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Ground states and vortices of matter-wave condensates and optical guided waves
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We analyze the shape and stability of localized states in nonlinear cubic media with space-dependent
potentials modeling an inhomogeneity. By means of a static variational approach, we describe the ground states
and vortexlike stationary solutions, either in dilute atom gases or in optical cavities, with an emphasis on
parabolic-type potentials. First, we determine the existence conditions for soliton and vortex structures for both
focusing and defocusing nonlinearity. It is shown that, even for a defocusing medium, soliton modes can exist
with a confining potential. Second, step potentials and boundedness effects in hollow capillaries are investi-
gated, which both proceed from a similar analysis. Finally, we discuss applications of this procedure to charged
vortices in dilute quantum gases and to Bose-Einstein condensates trapped in the presence of a light-induced
Gaussian barrier.
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I. INTRODUCTION

Excitations described by the nonlinear Schro¨dinger~NLS!
equation and by the Gross-Pitaevskii~GP! equation have at-
tracted significant interest during recent years. Their beh
ior under the influence of spatial inhomogeneities is now
scope of intensive investigations. On the one hand, the N
equation including space-dependent potentials curre
models the slowly varying complex envelope of wav
evolving in a dispersive nonlinear medium with a dens
profile. It applies, for instance, to light beams trapped
waveguides with graded index@1,2#, to the optical Kerr self-
focusing in a parabolic medium@3#, and to molecular exci-
tations in the vicinity of impurities@4#. For an optical focus-
ing medium, it is expected that the beam can relax to a st
solitary-wave structure, usually called ‘‘soliton,’’ which i
the nodeless, ground-state solution of the NLS equation@5#.
These states are then stable if their power integral~L2 norm!
does not exceed the critical threshold for self-focusing, an
the variation of this integral versus the soliton paramete
positive @6–8#. Otherwise, they collapse at a finite distan
by diverging in amplitude@3,9–14#. Close to this property is
the behavior of light beams in hollow capillary waveguide
In this context, the potential does not follow from spat
variations in the density profile, but from appropriate boun
ary conditions. By imposing the beam envelope to be z
beyond the core radius of the capillary@15–18#, a robust
waveguide can form and propagate along several Rayl
lengths in the capillary. On the other hand, the GP equa
provides a model equation for describing the collective
namics of Bose-Einstein condensates~BEC! in ultracold
atomic gases@19–24#. This equation is nothing else but th
NLS equation supplemented by a quadratic-in-space po
tial related to the magnetic trap. When bosons undergo
tractive interactions—which induce a focusing nonlinear
in, e.g., Li atom gases—the macroscopic wave function
the condensate collapses, as the mean number of par
exceeds a critical value again@21#. Otherwise it may relax to
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a stable, stationary object described by the stationary mo
of the GP equation. In that case, a criterion of stability
BEC ground states is given by the derivative of the num
of bosonic particles with respect to their chemical potent
This derivative must be negative@22,24#.

On the basis of these results, we can already observe
the dynamics of nonlinear light beams propagating in a cu
medium with a density profile is close to that of BECs co
fined by a magnetic trap. From this resemblance, it was
cently proposed that a ‘‘photon fluid’’ could behave as
superfluid having a Bogoliubov-type dispersion relation, c
pable of forming stable two-dimensional~2D! condensates o
light in appropriate media@25#. Briefly speaking, photons
behave as bosons and they may condense in atom va
Superfluidity of photons could be brought to light by mea
of an incident plane wave traversing a nonlinear medi
inside a Fabry-Pe´rot cavity with a cylindrical obstacle@26#.
A strong single moding in a cylindrical Fabry-Pe´rot resona-
tor filled with atomic Rb vapor was already reported in R
@27#.

From the pioneering work@5# that displayed the existenc
of the so-called Townes modes, many works have been
voted to find, at least numerically, these elementary solit
like excitations and to test their stability. Townes modes, i
‘‘bright’’ localized solitons, are not the only candidates fo
supporting condensate distributions. For a defocusing
dium with no external potential, we already know that
localized solution exists and such media only promote de
calized travelling-wave solutions named dark solito
@28,29#. However, we shall here show that, in the presence
a confining potential, ‘‘bright’’ solitons also exist for a defo
cusing medium. Furthermore, localized vortex modes ca
ing an orbital angular momentum can arise as elemen
solutions to the 2D NLS equation. These structures do
possess the radial symmetry in general. They exhibit a ri
shaped field distribution with a rotating spiral character
lated to the azimuthal angle. In the absence of a trap, e
tence conditions for such objects have been establishe
©2002 The American Physical Society11-1



it
b

p
,

ay
tri
f.

al
tio
he
re
s.

l
p
-
co

rk
nt
e

ne
d

rm
en
on

ap

e
i-
-
p-

ci

y
te

re

ak
es
us
th

te
rs
v
ve
d

ole
po-
pic
ex
ve
rva-
the

ay
cal
ed

to
f

as
se-

that
by

ef.
ct

har-
y

es a
ve
ere
een
nal
es

ite
re-

de-
me
f a

he
arlier

-
w
n-
. To
s

n
re-
ed

er-
-
en

-

t

fy
as

uld
be

We
gth
this

TRISTRAM J. ALEXANDER AND LUC BERGÉ PHYSICAL REVIEW E 65 026611
Ref. @30# in the scope of nonlinear optics. In this context,
was numerically discovered and proven that, although sta
against radial perturbations, ringlike~vortexlike! modes in
saturable focusing media are unstable against azimuthal
turbations and they can decay into 2umu nodeless solitons
where m denotes the azimuthal index~‘‘charge’’! number
@31,32#. With a parabolic-type potential, similar modes m
exist. At lowest order, some of them are radially symme
(m50), which have numerically been identified in Re
@22#. Let us recall that these different structures can mutu
interact. For instance, experiments showing the attrac
and fusion of 3D bright spatial solitons resulting from t
modulational instability of an optical vortex have been
ported in Ref.@33# for saturable focusing rubidium vapor
Besides, the decay of vortices with high ‘‘charge’’ numberm
into an aligned array ofm vortices of unit charge that repe
each other has been experimentally realized in anisotro
photorefractive crystals@34#. In the same material, two ini
tially round Gaussian beams were moreover observed to
verge towards bound dipole solitary solutions@35#. Defocus-
ing media favoring the formation and the interaction of da
solitons have been extensively studied from the experime
point of view, which the interested reader can find review
in Ref. @36#.

Analogous structures can also be produced in confi
quantum gases. In Ref.@37#, the properties of the groun
stationary states of BECs were determined by means
variational arguments and the validity of the Thomas-Fe
approximation, neglecting the kinetic energy of the cond
sate for large particle numbers, was justified. In additi
vortex lines with closed path and phase undergoing 2p wind-
ing were expected to be triggered by rotation of the tr
with an angular momentum above a critical value@37#. For
repulsive interactions, excitations of vortex states have b
classified in Ref.@38# and their stability has been invest
gated in Refs.@39–42#, within and beyond the Thomas
Fermi approximation. Through minimization principles a
plied to the energy functional, it was shown@40,41# that at
zero temperature a quantum vortex with lowest possible
culation ~i.e., with charge number equal to unity! should be
stable, whereas higher-order vortices withumu.1 should un-
dergo instability. In particular, vortex with, e.g.,m52 can
split into two distinct vortices withumu51, symmetrically
dispatched. A rotating trap may, however, stabilize the s
tem @39#, and at finite temperature a singly charged vor
can only decay in the presence of dissipation@42#. Note that
vortex stability was mainly studied for condensates with
pulsive interactions, apart from a perturbative treatment@41#,
which predicts stability of the single vortex state with we
attractive interaction and instability of higher-order mod
Stability of quantum vortices with attractive interaction th
deserves numerical confirmation, which we address in
forthcoming analysis.

Quite recently, vortices have been experimentally crea
in 87Rb atom gases following two distinct methods. The fi
method@43# uses a combination of a laser and a microwa
field to print the desired velocity field onto the atomic wa
function, which generates a condensate rotating aroun
second, stationary one. The second method@44# superim-
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poses onto the magnetic potential a nonaxisymmetric, dip
potential created by a stirring laser beam. The combined
tential leads to a cigar-shaped harmonic trap with anisotro
transverse profile, which is rotated and allows for vort
nucleation. With the latter setup, up to four vortices ha
been produced at fast enough rotation frequencies. Obse
tion of scissors modes, excited by a sudden rotation of
anisotropic trap, has also been reported in similar media@45#.
Let us recall again that these different basic structures m
mutually interact and evolve into each other, as in opti
bulk materials. For instance, the interaction of a trapp
ground state and a vortex has numerically been shown
give rise to fringe patterns@46#. A phase slip in the fringes o
the interference pattern characterizes the vorticity, which w
proposed as a sure diagnostic for detecting vortices in Bo
Einstein condensates. Dislocation in the fringe pattern,
gives the signature of the presence of vortices nucleated
laser stirring, have been experimentally measured in R
@47#. Vortices can also emerge from the flow of an obje
through a dilute Bose-Einstein condensate trapped in a
monic well @48#. The BEC wave function is then modeled b
the 2D GP equation with a Gaussian barrier that describ
macroscopic ‘‘light-induced obstacle.’’ This model can ser
for proving the superfluid nature of the condensate, wh
strong dissipation arises when the relative velocity betw
the object and the fluid exceeds a critical value proportio
to the speed of sound. The superfluid flow then becom
unstable against the formation of vortex pairs with oppos
circulation, which signals the onset of a new, dissipative
gime. This property has been verified experimentally@49#,
when the macroscopic object was simulated by a blue
tuned laser beam repelling atoms from its focus. The sa
experimental setup also allowed for displaying evidence o
critical velocity for the onset of a drag force between t
laser beam and the condensate. These properties were e
numerically predicted in Ref.@50# for superfluids having a
defocusing~repulsive! nonlinearity and no trap. It is impor
tant to recall that Landau theory for a critical velocity belo
which a superfluid evolves without dissipation basically co
cerns microscopic objects, instead of macroscopic ones
prove superfluidity of BECs in this sense, impurity atom
were used in@51#. It was observed that collisions betwee
impurity and the stationary condensate were significantly
duced with impurity velocities below the condensate spe
of sound, in agreement with the Landau criterion for sup
fluidity. By comparison with nonlinear optical media, we fi
nally mention that quasi-1D dark solitons have also be
experimentally created in cigar-shaped BECs of87Rb by a
phase imprinting method@52#. Detailed comparison of ex
perimental data with theory and numerical simulations@53#
allowed for identifying dark solitons travelling with almos
constant velocity smaller than the speed of sound.

In view of the above results, the key point is to identi
which kind of steady-state/stationary structure can serve
an attractor providing a stable nonlinear mode, that co
sustain a long-living condensate. This issue cannot
cleared up through extensive numerical simulations only.
need a way to determine analytically the characteristic len
and amplitude of such steady-state modes. Therefore,
1-2
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paper is aimed at proposing a systematic procedure for fi
ing the approximate shapes of soliton and vortex solution
the NLS equation

i ] tc1¹2c1sucu2c2U~rW !c50, ~1!

wherec denotes either a macroscopic BEC wave funct
evolving in time~in which caset is a time variable!, or the
slowly varying envelope of a nonlinear light field propaga
ing in an inhomogeneous Kerr medium~in which caset re-
fers to a propagation variable!. The Laplacian¹2 expresses
in spherical geometry as¹25r 12D] r r

D21] r with space di-
mension numberD. In 2D (D52), we shall examine vortex
solutions for which¹25r 21] r r ] r1r 22]u

2, u being the azi-
muthal angle. In Eq.~1!, s is the nonlinearity coefficient tha
is positive ~negative! for attractive ~repulsive! interactions
between bosons or for a focusing~defocusing! optical me-
dium. U(rW) represents a space-dependent potential. For
sake of simplicity, we shall restrict our analysis to localiz
nonlinear modes decaying to zero at infinity and assume
the potentialU always preserves their initial centroid.

The paper is organized as follows: Sec. II provides so
general existence conditions for the localized stationary n
linear modes of Eq.~1!. It also expounds a static variation
approach, which describes the shape, amplitude, and ra
of discrete NLS modes. Emphasis is then given to a pa
bolic profile U(rW);r 2 in Sec. III. For this case, the tim
evolution of solutions revealed in, e.g., Ref.@13# are refound
and generalized for any test function. Their stationary v
sion then supplies the soliton modes,c(rW,t)5f(rW)eilt,
whose characteristic integrals vary with the parameterl.
These variations, estimated analytically, are shown to b
remarkable agreement with direct numerical computatio
For D52, Sec. IV presents similar results for a step poten
U(rW)52eH(R2r ), whereH is the usual Heaviside func
tion, e and 2R are the height and diameter of the potenti
respectively. In Sec. V, we propose an analogy with holl
capillary waveguides, whose spatial effects originate fr
appropriate boundary conditions, such asc(urWu>R)50. In
that case and for a step potential as well, we numeric
verify that the same criterion for soliton stability holds. Vo
texlike solutions carrying an angular orbital momentum
next studied in Sec. VI for both casess561, by means of
the same variational procedure. Their stability is numerica
tested and thoroughly discussed for attractive interactio
Finally, we apply our analytical method to the BEC grou
states interacting with an external Gaussian obstacle, as m
eled in Ref.@48#.

II. GENERAL RESULTS

A. Existence conditions for localized discrete eigenmodes

We determine the conditions for the existence of b
stationary and travelling-wave solutions of Eq.~1!, expressed
in the canonical form

c~rW,t !5f~rW2vW t,l!eilt, ~2!

with velocity vW and soliton parameterl. Here, all functions
f are assumed to be localized in space withf→0 as
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r→1` and all spatial derivatives off vanish at boundaries
In these conditions,f obeys the differential equation

2lf2 ivW •¹W f1¹2f1sufu2f2U~rW !f50. ~3!

For further convenience, we emphasize that the eigenmodf
realizes a critical point (dS50) for the general functional

S5H1lN2vW •PW , ~4!

where

N[E ucu2drW ~5!

is the power integral or number of particles for Eq.~1!;

H[E H u¹W cu22
s

2
ucu41U~rW !ucu2J drW ~6!

is the Hamiltonian which is conservative for real-valued p
tentialsU, and

PW [
i

2 E ~c¹W c* 2c* ¹W c!drW ~7!

is the linear transverse momentum~* means complex conju
gate!. Three particular modes can then be investigat
namely:

~i! The ground states~GS!, being positive, nodeless, rad
ally symmetric with maximum located atrW50W , and possess
ing no velocity. This leads us to setvW 50W and ¹2

5r 12D] r r
D21] r in Eq. ~3!. Such modes arise in the field o

nonlinear optics and Bose-Einstein condensations as wel
the most elementary solution serving as a ‘‘bright’’ solito
They constitute critical points for the variational proble
d(H1lN)50 resolved at fixed numberN5Ns[* ufu2drW.
For a focusing medium, GS are generally stable wheneve
the derivative dN/dl, with N5Ns , is positive, and when the
curvature of the potential U is positive around the solito
centroid @6#. They must also satisfy Ns,Nc to avoid col-
lapse.

~ii ! The travelling-wave solutions~TWS! being the analo-
gous of the previous modes, but they carry a nonzero ve
ity vW Þ0W and propagate inside the medium. They are char
terized by a nonzero transverse momentumPW and solve the
variational problemd(H2vW •PW )50. In 1D a stability crite-
rion for such structures may be given bydP/dv,0, at least
for dark solitons@28,29#. Travelling-wave solutions will not
be thoroughly investigated in the present analysis, exc
along the following general discussion.

~iii ! The vortex solutions~VS! @60,32# having the form
f(rW2vW t)5x(rW,vW )eimu with azimuthal angleu and model
index m. They possess a nonzero angular moment
LW [*drW(rW3pW ) wherepW is the density of the transverse mo
mentum~7!. For the sake of simplicity, we shall restrict th
analysis of such objects to two-dimensional structuresD

52) with no velocity (vW 50W ). These states then obeyPW
1-3
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50W and uLW u5umuu. They exhibit a ring shape, i.e., they a
zero at center and reach a maximum at a nonzero transv
coordinate, while they possess a constant orbital mot
Their radial profilex is governed by Eq.~3!, in which the
two-dimensional Laplacian operator must be replaced
¹25r 21] r r ] r2m2/r 2.

To start with, we consider Eq.~3! for any arbitrary num-
ber D and potentialU. On the one hand, we multiply it by
f* and integrate the result in the whole spatial domain
find

2lN1vW •PW 2E u¹W fu2drW1sE ufu4drW2E Uufu2drW50 .

~8!

On the other hand, after multiplying Eq.~3! by rW•¹W f* , se-
lecting the real part of the result and integrating over spa
we obtain

DlN2
Ds

2 E ufu4drW2E UrW•¹W ufu2drW

1~D22!E u¹W fu2drW2~D21!vW •PW 50. ~9!

Combining the two relations~8! and ~9! then yields

vW •PW 22E u¹W fu2drW1
sD

2 E ufu4drW1E ufu2rW•¹W U drW50 .

~10!

Note that when we apply the above relations to vortex so
tions, we have to express the termsrW•¹W ufu2 and u¹W fu2 in
the integrands asr ] r uxu2 and u] rxu21m2uxu2/r 2, respec-
tively. Equations~8! to ~10! are quite instructive and lead u
to list the following properties:

With U50, ground state, travelling wave, and vortex s
lutions can exist for attractive, focusing media (s.0). In
particular, GS and VS modes with no velocity make se
for l.0 only. In the repulsive, defocusing case (s,0),
neither of these modes exist, even for negativel’s.

With UÞ0, the previous constraints can be relieved
some extent, depending on the spatial shape of the pote
Because we mainly focus on parabolic inhomogeneities,
shall comment on potentials of the formU5V0

2r 2/4, where
V0 is related to the trap frequency@4,22,24#. In this context,
the important result follows: For a defocusing mediums
,0), both ground states and vortices can exist wheneve

V0
2E r 2ufu2drW.usuDE ufu4drW. ~11!

This inequality means that these nonlinear modes exist if
confining trap dominates over the nonlinearity.

B. The variational procedure

We now elaborate on a variational principle, inspired
Anderson, Bonnedal, and Lisak@54#, in order to approximate
the characteristic shape, length and amplitude of the stat
02661
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ary modes. With this aim, we follow the basic steps of
variational method, i.e., we use the functional~4!, in which
we insert an appropriate function. More precisely, we emp

Sf[E H u¹W fu22
s

2
ufu41U~rW !ufu2J drW

1lE ufu2drW2vW •PW f , ~12!

wherePW f means the transverse momentum for TWS. Wh
velocity v is zero, we plug into Eq.~12! the trial function
f5Afa(r /a) with test functionfa , amplitudeA and width
a. This transforms the above functional into

Sa5aA2aD222bA4aD1A2aDE U~jW !ufau2djW1ldA2aD,

~13!

wherejW[rW/a, and the integral coefficients read

a5E u¹jfau2djW , b5
s

2 E ufau4djW , d5E ufau2djW .

~14!

For TWS, the argument in the trial function has to be e
tended to the generalized variable (rW2vW t)/a. For vortices
~VS! with no velocity, the same step in the procedure appl
The main changes occur within the shape of the test func
fa , which will be commented on below. The second st
consists in performing the differentiations

]Sa /]a5]Sa /]A50. ~15!

By doing so, we get the equations for the amplitude a
width of the steady-state modes, expressed as function
the soliton frequencyl. The constraint of a positive powe
N5dA2aD then yields some restrictions on the range ofl,
for which localized modes exist. This relation finally pro
vides the variation curveN5Ns vs l, from which, by apply-
ing the stability criteriondN/dl.0, we access the stability
regions of the nonlinear modes.

Let us now discuss the choice of a suitable candidate
the test functionfa . For single-humped solitons,fa can be
chosen among current functions. GS modes may indeed
modeled by Gaussian shapes,fa5exp(2j2/2), which
present several advantages. First, they are technically co
nient to track with and related integral coefficients are, e
in 2D: a5d5p while b5sp/4. In 3D, we havea53d/2,
b5sd2/2(2p)3/2 where d5p3/2. Second, up to a relative
margin less than 10%, their power integralNc

Gauss54p is
close to the minimum threshold for collapse withs511,
Nc.11.7 @55#. Third, in the special case of a parabolic p
tential U;r 2, soliton modes exhibit Gaussian tails, i.e
Gaussians are exact solutions of Eq.~3! in the limit s→0,
whatever the sign ofs may be. Gaussians thus appear to
suitable candidates, when the contribution from the poten
in the GS mode is expected to dominate over the nonline
ity, as emphasized by Eq.~11!. Alternatively, we may choose
the ground-state solutions of the untrapped NLS equat
1-4
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given by Eq.~3! whenU50. Forl.0, it has the symmetry
f(r ,l)5Alf0(Alr ) that reducesl to the unity. Takingf0
as test function leads to the integral coefficientsa5d
5Nc , b5sNc for D52, and d5Nc.18.9, a53Nc , b
52sNc for D53 ~see, e.g., Refs.@56,57#!. We recall that
the free NLS ground-state mode can be approximated in
by sech test functions@54,58#. As special attention will
be paid on parabolic inhomogeneities, the functionalSa

will depend on potential integrals as*U(jW )ufau2djW

5(V0
2/4)a2g, where

g[E j2ufau2djW ~16!

takes the valuep (3p3/2/2) for 2D ~3D! Gaussians or
8p30.55~20.312! for the 2D~3D! free GS test functionf0 .

Furthermore, we shall apply our variational procedure
the identification of single vortex solutions. Their radial pr
files are characterized by a minimum at center@f(0)50#,
whereas they exhibit one maximum at a finite radiusr. Look-
ing for the asymptotics of solutionsf in the form f
5x(r )eimu in Eq. ~3! with a parabolic potential, we observ
that the radial componentx behaves asr umu nearr 50 and as
the Gaussiane2V0r 2/4 at large distances. We shall, therefor
select the class of trial functionsx5Amxa,m(r /am) with

xa,m~j!5
j umu

~Bm1j! umu e2j2/2, j[r /am , ~17!

whereAm , Bm , andam are positive Lagrange parameters f
fixed azimuthal indexm.

III. PARABOLIC INHOMOGENEITIES

Parabolic density profiles are widespread in physics. T
can indeed be found in the field of nonlinear excitations w
impurities @4#, when an exponential trapping,U(r )5
2e exp(2r2/r0

2), reduces toU(r ).e(r 2/r 0
221) for a radius

of the impurity core,r 0 , much larger than the soliton width
Parabolic inhomogeneities are also met in plasma physics@3#
and in nonlinear optics@2#, when the plasma density profil
or a graded-index optical medium varies parabolically alo
one privileged direction. In BEC physics, a spatially qu
dratic potential is naturally provided by the confining trap
dilute atom gases@20#. Keeping in mind this wide range o
applicability, we first examine the action of a parabolic p
tential, U(r )5V0

2r 2/4, with trap frequencyV0 , from both
the dynamic and stationary viewpoints. The centroid of

beam,RW (t)[N21*rWucu2drW, is known to vary asRẄ 1V0
2RW

50W @4#. In what follows, we shall consider a beam with ze
initial velocity and initially fixed at center, which leads us
set RW (t)50W . Centroid motions and their influence on th
nonlinear beam dynamics and soliton relaxation can
found studied in, e.g., Refs.@4,10,11#.
02661
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A. Collapsing wave packets in nonlinear parabolic media

As is already known from optical and BEC literature@12–
14,20–22,24#, a wave functionc obeying Eq.~1! with po-
tential U(r )5V0

2r 2/4 ands511 is condemned to collaps
in finite time when, e.g., its initial datum makes the Ham
tonianH negative. This imposes that the integralN must be
above the threshold valueNc . For N<Nc , the wave func-
tion c either oscillates with period 2V0 @4,13# or it can attain
a stationary state, which is orbitally stable ifdN/dl.0 @24#.
Let us briefly perform a time-dependent variational approa
depicting these main dynamical aspects. For this purpose
derive from Eq.~1! the identity for the mean-square radius
c ~see, e.g., Ref.@9#!,

1

4
dt

2E r 2ucu2drW52E u¹W cu2drW2
sD

2 E ucu4drW1E U~rW !

3@D1rW•¹W #ucu2drW, ~18!

which is valid for a real-valued potentialU. We then intro-
duce the self-similarlike substitution

c~rW,t !5
f„rW/L~ t !,t…

LD/2~ t !
eiS~rW,t !, ~19!

with t(t)5*0
t du/L2(u) and S(rW,t)5lt2L̇r 2/4L ~dot

meansd/dt!. SelectingU as parabolic and takingf as ex-
actly self-similar, i.e.,f5Af̄(rW/L), we find that the time-
dependent scale lengthL(t) of the wave packet is governe
by

1

4
L3L̈2eL45

a

g S 12
Db

2aLD22D , ~20!

where the integral coefficientsa, b, g follow the same nota-
tions as in Eqs.~14! and~16!, after changingfa anda by f̄
andL(t), respectively. From Eq.~20!, it is readily seen that
collapse occurs wheneverDb.2aLD22, which must be sat-
isfied, in particular, by the initial lengthL0[L(t50) for
beams with no initial contraction rate (L̇u t5050). Let us
then focus our attention on the 2D case,D52. In this con-
figuration, Eq.~20! is exactly solvable. After defining the
ratio N over critical byb/a5N/Nc , a simple integration of
Eq. ~20! yields the solution@4#

L~ t !5H u2~ t !1
4D

W2 v2~ t !J 1/2

, ~21!

where (u,v) is a fundamental set of solutions to the equati
L̈1V0

2L50; W denotes the WronskianW5u̇v2uv̇, and
D[(a/g)@12N/Nc#. Selecting initial data with no initial
velocity, L̇u t5050, and introducing the ratioDc[L0

4V0
2/4,

we find

L~ t !5
L0

&
F S 12

D

Dc
D cos~2V0t !111

D

Dc
G1/2

. ~22!
1-5
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This relation provides the characteristic dynamics. Wh
D.Dc , which impliesN,Nc , the solution periodically os-
cillates with period 2V0 and starts by increasing withL̇
.0. WhenD5Dc , L(t) is frozen on a stationary fixed poin
that again satisfiesN,Nc . WhenD,Dc , eitherD is posi-
tive, in which case oscillations still develop by decreas
from L0 with L̇,0, or D is negative, in which case collaps
occurs withL(t)→0 in finite time. This latter singular evo
lution requiresN.Nc . The collapse time is given bytc

5V0
21 arctan(A2Dc /D) and it is always smaller than it

counterpart forV050. These results recover those pre
ously established by Karlsson and co-workers@13#, who used
a similar variational~averaged-Lagrangian! method applied
to a Gaussian test function. Here, we have extended t
results to any test function that may be Gaussian, sech
even given by the GSf0 of the free NLS equation. In Ref
@4# it was observed in the diffractive/oscillation regime th
the choice of a sech test-function, known as the best fit
the free NLS ground state, yielded variational results t
were in excellent agreement with direct numerical compu
tions. Choosingf̄ as the free ground statef0 , which lines
up the critical power for collapse onto its minimal valu
Nc511.7/s, should improve this agreement to some exte

B. Stability of GS modes

The previous analysis emphasizes the possibility of fo
ing a stationary state from initial sizes of wave packets fix
at L05A2/V0@(a/g)(12N/Nc)#1/4. This result shows tha
for appropriate integralN and beam sizeL0 , a soliton can
form, which, however, does not resolve the question of
stability. For solving this point, it is necessary to apply t
criterion dN/dl.0 @6# and, thus, to access the variation
N versusl. The first question is to identify the link betwee
the soliton sizeL0 and the soliton parameterl, and then to
infer the curveN(l) with N computed on the GS mode. I
the framework of the free NLS equation, this point is eas
cleared up, as a soliton state corresponds to a static
function with sizeL0 being equal to the inverse of the squa
root of l.0, which also follows from the dilation invarianc
f→Alf0(Alr ). Nonetheless, this equivalence does not
ply to a parabolic potential. To identify the variations of th
soliton width with respect tol in that case, we use the stat
variational method expounded in Sec. II. Regarding
modes for the potentialU(r )5V0

2r 2/4, we employ single-
humped trial functionsf5Afa(r /a), so that the functiona
Sa @Eq. ~13!# explicitly reads

Sa5aA2aD222bA4aD1
V0

2

4
gA2aD121ldA2aD .

~23!

The variational equations~15! of Sa for the amplitudeA and
sizea yield

V0
2

4
ga42~2bA22ld!a21a50, ~24!
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V0
2

4
~D12!ga42D~bA22ld!a21~D22!a50, ~25!

respectively. Simple combinations of these equations t
enable us to determine

A~l!5F2ld14a/a2

b~41D ! G1/2

5F2ld1V0
2a2g

b~42D !
G1/2

, ~26!

a~l!5F2A~Dld!21V0
2ga~D14!~42D !22Dld

~D14!V0
2g G1/2

.

~27!

Both soliton amplitude and width are explicit functions ofl.
Note in this respect that Eqs.~24! and ~25! provideA}l1/2

and a scales likel21/2 in the limit of no potentialV0→0,
which reflects the variations of the soliton widthL05a with
respect tol for the free NLS equation. With a paraboli
potential, these elementary variations become more tric
The HamiltonianH and integralN both computed on the
soliton mode indeed express as

Hs~l!5
A2~l!aD~l!

42D
@~D22!ld1V0

2a2g#, ~28!

Ns~l!5A2~l!aD~l!d5
daD~l!

42D S 2l
d

b
1V0

2a2
g

b D ,

~29!

where the index ‘‘s’’ henceforth means that integrals are ca
culated on the stationary solition. Fors.0, the positiveness
of Ns imposes a lower bound in the range ofl, i.e., soliton
modes exist, provided thatl does not decrease below a cu
off value,l* , given byA2(l* )50, namely,

l>l* 52
V0

d
Aag . ~30!

In the opposite limitl→1` and for D52, a2 behaves as
the vanishing ratioa/ld andNs reaches the limitda/b. For
s511 and Gaussian test functions, we thus findl*
52V0 andNs(l) tends toNc

Gauss54p at largel. With test
function given by the GS of the free NLS equation,f0 , we
find l* 521.0869V0 and Ns(l) tends to the minimum
bound for collapseNc511.7 asl→1`. For D53, a2 still
vanishes as~a/3ld!, while asymptoticallyNs(l) attains the
limit value (2/b)(a/3)3/2Ad/l. For Gaussian test functions
l* 523V0/2 andNs(l)→4p3/2/Al at largel. For GS test
functionsf0 , l* 521.796V0 and Ns(l)→Nc /Al, where
Nc.18.9 in 3D. These asymptotics indicate that the soli
size decreases at growingl, until the effect of the potentia
becomes negligible forl@1 and the GS mode recovers th
characteristics of an untrapped NLS soliton. In this lim
dNs /dl becomes zero forD52 and negative forD53,
which leads to soliton instability. For other permitted valu
of l, the integralNs(l) is a monotonically increasing func
tion of l for D52. For D53, it increases froml* to a
maximum valueNs

max attained at20.7<lmax<20.5, then
1-6
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decreases to zero at largerl’s. Consequently, all the GS
modes are stable forlP]l* ,1`@ with Ns,Nc in 2D. They
are stable only forl belonging to the interval ]l* ,lmax@ and
Ns,Ns

max,Nc in 3D.
Figures 1~a! and 1~b! show direct comparisons betwee

the numerically computed soliton modes of Eq.~1! ~solid
curves! and Eq.~29! computed with Eqs.~26! and ~27! for
test functions taken as Gaussian~dash-dotted lines! and as
the free NLS mode,f0 ~dashed lines!. Those are reproduce
for V052 in the dimensional casesD52 @Fig. 1~a!# and
D53 @Fig. 1~b!#. We can observe the good agreement
tween the variational predictions and the numerics, wh
emphasizes in particular that 3D soliton modes are stable
to the point (Ns

max514.45,lmax520.72) in the (Ns ,l)
plane. Slight discrepancies arise in the values ofNmax, at the
location of the cut-off l* , and in the asymptoticsNs

→Ns
V050

5Nc /l (D22)/2 at largel for Gaussian test func
tions. Despite these differences, the variational procedure
pears to be actually efficient for determining the variations
the soliton size and amplitude with respect tol, and for
identifying the stability regions fixed by the criterio
dNs /dl.0 within a reliable approximation. Note that, wit
Ns,Nc , Eq. ~3! has a relatively weak nonlinearity. Gaussi
functions in the formf5Ae2gr 2

with constantsA, g thus
provide exact solutions of Eq.~3! in the limit s→0, when-
everg5V0/452l/2D, which yields the cut-off paramete

FIG. 1. Soliton massNs vs l determined from direct integra
tions of Eq.~3! with a parabolic potential~solid curves! and com-
puted from the variational equations involving Gaussian~dash-
dotted lines! and the free NLS GS mode~dashed lines! as selected
test functions:~a! D52; ~b! D53. The left-hand side of the curve
refers to a defocusing medium (s521,l,l* ) and their right-
hand side to a focusing medium (s511,l.l* ).
02661
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l* . This partly justifies why Gaussians are trustworthy ca
didates in the variational approach.

For a defocusing medium (s521), A2(l).0 makes
sense for the inequality opposite to Eq.~30!, l<l*
52(V0 /d)Aag. Soliton modes for a defocusing mediu
thus exist in the range ofl, which is complementary to tha
for a focusing medium. This result basically agrees with
numerical identifications of solitary modes in Fig. 1. In th
opposite limitl→2`, for which localized GS modes exis
with s,0, the same expressions~26! and ~27! formally ap-
ply andNs(l) is found to diverge as (4d3/9V0

2g)ulu2/ubu in
the 2D case and asuluD/211/ubu in general. It is worth notic-
ing that in this region ground-state test functionsf0 become
poor candidates for approachingNs(l). In contrast, Gauss
ians ;Ae2gr 2

fit better the domain of large-amplitud
ground states. Approximating the nonlinear term efficient
small r with sufu2.sA2(122gr 2) in Eq. ~3!, it is readily
found that the only positive exponentg reads for largeA
.AV0 /usu as g.V0

2/8usuA2, which corresponds to nega
tive l;2usuA2!2V0 . So, l decreases to larger negativ
values as the soliton amplitude increases in the cases,0.
Ignoring the diffraction term in this limit,f may also be
given by f.@(l1U)/s#1/2, referred to as the Thomas
Fermi approximation in the 1D case@23#. Here, we getNs

.22DpuluD/211/@ usuD(D12)V0
D# at dimensions D>2,

which is close to the Gaussian limits plotted in Fig. 1 forl
→2`. Similar properties characterize 1D ground states
the Gross-Pitaevskii equation, for which higher-order mod
were investigated by means of Hermite-Gauss polynom
in Ref. @23#.

IV. STEP POTENTIAL

We now apply the above procedure to other potent
capable of stabilizing the collapse of wave functions w
integral N below critical. Because the coming exampl
mainly apply to the field of nonlinear optics where the role
time t is played by the propagation distancez, we will select
the space dimension numberD52. To start with, we study
the action of a step-potential on NLS ground states. This
be viewed as a smoothed version of the circular step po
tial well for light-guiding media as, e.g., optical fibers th
trap the beam energy within a core of finite dimension. F
lowing @10#, we consider a medium with a step potential
square form,

U~rW !52eH~R2r !, ~31!

wheree.0 andR are the amplitude and core radius of th
trap. For soliton widths much less than the core radiusR, the
potential U reduces to the quadratic form;e(r 2/R221)
through simple series expansion. The analogy with the p
viously studied parabolic profile is thus obvious for narro
wave packets. In this approximation, the domain ofl for Eq.
~3! with potential~31! is shifted to the right compared with
the case of a parabolic potential, aslstep.lparabolic1e. When
this limit is not satisfied, i.e., for a beam with typical waist
the order ofR, the square form in Eq.~31! must fully be
employed. Inserting this into the functional~13! thus yields
1-7
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Sa5aA2aD222bA4aD2eA2aDg~a!1ldA2aD, ~32!

where, for axis-symmetric beams,

g~a!52D21pE
0

R/a

jD21ufa~j!u2dj. ~33!

The variational equations~15! are straightforward to estab
lish,

2eg~a!a22~2bA22ld!a21a50, ~34!

2ea2@D1a]a#g~a!2D~bA22ld!a21~D22!a50,
~35!

where]ag(a)522D21pRDa2D21ufa(R/a)u2. An elemen-
tary combination provides the relations linking the solit
sizea and amplitudeA to the soliton parameterl, namely,

2aaD225DA2aDb12D21peRDufa~R/a!u2. ~36!

For D52, the expression for the soliton power follows:

Ns~l!5
d

b
@a2epR2ufa~R/a!u2#, ~37!

which can be compared with its equivalent form for a pa
bolic potential:Ns(l)5(d/b)@a2V0

2ga4/4# @see Eq.~26!#.
In both expressions, the dependence ona(l) induced by the
potential modifies the variation ofNs versusl compared
with the free NLS equation (e50). Imposing now the
Gaussian shape,fa(x)5e2x2/2, we obtain

Ns~l!5
4p

s
@12eR2e2R2/a2

#, ~38!

wherea2(l) is chosen among the roots of

e2R2/a2F2
R2

a2 11G512
ld

pe
1

a

pea2 . ~39!

For s.0, the positiveness ofNs(l) requires the constrain
a2(l),R2/ln(eR2) and, therefore, some bound in the ran
of l for which GS modes exist. With Gaussian test functio
the cutoffl* is defined fore2R2/a2

51/eR2, and it takes the
value l* 5e2R22@11 ln(eR2)#. From Eqs.~38! and ~39!,
we find that the ratioR/a increases fromR/a>1 with the
parameterl. WheneverR/a@1, Ns(l) tends to its untrapped
counterpart (e50). In other words, when the radius of
square potential becomes very large in front of the soli
width, there is no efficient effect stabilizing the collapse. F
this range,a2.a/(dl2pe) makes the soliton exist forl
.pe/d only and it behaves as the free NLS square width
the limit l→1`. For s,0, Ns exists within the opposite
region 0<l<l* and R/a,1. In this domain, Eq.~39! in-
dicates thatl cannot access the domain of large, negat
values. WithR/a→0, the solutions become infinitely broa
which limits the existence of localized ground states.

Figure 2~a! shows the variations ofNs(l), which result
from numerical integrations of Eq.~3! with the square poten
02661
-

s

n
r

n

e

tial ~31! for D52, e51, s561, andR51.25~solid curves!.
This is compared withNs versusl resulting for the same
parameters from a parametric numerical integration of E
~38! and ~39!. The agreement can be seen to be actua
good, apart from the discrepancyNc

Gauss54p.Nc511.7 at
large l. Typically, for s511, the curvel5 f (R/a) in-
creases with the ratioR/a from the valuel* 50.07 and the
stability region determined bydNs /dl.0 is limited to l
,3, corresponding toR/a,2, while dlNs→0 for higher
l’s. Direct numerical integration of Eq.~1! with initial con-
ditions close to such soliton modes shows thatc(r ,t) relaxes
to a robust shape and undergoes no collapse in that c
Figure 2~b! represents the numerically computed amplitu
of c at r 50, starting from Gaussians with input powers b
low and above critical, which do not belong to the curve f
ground states. We observe that the resulting solution os
lates ~dashed curve! or collapses at a finite distance~dash-
dotted curve!, whenever the power in the initial condition i
subcritical or supercritical, respectively. However, the so
tion integrated from a GS mode at, e.g.,l51 ~solid curve!
preserves its shape. Similarly to anterior results for a pa
bolic trap @24#, small perturbations around the ground sta
do not increase in time, which confers orbital stabili
(dlNs.0) to such soliton modes.

FIG. 2. ~a! Ns(l) vs l for a square potential withD52, e51,
and R51.25 determined from numerical integrations of Eq.~3!
~solid curves! and from the variational model with Gaussian te
functions~dashed curves!. Note that for a defocusing medium G
modes exist within a restricted range ofl, valued around 0.~b!
uc(r 50,t)u2 versus time fors511 and Gaussian initial condition

c(r ,0)51.53e2r 2/2 with NÞNs,Nc ~dashed curve! and c(r ,0)

543e2r 2/2 with N.Nc ~dash-dotted curve in the inset!. The solid
curve refers to the initial conditionN5Ns for l51.
1-8
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V. HOLLOW CAPILLARY WAVEGUIDES

We focus our attention on hollow capillary waveguide
for which stabilization of collapse does not directly proce
from the external action of a space-dependent potential,
rather originates from the limitation of the wave diffractio
by proper boundary conditions. For this purpose, let us fi
recall that theoretical investigations of light beams propag
ing in hollow fibers are currently based on coupled-mo
theory @15#. The derivation of the coupled-mode equatio
starts with the vector-wave equation

¹W 3¹W 3EW 2
1

c2 ] t
2E

2`

t

dt8n2~r ,t2t8!EW ~ t8!5
2n2

c2 ] t
2uEW u2EW ,

~40!

where n and n2 are the linear and nonlinear componen
in the refractive index, respectively. In the absence
Kerr nonlinearity, the solution of Eq.~40! consists of a
linear superposition of eigenmodes, decomposed int
discrete set of leaky modes and a modal field. As lea
modes are expected to determine the field in and clos
the bore, the electric fieldEW is usually represented in
terms of discrete leaky modes asEW (r ,f,z,t)
5(1/2)( jpVW jp(r ,w)Ajp(z,t)eik jp(0)z2 iv0t1c.c., where the
integersj andp are the mode indices,VW jp refers to the trans-
verse mode profile andAjp denotes the longitudinal comple
envelope with central wave numberkjp(0).2p/l0 and fre-
quencyv0 . For a capillary of radiusR such asl0 /R!1, the
leaky-mode solutions of a hollow fiber can be approximat
described by a complete set of transverse linearly polar
modes@16#. In this basis, a group of modes indexed byp is
preferably excited. In cylindrical geometry, those are defin
by VW jp(r ,w)5 x̂Jj (ujpr /R)@sin(jw),cos,(jw)# for r<R and

VW jp.0W for r .R, where x̂ denotes the unit vector in thex
direction, andJj 50,1,2,...is the Bessel function of orderj, with
ujp51,2,... being thepth root of the equationJj (ujp)50. The
modeJ0 is referred to as the fundamental (EH11) mode with
u152.405. For solid-core fibers, the electric field of thep
mode is multiplied by the factor;e2L/Ldp after a propaga-
tion distanceL and damping of the laser intensity is min
mized for input beams shaped on the fundamental m
J0(2.405r /R). In recent experiments@17#, Gaussian input
beams focused on the entrance plane of a tube were obse
to convey up to 98% of the incident energy through the c
illary over several tens of Rayleigh lengths, when the in

beamE(r );e2r 2/w0
2
, having w0 /R.0.6435, optimized the

coupling with the fundamental mode. In these observatio
the nonlinearity, however, played a minor role, as the K
effect was of little influence in the low-pressure gases filli
in the tube. Also, the above theory assumed a first-or
expansion of the nonlinear terms in the higher modes, wh
enters a set of coupled equations governing each m
viewed as scalar. A first estimate emphasized a power
self-focusing in capillaries exceeding 33Nc @15#.

When the Kerr effect becomes a key player at h
enough input powers, it is, however, necessary to keep
wave components in the Kerr response. For a scalar fie
02661
,

ut

t
t-
e

f

a
y
to

y
d

d

e

ved
-
t

s,
r

er
h
e,

or

ll
a

basic model thus consists of the free NLS equation~1! with
U50, restrained to the bounded domain 0<r<R, i.e., c
satisfies c(r>R,t)50, where the time variable has th
meaning of a propagation variable. In this prescription,
decomposition of the electric field in discrete, quasiline
modes is abandoned and the beam is expected to behave
coherent, fully nonlinear monomode. From this model, it h
numerically been shown that 2D beams in a capillary c
lapse when their power is above the minimum threshold
self-focusing with no trap:Nc511.7 @18#. It was moreover
observed that, for initial data withN below critical, the so-
lution c oscillates, instead of dispersing, as the wave d
not diffract freely due to the boundedness of the capilla
that produces a mode confinement. AsN approachesNc from
below, the period in the oscillations becomes larger a
larger. This dynamics thus resembles that induced by a p
bolic trap. Therefore, we suspect the possibility of formi
stable steady-state GS modes in capillaries, whose chara
istics are detailed below.

By applying our variational method, the functionalSa
reads as that for the free NLS equation@54#:

Sa5A2aD22aa2A4aDba1lA2aDda , ~41!

where the integral coefficientsaa , ba , andda , previously
defined by Eq.~14!, are now taken over the rescaled variab
j5r /a with r lying in the bounded domain 0<r<R. These
integrals thus depend explicitly on the ratioR/a. In the
present scope, let us henceforth focus our attention on
caseD52. For a Gaussian test function,fa5Ae2r 2/2a2

, the
integral coefficients in Eq.~41! express asaa5p@1
2e2R2/a2

(11R2/a2)#, ba5(sp/4)(12e22R2/a2
), and da

5p(12e2R2/a2
). However, unbounded Gaussians alo

may be poor candidates for modeling the ground states of
bounded NLS equation, since they cannot satisfyf(r 5R)
.0 for broad condensates characterized by moderate ra
R/a. To overcome this problem, we first examine the sim
ansatzf(r )5A(l)(12r 2/R2) with constant radius in the
bounded spatial domain 0<r<R. Elementary calculations
then yield S5pA2(21lR2/3)2spA4R2/10, from which
we easily deduce

Ns~l!5
5p

3s
~21lR2/3! . ~42!

Equation ~42! shows thatNs(l) increases linearly withl
from the cutoff valuel* 526/R2. For a defocusing me-
dium (s,0), Ns increases to large values asl covers the
range @26/R2,2`@ . For a focusing medium (s.0), Ns
also increases withl to Nc , below which collapse canno
occur. This limits the range of validity of~42! to l* <l
,0.7/R2.

Keeping these observations in mind, we propose the
satzf(r )5Ae2r 2/2a2

(12r 2/R2), that insuresf(r 5R)50.
Logically, this trial function should correctly describe th
range of lowl’s at small ratiosR/a, for which the Gaussian
reduces to the unity as above, and that of large positivel’s at
1-9
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high R/a, for which Gaussians can model narrow GS. F
this test function, simple calculations lead to the action in
gral

Sa5
pA2

R4/a4 F1~R/a!2s
pA4R2

R10/a10F2~R/a!

12pl
A2a2

R4/a4 F3~R/a!, ~43!

where F1(x)521x422(11x2)e2x2
, F2(x)53(12e22x2

)
26x216x424x612x8, and F3(x)512e2x2

2x21x4/2.
The variational equations forA anda then follow as

R4

a4 F1~R/a!2s
A2a2

4
F2~R/a!12la2

R4

a4 F3~R/a!50,

~44!

4
R4

a4 FF1~R/a!2
R4

a4 ~11e2R2/a2
!G2s

A2a2

2
F4~R/a!

12la2
R4

a4 F5~R/a!50, ~45!

with F4(x)5(15/2)(12e22x2
)23x2(41e22x2

)19x424x6

1x8 and F5(x)5624x21x422(31x2)e2x2
. From these

relations, we then obtain the variation ofNs versusl,

Ns~l!5
8p

s
F3~R/a!

F1~R/a!12la2F3~R/a!

F2~R/a!
. ~46!

For R/a,1, Eq. ~46! tends to the limit~42!, i.e., for large
radiusa, the soliton is close to that modeled by the functi
A(12r 2/R2). Its localization only proceeds from the wal
of the capillary. In the opposite limit,R/a.1, one hasNs
.(2p/s)(11la2), where la2→128a4/R4, and Ns in-
creases to the self-focusing threshold for Gaussians, as
pected. At small amplitudes,A2→0, the cutoff parameterl*
separating the existence domains for soliton modes in fo
ing and defocusing media is given by

l* .2
~R/a!2

2R2

F1~R/a!

F3~R/a!
. ~47!

Computingl* in the limit of small ratiosR/a restoresl*
.26/R2. Pushing R/a to 1 we moreover find l*
.25.79/R2. For s.0, the variations ofR/a versusl in-
deed show a monotonous increase ofl, close tol.5R/a
28, as the ratioR/a is augmented fromR/a51. So, the
range of low l concerns moderate values ofR/a. For s
,0, GS modes with positiveNs exist wheneverR/a,1,
which corresponds to the domain inl decreasing froml* to
larger negative values.

To cure the discrepancy between the Gaussian thres
Nc54p/s and the exact threshold for self-focusingNc
511.7/s in the range of large, positivel.0 (R/a@1,
s511), we model the ground state for a capillary with t
free NLS ground state,f0 , which satisfies the equatio
2f01¹2f01f0

350. Since we look for solutionsf with
02661
r
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size less than the capillary radius, it is natural to consider
action functional S5*$u¹fu22(s/2)ufu41lufu2%drW,
whose integrals are taken over the whole spatial domain,
subtract the same integrals taken forR,r ,1`. In this
range, the NLS ground state asymptotically tends to
function

f0~r !;Br21/2exp~2r ! ~48!

at large distances (r @1), where

B5S p

2 D 1/2E
0

1`

f0
3~r 8!I 0~r 8!r 8dr8.3.52,

and I 0 is the zeroth-order modified Bessel function. Sin
f0(r ) does not satisfyf0(r 5R)50 at finite R.1, it is
moreover requested to weight it with, e.g., the step funct
H(R2r ). Thus, we insert the test functionf(r )
5A(l)f0@r /a(l)#H(R2r ) into S. In the gradient norm of
the action integral, the integrand expresses asu] rfu2

5@] rf0H(R2r )2d(R2r )f0#2, where the second term
mainly contributes to this integral atr 5R only, with f0(r
5R) close to zero (f0 /] rf0ur 5R!1). Approximating
u] rfu2.(] rf0)2H(R2r )2d(R2r )H(R2r )] rf0

2, we de-
rive Sa in the form

Sa5A2H Nc1pB2F3S 11
a

2RDexp~22R/a!2G@0,2R/a#G J
2sA4a2$Nc2pB4G@0,4R/a#%

1lA2a2$Nc2pB2 exp~22R/a!% , ~49!

where G@0,x# is the standard gamma function. Performin
the functional variations ofSa with respect toA anda then
leads to

Nc1pB2H 3S 11
a

2RDexp~22R/a!2G@0,2R/a#J
22sA2a2~Nc2pB4G@0,4R/a# !

1la2@Nc2pB2 exp~22R/a!#50, ~50!

2pB2S 11
3R

a
1

3a

4RDexp~22R/a!2sA2a2
„2Nc

2pB4$exp~24R/a!12G@0,4R/a#%…

12la2@Nc2pB2~11R/a!exp~22R/a!#50.

~51!

Therefore,

Ns~l!5
@Nc2pB2 exp~22R/a!#

2s~Nc2pB4G@0,4R/a# !
„Nc1pB2$3~1

1a/2R!exp~22R/a!2G@0,2R/a#%

1la2@Nc2pB2 exp~22R/a!#…. ~52!
1-10
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FIG. 3. ~a! Ns vs l for a hollow capillary waveguide withR51.25. Numerical integration of Eq.~3! with U50 is represented by the
solid curve; the dash-dotted and dashed curves represent the variational approximations using truncated Gaussians and free
respectively. The parametric regions inl for which dlNs.0 are restricted tol,3, which leads toR/amin.2.2. ~b! Numerically identified
GS modes for differentl>l* 525.78/R2 are plotted by solid lines forR51.25~l523, lower profile,l50, upper profile!. They lie close
to the Bessel functionAJ0(2.405r /R) ~dotted curves! at weak amplitudes only (l523,A'1.12) and depart from it at higher amplitude
(l50,A'2.8). For comparison, truncated Gaussian trial functions are plotted by the dashed line for the samel’s. ~c! uc(r 50,t)u2 versus

time for s511 and initial conditions using truncated Gaussiansf(r ).Ae2r 2/2a2
(12r 2/R2) with N55.17ÞNs,Nc ~A53, a50.5, dotted

curve!, and withN54Nc ~A59.028,a50.5, dash-dotted curve in the top inset!. The solid curve refers to the initial conditionN5Ns for
l50.
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Similarly to the previous Gaussian modeling,l monotoni-
cally increases from22.5 to infinity asR/a grows from the
value R/a51.41. At largeR/a, it is found that the soliton
size behaves likea21(l).Al, as expected.

We have superimposed the results obtained from
Gaussian modeling and its asymptotic correction usingf0 in
Fig. 3~a! for the bore radiusR51.25. The analytical resul
again exhibits a good agreement with the numerics
solves Eq.~3! with U50 andf(r>R)50. The cutoff pa-
rameter revealed numerically,l* .25.78/R2, perfectly
agrees with that evaluated from truncated Gaussians. Fs
511, the power in a stable self-guided mode must be be
the critical self-focusing threshold, and numerical calcu
tions show thatdlNs.0 is fully satisfied forl* ,l,3. At
relatively weak nonlinearities (l,0), the ground state is
close to the linear fundamental modeJ0(2.405r /R). The
slopedlNs is maximum, which may justify why the Besse
mode is capable of promoting a quasiperfect monom
guiding over spectacular distances in hollow capillari
Comparatively, the variational approach emphasizes
lmax53 bounds from above the range of stability of G
modes, which yieldsR/amin52.2. This value restores the ra
tio &a/R5w0 /R50.6435, which was claimed to optimiz
the coupling of optical Gaussian beams with the fundame
mode. At moderateNs , the Bessel mode ensuring the be
entrance coupling with the capillary is attained, which is
02661
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lustrated by Fig. 3~b!. In that case, the variational trial func
tion employing the truncated Gaussian ansatz almost c
pletely superimposes with the fundamental mode at lowl
near the cutoffl* . For higherNs (l>0), the solutionf,
still corresponding to stable waveguides, departs from
Bessel mode to reach the ground state of the unbounded
equation (U50).

Figure 3~c! shows the amplitude ofc centered atr 50
resulting from a direct numerical integration of Eq.~1! with
Gaussians having input powers below and above criti
which do not belong to the curve plotted in Fig. 3~a!. As
expected, we observe that the resulting solution either os
lates ~dotted curve! or collapses at a finite distance~dash-
dotted curve!. Note that, owing to the boundary condition
radiation trapped in the waveguide bounces back and fo
which introduces a perturbative noise affecting the evolut
of the peak intensity. In spite of this, the solution initial
lined up on a ground state (l50) keeps a robust shape~solid
curve!.

VI. VORTEX STATES AND FLOWING OBSTACLES

A. Pure vortex states

In focusing media with saturable nonlinearity, single vo
tex states are stable forU50 against radial perturbation
wheneverdlNs.0, and unstable against azimuthal perturb
1-11
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tions that break the cylindrical symmetry@31#. Azimuthal
perturbations are furthermore able to split higher-order v
tices into 2umu daughter GS solitons in the same media@32#.
With no saturation, it will thus be interesting to see if V
modes satisfying the stability criteriondlNs.0, valid for
radial perturbations, will still hold their shape in a parabo
trap, or if collapse will affect their ring structure at hig
enough powers. In the absence of trap, vortex modes
m51 were indeed observed to be unstable, i.e., to diffrac
collapse, when the power in the initial condition for Eq.~1!
was below or above that of the mode, respectively@59#. In
defocusing media like BECs with repulsive interaction
there is no collapse dynamics. 2D vortices withumu51 are
expected to be stable, whereas multi-charged ones are
erally unstable and break up intom vortices with unit charge
@40,41#. In what follows, we comment on the changes in t
radial stability properties between vortices and GS modes
a parabolic potentialU(r )5V0

2r 2/4. For D52, we consider
the functional

S
2p

5E
0

1`

u] rxu2r dr 1m2E
0

1` uxu2

r
dr2

s

2 E
0

1`

uxu4r dr

1
V0

2

4 E
0

1`

r 3uxu2dr1lE
0

1`

uxu2r dr . ~53!

From the asymptotic arguments displayed in Sec. II we e
ploy the ring-shaped test functionx5Amxa,m(r /am) with
xa,m(j5r /am) defined by Eq.~17!. Such solutions have th
power integral for themth mode,

Nm52pam
2 Am

2 E
0

1` j2umue2j2

~Bm1j!2umu jdj. ~54!

Inserting this test function into Eq.~53! yields the trans-
formed functional

Sa5Am
2 am~Bm!2am

2 Am
4 bm~Bm!1

V0
2

4
am

4 Am
2 gm~Bm!

1am
2 Am

2 ldm~Bm!, ~55!

with integral coefficients

am~Bm!52pE
0

1` j2umu11e2j2

~Bm1j!2umu F Bm
2 m2

j2~Bm1j!22
2Bmumu
~Bm1j!

1j21
m2

j2 Gdj, ~56!

bm~Bm!5psE
0

1` j4umu11e22j2

~Bm1j!4umu dj, ~57!

gm~Bm!52pE
0

1` j2umu13e2j2

~Bm1j!2umu dj, ~58!
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dm~Bm!52pE
0

1` j2umu11e2j2

~Bm1j!2umu dj. ~59!

Here, the Lagrange parametersAm , Bm , andam are all posi-
tive and the integral coefficients depend onBm explicitly. Sa
for Gaussian-approximated GS solitons is refound when
ting m5Bm50. The configurationm50 with B0Þ0 corre-
sponds to the radially symmetric ring-shaped mode alre
studied in Ref.@22#, which we do not consider here. Deriva
tives of Eq.~55! with respect toAm andam formally lead to
the same equations as Eqs.~26! and ~27!,

Am
2 ~l!5

1

2bm
@2ldm1V0

2am
2 gm#, ~60!

am
2 ~l!5

Al2dm
2 13amgmV0

22ldm

3
2 V0

2gm

. ~61!

The third variational equation,dSa /dBm50, yields in prin-
ciple the explicit dependence of the vortex parameters o
the couple (l,m). Among the coefficients~56!–~59!, with
umu>1 andBm.0, the integrands with higher exponent lea
to smaller integrals than their counterparts form5Bm50.
Therefore, the value ofbmÞ0 is smaller than that for the GS
modes, and much smaller than the new values ofdm andgm .
Thus, for a focusing medium (s.0), Am

2 (l) increases in
absolute value. In addition, assuming that the integralam is
mainly given by the contributions at smallj!1 in the inte-
grand, we deduce that the ratioam /gm should be larger than
a/g51 for m5Bm50, while dm /gm will remain nearby the
unity. On the whole, the curveNs(l,m)5dm(Bm)Am

2 am
2 for

vortices should lieaboveits counterpart for GS modes when
ever s.0. Moreover, as the changes ingm and dm are
similar, the cutoff valuel* 52V0Aamgm/dm should lie
at a smaller ~more negative! value, i.e., lvortex* ,lGS* .
For a defocusing medium (s,0), since Ns(l,m)
→(4dm

3 /9V0
2gm)ulu2/ubmu with dm<dm50 at large negative

l, the vortex massNs(l,m) should finally remain below tha
for a GS mode.

Because the coefficients~56!–~59! depend on cumber
some transcendental functions, we determine an approp
parameterBm by using relations~8! and~9! in the combined
form

E
0

1`

$luxu22u] rxu22~m2/r 2!uxu21~3V0
2/4!r 2uxu2%rdr 50.

~62!

After inserting the vortex ansatz, we minimize numerica
this relation by searching for the value ofBm at, e.g.,umu
51, which makes the smallest left-hand side~LHS! in ex-
pression~62! for given a;1/Al51. Under such conditions
this LHS decreases to zero for increasing integer value
Bm , but it stays real-valued forBm51 only. This makes the
LHS of Eq. ~62! much smaller than unity. For this value o
Bm , we get a1(1).1.824, b1(1).0.0227,g1(1)50.984,
andd1(1).0.66. For higherBm’s these coefficients decreas
1-12
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as, e.g.,g1(Bm), d1(Bm);g1(1)/Bm , d1(1)/Bm . Figure
4~a! shows a plot ofNs(l,m) versusl obtained from nu-
merical integrations of Eq.~3! by standard numerical shoo
ing techniques forf5x(r )eimu satisfying m511, x(0)
50 and x r(0)50. This figure compares direct numeric
results withN1(l) obtained from Eqs.~60! and ~61! when
usingB151. Both focusing and defocusing nonlinearities f
ring-shaped states at the orderm511 are shown. The agree
ment between the numerical and analytical results is go
up to the usual discrepancy forl@1. It can be noticed tha
the variation ofNs(l) is quite close to that for the radiall
symmetric states of Eq.~3! with m50 numerically revealed
in Ref. @22#. At largel.10, for which the solution no longe
feels the trap influence, the vortex power exceedsNs.47,
which agrees with the numerical evaluation of the critic
power for the collapse of vortices,Ns.48.7, measured by
Kruglov et al. in Ref. @60# in the absence of trap. Fig. 4~b!
shows the numerically computed~solid line! and the varia-
tionally approached~dashed line! radial profilex(r ) of the
vortex with umu51, corresponding to the soliton paramet
l511 for a focusing medium (s511).

Illustrating the stability of VS structures with a focusin
nonlinearity (s511), Figure 5 displays 3D plots of vorte
intensities at different times, with perturbed initial conditio
fitting at leading order a noncollapsing VS mode withNs

FIG. 4. ~a! Ns(l) vs l for vortex states of Eq.~3! with a para-
bolic trap,umu51, D52, in both casess511 ands521. Results
from numerical integrations of Eq.~3! are represented by the soli
curves; variational results are plotted as dashed lines. The d
dotted curve recalls the same variations for the 2D NLS gro
state, computed numerically.~b! Radial profilex(r ) of a vortex
solution with m511, computed forl511 from the variational
method @dashed curve:A1(1)59.387 39, a1

2(1)50.6818, B1(1)
51# and from direct numerical integration of Eq.~3! ~solid curve!.
02661
d,
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,Nc511.7 (l523) and another one with much higherNs
(l54). With powers below the usual threshold for collaps
vortex modes cannot blow up. This follows from the ke
estimateH>(12N/Nc)* u¹cu2drW, according to which col-
lapse producing a blow up in the gradient norm can o
occur for powers above critical@55#, which still applies to
vortices. Figure 5~a! shows a subcritical (Ns,Nc) VS mode
with 5% azimuthal perturbation att50, i.e., c(x,y,0)
5x(r )eimu@110.05 cos(qu10.4)# with, for the present case
m5q51. This initial state does not blow up at later time
Instead, it keeps a robust radial shape and just undergo
rotation ofu.2p/2 at t520 @Fig. 5~b!#. In contrast, a VS
mode having a supercritical power~Ns.Nc at l54! either
decays into 2umu collapsing spikes due to instability onl
induced by the numerical noise@Fig. 5~c! at t54#, or it rap-
idly collapses as a whole when it undergoes the former p
turbation @Fig. 5~d! at t50.4#. These results indicate tha
vortices keep a stable radial shape, as long as the cond
for no collapse,Ns,Nc , holds. Otherwise, they collapse an
the stability criteriondlNs.0 is no longer sufficient for in-
suring stable vortices. The lack of orbital stability of sing
vortices caused by azimuthal perturbations has been sh
in Ref. @31# for saturating nonlinearities. In this respect, w
recall that the stability proof basically requires stationa
modes having no node in their spatial distribution for ass
ing the absence of growth in the perturbations~see, e.g., Ref.
@24# for GS modes of the GP equation!. For vortices having
one node, this constraint is not satisfied, and the disc
spectrum of the NLS operators governing the perturbati
generally contains unstable modes.

For similar reasons, the stability criteriondlNs.0 be-
comes in principle invalid for multicharged~higher order!
vortices withumu.1. To check this point, we have performe

h-
d

FIG. 5. 3D plots ofuc(x,y,t)u2 at different snapshots in time fo
~a! an initial (t50) noncollapsing singly charged VS mode (l
523) with 5% azimuthal perturbation,~b! the same vortex att
520, ~c! the break-up pattern and collapse of a high-power
mode (m51,l54) at t54, being perturbed by the local numeric
noise only, and~d! one-peaked collapse of the previous mode i
tially undergoing a 5% azimuthal perturbation, shown att50.4.
1-13
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FIG. 6. Instability patterns of multiple
charged vortices undergoing 5% azimuthal pe
turbations: c(x,y,0)5x(r )eimu@110.05 cos(6u
10.4)#. Top row: decay of a twofold VS mode
with Ns,Nc into two singly charged vortices
Middle row: breakup of a fivefold vortex with
Ns.Nc into four rotating spikes. Bottom row
splitting of a supercritical twofold vortex into two
collapsing spikes.
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numerical runs, always concerned with a focusing med
(s511), in whichm-fold quantized vortices withm.1 are
initially perturbed by the 5%-amplitude oscillations defin
above. As shown in the top row of Fig. 6, a multicharg
vortex with m52 and particle numberNs below the critical
threshold for collapse decays into two singly charged vo
ces orbiting around each other under modulations withq
56. This property of unstable high-order vortices for attr
tive interactions corroborates some previous theoretical
pectations@41# summarized in Sec. I. Our simulation, how
ever, allows us to specify the instability dynamics. Fir
when no collapse occurs (Ns,Nc), a high-order vortex
seems ‘‘robust’’ to some extent, in the sense that high-o
modulations of the vortex ring produce a limited number
elementary singly charged vortices that develop rat
slowly in time. This was confirmed by numerical runs p
formed withm55, for which no instability occurred befor
large times t,100 ~not shown here!. Second, with
Ns.Nc , we observe a rich variety of dynamics, whose p
terns depend on the initial conditions and all conclude to
instability of high-order vortices. Briefly speaking, a sup
critical condensate is capable of either decaying into sev
‘‘stable’’ elementary spikes rotating around the trap, ea
having a particle number belowNc , or of breaking up into
collapsing spikes otherwise. The middle and bottom rows
Fig. 6 illustrate the fates of vortices for which the VS mo
has an integralNs either below or aboveNc times the num-
ber of final spikes. In collapse regimes, the dynamics app
to be strongly sensitive to the number of azimuthal modu
tions along the vortex ring. Withq52 for instance, we ob
served that them55 vortex of Fig. 6 was rapidly broken u
into two collapsing spikes. In the light of these observatio
we summarize VS instability in focusing media with par
bolic trap as follows.~i! Vortex stability is limited to particle
numbersNs,Nc for attractive interactions.~ii ! When this
constraint is satisfied, single vortex states are stable, but
tiple charged vortices are unstable and they can decay
umu single vortices.~iii ! When this constraint is not satisfie
high-order vortices split into several elementary spikes
can collapse if their individual number of particles is abo
critical. Some of these patterns could experimentally be v
fied in future works on attractive BECs.

B. GSÕvortex formation in dilute inhomogeneous BECs

Our formalism may help in approximating the elementa
solutions of more complicated issues as, e.g., the GS m
02661
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and localized vortices of a dilute atom condensate trappe
a harmonic well and passing through an object~see, e.g.,
Ref. @48#!. For example, the object can arise from a ligh
induced Gaussian potential barrier, moving with velocityv̄
along one axis, and the BEC wave function obeys the
NLS Eq. ~1! with ¹25]x

21]y
2 and

U~x,y!5
V0

2

4
~x21y2!1c exp@2bx22b~y2 v̄t !2#,

~63!

with V051 and constantsc, b.0. For repulsive conden
sates,s is taken as negative~s528pNua0u whereN is the
physical number of atoms in BECs andua0u the scattering
length!. Two kinds of stationary/travelling-wave modes a
then interesting to study, namely:~i! The GS solutions tha
serve as initial data att50 for an object initially centered a
origin ~0,0! in the plane~x, y!. ~ii ! The vortex solutions pos
sessing an orbital angular momentum and azimuthal angu.
These vortices are created once the object moves alongy
axis and produces a local disturbance, which propag
through the BEC fluid at timest.0. Reversely, as recalled i
Sec. I, the flow around the object creates a drag force bey
a threshold velocity, which is linked to the emission of vo
tices generated at opposite sides of the object in orde
dissipate and reduce the high local flow speed@50#. In the
present scope, we only attempt to model the initial station
state~i!. To determine its shape, we may equivalently emp
the previous functionalSa or directly insert appropriate tria
functions into the integral relations~8!–~10!. At t50 the
object has a zero velocity and the fluid adopts the shape
GS soliton with speed and momentum both equal to zeroU

thus reduces toU(r )5V0
2r 2/41ce2br2

, which preserves the
radial symmetry. For solutions in the formf(r )
5Afa(r /a), the set of Eqs.~8! and ~9! provides the ampli-
tude of the soliton, given as

A2~l!5
ld

b
1

V0
2

2b
a2g

1
c

b E ~12ba2j2!e2ba2j2
ufa~j!u2djW , ~64!

while the soliton radius follows from the roots of
1-14
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3

4
V0

2ga41a2dl2a

1a2cE ~122ba2j2!e2ba2j2
ufa~j!u2djW50. ~65!

With a Gaussian modeling,fa(r /a)5e2r 2/2a2
, these rela-

tions simplify into

A2~l!5
4

s Fl1
V0

2a2

2
1

c

~11a2b!2G , ~66!

3

4
V0

2a41a2l211
a2c~12ba2!

~11ba2!2 50, ~67!

and it is seen right away that the initial GS number of p
ticles is

Ns~l!5dA2a25
4p

s F12
V0

2a4

4
1

bca4

~11ba2!2G . ~68!

For repulsive interactions between bosons,s521, Ns(l) is
an increasing function of2l in the rangel,l* 52V0 .
Here, a2(l) increases with2l, in such a way that a GS
mode with givenNs exists forcÞ0 at lowerl than in the
casec50. This property agrees with Ref.@48#, where a GS
mode was found atl529.003 for c50, while the same
parameter should be decreased tol529.208 forc530 and
b53. The new GS undergoing the trap augmented by
Gaussian barrier (cÞ0) feels a depletion of density in th
trap center due to the presence of the obstacle. At fi
Ns(l), this amounts to decreasingl. A simple parametric
plot eliminating a2 between Eq.~68! and Eq.~67! indeed
shows that withc530, b53, the same number of particle
Ns as the one without object is refound at a slightly low
value of l approaching210 from above, which is compat
ible with the numerical results of Ref.@48#.

When the object begins to move, vortex formation is
vored and vortices arise in the wake of the object flow. D
termining the resulting travelling vortices becomes diffic
to treat analytically. In the presence of a Gaussian obsta
the fluid indeed decomposes into a vortex pair with oppo
vorticities. Interaction of vortex pairs should thus require t
definition of two separate test functions involving their m
tual separation distance as an additional parameter, whic
out of the scope of the present analysis.

VII. CONCLUSION

We have elaborated on a variational method capable
approximating the stationary ground-state and vortex mo
of the NLS equation with an external, space-dependent
tential. This method enabled us to estimate analytically
variations in the power integral or number of particle
Ns(l), contained in an elementary mode with respect to
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frequency parameterl, and then to figure out the relate
variations of the soliton sizea(l). By doing so, we were, in
particular, able to predict the regions in (Ns ,l) for which
such modes are stable following the standard criter
dNs /dl.0 for soliton stability

Basically, the key point consists in constructing a suita
candidate for the test function entering the variational
proach. This can be done by matching the behavior off,
solution to Eq.~3!, at smallr with that at larger. For para-
bolic inhomogeneities, ground states exhibit a spatial dis
bution close to Gaussians, namelyf(r )5Ae2gr 2

. For U
5V0

2r 2/4, such solutions with g5V0/4 and l5l*
52DV0/2 exactly solve Eq.~3!, whenevers→0, i.e., in the
cases of weak nonlinearities and/or at large distances. T
limits suit the behaviors ofNs vs l for small powers, nearby
the cutoff parameterl* separating the focusing cases.0
from the defocusing ones,0. Gaussians furthermore supp
a reasonably good approximation of these ground states
large negativel’s whens,0. They must, however, be aban
doned to the benefit of the free NLS ground-states fors
.0, in the limit of large positivel’s, for which A(l) in-
creases while the soliton size decreases and Eq.~3! mainly
reduces to the free (U50) NLS equation. The same obse
vation holds for a step potential. Note that whateverU.0
may be, bounded or not, the potential always helps in fo
ing localized solutionf with similar properties. These prop
erties straightforwardly emerge from the integral relatio
~8!, ~9!, and~10!. For instance, in Eq.~9!, it is clear that as
ulu→1`, the integral term includingU and the gradient
norm become negligible, so thatlN;(sD/2)* ufu4drW.
Thus, the domain of large soliton parametersl rather con-
cerns high-amplitude ground states for which nonlinearit
are dominant. Conversely, for weak nonlinearities (usu
!1), mixing Eqs.~8! and ~9! yields

22lN;~22D !E Uufu2drW2E UrW•¹W ufu2drW. ~69!

For a parabolic potential,U5V0
2r 2/4, ground states with

weak nonlinearity will thus preferably be associated withl
,0. For the step potential~31!, the same relation indicate
that weak nonlinearities should rather concern the rang
<l<e, if the inequalityRDuf(R)u2!*0

Rufu2r D21dr holds.
Bound states in hollow capillaries can be treated throu

a similar analysis, as the boundary conditionf(r 5R)50
amounts to imposing walls at finite transverse radius in
Kerr medium. This meets an analogy with the properties
the former potentials. In this case again, the right qualitat
behaviors ofNs vs l are well restored by the variationa
method, provided that the test function includes a wei
function makingf vanish at the finite boundaryr 5R. Ap-
plying a priori the criteriondlNs.0 for soliton stability, GS
modes are stable in a focusing medium for small nonline
ties, when they adopt a distribution close to the fundame
Bessel modeJ0(2.405r /R). Our analysis shows, howeve
that this Bessel shape holds in the limit of weak Kerr effe
For more intense beams with powers below the self-focus
1-15
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threshold, the stationary waveguides can still be stable,
their profile should resemble more the ground state of
unbounded NLS equation.

To the best of our knowledge, evidence of the stability
stationary soliton modes in 2D capillaries, for powers bel
the critical power for self-focusing, has not been presen
before. We also investigated stability properties of sin
charged and multicharged vortices in focusing media wit
parabolic trap. As a result, we observed that vortex lines w
unit charge (umu51) keep a robust shape, as long as th
particle number remains below the threshold for collap
Otherwise, they may decay into lower-order structures t
eventually collapse in finite time. Multicharged vortices ha
been numerically shown to be unstable with attractive in
actions. Depending on their initial number of particles, th
en

ett

en

en

an

nd

t,

,

,
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split into elementary vortices or break up into several spik
which can collapse if their individual particle number
above critical.

In conclusion, the above-summarized variational pro
dure has systematically been applied to various inhomoge
ities and trap potentials, both for focusing and defocus
media. It supplied reliable results compared with direct n
merical integrations of Eq.~3!. We believe that this method
may successfully be applied to many other potentials belo
ing to the fields of nonlinear optics and of BEC physics.
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