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Second-harmonic generation with pulses in a coupled-resonator optical waveguide
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We describe the generation and propagation of pulses in a coupled-resonator optical waveguide driven by a
nonlinear polarization using a method closely related to the coupled-mode theory. The specific example we
consider is that of second-harmonic generation. This formalism explicitly accounts for temporal dependencies
in the waveguide field distributions and in their representations in terms of slowly modulated Bloch wave
functions, in contrast with the equations obtained previously for cw second-harmonic generation.
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[. INTRODUCTION weakly coupled to one another. In this case, the waveguide
modes are closely related to the eigenmodes of the individual

A type of waveguide based on the coupling of opticalelements rather than to the complex-exponential eigenmodes
resonators has been recently introduced, and is called th¥f free-space propagation. Recent experiments in the micro-
coupled resonator optical waveguid€ROW) [1]. As the wave and optical regime have demonstrated the validity of
name suggests, waveguiding in a CROW is achieved funddhe tight-binding approximation in a weakly coupled CROW
mentally not by total internal reflection or Bragg reflection Structure[8,9].
from a periodic structure, but instead, by the overlap between Prior to[10], the analysis of field evolution in CROWSs
the individual resonator modes of the structural elements thd@nd related structurgbas been restricted to monochromatic
comprise the waveguide. In a two-dimensiof@D) photo- ~ Waves at the eigenfrequencies of the waveguide. We have
nic crystal, formed by etching a periodic array of air holesrecently described the linear propagation of pulses with a
(of refractive indexn,) in a dielectric materialof refractive =~ nonzero spread of wave vectors, resulting in a closed-form
indexn,) [2], a CROW can be realized, as shown in Fig. 1,expression for the electric field due to pulse propagation in a
by coupling defect cavities as the individual resonators. ~ CROW, as shown in Fig. 2.

CROWs offer remarkable possibilities for optical compo- ~ The analysis of10] shows that the waveguide imposes
nent design. A CROW formed by weak coupling of high- limits on both the maximum and minimum temporal extent
individual resonator modes is characterized by a nearly fla@f the pulse. While the latter is a consequence of the spatial
dispersion relationship and potentially very low group veloc-geometry of the waveguide, the limit on the maximum pulse
ity in the waveguidd 1], which can be used for efficient cw duration is directly related to the finite length of the struc-
second-harmonic generati¢8]. Further, a weakly coupled ture. Following the literature convention on second-harmonic
CROW implies tight confinement of the optical power in the generation in bulk crystal$11,12, we assume that the
individual resonator modes, which leads to very high opticasecond-harmonic generation processes described in this pa-
intensities even at moderaferopagating power levels. This ~ Per take place over an essentially infinitely long waveguide.
property, in conjunction with the low group velocity, can be ~ This paper investigates how the nonlinear polarization
utilized in a photorefractive CROW for holography of optical 9enerated in a CROW at the second-harmonic frequeofcy
pulses with much lower intensities than in conventional di-2 reference pulsechanges the amplitude of the waveguide
electric waveguides, leading to the possibility of single-shot
room-temperature optical pulse storage and reafgut

The formalism used to analyze the waveguide modes in
such structures is known as the tight-binding approximation
in solid-state physic5,6]. It describes electrons in a crystal
with a strong periodic potential due to the lattice structure of
localized atoms, characterized by a weak overlap between
the atomic wave functions. By analogy, the optical structures
that can be described using the tight-binding approximation
are those that consist of isolated structural elements capable
of supporting localized electromagnetic fiel@sg., highQ
resonators such as defect modes in photonic cry$)s

cavity

FIG. 1. Schematic of an infinitely long 1D CROW with period-
*Electronic address: shayan@caltech.edu; icity R consisting of defect cavities embedded in a 2D photonic
URL: http://www.its.caltech.ediishayan crystal.

1063-651X/2002/6&)/0266078)/$20.00 65 026607-1 ©2002 The American Physical Society



SHAYAN MOOKHERJEA AND AMNON YARIV PHYSICAL REVIEW E 65 026607

Y

nR
z=0t— —
v

b E(r,t)=€"“"> e " Ry(r—nRe,)&
envelope of the modes |i n
of the individual
structural elements

where ¥fr) is the individual resonator eigenmodé(z
=0;) is the input pulse envelope, ands the group velocity
atk=|k|. The sign convention in theandz exponents fol-
lows that of Yariv[11]. This equation is a simple restatement
of [[10], Eq.(16)], obtained by dropping the summation over
| using the arguments discussed at the end of the previous
section, and generalizing the spatial dependencg¢ tf the
o\ U three-vector of spatial coordinatesSince we consider infi-
-3 -1 1 nitely long structures, we may further drop the summation
Distance (arb. units) overmin [[10], Eq.(16)] as the Born-von Karman boundary
) o conditions no longer apply. The terminology “input pulse
FIG. 2. The Gaussian envelope of a pulse propagating in a 1Ry elope” should not be taken too literally, since the struc-
CROW, with the envelope of the weakly coupled resonator €igeny, a5 we consider are infinitely long: it merely means that we
modes shown by the dotted lines. focus on the field evolution along a section of an infinite

waveguide, and the “input” refers to the field distribution at

field distribution that describes a propagating pulse. In thg,ne edge of this structure, i.e., a boundary condition, as dis-
CROW structures we investigate, pulses can propagate Wil ssed in[10]. The precise mathematical meaning of this

very little distortion in their envelopegl0], and therefore, assumption is rather technical and is discussed at the end of
the effect of a pulse at one optical frequency on another at & pnendix A.

different optical frequency can be treated in the same frame-" g4, an infinitely long CROW where the summation ower
work as the conventional coupled-mode theory of waveguidg, Eq. (1) can be relabeled ta+1, E(r,t) satisfies the (3
modes[11]. The reason for our interest in this phenomenon, , 1)D Bloch theoren{5,11]

aside from it being the most fundamental(gtiasi) nonlin- T

ear phenomena in the coupled-mode framework, is the fol- E(r+Re,,t+R/v)=e“Rve kRE(r 1), )
lowing: the efficiency ofunsaturatedsecond-harmonic gen- ' '

eration in a CROW with cw waves is enhanced relative t0consequently, the field can be written in the Bloch form,
that in bulk crystals by the inverse ratio of the group veloci-

ties at the second harmonic frequency in the two waveguides E(r.t)=el“te k(@7 rt 3
[3], which can approach £0or 10" for weakly coupled (r.t) (1.0, @

EROWS [1]. 1t 'St' known ;hat tge tetg'c'gncﬁ O:; sec]?n(r:i]— Whereuy (1) is a vector-valued function with the period-
armonic generation Is enhanced at the band edge of pho %Wty of the CROW “lattice” and can be written out explicitly
nic crystals, for exactly similar reasons of a reduction in the

group velocity [13]. Second-harmonic generation in a

CROW combines this advantage with the enhancement of

the optical field found, e.g., in defect cavities in photonic uk(w)(r,t)ZE ek MRyfr —nRe,) €
crystals[14,15. A numerical simulation of second-harmonic n

generation with pulses in related structures is presented in 4

[16] and shows many similar features with our discussion. ) )

A prefactory caveat: the tight-binding description of cer- Th€ propagation “constantk and the Bloch wave function
tain related structures such as deep superstructure Bra&ﬁpe”d on the frequenay through the dispersion relation-
gratings[17], may correctly assume that the individual reso-S"!P- Nevertheless, our writing the eigenmodes in the Bloch
nator modes are nondegenerate. This is not strictly true for M Ed.(3), is mainly for notational convenience in Sec. IlI.
CROW, but in this paper we will restrict our discussion to Plane waves of the form exp{kz) are not eigenmodes of the
modes of a particular parity. If two degenerate single-CROW waveguide in the tight-binding analysis.
resonator modes have opposite pafiég in the case of a Thg Bl_och wave functlon is normalized according to the
defect cavity in a photonic crystalthey cannot couple to following inner-product Qeflnltlon between the vector space
each othef3]. Consequently, the dispersion relationstipd ~ Of the Bloch wave function and its dual space,
group velocity of the two CROW bands are identical.

05} i}

pulse envelope

Magnitude (arb. units)

nR
..
U

dt
| 5[ arentmnroruweo-1  ®
Il. WAVEGUIDE MODES

In a CROW comprising of weakly coupled identical where the spatial integration extends over a unit cell and the
high-Q resonators separated by a distaRcéhe electric field temporal integration over the extent of the pulse envelope,
distributionE(r,t) describing a pulse propagating along the with a characteristic time constaifit This ensures that Eq.
axis at the optical carriefangulaj frequencyw and wave- (5) still represents an electromagnetic energy conservation
vectork is [10] relationship[18], and can be interpreted as yielding a time-
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averaged energy stored in a unit cell volurfi9]. We  eration of this envelope as a consequence of the nonlinear
will abbreviate the notation to an integration over the four-polarization in the mediurh11,12. We will adopt a similar

vectorr. approach, taking the field distributions from the linear tight-
Maxwell's equations imply that the waveguide field dis- binding equations, i.e., we do not consider second-harmonic
tribution satisfies the following equatidi1,18: generation of intrinsically nonlinear pulse shapes such as

solitons in this analysis. In bulk crystals, the eigenmodes are
usually of a simple form—eXp(wt—k2)]—and the resultant
equations for both cw waves and slowly varying envelope
pulses are derived ifil2]. In a CROW, the eigenmodes are
and substituting in the Bloch form E¢B) for E(r,t), we can  more complicated as seen in @), but the analysis can be
write this as an eigenvalue probld20] for the Bloch wave-  carried out on similar lines. We have shown that in a CROW,

e(r) ¢°E

VX[VXE]-F?W: ) (6)

function uy,)(r,t), a single-envelope functiok(z) can be applied to the field
5 describing a pulse as a whd@2]. We adopt an approach
Huy(o)=—K€X[€,XUy() ]+ VX[V XUy(y,)] based on the Bloch representation E).that can be applied

to other types of field propagation and evolution problems,
where the structure exhibits spatial or temporal variations
€(r) [ PUy) . Uk and does not admit simple complex exponential eigenmodes.
2 a2 O As discussed in detail if22], we may assume the follow-
ing Ansatzdescribing a pulse at the second-harmo(uiar-

rier) frequency 2,

—IK[&,X[V X Uy() ]+ VX[ &,X Uy(e)]]

C

02
= ?E(r)uk((u)- (7)

Note that Eq.(6) is not an eigenvalue equation—central to Ea(r,t) =Ex(2)e2 e 2y, (1, 1), (10)
stating the wave equation as an eigenvalue prolienthe
variablew) is the assumption of time-harmonic solutions, or
the introduction ofw through a multiplicative term such as
exp(wt). On the other hand, the presencewoin the defini-
tion of the operatorH in Eqg. (7) does not invalidate
the interpretation of Eq(7) as an eigenvalue equation for
Uk(w)(r,t) [21]

It is straightforward to verify that the operatbtis Her-
mitian (see Appendix A for an outline of the prgofAs a e(r) 6%E, 1 52
consequence of the dispersion relationship in the waveguide VX[VXE,]+ Z @ — P (r,t). (1
[18], the eigenvalua?/c? is parametrized bk, and we can at ¢t at
use the Hellman-Feynman theor¢gi],

whose Bloch component follows E¢P) with o replaced by
2w, and using the symbal, for the group velocity at the
second-harmonic frequency.

The nonlinear polarizatioRy (r,t) generates the second-
harmonic fieldE,(r,t) according to{11,12,18

We use the slowly varying approximati¢tl,12 to ne-

2
d(w/c) :f A [ Uy ]* [ — 2Ke, X [€,X Uy ] glect the second-order derivatives of the envelope,
—ieZX[VXUk(w]_iVX[erUK w)]] d2E2 <k dE2 K 2E 12
k(w) 2| ez Keo'lBal 12

C dk f d re(r)[uk(w)]* (8)

Recognizing thatw/dk defines the group velocity [11], ~ 'Ne spatial derivatives can be written as
Eg. (8) can be rewritten as

M) VX[V XE,]

2 4 *
|? d r E(r)[uk(w)] T

- f AU ¥ — 2Ke, X[ € U]

1% ?_
i 2w’[ —ik(2w)z

=e { 2K,€,X [ €,X Uy(2) ]

— i€, X[V X Uy24)] =1V X[€X U2 I}
~1€X[V XUy | =1V X[ €X Uy 1] ©) +Ep{ — Koo, € X [€,X Uy(26)] + VX[V X Uy 2]

IIl. SECOND-HARMONIC GENERATION 1K (€,X [V X U2y ]~ 1V X[€,X U2y )} (13)

The standard approach to second-harmonic generation in
bulk crystals introduces an envelope for the waveguide mode
at the second-harmonic frequency and accounts for the geiand the temporal derivatives can be written as
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PEy L. U200 k(2w .dEz 4o k(2w
—Z =gl 20lgik20)Z{ E [_Q_at L +i2(2w ) ) L=i—vg| oz |7fd I’G(r)[uk(Zw)] )
(16)
_(Zw)zuk(zw)H- (14

We simplify the right-hand side of E¢15) using Eq.(B7)

We substitute Eqs(13) and (14) in Eq. (11) and use the jf we may assume an undepleted fundamental, or using Eq.
eigenvalue equation far,, [analogous to Eq.7)] to can-  (B8) otherwise. The differences between the two cases are
cel certain terms. The result can be written as mostly notational and we will consider the former first. With

the following definitions based on Egd.0) and(B1),

dE; .
I E[_ 2K2,€, X[ €,X U(24) | — 1€, X[V XU (2]

2
— iV X[&,X Uyz,)]1] AknEkl(w)+k2(w)—k(2w)+n?,
2

) ) J
:elk(Zw)Zefl2wt C2 PPNL(r7t)' (15)

p(r,t)Eukl(w)(r,t—z/vl)ukz(w)(r,t—z/vl), (17
Next, we form the inner product of both sides of Eg5)
with u:(z(u) and integrate overandr as in Eq.(5). Using Eq.
(9) at the second-harmonic frequency, the left-hand side oforming the above-mentioned inner product of the right-hand
Eq. (15), which we write asC, becomes side of Eq.(15), which we write asR, yields

L o st omiaKzaineiR T PO B
R=—?Elfd r e 1AKnZgin(2m >Z[uk(2w)(r,t)]*-d(r) W+2|(2w)5+(|2w) pl. (18

From Egs.(16) and(18), it is clear thatE, will remain small unless there exists an integesuch thatAk, is very small.
Then, exp{iAk,z) is essentially constant over one unit cell and can be pulled out of the integral. Therefore,

4o? 1 1
R= C_E2 iAknz DE]O)_I ZDE]l)_ WDEZ)} (19
where
DS‘IO)EJ d4|’ ein(ZW/R)Z[Ukz(zw)(r,t)]* 'a(r)ukl(w)(r,t_Z/Ul)ukz(w)(r,t_Z/Ul), (20)
D<1>—fd4re'n<2ﬂ’R>Z[uk2(2w(r t)]*- d(r) [uk LT t= 210 ) U () (1 =20 )], (21)
. ~ &P
D@= f dr €M ETRL U (10T B0 27 (Ui (11 20 ) Ui (11201 . (22

To allow for variations in the envelope of the fundamental, we repBgein Eq. (19) by E;(z). We write down the
equation that describes the evolution of the envelope of the second-harmoniafitié frequency @) in its complete form
for convenient reference,
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dE, [ 40 2 ([ , .0 “140? , 27
o I?_+62Jd I e(r)[Ugze)(r1)] ~Euk(2w)(r,t) Ezex —i kl(w)+k2(w)—k(2w)+nﬁ z

Ukl(w)(r,t_Z/Ul)ukz(w)(r,t_Z/Ul)

x{ | atrere iy o 1,07 BB

i 4. Ain(27/R)Z * J
W d're [ Uk, (20) (1) ] 'd(r)E[ukl(w)(rat_Z/vl)ukz(w)(rvt_Z/vl)]

1 4. Ain(27/R)z * .9 aZ
~a.2 ) dre [Uk,26)(F,1)] ‘d(r)W[ukl(w)(rat_Zlvl)ukz(w)(r!t_Z/vl)]

} : (23

IV. DISCUSSION To see this, we refer to E¢4) and consider a Gaussian pulse

. . centered at a second-harmonic frequency of 532 nm in a
A closed form solution of Eq(23) under general condi- CROW, £,(z=01) = exp(—t2/7%) where the pulse width is

tions is not known, and may not always be necessary in vie : . .
of the different time scales on the right-hand side of 8). 1 ps. Then, the left-hand side of B@6) can be written as

For certain practical applications, it may be simplest to adopt 1.8x 10" 155 dt

a numerical evaluation procedure instead of attempting an WJ' —ZIJ dr €(r)[Uzw)* Ui2e)

analytical solution. In this paper, instead, we will discuss (1x10°7)%s T

certain simplifications which can lead to closed form solu- 1.8x 10" 55

tions and demonstrate a correspondence with known results S ————57552T

in the theory of second harmonic generation with cw waves. (1X1077)%s

timés dz);R/(;?\?gé (il[(r)ogglrr;girt]hg{lgng giﬁgggﬁgcgqig?ijﬁt;g:g a§l|nce thg range ctfintegratiqn in Eq(5) is over a.time scale
. . . : o . T. For picosecond pulseg, is on the order of picoseconds,

second-harmonic generation with cw fields. This is an ordi

nary differential equation foE,(z) and can be solved quite ggiﬁgtrarefore, the above number is on the order of'1ar

easily with the assumption Qf an undepleted constant enve The dominant contribution to second-harmonic generation
lope fundamental. For efficient growth of the second har- .

. i e 9 o then follows the equation
monic even at this level of simplification highlights the phase

(27)

matching condition, dE(ZO) Ei _
) iz — 2pv e_IAan[DgO)"'Zle(ql)'f' p2D|(r-|2)] (28)
a
K(2w) = k(@) +ko( @) +n =, ?
(24) Equation(28) can be integrated with the usual boundary

=0 +1+2 conditionE{)(z=0)=0,
which explicitly involves the Bloch wave “vectorh2/R. EO(2)= —i SiAKZ/2]| iyy o
The enhanced efficiency of second-harmonic generation in 2 Ak,z/2

such a CROW structure is presented 3.

Analytical time-dependent solutions may also be obtained szZﬁ DO _; iD(l)— LD@ (29)

H H : ; : 1 n n 2%n |-
under certain approximations. We will continue to assume v 4w
that E; is constant(undepleted constant fundamentahd _ _ o _
introduce the parametgr=1/(i2w). Using Eqs.(20—(22), The phase-matching sine function in E@9) is exactly
we can write Eq(23) as analogous to the results of cw second-harmonic generation in
bulk crystals, but with the definition alk,, following Eq.

dE, Ef 4 L9 -1 (24). The conditionAk,=0 (for somen) is known as qua-
Y247 =7 2pu, 1+ pf d’r e(r)[Uk2w)] It Yk(2w) siphase matchinfl1], and reflects the important role of the
waveguide geometry on the efficiency of nonlinear pro-
x e kDO +2pD(M+ p2D (2], (25  cesses.

Equation(29) also shows that at the phase-matched con-
For reasonably well-behaved picosecond pulses at theition, the intensity of the second harmohi,|? grows qua-
second harmonifsee Eq.(4)], we may assume dratically with distancez, the intensity of the fundamental
|E4|? and, in regions where it is a constant, the nonlinearity
<1, (26) coefficientd; these are features in common with the analysis
of second-harmonic generation in bulk mediZ]. This is

4 * ?
p | dr e(r)[Uzwm] Euk(&u)
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expected since we have shown that both problems reduce thfference in their structure from a CROW lies in the loca-
that of a spatial envelope modulating a Bloch wave functiontion of the dispersion curve in the band diagram: in the struc-
which satisfies an eigenvalue equati@onsequent of Max- ture of Scaloraet al, pulses are tuned to the band edge,
well’s equationg whereas in the case of the CROW shown in Fig. 1, the defect
The linear growth ofE(zo) with z cannot persist indefi- cavity modes lie within the bandgap, and pulse propagation
nitely; the saturation effects may partially be accounted foresults from the weak overlap of the spatial distributions of
by explicitly including the loss coefficient in the expressionthese eigenmodds].
exp(—T,,,+i2wt) in place of expiRwt) in Eq. (10). It may be Although the physics behind the observations is different,
seen that Eq(29) is valid in the regimez<uv, /T, [3]. there are several common phenomena such as a large reduc-
In this regime, we can compute the efficiency of secondtion in the group velocity of pulse propagatiéwhen tuned
harmonic generation by comparing the intensity at the secto the appropriate part of the spectruand increased inten-
ond harmonic obtained from E€R9) to the power flux of the  Sity inside the waveguide relative to free space. The plots of
fundamental. The electromagnetic energy density for the funthe “pump field eigenmode distribution” as numerically ob-
damental as written in EqB1) is |El|26(r)uk(w)* Uk(w) - The tained by Scalorat al. ([16], Fig. 4 from numerical simu-
group velocityv, (the velocity of energy flowis intuitively ~ lations also correspond closely to our theoretical formulation
defined as the ratio of the average power flBy to the  in[10], which contains atMPEG) animation of linear pulse

time-averaged energy stored per unit length, so that propagation in waveguides whose eigenmodes are defined by
a tight-binding analysis. This is a direct consequence of the

. vy 5 similarities in the geometrical structure of deep-grating pho-
Pw:vlJ d*r €[ Ui ]* Uy = [Eal* (300 tonic bandgap structur¢$7] and a one-dimensional CROW.
Scaloraet al. show that in the context of the slowly vary-
matched, an undepleted fundamental is valide., negligible absorp-
tion is observegand in this regime, the efficiency of second-

va| , 1 o 1 " harmonic generation is increased by orders of magnitude as
P2u2(2)= | |Ei, —~@RP,Z2 Dy~ =Dy predicted in Eq.(32). For certain aspects of the problem,
12 numerical simulations offer insight not yet available from a
1 @ 2 theoretical investigation. As we have mentioned in Appendix
A (B) A, the problem of coupling a pulse into or out of such a

structure cannot be described as a Hermitian eigenvalue
From Egs.(30) and(31), the second-harmonic generation Problem. Scalorat al. demonstrate via simulations the im-

efficiency atz=L is portance of the pulse width in coupling into such a
structure—pulses with a spectral width larger than that of the
P, 1, |~ 1 " 1 2 2 transmission resonance at the band-edge experience little
n(L)=5—= 20, RP,LTDn =1 =Dn" = 75Dy . field intensity enhancement. It is not clear at present if the
&) 1

(32 bandwidth limitations that arise from the discrete geometry
of a CROW/[10] are related to this phenomena.

The factors of %/,2 and 1b, show that the efficiency of
second-harmonic generation is greatly increased by slowing
down the propagation of pulses in the waveguide.

The equations describing sum-frequency generation in We have derived the equation governing the propagation
photonic crystal waveguides with time-independent enveand generation of a waveguide field at the second-harmonic
lopes has been formulated by Sakoda and Ohtaka and solvé@quency as a consequence of a nonlinear polarization in-
using a Green’s functioh23,24]. There are similarities be- duced in a CROW by a field at the fundamental frequency.
tween their analysis and those [B8], and with the time- The Bloch functions in the description of the waveguide
independent limit of the formulation in this paper. The ex-fields satisfy an eigenvalue equation, and the coupling of the
pression derived by Sakoda and Ohtaka for an “effectivefields may be described by a coupled-mode theory analogous
nonlinear susceptibility” in Eq(19) of [23] is similar to Eq.  to the treatment of coupled dielectric waveguides.

(20) in this paper and their results in Eq24) and (A7) of The CROW geometry can be applied to a variety of
[23] are similar to Eq(29). In particular, the enhancement of physical realizations, such as superstructure Bragg gratings
the field intensity by a factor #f as in Eq.(32 and the and photonic crystal waveguides. The present analytical
conservation of crystal momenturkk,(z)=0 are similar. study complements the approach of numerical simulations,
We point out that in contrast with Appendix A 23], plane  and is based on a formalism that explicitly considers the
waves are not eigenfunctions of a CROW and evaluation ofemporal coordinate in the Bloch wave functions and enve-
the integrals in a Green’s function approach to the problentopes. The procedure we have employed is relevant to struc-
in this paper may not be possible. tures that lack space-invariance or time-invariance symme-

A numerical study of pulsed second-harmonic generatioriry, as long as the form of the eigenmodes are kndama
in certain one-dimensional periodic structurédielectric  reasonable ansatz is impo$exhd their propagation is gov-
stack$ was presented by Scalogt al. [16]. The principle  erned by an eigenvalue equation with a Hermitian operator

V. SUMMARY
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and appropriate boundary conditions. For terms 5 and 6 dfi as given by Eq(7), the following
We have derived an approximate but analytical expressiofoundary condition is needed:

for the efficiency of unsaturated second-harmonic genera- €(r) Uy [

tion. We have also shown how the characteristics of the sec- f dr e(r)| [Ug(e)l* Z ) =0. (A6)

ond harmonic field in a CROW has certain features in com- t_

mon with the well-known results in the generation of the
second harmonic via cw waves in bulk crystals; these follo
from the specific form imposed by the physics on &resatz
of the fields in such waveguides. A four-wave mixing prob-
lem in this framework is discussed jd].

W EquationgA4) and(A6) are satisfied physically since the
CROW is a spatially periodic structure and the pulse enve-
lope goes to zero at both ends of thimtegration.

Such boundary conditions assume that the problem of in-
terest is physically completely contained in the CROW, i.e.,
problems of coupling a pulse into or out of a CROW of finite

ACKNOWLEDGMENTS length cannot be described by Hermitian eigenvalue equa-
This work was supported by the U.S. Office of Naval tions as the bilinear concomitant between the original differ-

Research and the U.S. Air Force Office of Scientific Re-€Ntial equation and its Hermitian adjoint is no longer peri-
search. odic [20]. In such circumstances, one can resort to direct

numerical methods of analydig5].

The imposition of closed boundary conditions in the tem-
poral domain is a physical realistic approximation we have
used in an attempt to keep the analysis in this paper from
Using the following two vector identities, becoming excessively complicated. A more correct approach

would allow the positive temporal boundary to go to infinity
V- (axb)=b-(Vxa)—a-(Vxb), and impose appropriate Cauchy boundary conditimasue
) __ ) and slope specifigcbn the wave equation. Whereas Cauchy
a-(bxo) (bxa)-c, (A1) boundary conditions overspecify a closed boundary hyper-
it is easy to show that the the linear operdtodefined in Eq.  bolic differential equation, they provide for a unique and
(7) is Hermitian, provided that the boundary conditions arestable solution to the open boundary problg2a].
of the appropriate forni20]. To show this explicitly for each
of the six component terms dfl as written in Eq.(7) is APPENDIX B: NONLINEAR POLARIZATION
needlessly tedious, as all the necessary operations can be FOR SECOND-HARMONIC GENERATION
demonstrated by considering terms 3 and 4HofWe will
therefore show that the operatdr which is defined by

APPENDIX A: OUTLINE OF THE PROOF
OF THE HERMITICITY OF H

We assume the following forms for two fields at the fun-
damental frequencw:

H' Uy oy=—1k {VX[eXu +e,X[Vu Lot ik (e
k(w) ol [€X Uy ]+ X[ k(w)]} A2) E.(rt)=E,e“e ik ( )ZUkl(w)(r,t)

. " . L . . . — Tt n—iks(w
is Hermitian, i.e., satisfies the following equality among in- Ep(r,t)=Ese'“'e™ 22U, ,(r,1). (B1)

ner products: For each field, the frequency-domaittemporal Fourier

(Uk(w) »H U(w)) = (H Ug(o) » Uk ) (A3) transformedl field can be written as
with the inner product defin.ition fpllpwing Ed5). The full E(Y,Q)EElf dt e ' UE(r 1)
operatorH can be checked in a similar way.

If the following boundary condition holds: _
=E;e "l (r,Q), (B2)

dt
f ?f dr e(NV-[(VX U)X Ui =0, (A \yhere we use the tilde to represent Fourier transformed
fields.
where the region of integration is over a unit cell and the ~ The frequency-domain nonlinear polarization for second-
region oft integration is over temporal extent of the enve- harmonic generation ab, is given by[11,12
lope, then using EqAL), -
PNL(r,w2)=d(r)f dOE(r,w,— Q)Ey(r,Q),

dt
(Uk(w)aH’Uk(w)):f?f dr[—ik,e(N)][(V - Ug)*[ & B3)

X Uk ) ] = (€,X Ug)) * (V X U )] whered is the effective second-order nonlinearity coefficient
of the medium. Using Eq.B2), Eq. (B3) can be written as

dt
- [ [ art=ikoer-(extv .
’IBNL(ﬁwz):a(r)EiJ dQe_I[kl(wz_erkz(m]zﬁkl(r7602
X Uk() D) * Uk() = (V X[€,X Uy ) ) * U() o

:(H,uk(w) 1uk(w))- (AS) —Q—w)'ﬂkz(r,ﬂ—w). (B4)
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The dispersion relationship betwekrand w implies that  tight-binding analysis, the dispersion relationship for a
we can expand(w) in a Taylor series about the central weakly coupled CROW can be written as
frequency of each puldd.1]. We retain terms up to the linear

in w to write o
w(k)=Q|1— =+ kcogkR)|, (B6)
dk 2
ki(wy= Q) =k +5- (0=~ w),
@ where(} is the mode frequency of the individual resonators,
dk A« is an overlap integral and is a coupling coefficient. The
ko(w) =Ko +=—| (Q—w). (B5)  group-velocitydw/dk goes to zero at the edges of the Bril-
do © louin zonek=0, * 7/R, but is approximately constant in the

) ) . ] central portion of the zone, where the dispersion relationship
The group velocity atw; is defined by the relation &{ s |inear.

=(dk/dw)|,,. The assumption of a linear dispersion rela-  we can use Eq(B5) in Eq. (B4) and take the inverse
tionship in a CROW is not as restrictive as one might expecFourier transform to write the nonlinear polarization in the
based orw-k curves for conventional waveguides. From thetime domain,

P (r t):f%eiwztﬁm(r 3)
1 27T 1

d(,!)z

2
=d(NE[e" ' DU (o) (r,t=2/vy) ][ DU () (1 t=2Iv1)]. (B7)

:a(r)Eie*i(klfw/vl)ze*i(szw/vl)lf gl ea(t=2/vy) f, dQUkl(rywz_ Q- w)ljkz(r’g_ o)

This can be easily generalized to include a spatial dependency in the enfglojdée can simply include the nonconstant
part of E; with the spatially(and temporally varying functionu,,(r,t) as the physical interpretation of,,) as a Bloch
wave function is irrelevant here. The result is

Pru(r, ) =d(N[Ea(2)€“ M2 u () (1,t=2/v7) [ En(2)€' Uy (1 t—201)]. (89)

In this paper, we will assume for simplicity that the envelopgsandE,, are constant E,, signifying an undepleted field
at the fundamental frequenay.
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