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Second-harmonic generation with pulses in a coupled-resonator optical waveguide
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We describe the generation and propagation of pulses in a coupled-resonator optical waveguide driven by a
nonlinear polarization using a method closely related to the coupled-mode theory. The specific example we
consider is that of second-harmonic generation. This formalism explicitly accounts for temporal dependencies
in the waveguide field distributions and in their representations in terms of slowly modulated Bloch wave
functions, in contrast with the equations obtained previously for cw second-harmonic generation.
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I. INTRODUCTION

A type of waveguide based on the coupling of optic
resonators has been recently introduced, and is called
coupled resonator optical waveguide~CROW! @1#. As the
name suggests, waveguiding in a CROW is achieved fun
mentally not by total internal reflection or Bragg reflectio
from a periodic structure, but instead, by the overlap betw
the individual resonator modes of the structural elements
comprise the waveguide. In a two-dimensional~2D! photo-
nic crystal, formed by etching a periodic array of air hol
~of refractive indexn1! in a dielectric material~of refractive
index n2! @2#, a CROW can be realized, as shown in Fig.
by coupling defect cavities as the individual resonators.

CROWs offer remarkable possibilities for optical comp
nent design. A CROW formed by weak coupling of high-Q
individual resonator modes is characterized by a nearly
dispersion relationship and potentially very low group velo
ity in the waveguide@1#, which can be used for efficient cw
second-harmonic generation@3#. Further, a weakly coupled
CROW implies tight confinement of the optical power in t
individual resonator modes, which leads to very high opti
intensities even at moderate~propagating! power levels. This
property, in conjunction with the low group velocity, can b
utilized in a photorefractive CROW for holography of optic
pulses with much lower intensities than in conventional
electric waveguides, leading to the possibility of single-s
room-temperature optical pulse storage and readout@4#.

The formalism used to analyze the waveguide mode
such structures is known as the tight-binding approximat
in solid-state physics@5,6#. It describes electrons in a cryst
with a strong periodic potential due to the lattice structure
localized atoms, characterized by a weak overlap betw
the atomic wave functions. By analogy, the optical structu
that can be described using the tight-binding approxima
are those that consist of isolated structural elements cap
of supporting localized electromagnetic fields~e.g., high-Q
resonators such as defect modes in photonic crystals@7#!
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weakly coupled to one another. In this case, the wavegu
modes are closely related to the eigenmodes of the individ
elements rather than to the complex-exponential eigenmo
of free-space propagation. Recent experiments in the mi
wave and optical regime have demonstrated the validity
the tight-binding approximation in a weakly coupled CRO
structure@8,9#.

Prior to @10#, the analysis of field evolution in CROW
~and related structures! has been restricted to monochroma
waves at the eigenfrequencies of the waveguide. We h
recently described the linear propagation of pulses with
nonzero spread of wave vectors, resulting in a closed-fo
expression for the electric field due to pulse propagation
CROW, as shown in Fig. 2.

The analysis of@10# shows that the waveguide impose
limits on both the maximum and minimum temporal exte
of the pulse. While the latter is a consequence of the spa
geometry of the waveguide, the limit on the maximum pu
duration is directly related to the finite length of the stru
ture. Following the literature convention on second-harmo
generation in bulk crystals@11,12#, we assume that the
second-harmonic generation processes described in this
per take place over an essentially infinitely long wavegui

This paper investigates how the nonlinear polarizat
generated in a CROW at the second-harmonic frequency~of
a reference pulse! changes the amplitude of the wavegui

FIG. 1. Schematic of an infinitely long 1D CROW with period
icity R consisting of defect cavities embedded in a 2D photo
crystal.
©2002 The American Physical Society07-1
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SHAYAN MOOKHERJEA AND AMNON YARIV PHYSICAL REVIEW E 65 026607
field distribution that describes a propagating pulse. In
CROW structures we investigate, pulses can propagate
very little distortion in their envelopes@10#, and therefore,
the effect of a pulse at one optical frequency on another
different optical frequency can be treated in the same fra
work as the conventional coupled-mode theory of wavegu
modes@11#. The reason for our interest in this phenomen
aside from it being the most fundamental of~quasi-! nonlin-
ear phenomena in the coupled-mode framework, is the
lowing: the efficiency of~unsaturated! second-harmonic gen
eration in a CROW with cw waves is enhanced relative
that in bulk crystals by the inverse ratio of the group velo
ties at the second harmonic frequency in the two wavegu
@3#, which can approach 103 or 104 for weakly coupled
CROWs @1#. It is known that the efficiency of second
harmonic generation is enhanced at the band edge of ph
nic crystals, for exactly similar reasons of a reduction in
group velocity @13#. Second-harmonic generation in
CROW combines this advantage with the enhancemen
the optical field found, e.g., in defect cavities in photon
crystals@14,15#. A numerical simulation of second-harmon
generation with pulses in related structures is presente
@16# and shows many similar features with our discussio

A prefactory caveat: the tight-binding description of ce
tain related structures such as deep superstructure B
gratings@17#, may correctly assume that the individual res
nator modes are nondegenerate. This is not strictly true f
CROW, but in this paper we will restrict our discussion
modes of a particular parity. If two degenerate sing
resonator modes have opposite parity~as in the case of a
defect cavity in a photonic crystal!, they cannot couple to
each other@3#. Consequently, the dispersion relationship~and
group velocity! of the two CROW bands are identical.

II. WAVEGUIDE MODES

In a CROW comprising of weakly coupled identic
high-Q resonators separated by a distanceR, the electric field
distributionE(r ,t) describing a pulse propagating along thez
axis at the optical carrier~angular! frequencyv and wave-
vectork is @10#

FIG. 2. The Gaussian envelope of a pulse propagating in a
CROW, with the envelope of the weakly coupled resonator eig
modes shown by the dotted lines.
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E~r ,t !5eivt(
n

e2 iknRc~r2nRez!EFz50,t2
nR

v G , ~1!

where c(r ) is the individual resonator eigenmode,E(z
50,t) is the input pulse envelope, andv is the group velocity
at k5uku. The sign convention in thet andz exponents fol-
lows that of Yariv@11#. This equation is a simple restateme
of †@10#, Eq.~16!‡, obtained by dropping the summation ov
l using the arguments discussed at the end of the prev
section, and generalizing the spatial dependence ofc to the
three-vector of spatial coordinatesr . Since we consider infi-
nitely long structures, we may further drop the summat
overm in †@10#, Eq. ~16!‡ as the Born-von Karman boundar
conditions no longer apply. The terminology ‘‘input puls
envelope’’ should not be taken too literally, since the stru
tures we consider are infinitely long: it merely means that
focus on the field evolution along a section of an infin
waveguide, and the ‘‘input’’ refers to the field distribution
one edge of this structure, i.e., a boundary condition, as
cussed in@10#. The precise mathematical meaning of th
assumption is rather technical and is discussed at the en
Appendix A.

For an infinitely long CROW where the summation overn
in Eq. ~1! can be relabeled ton61, E(r ,t) satisfies the (3
11)D Bloch theorem@5,11#,

E~r1Rez ,t1R/v !5eivR/ve2 ikRE~r ,t !. ~2!

Consequently, the field can be written in the Bloch form,

E~r ,t !5eivte2 ik~v!zuk~v!~r ,t !, ~3!

whereuk(v)(r ,t) is a vector-valued function with the period
icity of the CROW ‘‘lattice’’ and can be written out explicitly
as

uk~v!~r ,t !5(
n

eikv~z2nR!c~r2nRez!EFz50,t2
nR

v G .
~4!

The propagation ‘‘constant’’k and the Bloch wave function
depend on the frequencyv through the dispersion relation
ship. Nevertheless, our writing the eigenmodes in the Blo
form Eq.~3!, is mainly for notational convenience in Sec. II
Plane waves of the form exp(2ikz) are not eigenmodes of th
CROW waveguide in the tight-binding analysis.

The Bloch wave function is normalized according to t
following inner-product definition between the vector spa
of the Bloch wave function and its dual space,

E dt

T E dr e~r !@uk~v!~r ,t !#* uk~v!~r ,t !51, ~5!

where the spatial integration extends over a unit cell and
temporal integration over the extent of the pulse envelo
with a characteristic time constantT. This ensures that Eq
~5! still represents an electromagnetic energy conserva
relationship@18#, and can be interpreted as yielding a tim

D
-
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SECOND-HARMONIC GENERATION WITH PULSES . . . PHYSICAL REVIEW E 65 026607
averaged energy stored in a unit cell volume@19#. We
will abbreviate the notation to an integration over the fo
vector r.

Maxwell’s equations imply that the waveguide field di
tribution satisfies the following equation@11,18#:

“3@“3E#1
e~r !

c2

]2E

]t2 50, ~6!

and substituting in the Bloch form Eq.~3! for E(r ,t), we can
write this as an eigenvalue problem@20# for the Bloch wave-
function uk(v)(r ,t),

Huk~v![2k2ez3@ez3uk~v!#1“3@“3uk~v!#

2 ik@ez3@“3uk~v!#1“3@ez3uk~v!##

1
e~r !

c2 F]2uk~v!

]t2 1 i2v
]uk~v!

]t G
5

v2

c2 e~r !uk~v! . ~7!

Note that Eq.~6! is not an eigenvalue equation—central
stating the wave equation as an eigenvalue problem~in the
variablev! is the assumption of time-harmonic solutions,
the introduction ofv through a multiplicative term such a
exp(ivt). On the other hand, the presence ofv in the defini-
tion of the operatorH in Eq. ~7! does not invalidate
the interpretation of Eq.~7! as an eigenvalue equation fo
uk(v)(r ,t) @21#.

It is straightforward to verify that the operatorH is Her-
mitian ~see Appendix A for an outline of the proof!. As a
consequence of the dispersion relationship in the waveg
@18#, the eigenvaluev2/c2 is parametrized byk, and we can
use the Hellman-Feynman theorem@21#,

d~w/c!2

dk
5E d4r @uk~v!#* @22kez3@ez3uk~v!#

2 iez3@“3uk~v!#2 i“3@ez3uk~v!##

1 i
2

c2

dv

dk E d4r e~r !@uk~v!#*
]uk~v!

]t
. ~8!

Recognizing thatdv/dk defines the group velocityv @11#,
Eq. ~8! can be rewritten as

vF2v

c2 2 i
2

c2 E d4r e~r !@uk~v!#*
]uk~v!

]t G
5E d4r @uk~v!#* @22kez3@ez3uk~v!#

2 iez3@“3uk~v!#2 i“3@ez3uk~v!##. ~9!

III. SECOND-HARMONIC GENERATION

The standard approach to second-harmonic generatio
bulk crystals introduces an envelope for the waveguide m
at the second-harmonic frequency and accounts for the
02660
-

r

de

in
e
n-

eration of this envelope as a consequence of the nonlin
polarization in the medium@11,12#. We will adopt a similar
approach, taking the field distributions from the linear tigh
binding equations, i.e., we do not consider second-harmo
generation of intrinsically nonlinear pulse shapes such
solitons in this analysis. In bulk crystals, the eigenmodes
usually of a simple form—exp@i(vt2kz)#—and the resultant
equations for both cw waves and slowly varying envelo
pulses are derived in@12#. In a CROW, the eigenmodes ar
more complicated as seen in Eq.~1!, but the analysis can be
carried out on similar lines. We have shown that in a CRO
a single-envelope functionE(z) can be applied to the field
describing a pulse as a whole@22#. We adopt an approach
based on the Bloch representation Eq.~3! that can be applied
to other types of field propagation and evolution problem
where the structure exhibits spatial or temporal variatio
and does not admit simple complex exponential eigenmo

As discussed in detail in@22#, we may assume the follow
ing Ansatzdescribing a pulse at the second-harmonic~car-
rier! frequency 2v,

E2~r ,t !5E2~z!ei2vte2 ik2vzuk~2v!~r ,t !, ~10!

whose Bloch component follows Eq.~9! with v replaced by
2v, and using the symbolv2 for the group velocity at the
second-harmonic frequency.

The nonlinear polarizationPNL(r ,t) generates the second
harmonic fieldE2(r ,t) according to@11,12,18#

“3@“3E2#1
e~r !

c2

]2E2

]t2 52
1

c2

]2

]t2 PNL~r ,t !. ~11!

We use the slowly varying approximation@11,12# to ne-
glect the second-order derivatives of the envelope,

Ud2E2

dz2 U!k2vUdE2

dz U, k2v
2uE2u. ~12!

The spatial derivatives can be written as

“3@“3E2#

5ei2vte2 ik~2v!zF i
]E2

]z
$22k2vez3@ez3uk~2v!#

2 iez3@“3uk~2v!#2 i“3@ez3uk~2v!#%

1E2$2k2v
2ez3@ez3uk~2v!#1“3@“3uk~2v!#

2 ik2v~ez3@“3uk~2v!#2 i“3@ez3uk~2v!#!%G ~13!

and the temporal derivatives can be written as
7-3
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]2E2

]t2 5ei2vte2 ik~2v!zH E2F]2uk~2v!

]t2 1 i2~2v!
]uk~2v!

]t

2~2v!2uk~2v!G J . ~14!

We substitute Eqs.~13! and ~14! in Eq. ~11! and use the
eigenvalue equation foruk(2v) @analogous to Eq.~7!# to can-
cel certain terms. The result can be written as

i
dE2

dz
@22k2vez3@ez3uk~2v!#2 iez3@“3uk~2v!#

2 i“3@ez3uk~2v!##

5eik~2v!ze2 i2vtF2
1

c2G ]2

]t2 PNL~r ,t !. ~15!

Next, we form the inner product of both sides of Eq.~15!
with uk(2v)* and integrate overt andr as in Eq.~5!. Using Eq.
~9! at the second-harmonic frequency, the left-hand side
Eq. ~15!, which we write asL, becomes
02660
of

L5 i
dE2

dz
v2F4v

c2 2 i
2

c2 E d4r e~r !@uk~2v!#*
]uk~2v!

]t G .
~16!

We simplify the right-hand side of Eq.~15! using Eq.~B7!
if we may assume an undepleted fundamental, or using
~B8! otherwise. The differences between the two cases
mostly notational and we will consider the former first. Wi
the following definitions based on Eqs.~10! and ~B1!,

Dkn[k1~v!1k2~v!2k~2v!1n
2p

R
,

p~r ,t ![uk1~v!~r ,t2z/v1!uk2~v!~r ,t2z/v1!, ~17!

forming the above-mentioned inner product of the right-ha
side of Eq.~15!, which we write asR, yields
R52
1

c2 E1
2E d4r e2 iDKnzein~2p/R!z@uk~2v!~r ,t !#* •d̃~r !F]2p

]t2 12i ~2v!
]p

]t
1~ i2v!2pG . ~18!

From Eqs.~16! and~18!, it is clear thatE2 will remain small unless there exists an integern such thatDkn is very small.
Then, exp(2iDknz) is essentially constant over one unit cell and can be pulled out of the integral. Therefore,

R5
4v2

c2 E1
2e2 iDknzFDn

~0!2 i
1

v
Dn

~1!2
1

4v2 Dn
~2!G , ~19!

where

Dn
~0![E d4r ein~2p/R!z@uk2~2v!~r ,t !#* •d̃~r !uk1~v!~r ,t2z/v1!uk2~v!~r ,t2z/v1!, ~20!

Dn
~1![E d4r ein~2p/R!z@uk2~2v!~r ,t !#* •d̃~r !

]

]t
@uk1~v!~r ,t2z/v1!uk2~v!~r ,t2z/v1!#, ~21!

Dn
~2![E d4r ein~2p/R!z@uk2~2v!~r ,t !#* •d̃~r !

]2

]t2 @uk1~v!~r ,t2z/v1!uk2~v!~r ,t2z/v1!#. ~22!

To allow for variations in the envelope of the fundamental, we replaceE1
2 in Eq. ~19! by E1(z). We write down the

equation that describes the evolution of the envelope of the second-harmonic field~at the frequency 2v! in its complete form
for convenient reference,
7-4
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dE2

dz
5F i

4v

c2 1
2

c2 E d4r e~r !@uk~2v!~r ,t !#* •
]

]t
uk~2v!~r ,t !G214v2

v2c2 expF2 i S k1~v!1k2~v!2k~2v!1n
2p

R D zG
3H E d4r ein~2p/R!z@uk2~2v!~r ,t !#* •d̃~r !E1~z!2Fuk1~v!~r ,t2z/v1!uk2~v!~r ,t2z/v1!

2
i

v E d4r ein~2p/R!z@uk2~2v!~r ,t !#* •d̃~r !
]

]t
@uk1~v!~r ,t2z/v1!uk2~v!~r ,t2z/v1!#

2
1

4v2 E d4r ein~2p/R!z@uk2~2v!~r ,t !#* •d̃~r !
]2

]t2 @uk1~v!~r ,t2z/v1!uk2~v!~r ,t2z/v1!#G J . ~23!
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IV. DISCUSSION

A closed form solution of Eq.~23! under general condi
tions is not known, and may not always be necessary in v
of the different time scales on the right-hand side of Eq.~23!.
For certain practical applications, it may be simplest to ad
a numerical evaluation procedure instead of attempting
analytical solution. In this paper, instead, we will discu
certain simplifications which can lead to closed form so
tions and demonstrate a correspondence with known re
in the theory of second harmonic generation with cw wav

As expected, dropping the time dependence and settin
time derivatives to zero in Eq.~23! yields the equation for
second-harmonic generation with cw fields. This is an or
nary differential equation forE2(z) and can be solved quit
easily with the assumption of an undepleted constant en
lope fundamental. For efficient growth of the second h
monic even at this level of simplification highlights the pha
matching condition,

k~2v!5k1~v!1k2~v!1n
2p

R
,

~24!
n50,61,62,...,

which explicitly involves the Bloch wave ‘‘vector’’n2p/R.
The enhanced efficiency of second-harmonic generatio
such a CROW structure is presented in@3#.

Analytical time-dependent solutions may also be obtain
under certain approximations. We will continue to assu
that E1 is constant~undepleted constant fundamental! and
introduce the parameterp[1/(i2v). Using Eqs.~20!–~22!,
we can write Eq.~23! as

v2

dE2

dz
52

E1
2

2pv2
F11pE d4r e~r !@uk~2v!#*

]

]t
uk~2v!G21

3e2 iDkn@Dn
~0!12pDn

~1!1p2Dn
~2!#. ~25!

For reasonably well-behaved picosecond pulses at
second harmonic@see Eq.~4!#, we may assume

UpE d4r e~r !@uk~2v!#*
]

]t
uk~2v!U!1. ~26!
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To see this, we refer to Eq.~4! and consider a Gaussian puls
centered at a second-harmonic frequency of 532 nm i
CROW, E2(z50,t)5exp(2t2/t2) where the pulse widtht is
1 ps. Then, the left-hand side of Eq.~26! can be written as

1.8310215s

~1310212!2s2 E dt

T
2tE dr e~r !@uk~2v!#* uk~2v!

<
1.8310215s

~1310212!2s2 2T ~27!

since the range oft integration in Eq.~5! is over a time scale
T. For picosecond pulses,T is on the order of picoseconds
and therefore, the above number is on the order of 1022 or
smaller.

The dominant contribution to second-harmonic generat
then follows the equation

dE2
~0!

dz
52

E1
2

2pv2
e2 iDknz@Dn

~0!12pDn
~1!1p2Dn

~2!#. ~28!

Equation~28! can be integrated with the usual bounda
conditionE2

(0)(z50)50,

E2
~0!~z!52 i Fsin@Dknz/2#

Dknz/2 Ge2 iDknz/2

3zE1
2 v

v2
FDn

~0!2 i
1

v
Dn

~1!2
1

4v2 Dn
~2!G . ~29!

The phase-matching sine function in Eq.~29! is exactly
analogous to the results of cw second-harmonic generatio
bulk crystals, but with the definition ofDkn following Eq.
~24!. The conditionDkn50 ~for somen! is known as qua-
siphase matching@11#, and reflects the important role of th
waveguide geometry on the efficiency of nonlinear p
cesses.

Equation~29! also shows that at the phase-matched c
dition, the intensity of the second harmonicuE2u2 grows qua-
dratically with distancez, the intensity of the fundamenta
uE1u2 and, in regions where it is a constant, the nonlinea
coefficientd̃; these are features in common with the analy
of second-harmonic generation in bulk media@12#. This is
7-5
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SHAYAN MOOKHERJEA AND AMNON YARIV PHYSICAL REVIEW E 65 026607
expected since we have shown that both problems reduc
that of a spatial envelope modulating a Bloch wave functi
which satisfies an eigenvalue equation~consequent of Max-
well’s equations!.

The linear growth ofE2
(0) with z cannot persist indefi-

nitely; the saturation effects may partially be accounted
by explicitly including the loss coefficient in the expressi
exp(2G2v1i2vt) in place of exp(i2vt) in Eq. ~10!. It may be
seen that Eq.~29! is valid in the regimez!v2 /G2v @3#.

In this regime, we can compute the efficiency of seco
harmonic generation by comparing the intensity at the s
ond harmonic obtained from Eq.~29! to the power flux of the
fundamental. The electromagnetic energy density for the f
damental as written in Eq.~B1! is uE1u2e(r )uk(v)* uk(v) . The
group velocityv1 ~the velocity of energy flow! is intuitively
defined as the ratio of the average power flowPv to the
time-averaged energy stored per unit length, so that

Pv5v1E d4r e@uk~v!#* uk~v!5
v1

R
uE1u2. ~30!

Using Eq. ~29!, and assuming that the process is pha
matched,

P2v~z!~z!5
v2

R UE1
2 1

v1v2
vRPvzFDn

~0!2 i
1

v
Dn

~1!

2
1

4v2 Dn
~2!GU2

. ~31!

From Eqs.~30! and~31!, the second-harmonic generatio
efficiency atz5L is

h~L !5
P2v

Pv
5

1

v1
2v2

v2RPvL2UDn
~0!2 i

1

v
Dn

~1!2
1

4v2 Dn
~2!U2

.

~32!

The factors of 1/v1
2 and 1/v2 show that the efficiency o

second-harmonic generation is greatly increased by slow
down the propagation of pulses in the waveguide.

The equations describing sum-frequency generation
photonic crystal waveguides with time-independent en
lopes has been formulated by Sakoda and Ohtaka and so
using a Green’s function@23,24#. There are similarities be
tween their analysis and those in@3#, and with the time-
independent limit of the formulation in this paper. The e
pression derived by Sakoda and Ohtaka for an ‘‘effect
nonlinear susceptibility’’ in Eq.~19! of @23# is similar to Eq.
~20! in this paper and their results in Eqs.~24! and ~A7! of
@23# are similar to Eq.~29!. In particular, the enhancement o
the field intensity by a factor 1/v2 as in Eq.~32! and the
conservation of crystal momentumDkn(z)50 are similar.
We point out that in contrast with Appendix A of@23#, plane
waves are not eigenfunctions of a CROW and evaluation
the integrals in a Green’s function approach to the prob
in this paper may not be possible.

A numerical study of pulsed second-harmonic genera
in certain one-dimensional periodic structures~dielectric
stacks! was presented by Scaloraet al. @16#. The principle
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difference in their structure from a CROW lies in the loc
tion of the dispersion curve in the band diagram: in the str
ture of Scaloraet al., pulses are tuned to the band edg
whereas in the case of the CROW shown in Fig. 1, the de
cavity modes lie within the bandgap, and pulse propaga
results from the weak overlap of the spatial distributions
these eigenmodes@3#.

Although the physics behind the observations is differe
there are several common phenomena such as a large re
tion in the group velocity of pulse propagation~when tuned
to the appropriate part of the spectrum! and increased inten
sity inside the waveguide relative to free space. The plots
the ‘‘pump field eigenmode distribution’’ as numerically ob
tained by Scaloraet al. ~@16#, Fig. 4! from numerical simu-
lations also correspond closely to our theoretical formulat
in @10#, which contains an~MPEG! animation of linear pulse
propagation in waveguides whose eigenmodes are define
a tight-binding analysis. This is a direct consequence of
similarities in the geometrical structure of deep-grating ph
tonic bandgap structures@17# and a one-dimensional CROW

Scaloraet al. show that in the context of the slowly vary
ing envelope approximation as used here, the assumptio
an undepleted fundamental is valid~i.e., negligible absorp-
tion is observed! and in this regime, the efficiency of secon
harmonic generation is increased by orders of magnitud
predicted in Eq.~32!. For certain aspects of the problem
numerical simulations offer insight not yet available from
theoretical investigation. As we have mentioned in Appen
A, the problem of coupling a pulse into or out of such
structure cannot be described as a Hermitian eigenv
problem. Scaloraet al. demonstrate via simulations the im
portance of the pulse width in coupling into such
structure—pulses with a spectral width larger than that of
transmission resonance at the band-edge experience
field intensity enhancement. It is not clear at present if
bandwidth limitations that arise from the discrete geome
of a CROW@10# are related to this phenomena.

V. SUMMARY

We have derived the equation governing the propaga
and generation of a waveguide field at the second-harm
frequency as a consequence of a nonlinear polarization
duced in a CROW by a field at the fundamental frequen
The Bloch functions in the description of the wavegui
fields satisfy an eigenvalue equation, and the coupling of
fields may be described by a coupled-mode theory analog
to the treatment of coupled dielectric waveguides.

The CROW geometry can be applied to a variety
physical realizations, such as superstructure Bragg grat
and photonic crystal waveguides. The present analyt
study complements the approach of numerical simulatio
and is based on a formalism that explicitly considers
temporal coordinate in the Bloch wave functions and en
lopes. The procedure we have employed is relevant to st
tures that lack space-invariance or time-invariance sym
try, as long as the form of the eigenmodes are known~or a
reasonable ansatz is imposed! and their propagation is gov
erned by an eigenvalue equation with a Hermitian opera
7-6
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and appropriate boundary conditions.
We have derived an approximate but analytical express

for the efficiency of unsaturated second-harmonic gen
tion. We have also shown how the characteristics of the s
ond harmonic field in a CROW has certain features in co
mon with the well-known results in the generation of t
second harmonic via cw waves in bulk crystals; these foll
from the specific form imposed by the physics on theAnsatz
of the fields in such waveguides. A four-wave mixing pro
lem in this framework is discussed in@4#.
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APPENDIX A: OUTLINE OF THE PROOF
OF THE HERMITICITY OF H

Using the following two vector identities,

“•~a3b!5b•~“3a!2a•~“3b!,

a•~b3c!52~b3a!•c, ~A1!

it is easy to show that the the linear operatorH defined in Eq.
~7! is Hermitian, provided that the boundary conditions a
of the appropriate form@20#. To show this explicitly for each
of the six component terms ofH as written in Eq.~7! is
needlessly tedious, as all the necessary operations ca
demonstrated by considering terms 3 and 4 ofH. We will
therefore show that the operatorH8 which is defined by

H8uk~v![2 ikv$“3@ez3uk~v!#1ez3@“uk~v!#%
~A2!

is Hermitian, i.e., satisfies the following equality among
ner products:

~uk~v! ,H8uk~v!!5~H8uk~v! ,uk~v!! ~A3!

with the inner product definition following Eq.~5!. The full
operatorH can be checked in a similar way.

If the following boundary condition holds:

E dt

T E dr e~r !“•@~“3uk~v!!3uk~v!
* #50, ~A4!

where the region ofr integration is over a unit cell and th
region of t integration is over temporal extent of the env
lope, then using Eq.~A1!,

~uk~v! ,H8uk~v!!5E dt

T E dr @2 ikve~r !#@~“•uk~v!!* @ez

3uk~v!#2~ez3uk~v!!* ~“3uk~v!!#

5E dt

T E dr @2 ikve~r !#@2~ez3@“

3uk~v!# !* uk~v!2~“3@ez3uk~v!# !* uk~v!

5~H8uk~v! ,uk~v!!. ~A5!
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For terms 5 and 6 ofH as given by Eq.~7!, the following
boundary condition is needed:

E dr e~r !F @uk~v!#* S e~r !

c2

]uk~v!

]t D U
t2

t1G50. ~A6!

Equations~A4! and~A6! are satisfied physically since th
CROW is a spatially periodic structure and the pulse en
lope goes to zero at both ends of thet integration.

Such boundary conditions assume that the problem of
terest is physically completely contained in the CROW, i.
problems of coupling a pulse into or out of a CROW of fini
length cannot be described by Hermitian eigenvalue eq
tions as the bilinear concomitant between the original diff
ential equation and its Hermitian adjoint is no longer pe
odic @20#. In such circumstances, one can resort to dir
numerical methods of analysis@25#.

The imposition of closed boundary conditions in the te
poral domain is a physical realistic approximation we ha
used in an attempt to keep the analysis in this paper fr
becoming excessively complicated. A more correct appro
would allow the positive temporal boundary to go to infini
and impose appropriate Cauchy boundary conditions~value
and slope specified! on the wave equation. Whereas Cauc
boundary conditions overspecify a closed boundary hyp
bolic differential equation, they provide for a unique an
stable solution to the open boundary problem@20#.

APPENDIX B: NONLINEAR POLARIZATION
FOR SECOND-HARMONIC GENERATION

We assume the following forms for two fields at the fu
damental frequencyv:

Ea~r ,t !5E1eivte2 ik1~v!zuk1~v!~r ,t !

Eb~r ,t !5E1eivte2 ik2~v!zuk2~v!~r ,t !. ~B1!

For each field, the frequency-domain~temporal Fourier
transformed! field can be written as

Ẽ~r ,V![E1E dt e2 iVtE~r ,t !

5E1e2 ik1~v!zũk1
~r ,V!, ~B2!

where we use the tilde to represent Fourier transform
fields.

The frequency-domain nonlinear polarization for secon
harmonic generation atv2 is given by@11,12#

P̃NL~r ,v2!5d̃~r !E
2`

`

dVẼa~r ,v22V!Ẽb~r ,V!,

~B3!

whered̃ is the effective second-order nonlinearity coefficie
of the medium. Using Eq.~B2!, Eq. ~B3! can be written as

P̃NL~r ,v2!5d̃~r !E1
2E

2`

`

dVe2 i @k1~v22V!1k2~V!#zũk1
~r ,v2

2V2v!ũk2
~r ,V2v!. ~B4!
7-7
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The dispersion relationship betweenk andv implies that
we can expandk(v) in a Taylor series about the centr
frequency of each pulse@11#. We retain terms up to the linea
in v to write

k1~v22V!5k11
dk

dvU
v

~v22V2v!,

k2~v!5k21
dk

dvU
v

~V2v!. ~B5!

The group velocity atv1 is defined by the relation 1/v1
5(dk/dv)uv1

. The assumption of a linear dispersion re
tionship in a CROW is not as restrictive as one might exp
based onv-k curves for conventional waveguides. From t
ica
B

tt

T.

02660
-
t

tight-binding analysis, the dispersion relationship for
weakly coupled CROW can be written as

v~k!5VF12
a

2
1k cos~kR!G , ~B6!

whereV is the mode frequency of the individual resonato
Da is an overlap integral andk is a coupling coefficient. The
group-velocitydv/dk goes to zero at the edges of the Br
louin zonek50, 6p/R, but is approximately constant in th
central portion of the zone, where the dispersion relations
is linear.

We can use Eq.~B5! in Eq. ~B4! and take the inverse
Fourier transform to write the nonlinear polarization in t
time domain,
nt
PNL~r ,t !5E dv2

2p
eiv2tP̃NL~r ,v2!

5d̃~r !E1
2e2 i ~k12v/v1!ze2 i ~k22v/v1!zE dv2

2p
eiv2~ t2z/v1!E

2`

`

dVũk1
~r ,v22V2v!ũk2

~r ,V2v!

5d̃~r !E1
2@ei ~vt2k1z!uk1~v!~r ,t2z/v1!#@ei ~vt2k2z!uk2~v!~r ,t2z/v1!#. ~B7!

This can be easily generalized to include a spatial dependency in the envelopeE1 . We can simply include the nonconsta
part of E1 with the spatially~and temporally! varying functionuk(v)(r ,t) as the physical interpretation ofuk(v) as a Bloch
wave function is irrelevant here. The result is

PNL~r ,t !5d̃~r !@Ea~z!ei ~vt2k1z!uk1~v!~r ,t2z/v1!#@Eb~z!ei ~vt2k2z!uk2~v!~r ,t2z/v1!#. ~B8!

In this paper, we will assume for simplicity that the envelopesEa andEb are constant5E1 , signifying an undepleted field
at the fundamental frequencyv.
n,
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