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Trapping, reflection, and fragmentation in a classical model of atom-lattice collisions
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A classical one-dimensional model of the collision of an atom of Mvagdth a cold, semi-infinite harmonic
lattice comprised of identical atoms of massis considered. In the model, the interactions between the
incident atom(adatom and the lattice are described in terms of a truncated parabolic potential by which the
adatom is harmonically bound to the lattice at short distances but evolves freely when its distance is larger than
a critical lengthR, . The dynamics of the adatom colliding with an infinitely cold lattice is studied as a function
of the initial velocity of the adatom. In order to determine whether the colliding atom is bound or reflected
from the lattice in the asymptotic time limit, “secondary” collision events in which the incident atom leaves
and reenters the interaction zone of the lattice are carefully considered. It is demonstrated that secondary
collisions anticipated to be important for heavy adatops-(n/M <1) also occur in the case of light adatoms
(n=1). Itis shown that the neglect of secondary collisions leads to an underestimation of the lower energy
bound for adatom reflection of roughly 10% for close to 1. By generalizing the model to allow for the
breaking of lattice bonds, the phenomenon of collision-induced lattice fragmentation is investigated.
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I. INTRODUCTION model, R, is defined to be the initial length of the first link
R.=a+u4(0), sothat the adatom is just entering the inter-
The collision of an atom with polyatomic complexes or action zone at=0. The interaction potential for the adatom
solid surfaces is an important and complicated processyith the lattice can, therefore, be written in terms of the
which generally must be described within a quantum-relative displacements of the two atoms as
mechanical framework. Nevertheless, valuable insight into

the mechanism of energy transfer in such processes can be %kui if u;<uq(0)
gained from simplified classical mode[4]. About forty U=y, 5 ] 2)
years ago Cabref@] and Zwanzig 3] investigated the pos- zkuy(0)*  otherwise.

sibility of the trapping of an incident atom by a cold har-

monic lattice using a simple one-dimensional model. Th . ; ) . .
Cabrera-Zwanzig model, hereafter referred to as the cparmonic potentials with force constantFor this potential,

model, consists of a semi-infinite one-dimensional chain of e gvolut_lon of the system occurs in such a way that if the
relative displacementi;(t;) between the adatortatom 1

ﬁ‘ll other pairs of nearest neighbors in the chain interact via

classical particlegatoms labeledi=1,2,3 ..., beginnin . R
from the tgrminal atom at the free end of the ch@%e Figg_ and the terminal atom of the chaiatom 2 exceeds its initial
1). In the CZ model, the atorris=2,3 representing the valueu,(0) at a timet,>0, the lattice exerts no force on the

adatom that may then escape. On the other hand, if the initial

lattice have mass and are initially frozen in the equilibrium . Lo : .
ratio of kinetic and potential energies for the adatom

positions,xi(0)=xi°=a(i—1), wherea>0 is the equilib-

rium bond length in the lattice. The corresponding initial Mu2(0)
velocitiesv;(0) and displacements;(0)=x;(0)—x’ of the a= + (3
lattice atoms are taken to be zero. The terminal ateni kuz(0)

represents the incident particladatom colliding with the
cold lattice. Att=0, the adatom is assumed to be moving
towards the rest of the chain with positive initial velocity
v1(0) from a positionx;(0)<0 displaced from its equilib-
rium position at the origin byg,(0)=x,(0). The relative
displacements of the atoms=q;,,—q; are all zero at Us(te) =Uy(0), te>0 (4
t=0 except for that of the first link of the chain, which is

initially stretched,u;(0)=—q;(0)>0. The adatom interacts v(0)

k
with the terminal atom of the lattice €2) via a truncated —— b
potentialU, given by \
M m m m
A\

is less than a certain threshold valag, one finds that
u,(t)<u4(0) for all timest>0, which implies that the ada-
tom remains bound to the lattice. In the Cabrera-Zwanzig
solution of the CZ model, it was assumed that the condition

U Tk(x,—x,—a)?  if X,—x;<Rg "
! 1k(R,—a)? otherwise, 4} 0 a 2',,

. ) R
wherek is the force constant and, defines a cutoff length
for the truncation of the harmonic potential. In the CZ FIG. 1. A schematic of the Cabrera-Zwanzig model.

1063-651X/2002/6&)/0266038)/$20.00 65 026603-1 ©2002 The American Physical Society



ALEXANDER V. PLYUKHIN AND JEREMY SCHOFIELD PHYSICAL REVIEW E65 026603

guarantees the adatom will escape from the lattice and hendedoes not lead to the escape of the adatom since it later
be reflected in the asymptotic time limit. Under this assump+eenters the interaction region of the lattice and is trapped.
tion, Eq.(4) can be used to find the critical ratio of kinetic Moreover, even when supplemented with the additional re-
and potential energies, for reflection. The dynamics of the quirement thav,(t,) <0 at the moment of rupture, the dy-
adatom displacements;(t) depends on the ratio of the lat- namics described Edq4) may still correspond to a virtual
tice and adatom masses=m/M. For two special cases, break of the adatom-lattice bond since the adatom may move
corresponding tu=1 and =2, it is possible to obtain an t00 slowly after the bond is ruptured to escape the lattice. It
analytical closed-form solution fou,(t) in terms of tabu- Wil be shown that such an eventuality arises, in particular,
lated functions. Using Eq4) as the condition to determine for the casesu=1 andu=2 considered by Zwanzig. For
the threshold for reflectionr,, Zwanzig obtained3] «, #=1, we demonstrate that the actual valugis approxi-
~24.54 for the mass ratip=1, and a value about ten times mately 27.33, which is about 10% larger than the valife
smaller for the mass ratip =2. ~24.54 obtained by Zwanzig. Far; <a<a., the adatom

While the CZ model is clearly too simplified for a realistic moves out of the interaction zone after the first collision with
description of the collision of an atom with a surface, thethe lattice for a period of time until the vibrating lattice re-
model demonstrates the importance of multiphonon excitacaptures the adatom. There is only one such secondary col-
tions for gas-surface processes. Besides providing a qualitdision, after which the distance between the adatom and the
tively correct description of the adatom trapping, the modelutermost lattice atom never reaches the critical v&le
also predict$3,4] a much higher transfer of energy from the  In the following section we consider the cage=1 in
light adatom to the lattice than what one would expect fromdetail, while in Sec. lll, the extension of the analysis of the
the interaction of the adatom with a single surface atomreflection dynamics is extended to arbitrary valuesuofn
Although the energy transfer is overestimated in the oneSec. IV, we discuss the behavior of the chain in which not
dimensional CZ model, the enhanced energy transfer is ionly the first, but all pairs of nearest neighbors interact via
agreement with both experiment and more sophisticatettuncated parabolic potential. This model leads to the more
three-dimensional modelgl]. For a finite chain andvi complicated scenario of atom-lattice collisions than in the
— oo, the model is relevant to scattering of molecular clustersoriginal CZ model and can be used to study collision-
from a hard surface, which is the topic of the extensive curinduced fragmentation.
rent research5]. In this context, the model has been consid-
ered recently in Refl6]. Il. THE CASE p=1

Since the early work of Cabrera and Zwanzig, the CZ _ _ ) )
model has been revisited many times and generalized in a The solution of the equations of motion for a harmonic
multitude of ways to describe three-dimensiof], anhar- ~ chain can be written as Imear c_omblnat|ons of |n|t|a! FiIS-
monic [4], finite [7], and noncold lattice$8]. In addition, placements_ and velocities with tlme—d_ependent coefflc_lents
more realistic potential§l] for the adatom-lattice interac- expressed in terms of the Bessel functidp&). For a semi-
tions have been considered, and mass ratizsl have been |nf|!’1_|te cham_of identical atoms, the displacements and ve-
investigated by McCarroll and Ehrlich using an infinite se-locities are given by

ries expansion of Bessel functiofg]. The behavior of the - :

system for other mass ratios has also been discussed qualita- .\ _ () 4 J AL (47

tively by Zwanzig who noted that if the adatom is heavier ai(t) gl Ak(0) Wi (1) +v,(0) Odt Wik(t) 1, (5
than the chain atomsu(<1), the criterion for trapping ob-

tained using Eq(4) may not be appropriate since the lattice - d

vibrations induced by the adatom collision may lead to recol- vi(t)=k21 {vk(O)Wik(t)+qk(0) aWik(t)] . (6)

lision and recapture evenfs].

The main goal of this paper is to show that actually Ed-where
(4) cannot be used alone to determine the conditions for ada-
tom reflection even when the_ mass of the adatqm is gqual to Wi (1) = Jpji i (200t) + I+ k—1)(2001), (7)
or less than the mass of lattice atonasz 1. The inapplica-
bility of Eq. (4) to unambiguously define an escape conditionand w?=k/m. As this solution is less familiar than that for
can readily be seen from the fact that it does not involve thehe infinite chain or for the chain with both ends fixed, we
adatom velocity ;. In the Zwanzig solution of the model, it outline its derivation in the Appendix. Note that these equa-
is implicitly assumed that the adatom velocity is directedtions hold for atoms located a finite distance from the free
away (i.e., it has negative velocityfrom the lattice at the end of the chain.
moment of the break of the first link. One may anticipate that Throughout this paper, we use dimensionless displace-
generally this assumption breaks down when the rupture ahents¢; and velocitiesZ;, which are normalized by the ini-
the link occurs by a mechanism in which the velocities of thetial coordinates of the adatom
adatom(atom 1) and the terminal atom of the latti¢atom 2
are both positive and,>uv, just before the break. We will & =0ai(0)/]q1(0)],  &i(t)=vi(t)/v4(0). 8
show that such a mechanism is important for laggeSince . ]
the velocity of the adatom after leaving the interaction zoneAS functions of reduced time=2wt, &(7) and{i(7) are
remains constant, such a break will be virtual in a sense thatlated by the equatio& ()= B¢i(7), where&;(7) denotes
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the time derivative ot;(7) and the paramete® is related to  This solution of the dynamics of the system remains valid
the initial ratio« of the kinetic and the potential energies for until the relative displacement
the adatom defined in E¢3), by

e1(7)=&2(7) = &1(7) (18
1 v4(0) 1 ) . L S
= 20 a0 Jua. (9)  for the first link of the chain is greater than its initial value of
! 1 at which point the link breaks.
It follows from Egs.(5) and (6) that Using Eq.(16), one finds that the first link breaks at a

time 7,>0 [that is, ¢,(7;)=1] provided the parametes
~ T exceeds its critical valug? ~2.4768. According to Eq9),
&(T):gl [fk(o)wik(T)"",ng(O)fodT,Wik(T/)]* this value corresponds tef ~24.54, in agreement with
(10) Zwanzig’s resul{3]. For reduced times> 1, after the break
of the first link, the adatom no longer interacts with the lat-
tice and evolves freely according to

{1(7)={1(71)=const (19

T)=E&(7)+ ) (17— 7). 20
The derivative and the integral of the functidi, (7) ap- Galn=&lm)+ Bh(n)l ) (20
pearing in the above equations can be expressed in terms The evolution of the lattice atoms after the rupture, on the

[

d
Gi(n=2, lgk(O)wikmw1§k<0>d—wik<r>].
k=1 T
(11)

sums of Bessel functions noting that other hand, is given by
deT,Wik(T’):zzb Jofi—+21+1(7) §i+1(7)=k§_:1 <§k+1(Tl)Wik(A1)
22 Jaeken-a(n, (12 B () gy Wi | @D
W s —i Wi (A
?_E{J2|i—k|—1(7')_J2|i—k|—1(7')} §i+1(7)—k:1 Sk 1(T1)Wik(Ay)

+3{J2+1)-3(7) = Ingi+w-1( 7} (13

In practical calculations, since the Bessel functions of large
index make increasingly small contributions to the sum inwherei —12
Eq. (12), the sum may be truncated at an indgy deter- T
mined by the desired level of numerical accuracy.

The initial conditions for the CZ model described in the
Introduction are

Aq
+ﬁ§k+1(7'1)fo dAWik(A))u (22)

L A=7—71, and §(7y),(7,) are given

by the functions(16) and (17) at 7= 7,. However, if one

tracks the evolution ofp4(7), one observes thag,(7) first

increases thewecreasego its initial value ¢4(7,) at a re-

duced timer, (see curves 1-3 in Fig.)2orovided theg
0i(0)=04(0)81, ©vi(0)=v4(0)8;;, (14) parameter, determined by the initial kinetic energy of the

adatom, falls in the intervad; <8< ., with 8.~2.617. At

with q;(0)<0 andv(0)>0. The lattice with which the ada- time 7,, the adatom reenters the region of interaction with

tom (atom 1 collides is assumed to lie on the right half of the lattice and is once again bound by the chain. The dynam-

the x axis, and the initial conditions correspond to a situationics of the chain after the adatom reenters the region of inter-

in which the adatom collides with the lattice from the left. In action with the lattice £>7,), is described by

the dimensionless coordinates, the initial conditions assume

the form

- d
(=2 | i)+ B 7o) g5 )wik(Azx (23
k=1 2

&(0)= =01k, &(0)= by, (15

and hence from Eq$10) and(11), one obtains

[}

Az
§i<r>=k§1 (gk(mwikmz)wck(rz) fo dAwik(m),

§i(7):_Jz(i—l)(T)_Jzi(T)+,3ford7'[~]2(i—1)(7') (24)
whereA,=7—1,, and {;(7,),& () are the functiong21)
+32i(7") ], (16  and (22 at r=r,. Equations(23) and (24) give a relative

L displacementp,(7)<1 for all 7> 7,, which implies the ada-
_ TN 4 tom leaves the interaction zone only once. Rupture events of
§i(m)=J2(i-1)(7) + J2i(7) 2/5’[‘]2"3(7) Jaira(7)] the adatom-lattice bond leading to the reflection of the ada-
(170  tom in the asymptotic time limit occur fg8> 3., where the
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115 - : where wizk/M, the memory functionK(7) is given by
1 B=2.5000 K(r)=2J2(2wt)/t, .a.n.d the “st.ochastic" forceF(t) is a
5 2 p=2.5500 linear function of initial coordinates and momenta of the
. 3[‘32‘7}2 lattice atoms (=2,3, . ..). Theequations for the lattice at-
5 B=2.6400 oms are given by
11 F i
3 4i(H) = — 0?qi(t) — @*(gi—qi—1)

[0 ‘
+w2fdt'K(t—t’)qi(t'HFi(t),
0

where the forcd=;(t) is a linear function of initial coordi-

nates and momenta of atoms 1,i+2, ... For theinitial
1 conditions of the CZ modelsee Eq.(14)], the fluctuating
/ forces F; vanish. Then introducing the reduced time
4 . . =2wt, the above equations can be written as
] 1 2 3
T,

2 Mo
g =—— +— | dr'M(7—7' "), (25
FIG. 2. Relative displacement;=&,— &, between the adatom Aa(7) 4 Aa(7) 4 fo mM(r=r)a(r), (29

and the outermost lattice atom after the adatom leaves the interac-

tion zonegp,<1. Curves 1, 2, and 3 correspond to situations wherefor the adatom, and
the adatom is recaptured, while curves 4 and 5 correspond to ada-
tom reflection. . 1 1 1(

gi(r)=- EQi(T)+ 20i-1t Zf dr’'M(7—7")qi(7'),
kinetic energy of the adatom is still large enough after one 0
oscillation of the chain that the lattice is unable to recapture (26)
the adatom(see curves 4 and 5 in Fig).2Thus, one can ¢, the |attice atomsi=2,3, . . . Here and below, the nota-

conclude that the adatom is reflected by the lattice only for. - ' -
B> B,, which gives a critical valuar,~27.395, roughly tion B(7) andB(7) denote the first and second derivatives of

[10]% larger than the value} ~24.54 predicted by Zwanzig ﬁjnn(i:lglr']tr'\a/\lr(yﬂv ?:?ﬁéfé quvag?orréstgekgstg; ;I'Or;?n memory
3].

If B> pB. and the adatom has left the scene of interaction, 2
the outermost lattice atom € 2) becomes the terminal atom M(7)=—=Jy(7)=3[J1(7)+I3(7)], (27
for the rest of the chain. If one now assumes that at this stage T
atom 2 begins to interact with atom 3 via a truncated para- , . ~ . 5 o
bolic potential, the new terminal atom can escape the Iatticévrhl';:zh has the Laplace transformM(s)=s"—sys"+1
provided it gains enough energy from the collision of the Us.in the method of Laplace transformation, one can ob-
adatom with the lattice. For this model, we find that the ﬁrSttain theg solution of E s(2p5) and (26) in the c’onvenient
link of the remaining chain, between atoms 2 and 3, experi- ) q
ences a “virtual” break for a critical value g8~ 3.94, while iterative form
bond-breaking events leading to the final escape of atom 2
occurs wherB~4.35. This process can be continued to ex- g1(7)=A(7)q1(0)+
amine how energetic adatom-lattice collisions lead to se-
guential fragmentation of the lattice. In Sec. IV, we examine
a slightly different model of surface fragmentation in which qi(7) = J'TM(T_ )4 (r)dr, =2 (29)
all lattice atoms interact via a truncated parabolic potential, ' 0 ot ' ’
thus allowing bond-breaking events to occur between any

fOTA(mdr']ql(ox (28)

two lattice atoms at all times. where the functiorA(7) has the Laplace transform
I1l. ARBITRARY MASS RATIOS ~ 2
_ _ _ _ _ A(s)= > . (30
To generalize the previous discussion of adatom-lattice (2= p)stpys“+1

collision dynamics to an arbitrary mass rajio=-m/M, it is . i
instructive to consider the set of integral-differential equa-E9uations(28) and (29) can be expressed in terms of the

tions for atom positions, which have the form of a general-dimensionless displacements and velocities as
ized Langevin equatiof®,10]. For the adatom, the equation

has the form (1) = — A T)+BJTA(T')dT,, (31)
0

t
o __ 2 2 ’ 47 ’ .
du(t)= lel(t)+wlfodt K(t—t")agy(t") +Fa(t), (7 = A7) — B A(T), (32)
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for the adatom, and 1

§i<r>=jOTM<r— PYE1(7)d, (33

T 1
gi(r>=foM(r—r')gi_l(r'mr'—E%M(r) (34

?; 1

for the lattice atomsi,=2.

There are two cases when the inverse transforr(s)
in Eqg. (30) has a closed form. Fop=1, one finds that
A(7)=2J1(7)/m7=Jo(7) +I,(7) and Eqgs.(28) and (29) co- -2
incide with the general solution obtained previously in Egs.
(5) and (6) for the homogeneous chain. The second simple
case is whenu=2, which yields the concise resul(7)
=Jo(7). B s 10 15 20

To obtainA(7) for mass ratiose other than 1 and 2, one T

notes thatA(s) is a two-valued function with branch points £ 3 Relative displacements = & , ;— & of the first (1),

ats=ti. The corresponding Riemann surface, consisting Othird (¢;), and fifth (es) links of the chain for3=1.6941. Positive
two sheets, can be constructed making a cut along the imaging negative values @f, correspond to stretching and compressing
nary axis between the branch points. To obtain the inversgs the link, respectively.

Laplace transform of\(s), one must choose the first sheet

on which the function/s?+ 1 is positive whers is real and  increasingly small with large, it is numerically difficult to
positive since integration on the second sheet leads to a fungetect recapture events for very light adatoms. For very light
tion A(7) that behaves unphysically either in the limit adatoms,B; ~B., and hence the original CZ criterion to
=0, or when7—« (or in both limitg. If <2, the only solve for the critical value of3 for adatom reflection is ap-
singular points of the functioA(s) on the first sheet are at Proximately correct. On the other hand, for a relatively heavy
the branch pointsti. The integration path of the inverse adatom {<5), the situation is qualitatively similar to that
Laplace transform for this case can be transformed into &€scribed in the preceding section for=1: At the moment
closed curve around the cut. For this path, one obtains th@f rupture, the adatom is moving away from the lattice for

following integral representation fok(7) for u<2, B= B¢ with a small velocity and is subsequently recaptured
by the vibrating lattice.

%

1 1
An=_—1 fo dycosyn) — = 7 (35 IV. GENERALIZED MODEL

One rather unexpected feature of the semi-infinite, homo-
M . . geneous chain dynamics after the adatom collision is that the
are alsg cor)tr|but|or)s 1B(7) .from two simple poles lying maximal stretching of the first link of the chain may be less
on the imaginary axis a=*i/y, and one gets than that for the subsequent linksee Fig. 3. Due to this

surprising observation, first noted in Rg4], it is interesting

A(r)= iledycos(yr) Vl—y2+ M—_Zcos{ \/;7-). to consider a generalization of the CZ model in whilh
mpr—1Jo Y=Yy n—1 nearest neighbor atoms in the lattice interact via the same
(36)  truncated potential. Since the maximal bond stretching in-
) . o duced by the adatom collision with the lattice does not occur

Equations(31)—(36) give a complete description of the 4t the first link, one may anticipate that the result of an ada-
system dynamics until the break of the first link of the chaintgm collision in the generalized C&GCZ) model will not be
at time 7, . After the chain breaks, the dynamics is describedy reflection but rather a fragmentation of the chain. Restrict-
by Egs.(19)-(22) that, in turn, hold until the adatom is re- ing ourself to the casl =m, we demonstrate in this section
captured by the lattice. As in the special casel, one finds  that the rupture events in the inner chain are virtual for low-
that 87 # 8. for any mass ratiq:, where 7 and 8. denote  energy adatom collisions, yielding short-lived chain frag-
the critical values of the parametgrat which the first link  ments that are recaptured by the lattice. As a result of the
breaks and the adatom is asymptotically reflected, respegecapture events, low-energy adatom-lattice collisions result
tively. For a light adatom withu>5 at 8= g% , the adatom in either trapping or reflection of the adatom without frag-
velocity at the moment of bond rupture is positive and hencenentation of the chain. However, as the adatom energy in-
directed toward the lattice, implying that the adatom is recreases, clusters of atoms may escape the lattice in addition
captured by the lattice. Such recapture events persisi.for to the reflected adatom.
values as large as 40, and presumably occur for lagger To explore the possibility of the lattice fragmentation in
However, since the difference betwegfi and 8. becomes the GCZ model, one also needs the general solution of equa-

wherey=(u?/4)/(n—1). If ©>2, on the other hand, there
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tions of motion for a free cluster in addition to the solutions 5 d

(5) and(6) for the semi-infinite chain. In the Appendix, itis  {(7)= Z L)+ B (1) A V(A + (1),
shown that the displacements of an atom in a free cluster k=1 1

obey (43

0i(t)=0c(0) +v(0)t whereA,=7— 7, and the time dependence of the atoms of
N . the remaining lattice is given by

+k§=:1 Qk(O)Vik(t)"‘Uk(O)jodt'vik(t'))1
(37) Evs(m)= 2, (§k+s<n>wikml>
where N is the number of atom in a clusteq.(0) A
=N"13,0;(0) andv.(0)=q.(0) are the initial coordinate +ﬁ§k+5(Tl)J 1dAWik(A))a (44)
and the velocity of the center of mass of the cluster. The 0
function V;(7) in Eq. (37) is given by

N-1 ~
Vi(7)= % le [cog2(i —k)y;}cog Tsiny;) fivs(7)= k; ( Sk s(T1)Wik(Ay)

—cog2(i+k—1)y;}cog rsiny;)], - d
A2k Dyjjcoseiny,)] B o) gy Wad0)|, (@9
wherer=2w7, andy;=mj/(2N). In the limit of large clus-
ters,V,(t) reduces to the corresponding functidf (t) for .
the semi-infinite chain given in Eq7). The dimensionless Wherei=1.2, ...

displacements; and velocities; for atoms in the cluster ~ Equipped with these results, it is straightforward to show
obey that the bond rupture occurring at the fifth link f@;<g

<B, (where B,=1.71..) are virtual in the sense that the
N d cluster leaves the interaction region of the lattice for a short
gi(r)=k2 (gk(0)+,3‘1§k(0) d_r) Vik(7)+£(0), time and is then captured by the lattice at time For 7
=1 >1,, the evolution of the chain is once again described by

(38) Egs.(23) and(24), and the lattice is stable.
N Similar analysis shows that neither the reflection of the
o 0)+ 0 Td V. 1 £(0 adatom nor the fragmentation of the lattice occursg@dess
&i(7) kzl (gk( )T B )fo T) k(1) +&(0) than the threshold valug,=1.86 . . . . If 8 is slightly larger
than B;, the chain first experiences a virtual break at the
+B7Lc(0), 39 third link, leading to a three-atom cluster, which is later re-

-1 -1 captured by the lattice. At subsequent times, the chain is
where{(0)=N""2;£(0) andé.(0)=N""2;£(0). unstable and quickly ruptures at the first link. This break is
The initial dynamics of the chaitbefore a break in the ot yirtyal and leads to the final reflection of the adatom. The

chain in the GCZ model is described by the same expresyomaining lattice is then stable for all time and does not

sions(16) and(17) as for the original CZ model. Using these ¢5oment. This behavior is reminiscent of that observed in
equations, one flnds_ that the minim@for the chain rupture 0 tunneling mechanism of chain breakfitd] according to
is 8,=1.6941..., which corresponds to the break offifte \\hich hond rupture results from two subsequent processes
link at the reduced time=7,=16.89,..., at which time with different time scales, the fast vitual disappearance of
ou(71) = £o(11) — Es(r1) =1, (40) 22:mbond followed by the slow collective motion of the
As B increases further, the evolution of the system be-
comes more complicated and fragmentation of the lattice is
possible. To illustrate this point, consider the chronology of
the chain decay fog=2.47 for which the chain first breaks
at the second link. For this value gf the two-atom cluster
is not recaptured by the lattice. The remainder of the lattice
vibrates after the cluster breaks free for a reduced time inter-
val 6t~ 15, after which the chain experiences a virtual rup-

5
E(T)=E( )+ BALL (1)) + E (fk(Tl)V'k(Al) ture at the sixth-link on the remaining chain, forming a six-
' ¢ ¢ 1 ' atom cluster, which is quickly recaptured. After the cluster is

ei(n)<1, i#57<7. (41)

At time 7, the original chain decomposes into a cluster
of five atoms and a semi-infinite lattice. Fer 7, the clus-
ter evolves according to Eq&8) and(39) from the coordi-
nates and velocities valugs(r,) and (7)),

A recaptured, the lattice is still unstable and finally fragments
1 : ; ; u P .
+ B Tl)f dAV, (A)], (42) at the fifth link, Ieadmg to t'he 'evaporatlon of a five-atom

0 cluster from the lattice, which is henceforth stable.
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has much richer behavior than previously reported. In par-
ticular, we have shown that secondary collisions in which the APPENDIX
adatom reenters the interaction zone of the lattice after a
virtual break are important over a wide range of mass ratio?Or
. Due to the presence of secondary adatom-lattice collsions,
the adatom reflection threshold energy cannot be computer
based on a single bond-breaking event. It was demonstrate
that threshold energies calculated in this fashion provide only N p_2 N
a lower bound for the adatom to leave the interaction zone H=E — 4 E
and do not guarantee that the adatom will be reflected by the F12m =
lattice in the asymptotic time limit. _ _can be reduced to the diagonal form

In addition, collision-induced fragmentation was consid-
ered by generalizing the CZ model to allow for the breaking N2
of all lattice bonds. For the generalized CZ mo@BLC2), it H=5 > {P+0’Q%,
was shown that the collision of a low energy adatom with a 1=0
cold lattice produces short-lived clusters, which are quicklyby means of the normal mode transformations
recaptured by the vibrating lattice. It was demonstrated that

In this appendix, the solution of the equations of motions
a finite free harmonic chain and for a semi-infinite chain
e presented. The Hamiltonian of the finite harmonic chain
N atoms with both ends free

-1

(Qi_Qi+1)2

N| =

the first fragmentation event surviving in the long time limit 1 Nt N—1
corresponds to the reflection of the adatom in spite of the g=—=2> A;Q;, pi=Vm> A;P;,
production of virtual clusters at early times. Although the Jm =0 =0

asymptotic phenomenology of the GCZ model is similar to
that of the CZ model for low energy collisions, the energy
threshold for adatom reflection for the GCZ model was
found to be of approximately half its value in the simpler Ajj=
model, demonstrating the importance of the formation of vir-
tal clusters in Fh.e energy transf_er process. As the energy %here €; takes the value of 1 if=0 and 2 otherwise. The
the adatom collision with the Iamce increases, the eVO!Ut'Or}{equencies of the normal modes are given by
of the system becomes complicated by the evaporation o
clusters, resulting in real fragmentation of the lattice. 7
It should be emphasized that the present considerations 0;=20 sin(m
are neither general nor complete. This study focused only on

the situation in which the masses of the atoms composing ”\?/herewz JK/m. The normal modes evolve as
lattice are the same and the spring constants appearing in the '

with

€\ 2 C2(N-i)+1
N COS§ 7| —ZN

(possibly truncated parabolic potentials are all equal. In P.(t)=P;(0)cog wit) — w;Q:(0)sin(w;t)

. . P . . .. ] ] ] 1<) 12
principle, it is possible to consider the collision of an adatom
with nonhomogeneous lattices along the lines elaborated Qj(t)=Qj(O)cos(wjt)+wj’le(O)sin(wjt),

here, but the mathematical solution of the equations of mo-
tion of the nonhomogeneous system becomes cumbersomgy j+0, and
Furthermore, one may anticipate that the phenomenology of

the collisions of an atom with a nonhomogeneous lattice Po(t)=Py(0)=const
would be quite similar to that reported here. In particular,
one expects the mechanism of secondary collisions to in- Qo(1)=Qo(0) +Po(0)t

crease the minimum threshold energy for adatom reflection.

The present study demonstrates the importance of a carésr the modej =0. The momentum of the atontan then be
ful consideration of the full dynamics of the adatom-lattice written as
system after the initial bond-breaking event. The energy
transfer from the adatom to the surviving lattice is strongly .
influenced by the formation of virtual clusters, which are  Pi(t)= \/EJZO Aij{Pj(0)cod wit) — w;Q;(0)sin(w;t)}
recaptured by the “surface” in secondary collisions. Such
behavior is likely to be important in more realistic models of + \/EA-OPO.
the collision process of an atom with a surface, which are
based on other potentials of interaction, other initial condi-Since theA;; satisfy orthogonality conditions with respect to
tions, such as those appropriate for studying thermal desorgpoth indices, one can expreBg(0) andQ;(0) in the above
tion, or which involve multidimensional lattice structures for equation in terms op;(0) andq;(0). Theresulting equation
the surface. has the form

N—-1

026603-7



ALEXANDER V. PLYUKHIN AND JEREMY SCHOFIELD PHYSICAL REVIEW E65 026603

1 N N d wherey;= mj/(2N).
pi(t)ZNE pk(0)+2 pk(0)+ka(0)d— Vi (1), The case of the semi-infinite chain is recovered in the
k=1 k=1 t limit N— o by converting the sum to an integral
where 2 ralk
N_1 Vik(t)=—f dy[cog2y|i —k|)coq 2wt siny)
7 Jo

Vi) =, AjiA, codwit).
KT e T ) +cog2y(i +k—1)tcog 2wt siny)],
After simple trigonometric manipulations, the function which is just the integral representation for the sum of two
Vi (t) can be written as Bessel functions
N—1
1 D)= Jur I
Vi(t)= S [cog2(i—K)y;}cog 20t siny;) Vi() = Jgji -k (20t) + o 4+ k- 1) (201)
=

The solutions for displacements can be obtained in an analo-
—coq2(i+k—1)y;}cog 2wt siny;)], gous fashion.
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