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Diffraction effects in few-cycle optical pulses
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Basic concepts of three-dimensional wave packets are applied to the description of transverse effects on the
propagation of ultrashort~femtosecond! pulses. The frequency-dependent nature of diffraction acts as a kind of
dispersion that modifies the pulse front surface, its group velocity, the envelope form, and the carrier frequency.
If the diffracted field in the monochromatic case is known, these changes can be straightforwardly quantified.
Finding the propagated pulsed beam field reduces to a well-known and simpler problem of one-dimensional
pulse propagation with group velocity dispersion. The method is applied to pulsed Gaussian beams and pulsed
Bessel beams. Anomalous pulse front behavior, including superluminality in pulsed Gaussian beams is found.
The carrier phase at any point of space is calculated.
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I. INTRODUCTION

Diffraction of ultrashort, femtosecond light pulses, and,
particular, the effects of diffraction in their temporal for
has received considerable attention in the last few ye
@1–7#. Femtosecond pulses comprising only a few opti
oscillations can now be almost routinely generated@8#.
Changes in their temporal form during propagation in fr
space or material media due to their finite transversal
should be taken into account. In fact, these have been sh
to play an essential role in the design of experiments w
femtosecond pulses@8#, particularly in their nonlinear inter-
actions with matter@9#.

Diffraction-induced pulse transformations of femtoseco
pulses with a Gaussian transversal profile have been stu
in a number of papers@1–3#. They revealed interesting ef
fects such as pulse front curvature~time delay!, pulse broad-
ening, spectral changes leading to redshift or blueshift
optical oscillations, and the time-derivative effect at the
field. Due to the lack of closed-form analytical expressio
for the propagated field, most of these phenomena have
described qualitatively from numerical simulations@1#, from
particular on-axis@3# or asymptotic expressions at the fie
@1#, or from inspection of the corresponding spectra@2#.

As claimed in Ref.@3#, there is need of a simple theory o
diffraction of femtosecond pulses, comparable in its simp
ity to that of monochromatic Gaussian beams. The pres
paper represents an effort in that direction. By using elem
tal concepts on the propagation of three-dimensional w
packets@10# such as the pulse front surface, its group velo
ity, and group velocity dispersion, we can describe and c
sify the above effects~and others! in a natural order, write
down simple accurate analytical expressions for them and
the propagated field of general~non-Gaussian! pulsed beam
sources at any point of space. Diffraction-induced trans
mation of pulses is expressed in the familiar language
one-dimensional pulse propagation in media with phase
gain dispersion@11#.

We apply this method to obtain a detailed characteriza
of the field of pulsed Gaussian beams and pulsed Be
beams. In the first case, we find some unnoticed feat
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such as pulse front and wave front with opposite curvatu
within the Rayleigh range and superluminality outside t
range. Particular attention is paid to changes in the ‘‘car
phase,’’ or in the relative position of the carrier oscillatio
with respect to the envelope, an essential parameter in
phase-sensitive nonlinear interactions of femtosecond pu
@8,9#. An accurate expression for the carrier phase at
point of space is provided.

Throughout this paper, a function of timef (t) will be
represented by its complex analytic signalF(t) @12#, whose
real part givesf (t). The real and imaginary parts ofF(t) are
Hilbert transform pairs@10#. If the frequency spectrum o
f (t) is f̂ v , i.e.,

f ~ t !5
1

2pE2`

`

dv f̂ v exp~2 ivt !, ~1!

then the frequency spectrum of the analytic signal isF̂v

52u(v) f̂ v , whereu(•) is the Heaviside step function. Th
analytic signal

F~ t !5
1

pE0

`

dv f̂ v exp~2 ivt ! ~2!

thus has no negative frequencies and the positive ones
doubled. In this paper, the symbolsDt and Dv will mean
full width at half maximum~FWHM! of uF(t)u2 and u f̂ vu2,
respectively.

II. THEORY

A. Preliminaries

We consider a spatially and temporally localized optic
disturbanceE(r' ,t), r'[(x,y) of the frequency spectrum
Êv(r') at a certain planez50 of a suitable Cartesian coor
dinate system, and study how the radiated fieldE(r,t), r
[(x,y,z) propagates in the half spacez.0.

Without loss of generality, we shall conveniently write th
frequency spectrum of the initial disturbance in the fo
©2002 The American Physical Society06-1
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Êv(r')5 p̂vÛv(r') with Ûv(r'50)51. In this way p̂v is
the frequency spectrum at the pointr'50, a representative
point of the source about which the source is approxima
located, and

P~ t !5
1

pE0

`

p̂v exp~2 ivt ! ~3!

is the temporal wave form at this point. The functionUv(r')
represents a monochromatic disturbance of frequencyv and
normalized amplitude. If the spectrumÊ(r' ,t)5 p̂vÛv(r')
factorizes into a function of frequency and a function of p
sition, i.e., if Ûv(r')5U(r') does not depend on frequenc
the source is said to be spectrally pure. In this case, mo
chromatic disturbances of different frequencies have
same transversal profileU(r') @apart from their variable am
plitude p̂v), and all points of the source present the tempo
field variationP(t) ~apart from a global amplitudeU(r')#.

Beyond the source (z.0), the frequency spectrum
p̂vÛv(r) of the radiated fieldE(r,t) is determined by the
Helmholtz equationDÛv(r)1(v/c)2Ûv(r)50, or by the
paraxial wave equation for the slowly varying complex a
plitude cv(r) @Ûv(r)5cv(r)exp(ivz/c)#;

D'cv~r!12i
v

c

]cv~r!

]z
50, ~4!

if the monochromatic light beamÛv(r) is highly directional
along thez direction. In the preceding equationsD and D'

are the Laplacian and transversal Laplacian operators
spectively, andc is the speed of light in vacuum.

Propagation transformsÛv(r) into a function of fre-
quency if it was not at the source. The same can be said
its real amplitude av(r).0 and phasewv(r) (Ûv(r)
5av(r)exp@iwv(r)#). In the trivial case of a plane wav

@Ûv(r')51#, the dependence on frequency is the line
phaseÛv(r)5exp(ivz/c), or av(r)51 and wv(r)5vz/c,
but for a transversally localized disturbanceÛv(r') a more
complicated dependence arises as a result of the freque
dependent nature of diffraction. For instance, the para
wave equation~4! imposes the propagated field from th
sourceÛv(r')5cv(r' ,z50) to be of the form

Ûv~r!5cvS r' ,c
z

v DexpS i
v

c
zD , ~5!

wherev appears again in the linear phase and in the com
nation of variablescz/v. The latter dependence reflects t
fact that diffraction changes are smaller as the frequenc
the source increases, and does not exist at all in the geom
cal limit v→`. The amplitudeav(r)5ucv(r' ,cz/v)u car-
ries this diffraction-induced dependence on frequency,
the phasewv(r)5vz/c1argcv(r' ,cz/v) becomes a non
linear function of frequency. For nonparaxial light beams,
dependence ofÛv(r), its amplitude, and phase on frequen
cannot be factorized as in the simple way of Eq.~5!.
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The time-domain radiated field can be written in terms
the propagated spectrump̂vÛv(r) as

E~r,t !5
1

pE0

`

dv p̂vÛv~r!exp~2 ivt !dv, ~6!

or equivalently,

E~r,t !5
1

pE0

`

dv p̂vav~r!exp$2 i @vt2wv~r!#%. ~7!

The pulsed beamE(r,t) can be said to be paraxial if a
composing monochromatic light beamsÛv(r) having sig-
nificant amplitudep̂v are paraxial. A more specific expres
sion for paraxial pulsed beams can then be written by in
ducing av(r)5ucv(r)u, wv(r)5vz/c1argcv(r) into Eq.
~7!.

Equation~7! describes the diffraction of a pulse in fre
space in the same way as a problem of pulse propagatio
a medium with phase and gain dispersion, and as such c
be treated with the numerical and asymptotic methods de
oped for that purpose@13#.

B. Few-cycle pulsed beams

Our main concern in this paper is the propagation
pulsed beams whose temporal form consists of a few os
lations of a certain mean optical frequency, as those p
duced by the femtosecond laser devices developed in
1990s@8#. In this case, the analysis of Eq.~7! can be greatly
simplified by using a similar method to that of the heuris
theory of dispersive pulse propagation@13,14#.

First, it has been shown that the description of pulses
terms of an envelope and carrier oscillations remains us
and physically meaningful for few-cycle pulses, even in t
extreme case of pulses with only one oscillation@15#. Sec-
ond, diffraction changes in the temporal form of few-cyc
pulses have been shown to be generally small@5,6# ~contrary
to the case of subcycle pulses@3,16#!. For these reasons,
seems appropriate to write the temporal form of the pul
beam as enveloped carrier oscillations of the same ca
frequencyv0 at any point of space,

E~r,t !5A~r,t !exp$2 i @v0t2wv0
~r!2f#%, ~8!

whereA(r,t) is a complex envelope andf is an arbitrary
phase~to be specified!. In particular, sinceE(0,t)5P(t) and
wv0

(0)50,

P~ t !5A~0,t !exp@2 i ~v0t2f!#. ~9!

The exact choice of carrier frequency is not crucial@10,8#;
for convenience,v0 will be defined as the ‘‘gravity center’
of the pulsed beam spectral intensity, and its exact value
be fixed atr50, i.e.,
6-2
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v05

E
0

`

dv vu p̂vu2

E
0

`

dvu p̂vu2
. ~10!

The phasef is usually chosen so thatA(0,t) is real at the
origin of time t50, a time that is usually made to coincid
with an important feature ofP(t), for instance, the maximum
of the absolute amplitudeuA(0,t)u ~if there is only one; oth-
erwise, one can choose its ‘‘gravity center’’!. Defined in this
way, the phasef is referred to as the carrier phase and d
termines the ‘‘position’’ of the carrier oscillations with re
spect to the envelope. This parameter has been shown to
an important role in nonlinear interactions of few-cyc
pulses.

The complex envelopeA(r,t) modulates~spatially and
temporally! the phase and the amplitude of the oscillations
the monochromatic light beam of the carrier frequency, a
is given from Eqs.~7! and ~8! by

A~r,t !5
1

pE0

`

dv p̂vav~r!exp$2 i @~v2v0!t2wv~r!

1wv0
~r!1f#%. ~11!

In particular, atr50,

A~0,t !5
1

pE0

`

p̂v exp$2 i @~v2v0!t1f#%. ~12!

Comparison of Eqs.~11! and~12! shows that changes in th
temporal form of the envelope during propagation origin
from the dependence ofav(r) on frequency and the nonlin
ear dependence ofwv(r) on frequency~a linear dependenc
simply translates the envelope! due to diffraction. We also
observe that the integration domain in Eq.~11! is effectively
limited to the small intervalDv about v0 (Dv/v0!1)
where p̂v takes significant values~a N-cycle pulse with
Gaussian envelope, for instance, satisfiesDv/v0.0.44/N).
It is then expedient to express the variation with frequency
wv(r) within the intervalDv as a Taylor series aboutv0,

wv~r!5wv0
~r!1wv0

8 ~r!~v2v0!1
1

2
wv0

9 ~r!~v2v0!2

1•••, ~13!

where the prime sign means differentiation with respect tov.
Equation~11! for the envelope then becomes

A~r,t !5
1

pE0

`

dv p̂vav~r!expF i

2
~v2v0!2wv0

9 ~r!1•••G
3exp$2 i @~v2v0!„t2wv0

8 ~r!…1f#%, ~14!

whereav(r) can also be expanded in a Taylor series as

av~r!.av0
~r!1av0

8 ~r!~v2v0!1•••. ~15!
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It turns out that all predicted phenomena in the diffracti
of few-cycle pulsed Gaussian beams find explanation fr
the consideration of the different terms explicitly written
Eqs.~14! and ~15!, phenomena that appear now to occur,
one form or another, during propagation of more gene
pulsed beams. In fact, the form of Eqs.~8! and~14!, together
with Eq. ~15!, allows us to draw the following approximat
picture of a propagating pulsed beam.

1. Up to the zero order in the amplitude and first order
in the phase

The phase fronts or surfaces of equal phase,v0t
2wv0

(r)5const, of the pulsed beam propagate at the ph
velocity @10#

v (p)~r!5
v0

ugradwv0
~r!u

. ~16!

The instant of time at which the pulse peaks@ uA(r,t)u is
maximum# at positionr is given by@10#

t5wv0
8 ~r!. ~17!

This equation defines pulse front surface, which advance
the group velocity@10#

v (g)~r!5
1

ugradwv0
8 ~r!u

. ~18!

The quantitywv0
8 (r) thus measures the time of arrival of th

pulse at positionr. The time delay induced by diffraction, o
delay with respect to a plane pulse, is given bywv0

8 (r)

2z/c.
From the knowledge of the phase and pulse fronts, i

possible to determine the carrier phasef(r) at any position
of spacer. From Eq.~8!, the phase of the oscillations at th
time t5wv0

8 (r) of the pulse peak is

f~r!5f1wv0
~r!2v0wv0

8 ~r!. ~19!

We note that, as in the approximate theory of on
dimensional dispersive pulse propagation, the equatiot
5wv0

8 (r) and Eq.~18! strictly define the pulse peak and i

propagation velocity in the limit of small change of puls
form on propagation@10#, as we are assuming. On the co
trary, small deviations from the true location and velocity
the pulse may occur. In this case, pulse front and group
locity are commonly understood and used as measures o
approximate location and velocity of the pulse as a whol

2. Up to first order in the amplitude and second order
in the phase

Sinceav(r) depends on frequency, the spectral amplitu
av(r) will change from point to point in space. These spe
tral changes have been studied for pulsed Gaussian beam
Ref. @2#, in which case they lead to a small redshift of th
carrier oscillations@1# along the transversal direction and
6-3
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blueshift along the axial direction@2#. For isodiffracting
pulsed Gaussian beams, there is only redshift towards
beam periphery@5#. Physically, spectral changes in amp
tude can be understood from a relative increase of the we
of redder ~bluer! spectral components diffracted at larg
~smaller! angles.

The amplitude spectrumu p̂vuav(r) tends to shift towards
bluer frequencies at pointsr whereav0

8 (r).0, and towards

redder frequencies whereav0
8 (r),0. The local frequency of

the oscillations can be calculated from

v0~r!5

E
0

`

dvvu p̂vu2av
2 ~r!

E
0

`

dvu p̂vu2av
2 ~r!

~20!

and approached from Eq.~15! by

v0~r!5v01
2av0

8 ~r!

av0
~r!

~Dv rms!
2, ~21!

whereDv rms is the root mean square width ofu p̂vu2.
The term withwv0

9 (r) introduces a space-dependent ch

in the pulse spectrum, which may lead to pulse broaden
This chirp explains the~rather! small pulse broadening a
large transversal distances in pulsed Gaussian beams@1# and
isodiffracting Gaussian beams@5#. This effect is more pro-
nounced in nonparaxial pulsed Bessel beams, in which c
it can be used to compensate the chirp of opposite sign th
pulse acquires during propagation in a dispersive medi
and therefore to eliminate pulse broadening@17#. Free-space
spectrum chirping originates from angular dispersion due
diffraction, as shown in Ref.@17#. Specific formulas for pulse
broadening as a function ofwv0

9 are deferred to the example

Additional pulse transformations coming from highe
order derivatives could be significant in specific cases,
will not be considered here.

In conclusion, we see that the knowledge of the expr
sion of the monochromatic light beam Ûv(r)
5av(r)exp@iwv(r)#, particularly its derivatives with respec
to frequency atv0, allows us to describe the transformatio
experienced by a pulse due to its finite transversal size.
also possible to construct an explicit expression for the co
plex envelope at any point of space that carries the p
transformations as described above. Introducing Eq.~15! into
Eq. ~14! and retaining up to the second derivative of t
phase and the first derivative of the amplitude, we obtain

A~r,t !.av0
~r!AGVD@wv0

9 ~r!,t2wv0
8 ~r!#

1 iav0
8 ~r!

]

]t
AGVD@wv0

9 ~r!,t2wv0
8 ~r!#, ~22!

whereAGVD(j,t) is the standard integral
02660
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AGVD~j,t![
1

pE0

`

dv p̂v expF i

2
~v2v0!2jG

3exp@2 i ~v2v0!t# ~23!

describing one-dimensional propagation of a pulse of en
lope A(0,t) in a medium with group velocity dispersio
~GVD!, an integral that can be analytically performed in c
tain cases. More accurate expressions carrying higher-o
pulse transformations can also be constructed by adding
corresponding terms.

The above analysis is a convenient formulation and de
opment of the fundamental concepts in relation with thr
dimensional wave packets explained in Ref.@10#. Previous
papers on propagation of pulsed beams, however, have
made use of these basic ideas, but have gone along o
lines. The purpose of the remainder of this paper is to sh
its usefulness, accuracy, and capability of predicting n
phenomena.

III. APPLICATION EXAMPLES

A. Pulsed Gaussian beam

We first consider the pulsed beam emitted by the pul
Gaussian source

E~r' ,t !5P~ t !exp~2r 2/s2!, ~24!

where r 25x21y2 and P(t) is a pulse of carrier frequenc
v0, envelopeA(0,t) that peaks att50, and carrier phasef.
The propagation of pulsed Gaussian beams has been e
sively studied in the past. Christov@1# obtained an expres
sion for the far field and studied numerically the near fie
describing qualitatively spectrum redshift, pulse time broa
ening and delay increasing towards the beam periph
while Sheppard and Gan@2# described a spectrum blueshi
along the propagation direction. The on-axis field was st
ied by Kaplan@3# in the cases of subcycle and multicyc
pulses. Approximate expressions in the form of trunca
series valid at any point of space have been reported rece
@7#. The present method allows us to describe all previou
described effects in quantitative terms, to find some new
portant features of pulsed Gaussian beams, and to wri
simple approximate expression for their propagating field

The spectrum of Eq.~24! is Êv(r')5 p̂v exp(2r2/s2); then
Ûv(r')5exp(2r2/s2) is independent of frequency. If all fre
quencies in the frequency bandDv of the pulseP(t) satisfy
the paraxial conditionlv52pc/v!s, then Ûv(r) is given
by the well-known Gaussian beam formula

Ûv~r!5
2 iL v

qv~z!
expF ivr 2

2cqv~z!GexpS i
v

c
zD , ~25!

whereqv(z)5z2 iL v is the so-called complex beam param
eter, andLv5vs2/2c is the diffraction length or Rayleigh
distance for each frequency. The amplitude and phase o
monochromatic Gaussian beam in Eq.~25! are
6-4



r

al

n
ph
o
ch

b
Th
iv

n

e
o

t

-

re

-
of

hase

the

DIFFRACTION EFFECTS IN FEW-CYCLE OPTICAL PULSES PHYSICAL REVIEW E65 026606
av~r!5
s

sv~z!
expF2

r 2

sv
2 ~z!

G , ~26!

wv~r!5
v

c
z2tan21S z

Lv
D1

vr 2

2cRv~z!
, ~27!

where

sv~z!5sA11
z2

Lv
2
,

Rv~z!5z1
Lv

2

z
~28!

are the Gaussian width and wave front radius of curvatu
respectively, at any propagation distance.

The phase fronts of the pulsed Gaussian beam,

v0t2
v0

c
z1tan21S z

Lv0
D 2

v0r 2

2cRv0
~z!

5const., ~29!

are spherical~in the paraxial approximation! of variable ra-
dius Rphase(z)5Rv0

(z).

The derivative of the phasewv0
(r) with respect to fre-

quency, evaluated at the carrier frequency, is readily ev
ated to be

wv0
8 ~r!5

z

c
1

z

v0Lv0

s2

sv0

2 ~z!
1

r 2

2cRv0

2 ~z!
S z2

Lv0

2

z
D .

~30!

The equation of the pulse front is then

t5
z

c
1

z

v0Lv0

s2

sv0

2 ~z!
1

r 2

2cRv0

2 ~z!
S z2

Lv0

2

z
D , ~31!

which represents also a spherical surface~within the paraxial
approximation! whose radius

Rpulse~z!5
Rphase

2 ~z!

z2
Lv0

2

z

~32!

varies with propagation distancez, and is different from that
of the wave fronts. The radii of the phase and pulse fro
versus propagation distance are shown in Fig. 1. The gra
shows the striking fact that the initial plane pulse front
pulsed Gaussian beams becomes convergent at first, rea
a minimum radius of absolute value 4Lv0

at z5Lv0
/(1

1A2)50.4142Lv0
. At the Rayleigh distanceLv0

the pulse
front is again plane, and at larger propagation distances
comes divergent, tending to match the phase fronts.
pulse front curvature is a consequence of the delay of arr
of the pulse@last term of Eq.~31!# at an off-axis point with
respect to its arrival at the on-axis point on the same tra
02660
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versal planez. Also, the time delay with respect to a plan
pulse, or delay induced by diffraction, is given by the tw
last terms of Eq.~31!. In Fig. 2 we confirm numerically the
above results with a Gaussian pulse having 111/2 oscilla-
tions. At z,Lv0

@Fig. 2~a!#, the envelope@numerically cal-
culated from Eq.~11!# arrives earlier at an off-axis poin
~dashed curve! than at an on-axis point~solid curve!, which
means that the pulse front is converging. Atz.Lv0

, the op-
posite is true, i.e., the pulse front appears to diverge.

The velocity of propagation of the phase fronts~29! was
calculated in Ref.@18#, and was found to be slightly sublu
minal (,c) at points r .sv0

(z) and superluminal atr

,sv0
(z). The greater values of the phase velocity a

reached at the beam axis (r 50), their values being~see Fig.
3!

v (p)~z!5
c

S 12
u0

2

11z2/Lv0

2 D , ~33!

FIG. 1. Solid curve: curvature~inverse of the radius of curva
ture! of the pulse front of pulsed Gaussian beams as a function
the axial propagation distance. Dashed curve: curvature of the p
fronts.

FIG. 2. Envelope temporal form at several positions after
source E(r' ,t)5exp(2r2/s2)exp(2t2/b2)exp(2iv0t) with v0

53.2 fs21 ~periodT051.963 fs), b52.50 fs~FWHM of inten-
sity Dt5A2 ln 2b51.5T0), and s52 mm (Lv0

50.021 mm). At
z50.4142Lv0

the pulse arrives earlier atr 53sv0
(z) than atr 50.

At z51.4142Lv0
the pulse arrives earlier atr 50 than at r

53sv0
(z). Units of A are arbitrary.
6-5
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MIGUEL A. PORRAS PHYSICAL REVIEW E 65 026606
whereu052c/v0s is the divergence angle of the monochr
matic Gaussian beam at the carrier frequency. The velo
of propagation of the pulse front, calculated from Eq.~18!, is
given by

v (g)~z!5
c

F 11
u0

2

2

12z2/Lv0

2

~11z2/Lv0

2 !2G , ~34!

at on-axis points. The group velocity is subluminal atz
,Lv0

and superluminal atz.Lv0
, as shown in Fig. 3. Su

perluminality is more pronounced as the beam divergenc
larger ~i.e., as the source is narrower!. Out of axis,v (g) is
given by a much longer expression; its behavior is, howe
similar except that subluminality atz,Lv0

and superlumi-

nality at z.Lv0
are less pronounced, as expected from

converging ~diverging! form of the pulse front atz
,Lv0

(z.Lv0
). Group velocities faster thanc have been

reported recently in a number of waves propagating in f
space, as in x waves@19#, Bessel-x pulses@20#, and Bessel-
Gauss pulsed beams@21#, but to our knowledge, not in
Gaussian beams.

The carrier phase, or phase at pulse peak can be ca
lated from Eqs.~19!, ~29!, and~31! to be

f~r!5f2tan21S z

Lv0
D 2

1

z

Lv0

1
Lv0

z

F12
2r 2

sv0

2 ~z!G . ~35!

The carrier-phase variationf(r)2f is plotted in Fig. 4 as a
function of propagation distancez. The term tan21(z/Lv0

)
comes from Gouy’s phase shift of the Gaussian beam at
carrier frequency~dashed curve!, which ranges from 0 top/2
at the far field, and is the only carrier-phase variation due

FIG. 3. On-axis phase and group velocities of pulsed Gaus
beams as functions of the propagation distance. Superlumin
and subluminality of these quantities increases as the average d
gence angleu0 ~or divergence angle of the monochromatic Gau
ian beam at the carrier frequency! is larger.
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diffraction previously described@8#. At on-axis points~solid
curve! the carrier-phase variation is due to the Gouy ph
shift plus the additional term@(z/Lv0

)1(Lv0
/z)#21, which

can reach a value of about 30 ° at the Rayleigh distance. T
additional phase originates from the advancement~on the
beam axis! of the superluminal phase fronts with respect
the subluminal pulse front. Its net effect is to make the Go
phase reach its asymptotic value faster. At off-axis poin
since the phase fronts are always more curved than the p
front, the situation may be reversed at large enough trans
sal distances~dash-dotted curve!. The variation of the carrier
phase due to curvature mismatch of the phase and p
fronts is accounted for by the term withr 2 in Eq. ~35!. It is
noticeable that on the revolution hyperboloid, or caustic s
facer 5sv0

/A2, the two latter effects cancel~dashed curve!,
the carrier phase then being exactly given by the Gouy ph
shift.

We point out that the pulse front equation~31!, its curva-
ture, velocity, and hence the carrier phase are the same
spective of the pulse form and, in particular, of its duratio
They can then be understood as properties of real Gaus
beams, which are never an infinitely long train of sinusoid
oscillations. The pulse front properties, however, are o
relevant for few-cycle pulses, since the temporal~spatial!
deviations of the pulse front with respect to the nondiffrac
pulse front t5z/c may be of the same order as the pul
duration ~length!, and hence involve drastic changes in t
pulse amplitude.

On the contrary, diffraction-induced frequency shift
pulsed Gaussian beams does depend on pulse duration.
Eq. ~26!, the derivative with respect to frequency ofav(r),
evaluated at the carrier frequency, can be calculated to b

av0
8 ~r!5

1

v0

1

11
Lv0

2

z2

F12
2r 2

sv0

2 ~z!Gav0
~r!. ~36!

n
ity
er-
-

FIG. 4. Carrier phase variationf(r)2f with respect to the
initial one, f, for pulsed Gaussian beams as a function of ax
propagation distance and for several radial positions.
6-6
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Again the revolution hyperboloidr 5sv0
(z)/A2, where

av0
8 (r)50, plays an important role. There is no frequen

shift on this surface, which separates the regions of blues
(av0

8 .0 at r ,sv0
(z)/A2) and redshift @av0

8 ,0 at r

.sv0
(z)]. The local frequency of the oscillations, calculat

from Eqs.~21! and ~36!, is given by

v0~r!5v0H 11
2

11Lv0

2 /z2 F12
2r 2

sv0

2 ~z!G S Dv rms

v0
D 2J ,

~37!

and is represented in Fig. 5 as a function of the propaga
distance for a single cycle pulse. In particular, along
beam axis, the blueshift is

v0~z!5v0F11
2

11Lv0

2 /z2 S Dv rms

v0
D 2G , ~38!

which increases from zero up to the asymptotic valuev0@1
12(Dv rms/v0)2# in the far field, as shown in Fig. 5. As th
number of oscillations in the pulse grows (Dv rms→0), fre-
quency shifts diminish and disappear in the many-cy
limit.

Diffraction-induced spectrum chirp, and hence pu
broadening, appear to be very small for pulsed Gaus
beams. We adopt here the convention that pulse broade
is negligible when the phase variation within the pulse f
quency band due to its chirp is much smaller than 1 r
i.e., when (1/2)wv0

9 (r)(2Dv rms)
2!1. On account that

Dt rmsDv rms;1/2 for nearly dispersion limited pulses, th
above inequality can be rewritten as

wv0
9 ~r!!2~Dt rms!

2. ~39!

FIG. 5. Relative frequency shift of the optical oscillations
pulsed Gaussian beams as it varies with axial distancez along sev-
eral caustic surfaces. On the caustic surfacer 5sv0

(z)/A2 there is
no frequency shift. The values are calculated for a single-cy
Gaussian pulse of Gaussian envelope, for whichDv rms/v0

50.187.
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This criterion is equivalent to the usual condition for neg
gible pulse broadeningz!Ldisp52(Dt rms)

2/ukv0
9 u ~dispersion

length! when spectrum chirp originates from propagation
a material with group velocity dispersionkv0

9 ~second deriva-

tive of the propagation constantkv0
). Numerical inspection

of the expression ofwv0
9 (r) for Gaussian beams shows th

condition~39! is satisfied for a single-cycle pulse upto tran
versal distances as large asr 55sv0

(z). For pulses with more

than one oscillation, this distance is even greater. Sinc
these distances peak intensity has fallen down below 10221

times its value on the beam axis, we can write, to a go
approximation,wv0

9 (r).0 where the intensity is significant

In Fig. 6 we test numerically the previous results. Th
figure shows the propagated field of the initial Gau
ian disturbance E(r')5P(t)exp(2r2/s2), where P(t)
5exp(2t2/b2)exp(2iv0t) is a Gaussian pulse with zero ca
rier phase. We setv053.2 fs21 ~period T051.96 fs), b
51.668 fs, ands52 mm so that the pulseP(t) contains
only one oscillation within its FWHM duration (Dt
5A2 ln 2b5T0), and the radiated pulsed beam can be
garded as paraxial. The temporal form of the propaga
pulsed beam at several representative points of space~dots!
was obtained by solving numerically integral~7! with av(r)
and wv(r) given by Eqs.~26! and ~27!, respectively. For
reference, we also show~dashed curves! the approximation
obtained by neglecting all diffraction effects on pulse for
~zero order in amplitude and phase!, i.e., the pulsed beam
exp@(t2z/c)2/b2#av0

(r)exp@iwv0
(r)#exp(2iv0t), whose enve-

lope propagates without deformation along the plane pu
front t5z/c at speedc. The meaning of the solid curves wi
be explained later.

We observe that atz50.4142Lv0
~first column!, z5Lv0

~second column!, and z52.4142Lv0
~third column!, the

pulse front is slightly converging, nearly plane, and dive
ing, respectively, as expected from Eq.~32! for the pulse
front radius. In fact, the corresponding delays of arrival
r 5sv0

(z)A2 with respect to the arrival atr 50, estimated

from the numerical data, are20.18 , 0.00, and 1.1 fs for the
first, second, and third columns, respectively. The time
lays from our analytical formular 2/2cRpulse(z) @last term of
Eq. ~31!# are also20.18, 0.00, and 1.1 fs.

The oscillations at on-axis points~bottom row! are always
blueshifted with respect tov0, the blueshift growing with
propagation distance. Numerically calculated values of
frequencies are~a! 3.23, ~d! 3.32, and~g! 3.39 fs21, in fair
agreement with the values~a! 3.23, ~d! 3.31, and ~g!
3.39 fs21 from Eq. ~37!. At the caustic surfacer
5sv0

(z)A2 ~upper row! the oscillations are instead red
shifted. Numerically calculated frequencies are~c! 3.09, ~f!
2.93, and~i! 2.71 fs21, to be compared with the approx
mate frequencies~c! 3.10, ~f! 2.86, and~i! 2.63 fs21 ob-
tained from Eq.~37!. At the caustic surfacer 5sv0

/A2 ~cen-
tral row! frequency shift is negligible, as predicted by E
~37!.

le
6-7
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FIG. 6. Field amplitude and envelope for the pulsed Gaussian disturbanceE(r ,0,t)5exp(2r2/s2)exp(2t2/b2)exp(2iv0t) with v0

53.2 fs21, b51.668 fs, ands52 mm at the points of space indicated in each figure. Dots: exact field. Solid curves: approx
second-order field of Eq.~40!. Dashed curves: zeroth-order field.
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We have also verified that the carrier phase at the cau
surfacer 5sv0

(z)/A2 ~central row! are nearly equal, as ex

pected from Eq.~35!, to the Gouy phase shift at the distan
z. In fact, the carrier phases obtained from the numer
solution are~b! f5225°, ~e! 246°, and~h! 268°, whereas
the Gouy phase shifts at the same axial distances
222.5°, 245°, and267.5°. We note that the zero-orde
solution yields the rather wrong values210°, 216°, and
2 °.

In the above example, we have deliberately chose
single-cycle pulse to test our analytical description of puls
beams in the most difficult case (Dv/v0 is as large as 0.44!.
The characteristics of the single-cycle pulsed Gaussian b
are accurately reproduced at points of spacewhere the inten-
sity is significant;specifically, up to radial distances whe
the intensity ~amplitude! has decreased down to;1%
(;10%) of the on-axis intensity~amplitude!. At larger radial
distances, analytical and numerical values start to disa
significantly. The second derivatives of the amplitude and
02660
tic
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re
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ee
e

phase should then be included. Additional numerical simu
tions with longer pulses (112 cycle, 2 cycle, . . . ) show that
the region of validity of the first-order description exten
upto much larger radial distances, where more signific
pulse transformations take place.

Finally, Eq. ~22! allows us to write an expression for th
propagating field of pulsed Gaussian beams that carry
pulse transformations as given by our approximate analyt
expressions. Equation~22! with wv0

9 (r)50 and AGVD(0,t)

5A(0,t) simplifies to

E~r,t !.$av0
~r!A@0,t2wv0

8 ~r!#

1 iav0
8 ~r!~]/]t !A@0,t2wv0

8 ~r!#%

3exp$2 i @v0t2wv0
~r!2f#%, ~40!

whereav0
(r) andwv0

(r) are the amplitude and phase of th
Gaussian beam at the carrier frequency@Eqs.~26! and~27!#,
and av0

8 (r) and wv0
8 (r) are their first derivatives@Eqs. ~36!
6-8
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DIFFRACTION EFFECTS IN FEW-CYCLE OPTICAL PULSES PHYSICAL REVIEW E65 026606
and~30!#. In Fig. 6 we compare the approximate express
~40! ~solid curves! with the exact field~small squares! in the
case of a single-cycle Gaussian pulseA(0,t)5exp(2t2/b2).
By construction, the approximate expression fits to the ex
field in the same region where the pulse transformations
accurately reproduced, i.e., inside the caustic surface
;1/100 transversal decay of intensity.

B. Pulsed Bessel beam

As a second example, we study the field radiated by
pulsed Bessel disturbance

E~r' ,t !5P~ t !J0~Kr ! ~41!

of spectrum Êv(r')5 p̂vJ0(Kr ), where P(t)5A(0,t)
3exp@2i(v0t2f)#, J0(•) is the Bessel function of zero or
der and first kind, andK,v0 /c is a constant independent o
frequency that determines the size of the transversal Be
function. The above spectrally pure disturbance must be
tinguished from the Bessel-x disturbanceÊv(r')
5 p̂vJ0(Kr ), with K}v/c. Contrary to Bessel-x pulses
pulsed Bessel beams experience diffraction changes, w
have been studied in Ref.@22# on the basis of numerica
simulations. It has been shown that the pulseP(t) broadens
during propagation, while the transversal profile remain
J0(Kr ) function@22#. This behavior can be easily understo
from the diffraction-induced spectrum chirp.

The propagated spectrum is the well-known monoch
matic Bessel beam

Ûv~r!5J0~Kr !exp@ iA~v/c!22K2z#, ~42!

whose amplitude and phase are

av~r!5uJ0~Kr !u, ~43!

wv~r!5A~v/c!22K2z1pu@2J0~Kr !#, ~44!

whereu(•) is the Heaviside step function. The last term
Eq. ~44! adds a phasep at points where the Bessel functio
is negative. All derivatives of the amplitude with respect
frequency vanish, and the derivatives of the phase at
carrier frequency are

wv0
8 ~z!5

z

c

1

A12~Kc/v0!2
, ~45!

wv0
9 ~z!52

K2c

v0
3

z

@12~Kc/v0!2#3/2
. ~46!

As indicated, they only depend on the coordinatez.
The characteristics of the propagating pulsed Bessel b

are then the following. The phase fronts

v0t2A~v0 /c!22K2z2pu@2J0~Kr !#5const. ~47!

advance, according to Eq.~16!, at the constant superlumina
phase velocity
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v (p)5
c

A12~Kc/v0!2
. ~48!

The phase front

t5
z

c

1

A12~Kc/v0!2
~49!

is plane and propagates at the constant subluminal gr
velocity

v (g)5cA12~Kc/v0!2. ~50!

As av(r) does not depend on frequency, there are no a
plitude spectral changes and, in particular, no redshift
blueshift of the carrier oscillations during propagatio
Diffraction-induced spectrum chirp, given by Eq.~46!, is al-
ways negative with absolute value growing linearly wi
propagation distancez, as in the propagation of a plane puls
in a medium with anomalous group velocity dispersi
~negative second derivative of the propagation consta!
kv0
9 [wv0

9 (z)/z52(K2c/v0
3)@12(Kc/v0)2#23/2. Accord-

ingly, pulse broadening is constant at transversal planez
5 const, and becomes sizeable at axial distancesz of the
order of the ‘‘dispersion length’’Ldisp52(Dt rms)

2/ukv0
9 u,

whereDt rms is the rms width of the initial pulse. From stan
dard formulas for dispersive pulse propagation@11#, the
pulse duration propagation at any propagation distanc
given by

Dt rms~z!5Dt rmsA11
z2

Ldisp
2

. ~51!

All previous features are contained in the expression

E~r,t !5AGVD@wv0
9 ~z!,t2wv0

8 ~z!#

3exp@2 i ~v0t2A~v0 /c!22K2z2f!#J0~Kr !

~52!

for the propagated field of pulsed Bessel beams, obtai
from Eqs. ~22! and ~8!. Equation ~52! represents a pulse
whose carrier oscillations propagate at the phase velo
v (p).c, and whose envelope propagates atv (g),c along the
z direction at the same time that broadens due to diffracti
induced GVD and is transversally modulated by the sa
function J0(Kr ) at any propagation distance. In the partic
lar case of a Gaussian initial envelopeA(0,t)5exp(2t2/b2),
Eq. ~23! for AGVD can be analytically carried out, as is we
known, yielding

AGVD@wv0
9 ~z!,t2wv0

8 ~z!#5
b

b~z!
expH 2

@ t2wv0
8 ~z!#2

b2~z!
J ,

~53!

with b2(z)5b222iwv0
9 (z). Then the propagated pulse

Bessel beam with Gaussian pulse envelope is given by
6-9
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FIG. 7. Field amplitude and envelope for the pulsed Bessel disturbanceE(r ,0,t)5J0(Kr )exp(2t2/b2)exp(2iv0t) with v053.2 fs21,
b53.34 fs, andK52.133103 mm21 at different positions of space. In all figuresr 50 andz increases from~a! to ~d!. The dispersion
length due to diffraction isLdisp52(Dt rms)

2/ukv0
9 u50.126 mm withkv0

5wv0
9 /z5244.3 fs2/mm. Solid curves: exact field. Dashed curve

approximate field of Eq.~54!.
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E~r,t !5
b

b~z!
expH 2

@ t2wv0
8 ~z!#2

b2~z!
J

3exp@2 i ~v0t2A~v0 /c!22K2z2f!#J0~Kr !.

~54!

In Fig. 7 we see the diffraction changes in temporal form
a pulsed Bessel beam with Gaussian envelope of param
v053.2 fs21, K50.2v0 /c52.133103 mm21 ~transver-
sal size of the Bessel function 2/K.2lv0

), b53.34 fs~2

cycle!, andf50. The solid curves represent the exact pu
form ReE(r ,z,t) and uA(r ,z,t)u at several distances alon
the beam axis, numerically calculated from Eqs.~42! and~6!
@out of axis the pulse form only changes by a factorJ0(Kr )#.
The dashed curves represent the approximate field of
~54!, and the dotted curves represent the initial pulse pro
gating without change at speedc, for reference. The exac
and approximate fields are almost indistinguishable; in p
ticular, they peak at the same times@corresponding to a
pulse traveling at the group velocity of Eq.~50!, v (g)

52.9431024 mm/fs smaller thanc# and they also have
similar durations and peak amplitudes. The discrepanc
the trailing and leading parts of the pulse at distances of
order or larger than the dispersion lengthLdisp50.126 mm
are due to diffraction-induced third-order dispersion, wh
turns the envelope into an asymmetric function. As p
dicted, no significant redshift or blueshift is found.
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IV. CONCLUSIONS

We have applied basic concepts of the propagation
three-dimensional wave packets to the description of diffr
tion ~finite transversal size! effects on the propagation o
ultrashort, few-optical-cycle pulses. Diffraction-induce
pulse transformations in vacuum can be described in
same way as one-dimensional pulse transformations in a
persive system. Previously described effects as pulse
delay ~pulse front curvature!, frequency blueshift and red
shift of the optical oscillations, and pulse broadening, app
here classified as first-order and second-order diffracti
induced dispersion effects, which can be accurately qua
fied by simple analytical expressions. By analogy with d
persive pulse propagation, higher-order effects due to th
order dispersion and second-order gain dispersion can
easily introduced.

The application of this method to pulsed Gaussian bea
allowed us to describe unknown characteristics such as
form of the pulse front surface within Rayleigh distance a
superluminal group velocity outside. Approximate analytic
expressions for the diffracted pulse can be written in terms
the well-known problem of pulse propagation with grou
velocity dispersion. Although we have restricted our atte
tion to transformations of the pulse temporal form due
finite transversal size of the source, the same method ca
used to characterize the effects of ultrashort pulse dura
on transversal diffraction pattern. The results of this pa
can be of use for the design of optical experiments w
few-cycle optical pulses.
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