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Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding
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The properties of the eigenmodes of a capillary tube are examined in the context of ultrashort intense laser
pulse guiding. The dispersion relation for the eigenmodes of a cylindrical hollow waveguide is derived and the
family of eigenmodes EHns is shown to be a solution of the wave equation up to the first order under the
conditionk0a@1, wherek0 is the light wave number anda the capillary tube radius. The expressions of the
fields for the eigenmodes are given at zero and first order of a small parameter equal to the ratio of the
perpendicular to longitudinal wave number and the absorded intensity at the wall is estimated.

DOI: 10.1103/PhysRevE.65.026405 PACS number~s!: 42.79.Gn, 52.38.-r
se

m
hil

ky
as
in
t i
r
m
fi

t

c

e
r

o
o
e
g

l.
s

on
io
c-
v
ub
ric
an
en
e

for
its

s. In
e a
ual
tly

tio
the
s of

a

on-

be
to

n-
I. INTRODUCTION

The future development of applications of short pul
intense lasers such as plasma accelerators@1,2# or x-ray la-
sers@3,4#, relies on the possibility of guiding the laser bea
on a distance much larger than the Rayleigh length w
maintaining intensities in the range 1014 to 1019 W/ cm2. A
hollow capillary tube with dielectric walls, used as a lea
guide, makes possible the propagation of ultraintense l
beams on a length of the order of 10 cm. Monomode guid
on the fundamental mode is particularly interesting as i
characterized by a high group velocity, a smooth transve
profile, and a small attenuation factor. A long scale plas
can be created by the guided laser pulse, ionizing a gas
ing the capillary tube@5#.

In this context, while experiments have been carried ou
high intensity in multimode@6,7# or monomode regime@5#,
there is, to our knowledge, a lack of theoretical work sin
the early work of Marcatili and Schmeltzer@8#. In particular,
it is important, for high intensity propagation to determine~i!
the configuration of the mode~spatial dependence of th
fields and polarization!, ~ii ! the coupling of the incident lase
beam to the eigenmodes of the capillary tube,~iii ! the frac-
tion of the maximum intensity absorded at the inner wall
the capillary tube. This value will determine the threshold
incident intensity for plasma formation from the wall of th
capillary tube, resulting in a different regime of dampin
along the propagation after the creation of a plasma wal

The aim of this paper is to complement the mode analy
that was carried out by Marcatili and Schmeltzer in the c
text of laser pulse guiding for long distance transmiss
@8,9#. In particular, the conditions of continuity of the ele
tromagnetic fields and of the flux of the Poynting vector ha
been checked out at the inner surface of the capillary t
wall. This analysis can be applied to metallic or dielect
capillary tubes by considering the proper dielectric const
of the wall material. It can also be extended to the eig
modes of a capillary tube filled with a low density homog
1063-651X/2002/65~2!/026405~7!/$20.00 65 0264
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neous plasma. In Sec. II, the general dispersion relation
eigenmodes inside a circular waveguide is recalled and
solutions are shown to generate several families of mode
practice, most of the laser beams exhibit in free spac
transverse profile that is a Gaussian function, the us
TEM00 mode. Such an incident beam will be predominan
coupled to the so-called EH1s family of hybrid modes. The
expression of the fields for the hybrid modes EHns is given in
Sec. III, at first order of a small parameter equal to the ra
of the perpendicular to longitudinal wave numbers, and
absorbed intensity at the wall is estimated. The propertie
the EH1s modes are examined in Sec. IV.

II. DISPERSION RELATION

The solutions of Maxwell’s equations are derived in
cylindrical waveguide of radiusa. The wall of the waveguide
is assumed to be characterized by a relative dielectric c
stant « equal to 1 forr<a, and «w for r>a ~Fig. 1!. «w
depends on the material constituting the walls, which can
either dielectric or metallic. The permeability is assumed
be equal to the permeability of free space,m0, in both media.

FIG. 1. Notations for cylindrical geometry and dielectric co
stants.
©2002 The American Physical Society05-1
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For oscillating electromagnetic fields with a dependen
eivt, Maxwell’s equations can be written as

¹W `EW 52 ivBW , ¹W •EW 50, ~2.1!

¹W `BW 5 iv«EW /c2, ¹W •BW 50, ~2.2!

leading, for a constant dielectric fonction to the wave eq
tion for BW ~or EW ),

¹W 2BW 1k0
2«BW 50, ~2.3!

wherek05v/c is the free space wave number in vacuu
We look for a solution of Eq.~2.3! in cylindrical coordinates
~Fig. 1!

] r 2
2 Bz1

1

r
] rBz1

1

r 2
]c2

2 Bz1]z2
2 Bz1k0

2«Bz50. ~2.4!

For a component of the field along the direction of propa
tion, Bz , of the form

Bz5Bz~r !ei (nc1vt2kzz),

Eq. ~2.4! becomes

] r 2
2 Bz~r !1

1

r
] rBz~r !1S k0

2«2kz
22

n2

r 2 D Bz~r !50.

~2.5!

Assuming the boundary conditions limr→` Bz(r )50 and
limr→` Ez(r )50 one obtains the following solutions, forr
<a:«.1, the dimensionless perpendicular wave number
side the capillary tube,u, is defined asu25a2(k0

22kz
2), and

the solutions of Eq.~2.5! are of the form

Ez~r !5AJnS u
r

aD , ~2.6!

Bz~r !5BJnS u
r

aD , ~2.7!

for r>a:«5«w , is the dielectric constant inside the cap
lary tube wall, and the perpendicular wave number inside
wall, v, is defined asv25a2(kz

22k0
2«w), giving the solutions

Ez~r !5CKnS v
r

aD , ~2.8!

Bz~r !5DKnS v
r

aD , ~2.9!

whereA, B, C, andD are constants to be determined andJn ,
Kn are Bessel functions of integer order. It should be no
that a combination ofJn andYn functions of real argument is
also a solution forr>a: theKn function has been chosen fo
convenience.

The other components of the fields are obtained fr
Maxwell’s equations as functions ofEz(r ) andBz(r ),
02640
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Er~r !5
1

k0
2«2kz

2 F2 ikz] rEz~r !1
vn

r
Bz~r !G , ~2.10!

Br~r !5
1

k0
2«2kz

2 F2 ikz] rBz~r !2
nk0

2«

rv
Ez~r !G ,

~2.11!

Ec~r !5
1

k0
2«2kz

2 F iv] rBz~r !1
kzn

r
Ez~r !G , ~2.12!

Bc~r !5
1

k0
2«2kz

2 F2 i
k0

2«

v
] rEz~r !1

kzn

r
Bz~r !G .

~2.13!

Expressing the continuity of the components«Er , Ez , Ec ,
Bz , Br , andBc at the boundaryr 5a, one gets

C5A
Jn~u!

Kn~v !
, ~2.14!

D5B
Jn~u!

Kn~v !
, ~2.15!

B5 iAn
kz

v S 1

u2
1

1

v2D S 1

u

Jn8~u!

Jn~u!
1

1

v

Kn8~v !

Kn~v !
D 21

,

~2.16!

and the dispersion relation@8,9#

kz
2n2S 1

u2
1

1

v2D 2

5S 1

u

Jn8~u!

Jn~u!
1

1

v

Kn8~v !

Kn~v !
D S k0

2

u

Jn8~u!

Jn~u!

1
k0

2«w

v

Kn8~v !

Kn~v !
D , ~2.17!

where the prime denotes the derivative with respect to
argument of the functions.

The dispersion relation can be solved analytically un
the conditionk0a@1, i.e., for incident laser beam wave
lengths much smaller than the inner capillary tube radi
This condition leads tokz.k0 , uvu@1, uu/vu!1, and
the asymptotic expressions for large arguments of theKn

functions and their derivatives can be used.

A. Transverse modes:nÄ0

For n50, the dispersion relation Eq.~2.17!, splits into
two relations, for which one term of the right-hand side
equal to zero.

The first relation is

J08~u!

J0~u!
52

u

v

K08~v !

K0~v !
. ~2.18!

With this condition, the constantB will have a finite value
for A50, which impliesC50 andEz(r )50. These modes
are the so-called transverse electric or TE0s modes; the index
5-2
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s indicates that the mode is derived from thesth root of the
equationJ1(us)50. The normalized field components insid
the capillary tube can be expressed as

Ez~r !5Er~r !5Bc~r !50, ~2.19!

Ec~r !52
v

kz
J1~ur/a!, ~2.20!

Br~r !5J1~ur/a!, ~2.21!

Bz~r !52 i
u

kza
J0~ur/a!. ~2.22!

With the assumptionkza/u@1, it follows thatBr@Bz ; the
magnetic field is essentially radial, and the electric field
purely azimuthal.

The second relation is

J08~u!

J0~u!
52

u«w

v

K08~v !

K0~v !
, ~2.23!

which impliesB5D50 andBz(r )50. These modes are th
so-called transverse magnetic or TM0s modes. The normal-
ized field components inside the capillary tube can be
pressed as

Ec~r !5Bz~r !5Br~r !50, ~2.24!

Ez~r !52 i
u

kza
J0~ur/a!, ~2.25!

Er~r !5J1~ur/a!, ~2.26!

Bc~r !5
kz

v
J1~ur/a!. ~2.27!

Here, the electric field is mainly radial and the magnetic fi
purely azimuthal.

These TE or TM modes are not appropriate for coupl
an incident Gaussian beam with linear polarization. In b
cases, the transverse polarization is not linear so that
energy of the incident beam cannot be coupled to th
modes. Other modes more similar to the Gaussian profil
the laser beam have to be looked for in order to insure c
pling.

B. Hybrid modes: nÄ” 0

In this section, analytical solutions of the dispersion re
tion are derived in the general casen5” 0. For largeuvu,

Kn8~v !.2Kn~v !, ~2.28!

and with the conditionk0a@1, which leads touu/vu!1, the
dispersion relation~2.17! is approximated forn5” 0 as

S Jn8~u!

Jn~u!
2

u

v D S Jn8~u!

Jn~u!
2

u«w

v D;
n2

u2
. ~2.29!
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Using the recurrence relation

Jn8~u!

Jn~u!
5

Jn21~u!

Jn~u!
2

n

u
, ~2.30!

and neglecting small terms of order 2 or higher inu/v, one
gets a simplified form of the dispersion relation

Jn21~u!

Jn~u!
;

n

u
1

u

2v
~11«w!6

n

u
. ~2.31!

In the above relation, the positive sign corresponds, for sm
values ofu, to large values of the ratioJn21(u)/Jn(u) and
the equation does not have any solution. So the disper
relation is finally

Jn21~u!;
u

2v
~11«w!Jn~u!. ~2.32!

As u/v is a small parameter we look for a solutionu of Eq.
~2.32! such thatJn21(u);0; writing u5us1Du, with us
such thatJn21(us)50, andDu small, one gets

Jn21~us1Du!.Jn21~us!1DuJn218 ~us!

.DuS Jn22~us!2
n

us
Jn21~us! D

.DuJn22~us!,

and withJn(us)52Jn22(us),

Du52
us

2k0a

11«w

A12«w

. ~2.33!

The longitudinal wave vector is retrieved from the a
sumptionkz5kz01dk, with dk a complex number such tha
udk/kz0u!1 andkz0 such thatus

25a2(k0
22kz0

2 ). Differentiat-
ing the previous expression leads to

dk52
us

kz0a2
Du,

or

dk5
us

2

2kz0
2 a3

11«w

A12«w

. ~2.34!

The imaginary part ofdk, kzi , is the damping factor for
the propagation of the fields along thez axis. It is strongly
dependent on the capillary tube radius, on the wavelengt
the incident beam, and on the mode order throughus .

This damping is due to refraction losses in the dielec
walls and occurs for a real dielectric constant when«w.1,
so that

kzi52
us

2

2kz0
2 a3

11«w

A«w21
.

5-3
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A characteristic damping length,Ld , is associated to the in
verse ofukziu. Ld is the propagation length after which th
fields amplitude is divided bye. For the case of glass wall
(«w52.25), an incident wavelength of 1mm and a capillary
tube radiusa525 m m, Ld57.3 cm for the less dampe
mode withn51 andus52.4.

The dispersion relation can be written in the familiar for
v2.c2(kz

21k's
2 ) with kz;k0 andk's5us /a. The group ve-

locity is vgs.c(12k's
2 /k0

2)1/2, close to the velocity of light
in free space under the hypothesis made,k's!k0. Note that
the group velocity decreases as the mode orders increases.

In order to obtain the expression for the field componen
one also needs to express the constantB, given by Eq.~2.16!
at order 1 of the small parameteru/v. Using Eq.~2.28! and
the dispersion relation~2.32!, the expression ofB becomes

B. iA
kz

v
nS 1

u2
1

1

v2D F1

u S u

2v
~11«w!2

n

uD2
1

vG21

,

so that

B.2 iA
kz

v

11u2/v2

S 11
u2

2nv
~12«w! D ,

and finally at first order inu/v,

B.2 iA
kz

v S 12
u2

2nv
~12«w! D . ~2.35!

III. PROPERTIES OF HYBRID MODES

As will be shown in Sec. IV, an incident Gaussian bea
can be coupled efficiently to some of the hybrid mod
Therefore, the rest of the paper will focus on the proper
of these modes. In order to simplify the presentation,
expression of the fields will be given for the case of diele
tric walls, for which the dielectric constant is real and larg
than unity. However, it should be noted that the results
the case of metallic walls are retrieved by performing a si
lar analysis.

The components of the transverse fields are retrieved
inserting the solutions~2.6! and ~2.7! for r<a @Eqs. ~2.8!
and ~2.9! for r>a#, into Eqs.~2.10! to ~2.13!, with the ex-
pression of the constantB given by Eq. ~2.35!. The field
components are functions of the small parameteru/v and
of Jn(ur/a) and Jn21(ur/a) for r<a@Kn(vr /a) and
Kn21(vr /a) for r>a].

In order to obtain the expressions of the fields at fi
order inu/v, valid for all r<a including at the boundaryr
5a, the Bessel functionsJn(ur/a) andJn21(ur/a) are de-
veloped using the Taylor’s formula foru5us1Du, with
Du52us(11«w)/(2v). Using the following developments

Jn21S u
r

aD5Jn21S us

r

aD F11
~n21!Du

us
G2Du

r

a
JnS us

r

aD ,
02640
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JnS u
r

aD5JnS us

r

aD F12
nDu

us
G1Du

r

a
Jn21S us

r

aD ,

and neglecting terms of order 1/v2, the real part of the fields
for r<a can be expressed as

Ez656
k's

kz0
Jn~k'sr !cos~f6!ekziz, ~3.1!

Bz656
kz0

v

k's

kz0
Jn~k'sr !sin~f6!ekziz, ~3.2!

Er 65H Jn21~k'sr !sin~f6!7
k's

2k0
F S h

r

a
1b

a

r D Jn~k'sr !

1h
~22n!

k'sa
Jn21~k'sr !Gcos~f6!J ekziz, ~3.3!

Ec65H Jn21~k'sr !cos~f6!6
k's

2k0
F S h

r

a
2b

a

r D Jn~k'sr !

1S h
~22n!

k'sa
1b

k'sa

n D Jn21~k'sr !Gsin~f6!J ekziz,

~3.4!

Br 652
kz0

v
Ec6 , ~3.5!

Bc65
kz0

v
Er 6 , ~3.6!

wherek's5us /a, is the perpendicular wave vector asso
ated to the rootus , and the coefficientsh andb are defined
asb5(«w21)1/2, h5(11«w)/b; f65nc6(vt2kz0z).
The 6 signs correspond to two solutions: thef1 solution
has been derived in Sec. II. Thef2 solution is obtained in a
similar way after changingv into 2v, kz into 2kz

! , where
! denotes the complex conjugate, andEz(r ) @Bz(r )# into
2Ez(r ) @2Bz(r )#. For both solutions, the transverse com
ponents of the fields are much larger than the longitudi
components under the assumptionk0a@1, so that these
modes are quasitransverse; they are circularly polarize
zero order ink's /k0; at first order the polarization is elliptic
These modes are of interest for the coupling of incident
cularly polarized Gaussian beams to the capillary tube:
n51, the energy repartition of the Bessel functionJ0 is simi-
lar to the one of a Gaussian function.

For r>a, the asymptotic expansions of theKn Bessel
functions for large arguments are used, giving for the r
part of the fields

Ez656
k's

kz0
Jn~k'sa!Aa

r
cos@f67kz0b~r 2a!#ekziz,

~3.7!
5-4
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Bz656
kz0

v

k's

kz0
Jn~k'sa!Aa

r
sin@f67kz0b~r 2a!#ekziz,

~3.8!

Er 657
k's

kz0b
Jn~k'sa!Aa

r
cos@f67kz0b~r 2a!#ekziz,

~3.9!

Ec656
k's

kz0b
Jn~k'sa!Aa

r
sin@f67kz0b~r 2a!#ekziz,

~3.10!

Br 652
kz0

v
Ec6 , ~3.11!

Bc65«w

kz0

v
Er 6 . ~3.12!

Writing the Eqs.~3.1!–~3.6! and ~3.7!–~3.12! for r 5a,
the continuity of«Er and the other field components is eas
checked.

The intensity lost at the boundaryr 5a is obtained from
the expression of the real part of the radial component of
Poynting vector, averaged over one period and computed
r 5a,

Sr~a!5
1

m0
~EcBz2EzBc!r 5a , ~3.13!

Sr~a!5«0c
k's

2

k0
2

Jn
2~k'sa!

11«w

A«w21
e2kziz. ~3.14!

For these circularly polarized modes, the intensity los
the boundaryr 5a is independent of the azimuthal anglec.
Thus the energy of the beam can be deposited hom
neously at the surface of the wall, which is an interest
property for plasma creation from wall ionization.

IV. MONOMODE GUIDING

In practice, the main case of interest for the experime
is to couple the incident energy of a linearly polarize
Gaussian laser beam to eigenmodes of the capillary tube.
incident energy will in that case be coupled efficiently
linearly polarized modes. A linearly polarized family of hy
brid modes, the EH1s modes, can be obtained by linear com
bination of the two solutions presented in Sec. III. The co
pling coefficient, defined as the fraction of the incide
energy coupled to a set of eigenmodes, can be comp
analytically for a linearly polarized incident Gaussian bea
Due to the orthogonality properties of the Bessel functio
and to the linear polarization of the incident beam, the c
pling coefficient is different from zero only for eigenmod
with n51, i.e., the EH1s modes. In addition, it has bee
shown@10# that the EH11 mode can be selected by adjustin
the waistw0 of the incident Gaussian beam at the entrance
the capillary tube: forw050.645a, 98% of the incident en-
ergy is coupled to the EH11 mode, leading to monomod
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propagation. In this section, the properties of the EH1s modes
will then be presented in detail.

A. Field components

The field components of the EHns modes are derived from
linear combinations of the typeNn5(Nn11N

n2)/2, whereN

stands forE or B andn5z, r, or c; they can be written for
r<a as

Ez52
k's

kz0
Jn~k'sr !sin~nc!sin~vt2kz0z!ekziz, ~4.1!

Bz5
kz0

v

k's

kz0
Jn~k'sr !cos~nc!sin~vt2kz0z!ekziz,

~4.2!

Er5H Jn21~k'sr !sin~nc!cos~vt2kz0z!

1
k's

2k0
F S h

r

a
1b

a

r D Jn~k'sr !1h
~22n!

k'sa
Jn21~k'sr !G

3sin~nc!sin~vt2kz0z!J ekziz, ~4.3!

Ec5H Jn21~k'sr !cos~nc!cos~vt2kz0z!

1
k's

2k0
F S h

r

a
2b

a

r D Jn~k'sr !

1S h
~22n!

k'sa
1b

k'sa

n D Jn21~k'sr !G
3cos~nc!sin~vt2kz0z!J ekziz, ~4.4!

Br52
kz0

v
Ec , ~4.5!

Bc5
kz0

v
Er . ~4.6!

At zero order ink's /k0 , Ez5Bz50, so that this mode is
transverse while all the components are of the same orde
magnitude at first order.

For r>a, the components are expressed as

Ez52
k's

kz0
Jn~k'sa!Aa

r
sin~nc!

3sin@vt2kz0z2kz0b~r 2a!#ekziz, ~4.7!

Bz5
kz0

v

k's

kz0
Jn~k'sa!Aa

r
cos~nc!

3sin@vt2kz0z2kz0b~r 2a!#ekziz, ~4.8!
5-5
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Er5
k's

kz0b
Jn~k'sa!Aa

r
sin~nc!

3sin@vt2kz0z2kz0b~r 2a!#ekziz, ~4.9!

Ec5
k's

kz0b
Jn~k'sa!Aa

r
cos~nc!

3sin@vt2kz0z2kz0b~r 2a!#ekziz, ~4.10!

Br52
kz0

v
Ec , ~4.11!

Bc5«w

kz0

v
Er . ~4.12!

These fields satisfy the continuity conditions at the bound
r 5a as can be seen in Fig. 2, where«wEr andEc are plotted
as a function ofr, for n51, vt2kz0z5c5p/4, in the case
of glass walls («w52.25), an incident wavelength of 1mm
and a capillary tube radiusa525 m m. For r<a, the profile
is a J0 Bessel function while forr>a, the electric fields are
slowly damped with a (r /a)21/2 dependence and oscillat
with a wavelength equal tol0 /b.

B. Polarization

Going back to the (x,y) coordinates in the transvers
frame, the electric field is transformed as

Ex5Er cosc2Ec sinc, ~4.13!

FIG. 2. ~a! Radial and~b! azimuthal components of the electr
field of the EH11 mode as a function of the radial position forvt
2kz0z5c5p/4, in the case of glass walls («w52.25), an incident
wavelength of 1mm and a capillary tube radiusa525 m m.
02640
y

Ey5Er sinc1Ec cosc, ~4.14!

which gives at zero order forr<a,

Ex5Jn21~k'sr !sin~n21!c cos~vt2kz0z!ekziz,
~4.15!

Ey5Jn21~k'sr !cos~n21!c cos~vt2kz0z!ekziz,
~4.16!

showing that at zero order, the family of modes given byn
51 is linearly polarized. It can be easily checked that t
polarization is also linear forr .a.

At first order forr<a, however, the polarization is ellip
tic. The first order terms insure the continuity of the fields
the boundaryr 5a and cause the bending of the field lines
a layer of thicknessDr .l0/2p, where the first order terms
are larger than the zero order terms@J0(k'sr )
,k's /k0 J1(k'sr )#.

C. Contrast

The contrast at the capillary tube wallCw is defined as the
ratio of the longitudinal component of the Poynting vector
r 50 to the same component taken atr 5a; for the EH1s
mode, it is given by

Cw5
k0

2

k's
2 J1

2~k'sa!

~«w21!

~cos2 c1«w
2 sin2 c!

. ~4.17!

The contrast grows with the square ofk0 /k's , which is large
under the assumptions made, and decreases with the m
order, ask's grows withs. For glass, with the above param
eters (k0a.157) andc50, Cw.23104(8.83103) for the
EH11 (EH12) mode.

The normalized flux at the wallFw is defined as the ratio
of the radial component of the Poynting vector atr 5a to the
the longitudinal component of the Poynting vector atr 50
and is given by

Fw5
k's

2

k0
2

J1
2~k'sa!

~cos2 c1«w sin2 c!

~«w21!1/2
, ~4.18!

Fw depends on the azimuthal anglec, indicating that the flux
deposited at the wall is not homogeneous.Fw is minimum
for c50,p and maximum forc5p/2,3p/2.

Fw is used to estimate the maximum intensity that can
guided on a given mode EH1s without ionization of the wall
material. In the case of glass, for a pulse duration of the or
of 100 fs, the ionization threshold@11# is of the order of
1014 W/cm2 at a wavelength of 0.8mm. For these param
eters and a capillary tube of 25mm radius,Fw has a maxi-
mum value of the order of 1024. The maximum intensity
guided on the fundamental mode EH11 without wall ioniza-
tion is then of the order of 1018W/cm2.

V. CONCLUSION

In this paper, the dispersion relation for the eigenmode
a cylindrical, evacuated waveguide has been derived.
5-6
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family of hybrid modes EHns is a solution of the wave equa
tion under the assumptionk0a@1. The expressions of th
field components have been derived at first order of the sm
parameterk's /k0 and the continuity at the wall boundary ha
been checked. The EH1s modes are transverse and linea
polarized at zero order; at first order, the longitudinal co
ponent is different from zero~these hybrid modes can b
called quasitransverse! and the polarization is elliptic. The
analytical estimation of the damping rate along the propa
tion and of the intensity absorbed at the wall have be
given.

The properties of these EH1s modes are such that it i
possible to couple efficiently an incident beam in its fund
mental Gaussian mode to one of the modes, the fundame
mode EH11. As this mode is characterized with a high gro
velocity and a large damping length, it is particularly inte
esting to couple the incident beam to this mode for appli
tions of monomode guiding.
, F
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.
e
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The expressions of the contrast and of the intensity
sorbed at the wall allow to estimate the maximum intens
on axis that can be guided without damaging the capill
tube walls. It should be mentioned however, that for
trashort pulses, this should not be a limitation. Even if
plasma is created at the wall, this plasma does not exp
during the pulse duration. The guiding is then performed
the high-density, steep-gradient plasma existing near the
surface. The estimation of the damping in this case will
the objective of future work.
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