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Diffraction effects in few-cycle optical pulses
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Basic concepts of three-dimensional wave packets are applied to the description of transverse effects on the
propagation of ultrashotfemtosecongpulses. The frequency-dependent nature of diffraction acts as a kind of
dispersion that modifies the pulse front surface, its group velocity, the envelope form, and the carrier frequency.
If the diffracted field in the monochromatic case is known, these changes can be straightforwardly quantified.
Finding the propagated pulsed beam field reduces to a well-known and simpler problem of one-dimensional
pulse propagation with group velocity dispersion. The method is applied to pulsed Gaussian beams and pulsed
Bessel beams. Anomalous pulse front behavior, including superluminality in pulsed Gaussian beams is found.
The carrier phase at any point of space is calculated.
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[. INTRODUCTION such as pulse front and wave front with opposite curvatures
within the Rayleigh range and superluminality outside this
Diffraction of ultrashort, femtosecond light pulses, and, inrange. Particular attention is paid to changes in the “carrier
particular, the effects of diffraction in their temporal form phase,” or in the relative position of the carrier oscillations
has received considerable attention in the last few year®ith respect to the envelope, an essential parameter in the
[1-7]. Femtosecond pulses comprising only a few opticalPhase-sensitive nonlinear interactions of femtosecond pulses
oscillations can now be almost routinely generaf@.  [8.9]- An accurate expression for the carrier phase at any
Changes in their temporal form during propagation in freePoint of space is provided.
space or material media due to their finite transversal size Throughout this paper, a function of tinfgt) will be
should be taken into account. In fact, these have been showPresented by its complex analytic sigit) [12], whose
to play an essential role in the design of experiments witHeal part gived(t). The real and imaginary parts B{t) are
femtosecond pulsds], particularly in their nonlinear inter- Hilbert transform paird10]. If the frequency spectrum of
actions with mattef9]. f(t)is f,, ie.
Diffraction-induced pulse transformations of femtosecond
pulses with a Gaussian transversal profile have been studied 1 (= - )
in a number of paperfl—3]. They revealed interesting ef- f()= Ef_wd“’ f,exp(—iot), @)
fects such as pulse front curvatutene delay, pulse broad-
ening, spectral changes leading to redshift or blueshift of L -
optical oscillations, and the time-derivative effect at the farthen theA frequency spectrum of the analytic signaFis
field. Due to the lack of closed-form analytical expressions=20(®)f,,, whered(-) is the Heaviside step function. The
for the propagated field, most of these phenomena have be@halytic signal
described qualitatively from numerical simulatidrig, from
particular on-axi§3] or asymptotic expressions at the field
[1], or from inspection of the corresponding sped¢2a
As claimed in Ref[3], there is need of a simple theory of

diffraction of femtosecond pulses, comparable in its simplicthus has no negative frequencies and the positive ones are
ity to that of monochromatic Gaussian beams. The presemjoupled. In this paper, the symbals and Aw will mean

paper represents an effort in that direction. By using elemenruII width at half maximum(FWHM) of |F(t)|? and |f 2
tal concepts on the propagation of three-dimensional Wav?espectively @r

packetd10] such as the pulse front surface, its group veloc-

ity, and group velocity dispersion, we can describe and clas-

sify the above effectgand othersin a natural order, write Il. THEORY

down simple accurate analytical expressiqns for them and for A. Preliminaries

the propagated field of generalon-Gaussianpulsed beam ) ) _ )

sources at any point of space. Diffraction-induced transfor- Ve consider a spatially and temporally localized optical

mation of pulses is expressed in the familiar language offisturbancee(r, ,t), r.=(x.y) of the frequency spectrum

one-dimensional pulse propagation in media with phase an#,(r,) at a certain planeg=0 of a suitable Cartesian coor-

gain dispersiorf11]. dinate system, and study how the radiated fiEld,t), r
We apply this method to obtain a detailed characterizatior=(x,y,z) propagates in the half spaze-0.

of the field of pulsed Gaussian beams and pulsed Bessel Without loss of generality, we shall conveniently write the

beams. In the first case, we find some unnoticed featurefsequency spectrum of the initial disturbance in the form

F(t)=%f:dwfwexp(—iwt) 2)
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E (H):Ia 0 (r,) with O (r,=0)=1. In this Wayf) is The time-domain radiated field can be written in terms of

the frequency spectrum at the point=0, a representative the propagated spectrum,U,(r) as
point of the source about which the source is approximately
located, and

L E(r,t)=%f:dw p,U,(Nexp—iwt)dw, (6)
P(t)=— JO P, EXH(—iwt) 3

or equivalently,

is the temporal wave form at this point. The functidg(r,)
represents a monochromatic disturbance of frequeneyd 1 (> .
normalized amplitude. If the spectru(r, ,t)=p,U,(r,) E(r,t)= ;f do p,a,(Nexp—ifot—e,(0]}. ()
factorizes into a function of frequency and a function of po- 0
sition, i.e., ifU,(r,)=U(r,) does not depend on frequency, . o
the source is said to be spectrally pure. In this case, mond-n€ Pulsed beant(r,t) can be said to be paraxial if all
chromatic disturbances of different frequencies have th€omposing monochromatic light beartk,(r) having sig-
same transversal profilé(r, ) [apart from their variable am- nificant amplitudef)w are paraxial. A more specific expres-
plitude p,,), and all points of the source present the temporabion for paraxial pulsed beams can then be written by intro-
field variationP(t) (apart from a global amplitudeg(r,)]. ducing a,(r)=|¢,(r)|, ¢.,(r)=wz/c+argy,,(r) into Eq.

Beyond the source z(0), the frequency spectrum (7).
p,0,(r) of the radiated fieldE(r,t) is determined by the Equgtion(?) describes the diffraction of a pulse in f(ee _
Helmholtz equationAU, (1) + (w/c)20 (=0, or by the space in the same way as a problem of pulse propagation in

araxial wave equation. for the slowly varving complex am-& medium with phase and gain dispersion, and as such could
P q y varying P be treated with the numerical and asymptotic methods devel-

plitude ,,(r) [':Jw(r) =i, (r)explwzc)]; oped for that purposgL3].

A, (1) 42 % IWolT)

0y =0 (4) B. Few-cycle pulsed beams

R Our main concern in this paper is the propagation of
if the monochromatic light beard ,(r) is highly directional  pulsed beams whose temporal form consists of a few oscil-
along thez direction. In the preceding equatioAsand A | lations of a certain mean optical frequency, as those pro-
are the Laplacian and transversal Laplacian operators, reluced by the femtosecond laser devices developed in the
spectively, anct is the speed of light in vacuum. 1990s[8]. In this case, the analysis of E() can be greatly

Propagation transformgjw(r) into a function of fre- Slmpllfled by USing a similar method to that of the heuristic
quency if it was not at the source. The same can be said fdheory of dispersive pulse propagatifi8,14. _
its real amplitudea,(r)>0 and phasee,(r) (U,(r) First, it has been shown thgt the d_escnpuon of _pulses in
—a,(r)exdie,(r)]). In the trivial case of a plane wave terms of an envelopg and carrier oscillations remalns.useful

. : . and physically meaningful for few-cycle pulses, even in the
[U,(r.)=1], the dependence on frequency is the linearg,reme case of pulses with only one oscillatjdis]. Sec-
phaseU ,(r) =exp{wzc), or a,(r)=1 and ¢,(r)=wz/c,  ond, diffraction changes in the temporal form of few-cycle
but for a transversally localized disturbande(r,) a more  pulses have been shown to be generally sffadi] (contrary
complicated dependence arises as a result of the frequencip the case of subcycle pulsg3,1€]). For these reasons, it
dependent nature of diffraction. For instance, the paraxiabeems appropriate to write the temporal form of the pulsed
wave equation(4) imposes the propagated field from the beam as enveloped carrier oscillations of the same carrier

sourceU (r,) =, (r, ,z=0) to be of the form frequencyw, at any point of space,
. z © E(r.)=A(r,t)exp{ —i[wot— ¢, (1)~ &1}, (8)
Uw(r):lﬂw(rL!CZ)ex[{iEZ); (5)

where A(r,t) is a complex envelope and is an arbitrary
wherew appears again in the linear phase and in the combiphase(to be specifiefd In particular, sincd(0,t) = P(t) and
nation of variablexz/ w. The latter dependence reflects the o (0)=0,
fact that diffraction changes are smaller as the frequency of
the source increases, and does not exist at all in the geometri- )
cal limit @—. The amplitudea,(r)=|¢,(r, ,cZw)| car- P()=A(0)exd —i(wot—¢)]. 9
ries this diffraction-induced dependence on frequency, and
the phasep,,(r)=wz/c+argy,(r, ,cZw) becomes a non- The exact choice of carrier frequency is not crugitd,d];
linear function of frequency. For nonparaxial light beams, thefor conveniencegw, will be defined as the “gravity center”
dependence dfl (r), its amplitude, and phase on frequency of the pulsed beam spectral intensity, and its exact value will
cannot be factorized as in the simple way of Es). be fixed atr=0, i.e.,
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% R It turns out that all predicted phenomena in the diffraction

fo do o|p,|? of few-cycle pulsed Gaussian beams find explanation from
wp=—r——————. (100  the consideration of the different terms explicitly written in
f dw|f> |2 Egs.(14) and(15), phenomena that appear now to occur, in

0 @ one form or another, during propagation of more general

pulsed beams. In fact, the form of E¢8) and(14), together
The phasep is usually chosen so thai(0,t) is real at the  with Eqg. (15), allows us to draw the following approximate
origin of timet=0, a time that is usually made to coincide picture of a propagating pulsed beam.
with an important feature d?(t), for instance, the maximum
of the absolute amplitudgA(0,t)| (if there is only one; oth- 1. Up to the zero order in the amplitude and first order
erwise, one can choose its “gravity centgrDefined in this in the phase

way, the phasep is referred to as the carrier phase and de- e phase fronts or surfaces of equal phasgy

termines the “position” of the carrier oscillations with re- — ¢, (r)=const, of the pulsed beam propagate at the phase
spect to the envelope. This parameter has been shown to pl%louézoity [10] '

an important role in nonlinear interactions of few-cycle
pulses.

The complex envelopd\(r,t) modulates(spatially and vP)(r)
temporally the phase and the amplitude of the oscillations of
the monochromatic light beam of the carrier frequency,
is given from Eqgs(7) and(8) by

o

~ grade, (N[ 1o

andl’he instant of time at which the pulse pedK#\(r,t)| is
maximum at positionr is given by[10]

A(r,t)=%f:dwﬁwam(r)exp{—i[(w—wo)t—qow(r) t=gg, (1. 17)

This equation defines pulse front surface, which advances at

@y (N+ &1 (1) the group velocity{10]

In particular, atr=0, 1
v@(n)= —_—. (18
1=, . |grade., (1)
AOD=—| Poexp—il(0—wot+4l}. (12 ’

0
The quantity<pc’00(r) thus measures the time of arrival of the

Comparison of Eqs(11) and(12) shows that changes in the pulse at position. The time delay induced by diffraction, or
temporal form of the envelope during propagation originatejelay with respect to a plane pulse, is given y (r)
from the dependence @, (r) on frequency and the nonlin- — /e 0

ear dependence gf,(r) on frequencya linear dependence From the knowledge of the phase and pulse fronts, it is

simply translates the envelgpdue to diffraction. We also ; ; : o
: : o . i possible to determine the carrier phasg) at any position
ﬁrzsit%rc\j/et;h?r:ethirhn;ﬁgiﬁg?\?a%maéuztﬂl) Ezef/fect;/il)y of spacer. From Eq.(8), the phase of the oscillations at the
@ @o (2@lwWo time t=¢,, (r) of the pulse peak is

where E)w takes significant valuega N-cycle pulse with

Gaussian enve_lope, for instance, sat_ist_ies/wQ:OAM\l). (N =+, (1= woe., (). (19
It is then expedient to express the variation with frequency of 0 0
¢, (r) within the intervalA w as a Taylor series abouty, We note that, as in the approximate theory of one-
1 dim(,ansional dispersive .pulse propagation, the equatiqn
@, (1= ¢wo(r)+¢;o(r)(w— wo) + Eqplo(r)(w_wo)Z = <pw0(r) and Eq.(19) strictly define the pulse peak and its

propagation velocity in the limit of small change of pulse
. (13)  form on propagatioi10], as we are assuming. On the con-
trary, small deviations from the true location and velocity of
where the prime sign means differentiation with respeeito the pulse may occur. In this case, pulse front and group ve-
Equation(11) for the envelope then becomes locity are commonly understood and used as measures of the
approximate location and velocity of the pulse as a whole.

+..

1 (> . i
— 2.n
A(r,t) = ;Jo do pwaw(r)exr{i(w— ®0) "¢ (N+- - 2. Up to first order in the amplitude and second order
in the phase
xexp—i[(0— wo)(t= ¢, (N)+ 41}, (14 Sincea,(r) depends on frequency, the spectral amplitude

_ ) a,(r) will change from point to point in space. These spec-
wherea,(r) can also be expanded in a Taylor series @ {3 changes have been studied for pulsed Gaussian beams in
, Ref. [2], in which case they lead to a small redshift of the
8y (N=a,,(N+a,(N(o=wy)+ . (15 carrier oscillationg1] along the transversal direction and a
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blueshift along the axial directiofi2]. For isodiffracting 1 (> . i

pulsed Gaussian beams, there is only redshift towards the AGVD(fvT)E;J dwp, GXF{E(w—wo)zg}

beam periphen|5]. Physically, spectral changes in ampli- 0

tude can be understood from a relative increase of the weight Xexg —i(w—wg) 7] (23

of redder (bluer spectral components diffracted at larger

(smalley angles. . describing one-dimensional propagation of a pulse of enve-
The amplitude spectruip,,|a,(r) tends to shift towards |ope A(0,7) in a medium with group velocity dispersion

bluer frequencies at pointswherea,, (r)>0, and towards (GVD), an integral that can be analytically performed in cer-

redder frequencies Whea%‘ao(f)<0- The local frequency of tain cases. More accurate expressions carrying higher-order
pulse transformations can also be constructed by adding the

corresponding terms.

B The above analysis is a convenient formulation and devel-

f dww||5w|2af,(r) opment of the fundamental concepts ?n relation with three-

0 dimensional wave packets explained in Rgf0]. Previous

the oscillations can be calculated from

wo(r)=— R (20) papers on propagation of pulsed beams, however, have not
J dwlpwlzai(r) made use of these basic ideas, but have gone along other
0 lines. The purpose of the remainder of this paper is to show
its usefulness, accuracy, and capability of predicting new
and approached from E¢L5) by phenomena.
2a,,,(1) lll. APPLICATION EXAMPLE
olr) = w0+ g5 (Aomg? (21 cATIO >
@0 A. Pulsed Gaussian beam

~ We first consider the pulsed beam emitted by the pulsed
whereA o, is the root mean square width [,|2. Gaussian source

The term with<pz)o(r) introduces a space-dependent chirp

in the pulse spectrum, which may lead to pulse broadening.
This chirp explains thgrathe) small pulse broadening at
large transversal distances in pulsed Gaussian bfamd ~ Wherer?=x*+y? and P(t) is a pulse of carrier frequency
isodiffracting Gaussian bean§]. This effect is more pro- o, envelopeA(0yt) that peaks at=0, and carrier phasé.
nounced in nonparaxial pulsed Bessel beams, in which caséhe propagation of pulsed Gaussian beams has been exten-
it can be used to compensate the chirp of opposite sign thatgively studied in the past. Christdi] obtained an expres-
pulse acquires during propagation in a dispersive mediunfion for the far field and studied numerically the near field,
and therefore to eliminate pulse broadenjfd]. Free-space describing qualitatively spectrum redshift, pulse time broad-
spectrum chirping originates from angular dispersion due t¢ning and delay increasing towards the beam periphery,
diffraction, as shown in Ref17]. Specific formulas for pulse While Sheppard and G&2] described a spectrum blueshift
broadening as a function f;, are deferred to the examples. along the propagation direction. The on-axis field was stud-
Additional pulse transformations coming from higher- ied by Kaplan[3] in the cases of subcycle and multicycle

order derivatives could be significant in specific cases, bu?UI.SeS' A.pprommate.expressmns in the form of truncated
will not be considered here. series valid at any point of space have been reported recently

In conclusion, we see that the knowledge of the expresm' The present ”.‘eth"d "%”OWS us to desc_ribe al previou_sly
) ) ) A described effects in quantitative terms, to find some new im-
sion of the monochromatic light beamU,(r)  horant features of pulsed Gaussian beams, and to write a
=a,(rjexfie,(r)], particularly its derivatives with respect gimple approximate expression for their propagating field.
to frequency atv, allows us to describe the transformations The spectrum of Eq24) is E,(r, ) = p,, exp(—r<?); then
experienced by a pulse due to its finite transversal size. It is P o o{1) =P, €XP '
also possible to construct an explicit expression for the comY (1) =€xp(=r /%) is independent of frequency. If all fre-
plex envelope at any point of space that carries the pulsguencies in the frequency baidy of the pulseP(t) satisfy
transformations as described above. Introducing(Eg).into  the paraxial conditior\ ,=2mc/w<s, thenU ,(r) is given
Eg. (14) and retaining up to the second derivative of theby the well-known Gaussian beam formula
phase and the first derivative of the amplitude, we obtain
13
exp i c z|, (25)

J . .
+ ia;}o(r)a_AGVD[%o(r)vt_ @Lo(f)]y (22)  whereq,(2) =z—2|Lw is the so_—calleq complex beam param-
T eter, andL ,= ws“/2c is the diffraction length or Rayleigh
distance for each frequency. The amplitude and phase of the
whereAgyp(é,7) is the standard integral monochromatic Gaussian beam in E25) are

E(r, ,t)=P(t)exp —r?/s?), (24)

. B —iL,, ior?
A(r, ) =2, Acvol ¢4 (1) t— @/, (1)] V(D=4 2 A 2ca,2)
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(N=— : (26)
a,(r= exg — ,
Su(2) s2(z)
T A wr? )
¢u(l)=gz-tan L,/ 2cR,(z)’ @7)
where
Z2
Su(2)=s\/ 1+ —,
L2
R, (2)=z+ 7“’ (28)

PHYSICAL REVIEW & 026606

FIG. 1. Solid curve: curvaturénverse of the radius of curva-
ture) of the pulse front of pulsed Gaussian beams as a function of

are the Gaussian width and wave front radius of curvaturese axial propagation distance. Dashed curve: curvature of the phase

respectively, at any propagation distance.
The phase fronts of the pulsed Gaussian beam,

(Uor2

— Wwo(z) =const.,

wqo _q Z 29
wot Tz+tan L_wo (29
are sphericalin the paraxial approximatigrof variable ra-
dius Rphasé2) = Rwo(z).

The derivative of the phascpwo(r) with respect to fre-

guency, evaluated at the carrier frequency, is readily evalu-

ated to be

4
—+
Cc

z

+
wol g, sf,o(z)

S

Poo(N=

The equation of the pulse front is then
z 2

2 L2
t==+ ] ( 7— ﬂ) (31)
C  woly, sio(z) 2c Rf)o(z) z )’

z S

which represents also a spherical surfagithin the paraxial
approximation whose radius

Rpulse( z)= = (32)

varies with propagation distanezeand is different from that

fronts.

versal planez. Also, the time delay with respect to a plane
pulse, or delay induced by diffraction, is given by the two
last terms of Eq(31). In Fig. 2 we confirm numerically the
above results with a Gaussian pulse having112 oscilla-
tions. Atz<L,, [Fig. 2@)], the envelopgnumerically cal-
culated from Eq.(11)] arrives earlier at an off-axis point
(dashed curvethan at an on-axis poir(solid curve, which
means that the pulse front is converging.zat Loy the op-
posite is true, i.e., the pulse front appears to diverge.

The velocity of propagation of the phase fro29) was
calculated in Ref[18], and was found to be slightly sublu-
minal (<c) at points r>swo(z) and superluminal at
<sw0(z). The greater values of the phase velocity are
reached at the beam axis=0), their values beingsee Fig.

of the wave fronts. The radii of the phase and pulse fronts
versus propagation distance are shown in Fig. 1. The graphi
shows the striking fact that the initial plane pulse front of
pulsed Gaussian beams becomes convergent at first, reachir.,
a minimum radius of absolute vaIueLg}0 at z=Lw0/(1

+12)=0.4142 , . At the Rayleigh distance,, the pulse

with

3)
c
U(p)(Z): > , (33)
-
1+22/L5

2 Q

- _r=35w0(z; z=0.414L, |~ |z=1.414L, ;s\

0 | 4 % / A
/-'\o / | _ o \
:3 © | / \ r_o %) 1 r=0 \
O o] { \ S / \
N / ] /

~ \ ~
<_[ o | / \ (o] | /

T \ o /

o /, o /

) 1~ b S o | - /I’=3Swn(z)

6 -4 -2 0 2 4 6°6 -4 -2 0 2 4 &

t—z/c (fs) t—z/c (fs)

FIG. 2. Envelope temporal form at several positions after the

source E(r, ,t)=exp(-risd)exp(—t2b?)exp(—iwgt) wg

front is again plane, and at larger propagation distances be=3.2 fs'* (periodT,=1.963 fs), b=2.50 fs(FWHM of inten-
comes divergent, tending to match the phase fronts. Theity At=y2In2b=1.5T;), ands=2 um (L, =0.021 mm). At
pulse front curvature is a consequence of the delay of arrivad=0.4142, the pulse arrives earlier at=3s,, (z) than atr=0.
of the pulseflast term of Eq(31)] at an off-axis point with At z=1.4142 , the pulse arrives earlier at=0 than atr
respect to its arrival at the on-axis point on the same trans=3s,, (z). Units of A are arbitrary.
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FIG. 3. On-axis phase and group velocities of pulsed Gaussian F!G. 4. Carrier phase variatiog(r) — ¢ with respect to the
beams as functions of the propagation distance. Superluminalitifitial one, ¢, for pulsed Gaussian beams as a function of axial
and subluminality of these quantities increases as the average divélopagation distance and for several radial positions.
gence angled, (or divergence angle of the monochromatic Gauss-

ian beam at the carrier frequends larger. diffraction previously describefB]. At on-axis points(solid

) ) curve the carrier-phase variation is due to the Gouy phase
where 6= 2¢/ wgs is the divergence angle of the monochro- gpift plus the additional terrﬁ(z/LwO)+(LwO/z)]*l, which

matic Gaussian beam at the carier frequency. The VeIOCitXan reach a value of about 30 ° at the Rayleigh distance. This
additional phase originates from the advancement the

of propagation of the pulse front, calculated from EB), is

given by beam axi$ of the superluminal phase fronts with respect to
the subluminal pulse front. Its net effect is to make the Gouy
c : i . .
@) (z)= (34) phase reach its asymptotic value faster. At off-axis points,
v 2.1 2 ’ .
9(2) 1-z /Lu,0 since the phase fronts are always more curved than the pulse

front, the situation may be reversed at large enough transver-
sal distanceg$dash-dotted curyeThe variation of the carrier

) ) o ] phase due to curvature mismatch of the phase and pulse
at on-axis points. The group velocity is subluminal Zt  fons is accounted for by the term witR in Eq. (35). It is
<L, and superluminal az>L,,, as shown in Fig. 3. Su- pgticeable that on the revolution hyperboloid, or caustic sur-
perluminality is more pronounced as the beam divergence ifacerzswol\/i, the two latter effects cancéashed curve
larger (i.e., as the source is narroweOut of axis,v'¥ is  the carrier phase then being exactly given by the Gouy phase
given by a much longer expression; its behavior is, howevergps

similar except that subluminality a<L,, and superlumi- We point out that the pulse front equatié), its curva-
nality atz>L,, are less pronounced, as expected from theure, velocity, and hence the carrier phase are the same irre-
converging (diverging form of the pulse front atz  spective of the pulse form and, in particular, of its duration.
<Ly, (z> Lwo)' Group velocities faster than have been They can then be understood as properties of real Gaussian

reported recently in a number of waves propagating in fredeams, which are never an infinitely long train of sinusoidal

space, as in x wavdd 9], Bessel-x pulsef20], and Bessel- oscillations. The pulse front properties, however, are only
Gauss pulsed bean{@1], but to our knowledge, not in relevant for few-cycle pulses, since the tempoigpatia)
Gaussian beams. deviations of the pulse front with respect to the nondiffracted

The carrier phase, or phase at pulse peak can be calcBUISe frontt=2/c may be of the same order as the pulse

4+ - -
2 (1+2%1L )*

lated from Eqgs(19), (29), and (31) to be duration (length, and hence involve drastic changes in the
pulse amplitude.
1 212 On the contrary, diffraction-induced frequency shift in
H(r)=¢—tan ! —) - 1-— . (35 pulsed Gaussian beams does depend on pulse duration. From
Loo) 2z Lug|  s5(2) Eq. (26), the derivative with respect to frequency @f(r),
Lo, 2 evaluated at the carrier frequency, can be calculated to be

The carrier-phase variatiof(r) — ¢ is plotted in Fig. 4 as a

function of propagation distance The term tan*(z/L,, ) , 2r?

comes from Gouy’s phase shift of the Gaussian beam at the awo(r)—w—o L2 1= s2 (2) awo(r). (36
carrier frequencydashed curve which ranges from 0 ter/2 1+ 0 “0

at the far field, and is the only carrier-phase variation due to z?
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.10

This criterion is equivalent to the usual condition for negli-

” =0 A gible pulse broadening< LdiSpZZ(Atrms)Z/|kZ)O| (dispersion
o 8 9 length when spectrum chirp originates from propagation in
3 - < a material with group velocity dispersich:t‘iw0 (second deriva-
> o | r=3w0(2)/21/2 = tive of the propagation constahg)o). Numerical inspection
Q
';i = - of the expression OfDZO(r) for Gaussian beams shows that
o | =s (2) 3 condition(39) is satisfied for a single-cycle pulse upto trans-
3 37 % J, versal distances as IargerasstO(z). For pulses with more
> . . . . . .
7 = than one oscillation, this distance is even greater. Since at
Qo —+ . . .
e B —— these distances peak intensity has fallen down below?10
0 1 2 /L3 4 s times its value on the beam axis, we can write, to a good
z w0 approximation,cp’(go(r):o where the intensity is significant.

In Fig. 6 we test numerically the previous results. This

FIG. 5. Relative frequency shift of the optical oscillations in figure shows the propagated field of the initial Gauss-

Ised G ian b it vari ith axial distaraie - .
pulsed Gaussian beams as it varies with axial distaradeng sev ian  disturbance E(r,)=P(t)exp(-r%/s), where P(t)

eral caustic surfaces. On the caustic surfaefswo(z)/\/i thereis 2 i) i G . | ith

no frequency shift. The values are calculated for a single-cycle exp( )exp( 'wo_) IS a _a1USS|ar1 pu Si with zero car-
Gaussian pulse of Gaussian envelope, for whitkn/w, €' Phase. We set,=3.2 fs * (period To=1.96 fs), b
=0.187. =1.668 fs, ands=2 um so that the pulsé(t) contains

only one oscillation within its FWHM duration At

Again the revolution hyperboloidr=s,, (z)/y2, where =v2In2b=To), and the radiated pulsed beam can be re-

a’ (r)=0, plays an important role. There is no frequenc garded as paraxial. The temporal _form <_)f the propagated
“’0( ) pay P : y ulsed beam at several representative points of s(uutg

shift on this surface, which separates the regions of blueshi&/as obtained by solving numerically integ) with a, (r)
(a“’0>0 at r<sw0(z)/\/§) and redshn‘.t [a_wo<0 atr and ¢, (r) given by Egs.(26) and (27), respectively. For
>s,,,(2)]. The local frequency of the oscillations, calculated reference, we also shogdashed curvésthe approximation

from Egs.(21) and(36), is given by obtained by neglecting all diffraction effects on pulse form
(zero order in amplitude and phaseée., the pulsed beam
2 2r2 [ Aw el 2 ex (t—2/c)?/b?Ja,, (1) exrie, (r) Jexp(—iwgt), whose enve-
@o(N)=wo 1+1+L2 12T 2 (2) ( w0 ) ’ lope propagates without deformation along the plane pulse
“o “0 front t=z/c at speedt. The meaning of the solid curves will

(37

be explained later.

. - . . We observe that at=0.4142 , (first column, z=L,,
and is represented in Fig. 5 as a function of the propagation 0 _ 0
distance for a single cycle pulse. In particular, along theSecond colump and z=2.4142, (third column), the

beam axis, the blueshift is pulse front is slightly converging, nearly plane, and diverg-
ing, respectively, as expected from E®2) for the pulse
2 front radius. In fact, the corresponding delays of arrival at
2 Awms . . .
wo(2)= wo| 1+ 1712 2| w , (38 r:swo(z)\/i with respect to the arrival at=0, estimated
“0 ° from the numerical data, are0.18 , 0.00, and 1.1 fs for the

first, second, and third columns, respectively. The time de-
which increases from zero up to the asymptotic valugl |ays from our analytical formula2/2cR,s{ ) [last term of
+2(A w,ms! ®0)?] in the far field, as shown in Fig. 5. As the Eq. (31)] are also—0.18, 0.00, and 1.1 fs.
number of oscillations in the pulse growa @ms—0), fre- The oscillations at on-axis poinfeottom row are always
quency shifts diminish and disappear in the many-cycle,eshifted with respect tas, the blueshift growing with
limit. propagation distance. Numerically calculated values of the

Diffra(_:tion-induced spectrum chirp, and hence pu"c_’efrequencies aréa) 3.23,(d) 3.32, and(g) 3.39 fs %, in fair
broadening, appear to be very small for pulsed Gaussial reement with the valuet) 3.23, (d) 3.31, and (g)
beams. We adopt here the convention that pulse broadeni 39 fs! from Eq. (37). At the’ caustic ’surfacer

is negligible when the phase variation within the pulse fre-_ S . )
quency band due to its chirp is much smaller than 1 rad, S‘”o(z)\/z (upper row the oscillations are instead red

ie., when (1/2p" ((2Aw)?<1. On account that shifted. Numerically calculated frequencies &cg 3.09, (f)
“0 2.93, and(i) 2.71 fs'!, to be compared with the approxi-

mate frequenciegc) 3.10, (f) 2.86, and(i) 2.63 fs' ' ob-
tained from Eq(37). At the caustic surface= st/ J2 (cen-
tral row) frequency shift is negligible, as predicted by Eg.
(37).

At A oms~1/2 for nearly dispersion limited pulses, the
above inequality can be rewritten as

(Pz;o(r)<2(Atrms)2- (39
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FIG. 6. Field amplitude and envelope for the pulsed Gaussian disturtaage;)=exp(r¥s?)exp(—t¥b?exp(iwgt) with wq
=32 fs'!, b=1.668 fs, ands=2 um at the points of space indicated in each figure. Dots: exact field. Solid curves: approximate
second-order field of Eq40). Dashed curves: zeroth-order field.

We have also verified that the carrier phase at the caustighase should then be included. Additional numerical simula-
surfacer :swo(z)/ﬁ (central row are nearly equal, as ex- tions with longer pulses (3 cycle, 2 cycle. . .) show that
pected from Eq(35), to the Gouy phase shift at the distance the region of validity of the first-order description extends
z In fact, the carrier phases obtained from the numericatPto much larger radial distances, where more significant
solution are(b) ¢=—25°, (e) —46°, and(h) — 68°, whereas pulse transformations take place.

the Gouy phase shifts at the same axial distances are Finally, Eq._(22) allows us to writg an expression for the
_295° —45° and—67.5°. We note that the zero-order propagating field of pulsed Gaussian beams that carry the

. _ R R pulse transformations as given by our approximate analytical

;cllfmon yields the rather wrong values10°, —16°, and expressions. Equatiof®2) with (PZ,O(r):O and Agyp(0,7)
In the above example, we have deliberately chosen a A(0.7) simplifies to

single-cycle pulse to test our analytical description of pulsed E(r,t)={a, (NA[Ot—¢. (1]
beams in the most difficult casé (/ wq is as large as 0.44 0 0
The characteristics of the single-cycle pulsed Gaussian beam +ia., (r)(alat)A[0t—o. (N}
are accurately reproduced at points of spabere the inten- 0 0
sity is significant;specifically, up to radial distances where xXexp{—i[wot— ¢, (1) — ¢}, (40
the intensity (amplitude has decreased down te-1%
(~10%) of the on-axis intensit{amplitud. At larger radial ~ Wherea,, (r) and¢,, (r) are the amplitude and phase of the
distances, analytical and numerical values start to disagreBaussian beam at the carrier frequefiggs.(26) and(27)],
significantly. The second derivatives of the amplitude and thend a;o(r) and cp;o(r) are their first derivative$Egs. (36)

026606-8
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and(30)]. In Fig. 6 we compare the approximate expression c
(40) (solid curves with the exact fieldsmall squaresin the U(P):—z_ (48
case of a single-cycle Gaussian puls@,r) =exp(— /b?). V1-(Kc/wg)

By construction, the approximate expression fits to the exa

field in the same region where the pulse transformations a

accurately reproduced, i.e., inside the caustic surface of

~1/100 transversal decay of intensity. t= z
c

) he phase front

1
V1—(Kclwg)?

) ) is plane and propagates at the constant subluminal group
As a second example, we study the field radiated by th@elocity

pulsed Bessel disturbance

(49

B. Pulsed Bessel beam

v@=c\1-(Kc/wg)> (50)

. . As a,(r) does not depend on frequency, there are no am-
of spectrum E,(r.)=p,Jo(Kr), where P(t)=A(0t) plitude spectral changes and, in particular, no redshift or
X exd —i(wt—¢)], Jo(-) is the Bessel function of zero or- blueshift of the carrier oscillations during propagation.
der and first kind, ant <w,/c is a constant independent of Diffraction-induced spectrum chirp, given by Eg#6), is al-
frequency that determines the size of the transversal Bess@lays negative with absolute value growing linearly with
function. The above spectrally pure disturbance must be digsropagation distancg as in the propagation of a plane pulse
tinguished from the Bessel-x disturbancé, (r,) in a medium with anomalous group velocity dispersion
:E)wJO(Kr)! with Kxw/c. Contrary to Bessel-x pulses, (negative second dzerivastive of the pzropa}gation conptant
pulsed Bessel beams experience diffraction changes, whidfi,,= ©4,(2)/2= — (Kclwg)[1- (Kclwg)?] 72 Accord-
have been studied in Ref22] on the basis of numerical ingly, pulse broadening is constant at transversal planes
simulations. It has been shown that the putg¢) broadens = const, and becomes sizeable at axial distarzces the
during propagation, while the transversal profile remains arder of the “dispersion Iength"LdiSp=2(Atrms)2/|kz) l,

. . . . 0
Jo(Kr) function[22]. This behavior can be easily understoodhereat,,. is the rms width of the initial pulse. From stan-
from the diffraction-induced spectrum chirp. dard formulas for dispersive pulse propagatidi], the

The propagated spectrum is the well-known monochropise duration propagation at any propagation distance is
matic Bessel beam given by

U,(N=Jo(Krexdi(w/c)?—K?z], (42) [ 2
Atnd2)=Atms\/ 1+ LT (52

whose amplitude and phase are

E(r, ,t)=P(t)Jo(Kr) (47

disp
a,(rN=|[Jo(Kr)|, (43 All previous features are contained in the expression
0, (N =(wlc)2=K2z+ w0 — Jo(Kr)], (44) E(r,t)=Acvol ¢, (2),t— ¢, (2)]
where 6(-) is the Heaviside step function. The last term in Xexg —i(wot— \/(wO/C)Z—KZZ— @) 1Jo(Kr)
Eq. (44) adds a phase at points where the Bessel function (52)

is negative. All derivatives of the amplitude with respect to
frequency vanish, and the derivatives of the phase at thfor the propagated field of pulsed Bessel beams, obtained

carrier frequency are from Egs. (22) and (8). Equation(52) represents a pulse
whose carrier oscillations propagate at the phase velocity
) z 1 v(P>c, and whose envelope propagates @< c along the
%o(z): c \/mz’ (45) z direction at the same time that broadens due to diffraction-

induced GVD and is transversally modulated by the same
K2c . function Jo(Kr) at any propagation distance. In the particu-
o (2)=—— _ (46) lar case of a Gaussian initial envelop¢0,r) =exp(—7/b?),
0 w3 [1—(Kclwg)?]%? Eq. (23) for Agyp can be analytically carried out, as is well
known, yielding

As indicated, they only depend on the coordinate

The characteristics of the propagating pulsed Bessel beam b [t— %O(Z)]z
are then the following. The phase fronts A "D t—0 (2)]= —exp — ————
GVD[QDwO( ) quO( )] b(Z) bZ(Z)
wot — (wo/c)?—K2z— 78] — Jo(Kr)]=const. (47) (53
advance, according to E(L6), at the constant superluminal With b*(2)=b*-2i¢/, (z). Then the propagated pulsed
phase velocity Bessel beam with Gaussian pulse envelope is given by
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FIG. 7. Field amplitude and envelope for the pulsed Bessel disturbB(8,t) =Jo(Kr)exp(—t¥bYexp(—iwgt) with wy=3.2 fs'1,

b=3.34 fs, andK=2.13x10°> mm ! at different positions of space. In all figures-0 andz increases fron(a) to (d). The dispersion
length due to diffraction i$—disp:2(Atrms)2/|kZ)o| =0.126 mm withk,, = (pZ)O/Z: —44.3 f¢/mm. Solid curves: exact field. Dashed curves:
approximate field of Eq(54).

o 2 IV. CONCLUSIONS
b [t—o,,(2)]
E(r,t):ﬁex _bz—(z) We have applied basic concepts of the propagation of
three-dimensional wave packets to the description of diffrac-
o _\/ﬁ _ _ tion (finite transver_sal sizgeeffects on the_ propagation of
X exil i (wot = V{wo/€)" =K 2= $) No(Kr) ultrashort, few-optical-cycle pulses. Diffraction-induced
(54)  pulse transformations in vacuum can be described in the
) . . . same way as one-dimensional pulse transformations in a dis-
In Fig. 7 we see the diffraction changes in temporal form ofpersive system. Previously described effects as pulse time
a pulsed Bessel beam with Gaussian envelope of parametetglay (pulse front curvature frequency blueshift and red-
wo=32 fs'!, K=0.2w,/c=2.13x10*> mm ! (transver-  shift of the optical oscillations, and puise broadening, appear
sal size of the Bessel functiole#Z)\wo), b=3.34 fs(2  here classified as first-order and second-order diffraction-
cycle), and$=0. The solid curves represent the exact pulsenduced dispersion effects, which can be accurately quanti-
form ReE(r,zt) and |A(r,zt)| at several distances along f1€d by simple analytical expressions. By analogy with dis-
the beam axis, numerically calculated from E@) and(6)  Persive pulse propagation, higher-order effects due to third-

[out of axis the pulse form only changes by a factgr)]. order dispersion and second-order gain dispersion can be

: : ily introduced.
The dashed curves represent the approximate field of E(f.as' s . .
(54), and the dotted curves represent the initial pulse propa: The application of this method to pulsed Gaussian beams

4 . allowed us to describe unknown characteristics such as the
gating W'thQUt chapge at speex] for. refer.encg. The .e?<act form of the pulse front surface within Rayleigh distance and
and approximate fields are almost indistinguishable; in parg, erjyminal group velocity outside. Approximate analytical
ticular, they peak at the same timgsorresponding t(o) &  expressions for the diffracted pulse can be written in terms of
pulse travezllmg at the group velocity of Eq50), v'¥  {he well-known problem of pulse propagation with group
=2.94<10"" mm/fs smaller thanc] and they also have yelocity dispersion. Although we have restricted our atten-
similar durations and peak amplitudes. The discrepancy ifion to transformations of the pulse temporal form due to
the trailing and leading parts of the pulse at distances of théinite transversal size of the source, the same method can be
order or larger than the dispersion lendths,=0.126 mm  used to characterize the effects of ultrashort pulse duration
are due to diffraction-induced third-order dispersion, whichon transversal diffraction pattern. The results of this paper
turns the envelope into an asymmetric function. As pre-can be of use for the design of optical experiments with

dicted, no significant redshift or blueshift is found. few-cycle optical pulses.
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