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Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding
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The properties of the eigenmodes of a capillary tube are examined in the context of ultrashort intense laser
pulse guiding. The dispersion relation for the eigenmodes of a cylindrical hollow waveguide is derived and the
family of eigenmodes EH is shown to be a solution of the wave equation up to the first order under the
conditionkya>1, wherek, is the light wave number ana the capillary tube radius. The expressions of the
fields for the eigenmodes are given at zero and first order of a small parameter equal to the ratio of the
perpendicular to longitudinal wave number and the absorded intensity at the wall is estimated.
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[. INTRODUCTION neous plasma. In Sec. Il, the general dispersion relation for
eigenmodes inside a circular waveguide is recalled and its
The future development of applications of short pulse,solutions are shown to generate several families of modes. In
intense lasers such as plasma accelerdio8 or x-ray la-  practice, most of the laser beams exhibit in free space a
sers[3,4], relies on the possibility of guiding the laser beamtransverse profile that is a Gaussian function, the usual
on a distance much larger than the Rayleigh length whilel EMgo mode. Such an incident beam will be predominantly
maintaining intensities in the range f@o 10" W/cn?. A coupled to the so-called Ekifamily of hybrid modes. The
hollow capillary tube with dielectric walls, used as a leaky €xpression of the fields for the hybrid modes g givenin
guide, makes possib'e the propagation of ultraintense |as§ec. I“, at fIrSt.OI’der of a Sma” Parameter equal to the ratio
beams on a length of the order of 10 cm. Monomode guidin@f the perpendicular to longitudinal wave numbers, and the
on the fundamental mode is particularly interesting as it is2bsorbed intensity at the wall is estimated. The properties of
characterized by a high group velocity, a smooth transversée EHs modes are examined in Sec. IV.
profile, and a small attenuation factor. A long scale plasma
can be created by the guided laser pulse, ionizing a gas fill- Il. DISPERSION RELATION

ing the capillary tubg5]. . , . : .
In this context, while experiments have been carried outat 1he solutions of Maxwell's equations are derived in a

high intensity in multimodd6,7] or monomode regimés], cylindrical waveguide of radiua. The wall of the waveguide

there is, to our knowledge, a lack of theoretical work sincelS assumed to be characterized by a relative dielectric con-

the early work of Marcatili and SchmeltzE8]. In particular, ~Stnte equal to 1 forr<a, ande,, for r=a (Fig. 1. s,
it is important, for high intensity propagation to determije ~ d€Pends on the material constituting the walls, which can be
the configuration of the modéspatial dependence of the either dielectric or metal_ll_c. The permeabll!ty is assum_ed to
fields and polarization (ii) the coupling of the incident laser P& €qual to the permeability of free spapg, in both media.
beam to the eigenmodes of the capillary tubie) the frac-
tion of the maximum intensity absorded at the inner wall of
the capillary tube. This value will determine the threshold of
incident intensity for plasma formation from the wall of the
capillary tube, resulting in a different regime of damping
along the propagation after the creation of a plasma wall.
The aim of this paper is to complement the mode analysis
that was carried out by Marcatili and Schmeltzer in the con-
text of laser pulse guiding for long distance transmission
[8,9]. In particular, the conditions of continuity of the elec-
tromagnetic fields and of the flux of the Poynting vector have ]
been checked out at the inner surface of the capillary tube L]
wall. This analysis can be applied to metallic or dielectric _—
capillary tubes by considering the proper dielectric constant
of the wall material. It can also be extended to the eigen- FIG. 1. Notations for cylindrical geometry and dielectric con-
modes of a capillary tube filled with a low density homoge- stants.
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~ For oscillating electromagnetic fields with a dependence 1 wv
e'“t, Maxwell’s equations can be written as E.(r)= ﬁ[ —ik,d,E(r)+ TBZ(r)}, (2.10
0~ K;
VAE=—-iwB, V-E=0, (2.2)
2
1 ) vkge
VAB=iwsElc?, V-B=0, (2.2 Br(r)=—kgs_kz{—lkzarBz(r)——rw Ez(r)}
z
leading, for a constant dielectric fonction to the wave equa- 213

tion for B (or E),

k,v
. R E r)=—— iw&B(r)Jr—E(r)} (2.12
V2B+k2sB=0, (2.3 R r
wherek,=w/c is the free space wave number in vacuum. 1 ke k,v
We look for a solution of Eq(2.3) in cylindrical coordinates By(r)= W =i Ta,Ez(r)Jr TBZ(r) .
Fig. 1 08 ke
(Fig. 1) 2.13
1 1 . L
(932524_ ~9,B,+ _(932524_ a§252+ k2eB,=0. (2.4) Expressing the continuity of the componeet, , E,, E,,
r r2 B, B, andB, at the boundary =a, one gets
For a component of the field along the direction of propaga- ~dy(u)
tion, B,, of the form C_AK,,(U)’ (2.14
BZ:BZ(r)ei(V¢+wt—kzz), J (U)
D=B_—, (2.19
Eq. (2.4 becomes K.(v)
1 2 k(1 1\({1J3(u) 1K.(v)|\*t
2 2 2 _ = S — e — || = —
arsz(r)+F(?rBz(r)+ kos—kz—r—z)BZ(r)—O. B IAV(,U u2+v2 (uJV(u)+v K °

(2.9 (2.16

Assuming the boundary conditions lim.B,(r)=0 and and the dispersion relatidi,9]

lim,_.. E,(r)=0 one obtains the following solutions, for 2 , , 5 o
<ais=1, the dimensionless perpendicular wave number in- 2 > L (} Jy(u 1 KV(U)> (ﬁ J,(u)
side the capillary tubay, is defined asi’=a?(k3—k?), and z 2,2 ud,u) v K, (v)\uJd,u
the solutions of Eq(2.5) are of the form

u v

kéﬂK;(m) 217

Ez(r)=AJV( u;) (2.6) v Ky(v)

where the prime denotes the derivative with respect to the
r argument of the functions.
Bz(r)ZBJV(U5>, 2.7 The dispersion relation can be solved analytically under
the conditionkga>1, i.e., for incident laser beam wave-
for r=a:e=¢,, is the dielectric constant inside the capil- lengths much smaller than the inner capillary tube radius.

lary tube wall, and the perpendicular wave number inside thd his condition leads td,=ko, [v[>1, [u/v[<1, and

wall, v, is defined as 2= a2(k?—k2e,,), giving the solutions the asymptotic expressions for large arguments of Khe
functions and their derivatives can be used.

r
Ez(r)=CK,,( v 5)* (2.8 A. Transverse modes:r=0
For v=0, the dispersion relation Ed2.17), splits into
r . ; o o
B,(1)=DK,|v— 2.9 two relations, for which one term of the right-hand side is
equal to zero.

The first relation is
whereA, B, C, andD are constants to be determined and

K, are Bessel functions of integer order. It should be noted Jo(u) u Kg(v)

that a combination od, andY, functions of real argument is Jo(u) - Ko(v) (2.18

also a solution for=a: theK, function has been chosen for

convenience. With this condition, the constar® will have a finite value
The other components of the fields are obtained fronfor A=0, which impliesC=0 andE,(r)=0. These modes

Maxwell's equations as functions &,(r) andB,(r), are the so-called transverse electric opJEBodes; the index
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s indicates that the mode is derived from tkte root of the  Using the recurrence relation
equationJ;(us) =0. The normalized field components inside )
the capillary tube can be expressed as J(u) 3, _q(u) v

3,0 WU (2:30

E.(r)=E/(r)=B,(r)=0, (2.19
and neglecting small terms of order 2 or highewitw, one
E (r)=— k%Jl(ur/a), (2.20 gets a simplified form of the dispersion relation
J,_1(u) v u v
B,(r)=J(ur/a), (2.2 3, ulze el 239

u In the above relation, the positive sign corresponds, for small
By(r)=—i—Jo(ur/a). (222 values ofu, to large values of the ratid, _,(u)/J,(u) and
‘ the equation does not have any solution. So the dispersion
With the assumptiork,a/us1, it follows thatB,>B,; the  relation is finally
magnetic field is essentially radial, and the electric field is "
purely azimuthal. J W~—(1+£.)J (U 23
The second relation is v-1(U) 20( ewldy(U). (2.32
Jo(u) ue,, Ko(v) As u/v is a small parameter we look for a solutiarof Eq.
= (223 (2.32 such thatd,_;(u)~0; writing u=ug+Au, with ug
such thatl,_;(ug)=0, andAu small, one gets

Jouw) v Ko(v)’

which impliesB=D =0 andB,(r)=0. These modes are the
so-called transverse magnetic or JMmodes. The normal-
ized field components inside the capillary tube can be ex-

Jy—1(UstAu)=J,_1(Ug) +AuJ, (U

14
pressed as =Au| J,-5(Us) = -J,-1(Us)
S
E,(r)=B,(r)=B,(r)=0, (2.24 ~Aud,_,(uy),
u i -
E()=—i —Jo(ur/a), (2.25  andwithJ,(ug)==J,-(uy),
z
_ Us 1l+ey
E,(r)=J,(ur/a), (2.26 Au__2k0a N (2.33
K, The longitudinal is retrieved from the as-
B (1= -23.(ur/a). 29 gitudinal wave vector is retrieved from the as
o1 @ il ) (2.29 sumptionk,= k o+ 8k, with sk a complex number such that

S _ | 6kiky| <1 andk,q such thau?=a?(kj—k2,). Differentiat-
Here, the.electrlc field is mainly radial and the magnetic flelding the previous expression leads to
purely azimuthal.

These TE or TM modes are not appropriate for coupling
an incident Gaussian beam with linear polarization. In both ok=——=—=Au,
cases, the transverse polarization is not linear so that the k08
energy of the incident beam cannot be coupled to these
modes. Other modes more similar to the Gaussian profile df"
the laser beam have to be looked for in order to insure cou- 2
pling. Sk Ug 1+ey

2k%ad 1-¢,,
B. Hybrid modes: v+#0

In this section, analytical solutions of the dispersion rela- The imaginary part obk, k;;, is the damping factor for

. : . the propagation of the fields along tkeaxis. It is strongly
tion are derived in the general case-0. For largelo], dependent on the capillary tube radius, on the wavelength of

K'(v)=—K,(v), (2.29 the in.cident b.earr_], and on the mgde order through _ _
This damping is due to refraction losses in the dielectric

and with the conditiorkya> 1, which leads tdu/v|<1, the ~ Walls and occurs for a real dielectric constant whgp>1,

(2.39

dispersion relatiori2.17) is approximated fow+#0 as so that
Ju) ul\[J(u) ue,| »? 29 K :_u_ﬁﬂ
Jw o\ v | 2.29 o 2k%a3 ey -1
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r vAu

v usa

r
+AU5J,,,1

r
Usa

verse of|k,i|. Ly is the propagation length after which the 1-
fields amplitude is divided bg. For the case of glass walls
(ew=2.25), an incident wavelength of Am and a capillary
tube radiusa=25um, L4=7.3 cm for the less damped
mode withv=1 andug=2.4.

The dispersion relation can be written in the familiar form

A characteristic damping lengthg, is associated to the in- ( r)
J,lu J

S

and neglecting terms of ordervf/ the real part of the fields
for r=a can be expressed as

w?=Cc?(E ) with k,~ ko andk, ;= us/a. The group ve- £, =+ 53 (kL r)cos bu)eker, 3.
locity is vgs=c(1—k?/kg) 2 close to the velocity of light K20
in free space under the hypothesis madde<k,. Note that
the group velocity decreases as the mode osdecreases. Ky K, s _ o
In order to obtain the expression for the field components, Bro=%—— k_ZOJV(kJ_Sr)SIn( ¢ )e 3.2

one also needs to express the consBmgiven by Eq.(2.16
at order 1 of the small parametefv. Using Eq.(2.28 and

. . . . k r a
the dispersion relatiof2.32, the expression dB becomes Er+:|‘]vl(kj_sr)3ir(¢+)12;k: 7754_3?)%('&5”
5 _AkZ 1+1 1(u " v\ 1)1 (2= )
A e e lulze e Ty T T Sk cos(d):)]ekziz, (3.3
S
so that
K s r a
Ey==)Jdy-1(K sr)COL D) 57— ﬂ__ﬁ_)‘lv(kj_sr)
ok, 1+up? 2kol\ Ta
B=—1A— U2 ’ (2_1/) kisa - .
l+ﬁ(l_sw) + n kJ_ a +ﬂT Jv—l(kj_sr) Sln((ﬁt) ez,
S
3.4
and finally at first order iru/v, 34
k
k, u? B .——-2F (3.5
~ A — - — r+ [/l .
B |Aw(1 2vv(l sw)). (2.35 ®
kzO
Ill. PROPERTIES OF HYBRID MODES Bl/,i:—Eri , (3.6
w

As will be shown in Sec. IV, an incident Gaussian beam _ _ _
can be coupled efficiently to some of the hybrid modesWherek s=us/a, is the perpendicular wave vector associ-
Therefore, the rest of the paper will focus on the propertiedted to the rootis, and the coefficients and 3 are defined
of these modes. In order to simplify the presentation, théSB=(sw—1)"% n=(1+8,)/B; d.=vip*(wt—Ky2).
expression of the fields will be given for the case of dielec-The * signs correspond to two solutions: tige. solution
tric walls, for which the dielectric constant is real and largerhas been derived in Sec. Il. Tlfe solution is obtained in a
than unity. However, it should be noted that the results foisimilar way after changing into — w, k, into —kj, where
the case of metallic walls are retrieved by performing a simi-+ denotes the complex conjugate, aBg(r) [B,(r)] into
lar analysis. —E,(r) [—By(r)]. For both solutions, the transverse com-

The components of the transverse fields are retrieved bponents of the fields are much larger than the longitudinal
inserting the solution$2.6) and (2.7) for r<a [EQgs. (2.8 components under the assumptigpa>1, so that these
and (2.9 for r=a], into Egs.(2.10 to (2.13, with the ex- modes are quasitransverse; they are circularly polarized at
pression of the constar® given by Eq.(2.35. The field  zero order irk, s/Kp; at first order the polarization is elliptic.
components are functions of the small parameter and  These modes are of interest for the coupling of incident cir-
of J,(ur/a) and J,_,(ur/a) for r=<a[K,(vr/a) and cularly polarized Gaussian beams to the capillary tube: for

K,_1(vr/a) for r=a]. v=1, the energy repartition of the Bessel functihyis simi-
In order to obtain the expressions of the fields at firstiar to the one of a Gaussian function.
order inu/v, valid for all r=<a including at the boundary For r=a, the asymptotic expansions of the, Bessel

=a, the Bessel functiong,(ur/a) andJ,_,(ur/a) are de- functions for large arguments are used, giving for the real
veloped using the Taylor's formula fon=us+Au, with  part of the fields
Au=—ug(1+ey)/(2v). Using the following developments:

( r) ( r” (v—1)Au
J,alu=|=3, sl u=||1+ ———
a a

S

kis a — k,:z
r E, = ik_zo‘]v(kisa) F00§t¢:+kzoﬁ(r_a)]e z%,
“5_)’ (3.7

r
5 v
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ko k a
B,.=+— - =J,(k, @) \ﬁsirt -7 koB(r —a)Jele,
w kZO r
(3.8
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propagation. In this section, the properties of the EiHodes
will then be presented in detail.

A. Field components

E L og s K s K, ) \[cos{ b T K,0B(r — a)]ekz,z The field components of the EEimodes are derived from
zo/J’ linear combinations of the typd,,= (Nn++N )12, whereN
(3.9 stands forE or B andn=z, r, or ¢; they can be written for
r<aas
Ee//t:_k ﬁ V(kisa)\[SIr[¢++kZOB (r—a)jeke?,
1S . . .
(3.10 E,=— —J,(k,&)sin(viy)sin(wt—k,gz)eXe?, (4.1)
kZO
B,.=—— + A k k H
r= o 7 .13 BZ=XZO kiOsJ,,(ler)cos( vi)sin( wt —k,oz)eke?,
V4
Ko 4.2
Bz//izsijrt (3.12
E =1J,-1(k gr)sin(viy)cod wt—K,pz
Writing the Egs.(3.1)—(3.6) and (3.7)—(3.12 for r=a, ' w(kusrsin(vy)cos 202)
the continuity ofe E, and the other field components is easily
K s r a (2—v)
checked. o || 75 B Ik + =, (K )
The intensity lost at the boundary=a is obtained from 2ko a r K sa
the expression of the real part of the radial component of the
Poynting vector, averaged over one period and computed for X sin(vip)sin( ot — kzoz)] ekziz 4.3
r=a,
1
Sr(a):ﬂ_(deBz_ Esz)r=av (3.13 Ez//: J,—1(ky sr)cog v cog wt —ky02)
0
k r a
kis l+ey +£ 77__/3_)‘] (ki gr)
Si(a)=goc—J2(k, <) ez, (3.14 2ko|| Ta P )Tvites
kg e Vey—1
(2=v) ks
For these circularly polarized modes, the intensity lost at 7 K, < th—, Jy-a(kigr)
the boundary =a is independent of the azimuthal angle
Thus the energy of the beam can be deposited homoge- , s
neously at the surface of the wall, which is an interesting X cogry)sin(wt —kyz) | €7, (4.4
property for plasma creation from wall ionization.
Kz
IV. MONOMODE GUIDING Br=- ﬁEw, (4.9
In practice, the main case of interest for the experiments
is to couple the incident energy of a linearly polarized, B _@ 4.6
Gaussian laser beam to eigenmodes of the capillary tube. The o " '

incident energy will in that case be coupled efficiently to

linearly polarized modes. A linearly polarized family of hy- At zero order ink, ;/ky, E,=B,=0, so that this mode is

brid modes, the E§ modes, can be obtained by linear com- transverse while all the components are of the same order of

bination of the two solutions presented in Sec. Ill. The cou-magnitude at first order.

pling coefficient, defined as the fraction of the incident
energy coupled to a set of eigenmodes, can be computed
analytically for a linearly polarized incident Gaussian beam.
Due to the orthogonality properties of the Bessel functions
and to the linear polarization of the incident beam, the cou-
pling coefficient is different from zero only for eigenmodes
with v=1, i.e., the EHs modes. In addition, it has been
shown[10] that the EH; mode can be selected by adjusting
the waistw, of the incident Gaussian beam at the entrance of
the capillary tube: fowy=0.645, 98% of the incident en-
ergy is coupled to the EH mode, leading to monomode

026405-5

Forr=a, the components are expressed as

Kis a .
E,=— —Ju(kisa) \/ =sin(vy)
K,0 r

X sim wt — Kyoz— K,oB(r —a)]ekz?, 4.7

koo K s a
=;°kiZOJy<klsa>\[;cosw)

X sif wt — Kyoz— K,oB(r —a)]ekz?, 4.9
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FIG. 2. (a) Radial and(b) azimuthal components of the electric

field of the EH,; mode as a function of the radial position fet

—k,0z= = /4, in the case of glass wallg (=2.25), an incident

wavelength of 1um and a capillary tube radius=25 u m.

ki \[ |
Er_w\]v(lﬁsa) ?SII’I(V(//)
X sif wt— kyoz— k,oB(r —a)]ekz?,

_ ks \/5
Ey=j g ukus) /[ cosvy)

X si wt— Kyz— K,oB(r —a)]eke?,

4.9

(4.10

(4.1

(4.12
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Ey=E, siny+E, cosy, (4.149
which gives at zero order far<a,

Ex=J,-1(Kyor)sin(v—1) cog wt—kyz)ee?,
(4.15

E,= J,_1(k gr)cogv—1) ¢ coq wt— kZOZ)e"ZiZ,
(4.1

showing that at zero order, the family of modes giveniby
=1 is linearly polarized. It can be easily checked that the
polarization is also linear for>a.

At first order forr<a, however, the polarization is ellip-
tic. The first order terms insure the continuity of the fields at
the boundary =a and cause the bending of the field lines in
a layer of thicknesar =\y/2, where the first order terms
are larger than the zero order termg§Jg(k,dr)
<k, slko Ja(k sM)].

C. Contrast

The contrast at the capillary tube wéll, is defined as the
ratio of the longitudinal component of the Poynting vector at
r=0 to the same component takenrata; for the EH
mode, it is given by

K (2w~ 1)
K2 J2(k, @) (cO2 gt 2 SiP )

4.1

w

The contrast grows with the squarekgf/k, s, which is large
under the assumptions made, and decreases with the mode
order, ak, ¢ grows withs. For glass, with the above param-
eters kp,a=157) andy=0, C,,=2x10*8.8x10% for the
EH;; (EH;) mode.

The normalized flux at the wak,, is defined as the ratio
of the radial component of the Poynting vector ata to the
the longitudinal component of the Poynting vectorrat0
and is given by

k? (cog i+ &, Sir? )
:k_gJi(kLSa) 1)

Fuw , (4.18

F. depends on the azimuthal angteindicating that the flux
deposited at the wall is not homogeneoBks, is minimum

These fields satisfy the continuity conditions at the boundaryor = 0,7 and maximum for)= m/2,3/2.

r=aas can be seen in Fig. 2, whergE, andE, are plotted
as a function of, for v=1, wt—k,gz=¢y==w/4, in the case
of glass walls ¢,,=2.25), an incident wavelength of Am
and a capillary tube radius= 25 u m. Forr=<a, the profile
is aJy Bessel function while for =a, the electric fields are
slowly damped with a /a) ~*> dependence and oscillate

with a wavelength equal tag/B.

B. Polarization

Going back to the X,y) coordinates in the transverse

frame, the electric field is transformed as

Ex=E, cosyy—E, siny,

(4.13

F. is used to estimate the maximum intensity that can be
guided on a given mode EEwithout ionization of the wall
material. In the case of glass, for a pulse duration of the order
of 100 fs, the ionization thresholdll] is of the order of
10* W/cn? at a wavelength of 0.8um. For these param-
eters and a capillary tube of 2am radius,F,, has a maxi-
mum value of the order of I¢f. The maximum intensity
guided on the fundamental mode EHvithout wall ioniza-
tion is then of the order of #8W/cn?.

V. CONCLUSION

In this paper, the dispersion relation for the eigenmodes of
a cylindrical, evacuated waveguide has been derived. The
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family of hybrid modes EH, is a solution of the wave equa- The expressions of the contrast and of the intensity ab-
tion under the assumptiokya>1. The expressions of the sorbed at the wall allow to estimate the maximum intensity
field components have been derived at first order of the smatin axis that can be guided without damaging the capillary
parametek, ¢/kq and the continuity at the wall boundary has tube walls. It should be mentioned however, that for ul-
been checked. The EElmodes are transverse and linearly trashort pulses, this should not be a limitation. Even if a
polarized at zero order; at first order, the longitudinal com-plasma is created at the wall, this plasma does not expand
ponent is different from zerdthese hybrid modes can be during the pulse duration. The guiding is then performed by
called quasitransversend the polarization is elliptic. The the high-density, steep-gradient plasma existing near the wall

analytical estimation of the damping rate along the propagasurface. The estimation of the damping in this case will be
tion and of the intensity absorbed at the wall have beefihe objective of future work.

given.
The properties of these EElmodes are such that it is
possible to couple efficiently an incident beam in its funda- ACKNOWLEDGMENTS

mental Gaussian mode to one of the modes, the fundamental

mode EH;. As this mode is characterized with a high group  This work was partly supported by the program FEMTO
velocity and a large damping length, it is particularly inter- of the European Science Foundation, by INTAS Project No.
esting to couple the incident beam to this mode for applica97-10236, and by NATO Collaborative Linkage Grant No.
tions of monomode guiding. PST. 976812.

[1] T. Tajima and J. M. Dawson, Phys. Rev. Le18, 267 (1979. [6] S. Jackel, R. Burris, J. Grun, A. Ting, C. Manka, K. Evans, and
[2] F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F. J. Kosakowskii, Opt. Lett20, 1086(1995.
Dorchies, F. Jacquet, V. Malka, J. R. Margu&. Matthieus- [7] M. Borghesi, A. J. Mackinnon, R. Gaillard, O. Willi, and A. A.

sent, P. MineA. Modena, P. Mora, J. Morillo, and Z. Najmu- Offenberger, Phys. Rev. &7, R4899(1998.

din, Phys. Rev. Lett81, 995 (1998. [8] E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech43,
[3] H. M. Milchberg, J. Opt. Soc. Am. B2, 731(1995. 1783(1964.
[4] A. Y. Goltsov, D. V. Korobkin, YI. Ping, and S. Suckewer, J. [9] M. J. Adams,An Introduction to Optical Waveguidésviley,

[5] F. Dorchies, J. R. Marqsg B. Cros, G. Matthieussent, C. 15 R L Abrams, IEEE J. Quantum ElectroE-8, 838 (1972.

bclgurtcéi;s,k':'. Vdikproussol/i, IF: ,:Uerer; JP: G;indreL, S. Re- [11] D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys.
ibo, G. Hamoniaux, and F. Amiranoff, Phys. Rev. L&, Lett. 64, 3071 (1994,

4655(1999.

026405-7



