vor- 5m(Bm)=27-rf = oz dé. (59
tices into 2m| daughter GS solitons in the same me{#a]. o (Bpt&)o"

With no saturation, it will thus be interesting to see if VS )
modes satisfying the stability criteriod,N.>0, valid for  '1€re, the Lagrange parametéts, By, anda,, are all posi-
radial perturbations, will still hold their shape in a parabolic iVé @nd the integral coefficients dependBg explicitly. S
trap, or if collapse will affect their ring structure at high for Gaussian-approximated GS solitons is refound when set-

enough powers. In the absence of trap, vortex modes witHNd M=Br»=0. The configuratiom=0 with By#0 corre-
m=1 were indeed observed to be unstable, i.e., to diffract opPONdS t0 the radially symmetric ring-shaped mode already
collapse, when the power in the initial condition for Ed) gtud|ed in Ref[22], which we do not consider here. Deriva-
was below or above that of the mode, respecti&9]. In tives of Eq.(55) yvlth respect toA,, anda,, formally lead to
defocusing media like BECs with repulsive interactions,the Same equations as E¢26) and(27),

there is no collapse dynamics. 2D vortices wjith =1 are 1

expected to be stable, whereas multi-charged ones are gen- AZ(N)= [ 2\ S+ Q282 ym], (60)
erally unstable and break up intevortices with unit charge 2Bm

[40,41). In what follows, we comment on the changes in the

radial stability properties between vortices and GS modes for )

a parabolic potentiaU(r)=Q(2)r2/4. ForD=2, we consider am(A
the functional

S oo G o [+ T_he third varigt_ional equatiomS,/6B,,=0, yields in prin-
f |9, x|2r dr+m2f f [x|%r dr ciple the explicit dependence of the vortex parameters over
the couple §,m). Among the coefficient$56)—(59), with
02 (4 . |m|=1 andB,,>0, the integrands with higher exponent lead

+ _Of f3|X|2dr+?\f |x|?r dr. (53 to smaller integrals than their counterparts for=B,,=0.

4 Jo 0 Therefore, the value g8, is smaller than that for the GS
modes, and much smaller than the new value§,pandy,, .

From the asymptotic arguments displayed in Sec. Il we emThus, for a focusing mediumo(>0), Aﬁ]()\) increases in
ploy the ring-shaped test functiop=Amxam(r/am) With  absolute value. In addition, assuming that the integralis
Xam(§=Tr/ay) defined by Eq(17). Such solutions have the mainly given by the contributions at smah<1 in the inte-

VA282+ 3amymQi—\ 6

(61)
gﬂg')’m

p— - r__
2 0

0 r 2

power integral for thenth mode, grand, we deduce that the ratig,/y,, should be larger than
aly=1 for m=B,,=0, while &,/ y,, will remain nearby the
, o [+ g2lmlg—¢ unity. On the whole, the curvllg(\,m) = 8(Bm)A2a2, for
Nm= 27TamAme (B 5am £d¢. (54 vortices should liboveits counterpart for GS modes when-

ever 0>0. Moreover, as the changes i, and §,, are
similar, the cutoff valuex* =—QqJan,vm/ o, should lie
at a smaller (more negative value, i.e., Njoex<\Gs-
For a defocusing medium o(<0), since Ng(A,m)

Inserting this test function into Eq53) yields the trans-
formed functional

02 — (4621902 y) N2 Bl With 8,,< S—o at large negative
Sa=AZam(Bm) —a2An Bm(Bm) + Jaan%ym(Bm) \, the vortex masslg(\,m) should finally remain below that
4 for a GS mode.
+a2AZ\ 6, (B,) (55) Because the coefficientb6)—(59) depend on cumber-
m’'m m m/»

some transcendental functions, we determine an appropriate

arameteB,, by using relation$8) and(9) in the combined
with integral coefficients p m DY USING 18) and(9)

form
= gMile €1 BIm? 2B, |m| f 2= [ dxl? )
Bm) =2 f {NxI2=19,x|2= (m?Ir?)| x|+ (3Q5/4)r?| x|} rdr =0.
am( m) o 0 (Bm+ §)2|m| §Z(Bm+ 5)2 (Bm+ ‘f) 0 r 0
m2 (62
+&+ ez dé¢, (56)  After inserting the vortex ansatz, we minimize numerically

this relation by searching for the value Bf, at, e.g.,|m|
=1, which makes the sma\ll;st left-hand sidedS) in ex-

-~ ression(62) for givena~ 1/y\ =1. Under such conditions,
’Bm(Bm)_Tmfo (Bpt &)4m dé, 7) 'E)his LHS decreagses to zero for increasing integer values of
B, but it stays real-valued fd8,,= 1 only. This makes the
LHS of Eqg. (62) much smaller than unity. For this value of
B,,, We geta,(1)=1.824, 3;(1)=0.0227, y,(1)=0.984,
andé;(1)=0.66. For higheB,,’s these coefficients decrease

o §4|m|+1e—2§2

oo §2|m|+3e7§2
Ym(Bm):ZTffO (Bm—+§)2ﬁrd§’ (58)
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FIG. 4. (a) Ng(\) vs \ for vortex states of Eq.3) with a para-
bolic trap,|m|=1,D=2, in both cases= + 1 ando = — 1. Results
from numerical integrations of E3) are represented by the solid
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FIG. 5. 3D plots ofl (x,y,t)|? at different snapshots in time for
(@ an initial (t=0) noncollapsing singly charged VS mod& (
=—3) with 5% azimuthal perturbatior{b) the same vortex at
=20, (c¢) the break-up pattern and collapse of a high-power VS
mode fn=1\=4) att=4, being perturbed by the local numerical
noise only, andd) one-peaked collapse of the previous mode ini-
tially undergoing a 5% azimuthal perturbation, shown=a0.4.

<N.=11.7 \=—3) and another one with much highi

curves; variational results are plotted as dashed lines. The daskA =4). With powers below the usual threshold for collapse,
dotted curve recalls the same variations for the 2D NLS ground/ortex modes cannot blow up. This follows from the key

state, computed numericallyp) Radial profile y(r) of a vortex
solution withm=+1, computed for\=+1 from the variational
method [dashed curveA;(1)=9.387 39, ai(l): 0.6818, B4(1)
=1] and from direct numerical integration of E@) (solid curve.

as, e.g0.,v1(By), 81(By)~7vy1(1)/B,,, 61(1)/B,,. Figure
4(a) shows a plot ofNg(A,m) versus\ obtained from nu-
merical integrations of Eq.3) by standard numerical shoot-
ing techniques forgp= y(r)e'™? satisfying m=+1, x(0)

estimateH=(1—N/N,) [ |V ¢|dF, according to which col-
lapse producing a blow up in the gradient norm can only
occur for powers above criticdb5], which still applies to
vortices. Figure &) shows a subcriticalN;<N.) VS mode

with 5% azimuthal perturbation at=0, i.e., ¥(x,y,0)

= x(r)e™’[ 1+ 0.05 cosqé+0.4)] with, for the present case,
m=q=1. This initial state does not blow up at later times.
Instead, it keeps a robust radial shape and just undergoes a
rotation of f=— 77/2 att=20 [Fig. 5b)]. In contrast, a VS

=0 and x,(0)=0. This figure compares direct numerical mode having a supercritical powé&i,>N. at A\ =4) either

results withN;(\) obtained from Eqs(60) and (61) when

decays into m| collapsing spikes due to instability only

usingB; = 1. Both focusing and defocusing nonlinearities for induced by the numerical noi$€ig. 5(c) att=4], or it rap-
ring-shaped states at the oraer= + 1 are shown. The agree- idly collapses as a whole when it undergoes the former per-
ment between the numerical and analytical results is goodurbation [Fig. 5(d) at t=0.4]. These results indicate that
up to the usual discrepancy fas>1. It can be noticed that vortices keep a stable radial shape, as long as the condition
the variation ofNg(\) is quite close to that for the radially for no collapseN;<N,, holds. Otherwise, they collapse and

symmetric states of Eq3) with m=0 numerically revealed

the stability criteriond, Ng>0 is no longer sufficient for in-

in Ref.[22]. At large\>10, for which the solution no longer suring stable vortices. The lack of orbital stability of single

feels the trap influence, the vortex power excebds-47,

vortices caused by azimuthal perturbations has been shown

which agrees with the numerical evaluation of the criticalin Ref.[31] for saturating nonlinearities. In this respect, we

power for the collapse of vorticets=48.7, measured by

Kruglov et al. in Ref.[60] in the absence of trap. Fig(l)
shows the numerically computédolid line) and the varia-
tionally approacheddashed ling radial profile x(r) of the

recall that the stability proof basically requires stationary
modes having no node in their spatial distribution for assur-
ing the absence of growth in the perturbatigsse, e.g., Ref.
[24] for GS modes of the GP equatiorior vortices having

vortex with |[m|=1, corresponding to the soliton parameterone node, this constraint is not satisfied, and the discrete

A= +1 for a focusing mediumd= +1).

spectrum of the NLS operators governing the perturbations

lllustrating the stability of VS structures with a focusing generally contains unstable modes.

nonlinearity (= +1), Figure 5 displays 3D plots of vortex

For similar reasons, the stability criteriah Ng>0 be-

intensities at different times, with perturbed initial conditions comes in principle invalid for multichargethigher order

fitting at leading order a noncollapsing VS mode with

vortices with|m|> 1. To check this point, we have performed
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t=75 t=100

t =25

t =150

A=-55
Nn;;z_o n FIG. 6. Instability patterns of multiple
charged vortices undergoing 5% azimuthal per-
t=205 t=30 turbations: (x,y,0)= x(r)e"™’[ 1+ 0.05 cos(®
A=-10 +0.4)]. Top row: decay of a twofold VS mode
m=5 with Ng<N, into two singly charged vortices.
Ng = 44.8 Middle row: breakup of a fivefold vortex with
Ns>N, into four rotating spikes. Bottom row:
t=7 t=8 splitting of a supercritical twofold vortex into two
A=-3 collapsing spikes.
m=2 .

numerical runs, always concerned with a focusing mediurmand localized vortices of a dilute atom condensate trapped in
(o=+1), in whichm-fold quantized vortices witm>1 are  a harmonic well and passing through an obj&sse, e.g.,
initially perturbed by the 5%-amplitude oscillations defined Ref. [48]). For example, the object can arise from a light-
above. As shown in the top row of Fig. 6, a multichargedinduced Gaussian potential barrier, moving with velogity

vortex withm=2 and particle numbe; below the critical  along one axis, and the BEC wave function obeys the 2D
threshold for collapse decays into two singly charged vortiyy| s Eq. (1) with V2= g2+ (95 and

ces orbiting around each other under modulations wjth

=6. This property of unstable high-order vortices for attrac- Qg

tive interactions corroborates some previous theoretical ex- U(X,y)= T(x2+y2)+cexp[—bxz—b(y—v_t)z],
pectationg41] summarized in Sec. |. Our simulation, how-

ever, allows us to specify the instability dynamics. First,

when no collapse occursN(<<N.), a high-order vortex ) _
seems “robust” to some extent, in the sense that high-ordeWith {o=1 and constants, b>0. For repulsive conden-
modulations of the vortex ring produce a limited number ofSateso is taken as negativer= —8mA|a,| where\'is the
elementary singly charged vortices that develop rathephysical number of atoms in BECs anah| the scattering
slowly in time. This was confirmed by numerical runs per-length. Two kinds of stationary/travelling-wave modes are
formed withm=5, for which no instability occurred before then interesting to study, namelgi) The GS solutions that
large times t<100 (not shown here Second, with serve as initial data @=0 for an object initially centered at
N¢s>N., we observe a rich variety of dynamics, whose pat-origin (0,0 in the plane(x, y). (ii) The vortex solutions pos-
terns depend on the initial conditions and all conclude to th&essing an orbital angular momentum and azimuthal atgle
instability of high-order vortices. Briefly speaking, a super-These vortices are created once the object moves along the
critical condensate is capable of either decaying into severalxis and produces a local disturbance, which propagates
“stable” elementary spikes rotating around the trap, eachhrough the BEC fluid at timeis>0. Reversely, as recalled in
having a particle number belol,, or of breaking up into  sec. I, the flow around the object creates a drag force beyond
collapsing spikes otherwise. The middle and bottom rows of, threshold velocity, which is linked to the emission of vor-
F|g 6 i||_ustl’ate the fateS Of VOI’ticeS fOI’ Wh|Ch the VS modetices generated at Opposite sides of the Object in order to
has an integraN either below or abové\. times the num-  gissipate and reduce the high local flow sp¢sd]. In the

ber of final spikes. In collapse regimes, the dynamics appeaisresent scope, we only attempt to model the initial stationary
t_o be strongly sensitive _to the_number of_ azimuthal modulastate(i). To determine its shape, we may equivalently employ
tions along the vortex ring. Witlq=2 for instance, we ob-  the previous functiona$, or directly insert appropriate trial
served that then=5 vortex of Fig. 6 was rapidly broken up functions into the integral relationg8)—(10). At t=0 the

into two collapsing spikes. In the light of these observationsgpject has a zero velocity and the fluid adopts the shape of a
we summarize VS instability in focusing media with para- GS soliton with speed and momentum both equal to Zéro.

bolic trap as follows(i) Vortex stability is limited to particle thus reduces toJ(r) = 02r2/4+ce " which preserves the
numbersN,<N, for attractive interactions(ii) When this radial  symmetry, Fo? solutions ,in the forme(r)
constraint is satisfied, single vortex states are stable, but mU|:'A¢ (r/a), the set of Eqs(8) and (9) provides the ampli-
tiple charged vortices are unstable and they can decay imt%de gf the ,soliton given as

|m| single vortices(iii) When this constraint is not satisfied, '
high-order vortices split into several elementary spikes that
can collapse if their individual number of particles is above
critical. Some of these patterns could experimentally be veri-
fied in future works on attractive BECs.

(63

AS Q2
2 - _ Y52
A“(N) B+2I8ay

E _ ha2s2\a—balé? 24Z
+ﬁf<1 ba2e?)e | g ()2dE, (64

B. GSYvortex formation in dilute inhomogeneous BECs

Our formalism may help in approximating the elementary
solutions of more complicated issues as, e.g., the GS modaghile the soliton radius follows from the roots of
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3 L, 4 frequency parametex, and then to figure out the related
19073 ta‘oh—a variations of the soliton siza(\). By doing so, we were, in
particular, able to predict the regions iN{,\) for which
) 22 —balé? 21z such modes are stable following the standard criterion
+a cf (1-2ba¢%)e ™ [ $a(§)[7dE=0. (65  gNy/dN>0 for soliton stability

Basically, the key point consists in constructing a suitable
i . ) 1222 candidate for the test function entering the variational ap-
With a Gaussian modelingp,(r/a)=e , these rela-  proach. This can be done by matching the behaviogof

tions simplify into solution to Eq.(3), at smallr with that at larger. For para-
bolic inhomogeneities, ground states exhibit a spatial distri-
AZ(\)= 4 N4 05a? N c (66 buti(;n2 close to Gauss_ians, ngmah(r)=Ae‘7r2. For U
o 2 (1+a%b)?|’ =Qgr</4, such solutions with y=Qy/4 and N=\*

=—D(,/2 exactly solve Eq(3), wheneveir—0, i.e., in the
cases of weak nonlinearities and/or at large distances. These

3 a’c(1—ba?) - . .
C02a%+a\—1+ -0, 6 limits suit the behaviors dig vs \ for small powers, nearby
4770 (1+ba?)? €7 the cutoff parametek* separating the focusing case>0

from the defocusing one<0. Gaussians furthermore supply
and it is seen right away that the initial GS number of par-@ réasonably good approximation of these ground states for
ticles is large negative\'s wheno <0. They must, however, be aban-
doned to the benefit of the free NLS ground-states dor
024 . >0, in the limit of large positive\’s, for which A(\) in-
Ny(\)= 5A2a2=4—77 1- od n bca (68  Creases while the soliton size decreases and@gnainly
s 4 (1+ba®)?|’ reduces to the freel=0) NLS equation. The same obser-
vation holds for a step potential. Note that whatelder 0
may be, bounded or not, the potential always helps in form-
ing localized solutionp with similar properties. These prop-
erties straightforwardly emerge from the integral relations
(8), (9), and(10). For instance, in Eq9), it is clear that as
[N|— 4+, the integral term including) and the gradient
norm become negligible, so thatN~(aD/2)f|4|*dr.
Thus, the domain of large soliton parametersather con-
gemns high-amplitude ground states for which nonlinearities
are dominant. Conversely, for weak nonlinearitiegr| (
(fl), mixing Egs.(8) and(9) yields

For repulsive interactions between bosams; — 1, Ng(\) is
an increasing function of-\ in the rangeh <\* =—Q,.
Here, a?(\) increases with—X\, in such a way that a GS
mode with givenNg exists forc#0 at lower\ than in the
casec=0. This property agrees with Rd#8], where a GS
mode was found ah =—9.003 forc=0, while the same
parameter should be decreased te —9.208 forc=30 and
b=3. The new GS undergoing the trap augmented by th
Gaussian barriera# 0) feels a depletion of density in the
trap center due to the presence of the obstacle. At fixe
Ng(N\), this amounts to decreasing A simple parametric
plot eliminating a? between Eq(68) and Eq.(67) indeed .
shows that withc= 30, b= 3, the same number of particles —2)\N~(2—D)f U|¢|2dr*—f Ur-v]¢|*df. (69
Ng as the one without object is refound at a slightly lower
value of X approaching—10 from above, which is compat-
ible with the numerical results of Ref48]. For a parabolic potentiall)=Q3r?/4, ground states with
When the object begins to move, vortex formation is fa-weak nonlinearity will thus preferably be associated with
vored and vortices arise in the wake of the object flow. De-<0. For the step potentigB1), the same relation indicates
termining the resulting travelling vortices becomes difficult that weak nonlinearities should rather concern the range 0
to treat analytically. In the presence of a Gaussian obstacles ) <, if the inequalityRD|¢(R)|2<f§|¢|2rD‘1dr holds.

the fluid indeed decomposes into a vortex pair with opposite  Bound states in hollow capillaries can be treated through
vorticities. Interaction of vortex pairs should thus require theg similar analysis, as the boundary conditiggr =R)=0

definition of two separate test functions involving their mu- amounts to imposing walls at finite transverse radius in a
tual separation distance as an additional parameter, which {8err medium. This meets an analogy with the properties of

out of the scope of the present analysis. the former potentials. In this case again, the right qualitative
behaviors ofNg vs A are well restored by the variational
VIl. CONCLUSION method, provided that the test function includes a weight

function making¢ vanish at the finite boundany=R. Ap-

We have elaborated on a variational method capable gblying a priori the criteriond, Ns>0 for soliton stability, GS
approximating the stationary ground-state and vortex modesodes are stable in a focusing medium for small nonlineari-
of the NLS equation with an external, space-dependent paies, when they adopt a distribution close to the fundamental
tential. This method enabled us to estimate analytically th&essel modely(2.405/R). Our analysis shows, however,
variations in the power integral or number of particles,that this Bessel shape holds in the limit of weak Kerr effect.
Ng(N\), contained in an elementary mode with respect to thé=or more intense beams with powers below the self-focusing
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threshold, the stationary waveguides can still be stable, budplit into elementary vortices or break up into several spikes,
their profile should resemble more the ground state of thevhich can collapse if their individual particle number is
unbounded NLS equation. above critical.

To the best of our knowledge, evidence of the stability of In conclusion, the above-summarized variational proce-
stationary soliton modes in 2D capillaries, for powers belowdure has systematically been applied to various inhomogene-
the critical power for self-focusing, has not been presentedies and trap potentials, both for focusing and defocusing
before. We also investigated stability properties of singlymedia. It supplied reliable results compared with direct nu-
charged and multicharged vortices in focusing media with anerical integrations of Eq.3). We believe that this method
parabolic trap. As a result, we observed that vortex lines withmay successfully be applied to many other potentials belong-
unit charge [m|=1) keep a robust shape, as long as theiring to the fields of nonlinear optics and of BEC physics.
particle number remains below the threshold for collapse.
Otherwise, they may decay into lower-order structures that
eventually collapse in finite time. Multicharged vortices have
been numerically shown to be unstable with attractive inter- The authors thank R. Y. Chiao, J. Hickmann, and Yu. S.
actions. Depending on their initial number of particles, theyKivshar for fruitful discussions.
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