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Statistical mechanics of axisymmetric vortex rings
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We construct maximum entropy states of a collection of interacting unifasfiR & const) axisymmetric
vortex rings in a semiperiodic bounded volume. Following Milléthys. Rev. Lett65, 2137 (1990] and
Robert and Sommerigl. Fluid Mech.229, 291 (1991)], we obtain an equilibrium measure that preserves all
the ideal invariants such as the total energy, total impulse, circulation, and an infinity of Casimirs. The
numerical solution for a wide range of total flow energy and for given values of total circulation and total
impulse is presented.
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I. INTRODUCTION obtained by assuming a scale separation betwaénro-
scopicandmacroscopiovorticity fluctuations which with the
The formation of coherent vortical structures in two- long range of the Coulomb interaction leads to an exact
dimensional (2D) hydrodynamic turbulence has attracted mean field theory. On the other hand, Robert and Sommeria
much attentior{1]. In the past, many interesting statistical obtained the same mean field equations, which respect the
mechanical models have been proposed to address this issigvariance of the Casimirs, by introducing a Boltzmann-
For example, Onsagé2] introduced the concept alegative  Shannon-Jaynes information-theoretic entropy functional. In
temperaturein his point (or line) vortex model, wherein a contrast to the permutative methagsich as Miller’s which
continuous 2D vorticity field is decomposed into large num-crucially depend on the strong assumption of ergodicity,
ber of point(or line) vortices interacting with each other Robert and Sommeria prove a weak concentration property
through a logarithmic potential. Later, Taylf8] first ob-  of the underlying microstateflow) that allows them to de-
tained an expressiotthough incorregtfor W, the critical  fine a macrostate probability distribution, which is shown to
energy for transition from positive to negative temperatureshe “the most probable probability distribution function”
for a neutral vortex gas. Montgomery and Jojékcorrected among all possible distributions subject to the information
Taylor's expression by subtracting the self-energy compoalready known(i.e., invariance of energy and Casinjirs
nent of individual point vortices; they also constructed a Another such interesting class of hydrodynamic flows are
mean field theory for such a collection bEpoint vortices  the axisymmetridlows in inviscid, incompressible fluids; in
using Boltzmann’s combinatorial method. Edwards and Taysuch flows, the equivalent of a line vortex is a vortex ring.
lor [5] obtained the equation of state; and Sey&drgave the  Unlike their planar counterparts, vortex rings have self-
quantitatively correct expression fav, by including the ef-  induced motionbecause one part of a vortex ring can inter-
fect ofimagevorticity. Pointin and Lundgrefi7] constructed act with another part of itself consequently, an individual
the nonlinear partial differential equations for neutral andvortex ring embedded in a fluid has many interesting fea-
non-neutral point vortex systems; they also gave a rigoroutures. In the past, there has been a large body of work on
proof of the equation of state with an arbitrary boundarysuch “deterministic” (as against our “turbulent’ steady,
shape using the Kirchhoff-Routh technique. For a more comaxisymmetric vortex rings. For example, Marufit4] and
prehensive discussion of the statistical mechanics of poinfraenkel[15] showed theoretically the existence of vortex
vortices we refer the reader to RdfB] and references rings with small cross sections. Norbuf$6,17] obtained
therein. For an alternative viewpoint regarding the definitionnumerically the self-induced uniform speed, the shape of the
of temperature for a finite dimensional vortex system, etc.cross section, and the stream function of a uniform vortex
see Ref[9] and references therein. ring. Similar studies have been reported on hollow or stag-
More recently, Milleret al.[10] and Robert and Somme- nant vortex ringg18] and convex vortex ringgl9], etc. In
ria [11] (MR) proposed a statistical mechanical theory thatparticular, the uniform axisymmetric vortex ring has been a
qualitatively reproduces many numerically observed featurefavorite for over a century; the best known example is Hill's
of coherent structure formation in planar Euler flowg,13. spherical vortex, which is the only steady “ringof zero
Miller constructed a family of discrete vorticity fields that radiug represented by an exact solution in closed form. Wan
could share common values for a large number of Casimirg20] applied a variational technique for a single fat ring em-
(invariantg by simply permuting the vorticities in a finite bedded in an infinite fluid; he obtained Hill's vortex as a
number of boxegthe group of area-preserving diffeomor- “nondegenerate” maximum of energy subject to a fixed
phismg. The free energy of this many-invariant system isvalue of impulse and Norbury’s spherical vortex ring with a
hole as an extremum state of energy subject to fixed values
of both impulse and circulation.
*Present address: Department of Electrical Engineering, Pohang The stability aspects of vortex rings have also attracted
University of Science and TechnologyOSTECH, Pohang, S. Ko- considerable attention. Notably, Widnall and co-workers
rea. Electronic address: ganu@Kkitty.postech.ac.kr [21,22 have shown that vortex rings are unstable along the
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there has been a lot of interest in the formation of vortex
rings [23], in the so-called universal “formation time” of
nearly inviscid axisymmetric vortex rings24], etc. How- —\
ever, although considerable attention has been paid to the
properties of a single deterministic vortex ring, very few re-
ports (almost nong exist so far on a statistical equilibrium
theory of formation of(in general nonuniform, steady vor-
tex rings as coherent structur@macrostatesarising out of =
turbulent conditions. R
In the present work, we propose one such statistical me-
chanical theory for axisymmetric Euler flows, along the lines
of MR statistics, for construction of late time turbulent co-
herent structures. In particular, we will restrict ourselves to a )-\

perimeter even according to ideal flow theory. More recently, z A

i

collection of axisymmetric vortex rings in a semiperiodic,

bounded domain and construct axisymmetric maximum en- - A A A A A
[ I [
[ I [
1 1 1

tropy states out of interacting uniform vortex rings/R

=const) of small but finite core siz€hard core”). Late

time structures thus constructed are shown to be macroscopi-

cally uniform or nonuniform, depe_n_ding upon the initial val- 55 1. schematic view of the coordinate system: Indirec-
ues of “robust” conserved quantities such as total energyyion is periodic, theR direction is bounded.

impulse, and circulation. Our formulation also conserves an

infinite number of Casimirgintegrals of arbitrary but suffi-

ciently smooth functions of/R) and other constants arising
out of the symmetry of the confining geometry. The theory is DO
elucidated by numerically solving the mean field equations
for a simple initial condition with two-level vorticity.

In Sec. Il, we present the geometry, the model equations,
and the conservation laws. In Sec. lIl, the statistical mechaniwhere 2= w/R is the vorticity per unit length. For conve-
cal formulation is presented, which results in a set of mearience, we refer td) as the vorticity throughout. Equation
field equations. In Sec. IV we present numerical solutions of2) can be classically solved by introducing the stream func-
the mean field equations for the special case of initial condition for axisymmetric flow¥ such that
tions with two vorticity levels. In Sec. V we discuss the

This can be rewritten as

ﬁ=0 (2

validity of our model and other open questions relevant to V=V X Eb 3)
both planar and axisymmetric Euler flows. N R
IIl. MODEL EQUATIONS and w can be rewritten as

We use cylindrical coordinates to describe the dynamics 92 P2 1
of axisymmetric Euler flows in a domaM (see Fig. 1 Our —A*W=—| oot o o | P=RQ, (4)
; S o ; IR 9Z° RIR
basic equation is the well known vorticity equatif2b] of

an axisymmetric, inviscid, incompressible flow given by where A* is the operator indicated in the parentheses. The

value of the associated stream functircan be specified at
&=(w-V)v With =V XV 1) thg boundaries, which in tur[through. Eq.(3)] will deter-
Dt mine the flow pattern at the boundaries.
Equation(2) conserves the total flow enerdy, impulse
whereD/Dt=dlgt+ (v- V). P, total circulationC, and an infinity of Casimirs, say;
In Cartesian three-space, if the flow is planar then thedefined below; arising out of conservation dd along the
right hand sidewhich is also called thstretching termof ~ flow. The total flow energy is given bj25]
Eqg. (1) is identically zero. In an axisymmetric flow without
swirl (i.e., axisymmetric component of the flpvsince v
=[vgr,0pz] the flow is only in the(R,2 plane. Conse-
guently, the vorticity equation will have only th&compo-
nent, i.e.,w=[0,w,,0] (which henceforth will be referred to
as w), whose governing equation is given by

1
W=7Tf ‘I’wdeZ=—f\I’QdX (5)
v 2 v

wheredx=27R dR dZandV is the volume bounded by the
boundarysV (for convenience, the value of fluid density
which is a constant, is set to unjty

Jw Jw Jw  wug If fis any smooth function of), then the Casimirs;

tog—= tvy—o = —. \
gt URoR Y75z TR defined by
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complex distortions suffered by the vorticity as it is advected
If:j f(w)dR dZ:J f(Q)dx (6) in the flow it induces. To formulate a question at late times,
these microstatefs()(x)] would have to be connected to a
are all conserved by the axisymmetric Euler flow. One carmacrostate through a proper entropy functional.
also see that the total circulatidhis a member of ; when To define our macrostate, a number of assumptions re-
f(Q)=Q, ie., garding the nature of the flow are necessary to proceed fur-
ther. We assume that the underlying floneigjodic Further-
more, without attempting to prove it, if some form of
concentration propertgsimilar to the one proved by Robert
and Sommerig11] for planar flows of accumulation of a
The total fluid impulseP is defined as large number of microstatesonsistent with the conserved
quantities in the neighborhood of a macrostdtiefined be-
p= Trf w(RZ—Rg)dR dz= EJ Q(RZ—Rg)dx. (8) low) is assumed, then the actual flow evolution will mostly
2 stay near the macrostate.
o We now proceed to show using heuristic combinatorial
Note that the above definition could be referred to as theyguments how such a macrostate could be defined. For clar-
relativeimpulse. It must be clear that the usual definition fority of presentation, we focus on a simple case when the ini-
Fhe total impul.;,ePN (say is related taP through circulation, g vorticity field Q°(x) is made up ofn small patches of
i.e., Py=P+R;C/2. given vorticity levels{a;}, i=1,2, . .. n, each level occupy-

It should be ob\(ious from the equations presented abovmg a total “area’{A;}. Due to the nature of the underlying
that, although the integrals are defined over the volume eleoy, it is reasonable to expect vorticity fluctuations of all
mentdx, the definition is only formal. The entire formula- possible levels at any point at t=c. Let {e;(x)} be the
tion is relevant only in the incompressible plaif®2), mak-  propability of finding levelda;} atx att=cc. We would like

C=f Q dx. (7)

ing it effectively two dimensional. to determine that particular field, sdg’}, out of all pos-
sible probability fields consistent with the constants of mo-
lll. STATISTICAL MECHANICAL FORMULATION tion, which would maximize a certain entropy functional.

hus{e;} will be our macrostate.

I T
Euler flows are known to possess Hamiltonian structure ) . ! .
P To obtain such an entropy functional, let us first consider

[26,27). However, the problem of finding canonically conju- Il req f areal d ik At t= oo
gate coordinates for such Hamiltonian flows has not yet beeft SMall r€gION of aréat around a poink. — o, one may
expect to find all possible vorticity levels;}, each level

solved. Thus, in general, the existence of Liouville’s theorem . el = )
for systems governed by such noncanonical Hamiltonia/fcCUPYing @ small areg4;}. If the domainA is divided into

flows is questionable. Nevertheless, a large class of systenhs €dual, nonintersecting subparts andNjfis the number of
that may be classified as noncanonical Hamiltonian flows ar§U¢h subparts having the vorticity level, then €(x)
shown to be amenable to statistical mechanical treatment us- A; /A|X:Ni,/N|X' The number of ways In which .SUCh a
ing what are known as Lie-Poisson brackf28]. For ex-  1eld {€(X)}, i=1,...n, can be obtained by permuting the
ample, in their elegant work Milleet al.[10] formulated the ~Subparts is given by the weightW({e;(x)})=N!/
statistical mechanics of Euler flow using ideas developed iffN1'N2!"-*Np!) =N!/[(e;N)!(e;N)!---(e,N)!]. Here we
Ref. [28]. Here, however, we follow Robert and Sommeria Nave used Fermi counting for nonoverlapping subparts. Then
[11]. the normalized logarithmic weight atin the limit of infinite

subparts, i.e., wheN—, is given by—=,e(x)In g(X).

The limit N—o~ becomes necessary in order to define an

entropy functional without introducing any artificial length
To define an appropriate phase space, note that the vortigrales(at which the vorticity fluctuations may be washed

ity transport equatiopEq. (2)] is known to be well posed for  out). Upon computing for the entire domain, the entropy

bounded, measurable vorticity functiof9]. More pre-  of the macrostatée;(x)} becomes

cisely, if Q%(x)=Q(x,t=0) is a member of thes function

space of()’s in the domainV, i.e., £L7(V), at some initial

time t=0, then for all timet>0, Q(x,t) will be a member of Se(x)h=- JVZ & (x)Infe;(x)]dx. ©)

L£7(V) with sugQ(x,t)|=sugQ°(x)|. From the transport

equation shown aboveg. (2)] it follows thatthe maximum ¢ js important to note that for the microstae@(x)] to be

vorticity value at time 0 is preserved by the flow dynamics ¢qyiprobable, the flow should be necessarily mixing, i.e., er-

during all times._This bound provides sufficient smoothnessgodic_ Once this condition is satisfied, the maximum entropy
on the velocity fieldsee Eq(3)] to ensure the existence and giate is then the most probable state.

uniqueness of fluid particle paths=v(x,t), x(t=0). Thus,

we consider an infinite collection of bounded vorticity func-
tions)(x) that satisfy Eq(2) as our phase space. With time,
the solutions to Eq(2) become rapidly irregular even when  The constants of motion restrict the macrostate by con-
the initial vorticity function is smooth. This phenomenon is straining the accessible microstates to a submanifold of the
due to the growth of a vorticity gradient that results from thephase space. For an initial condition of nonoverlapping

A. Entropy

B. Constants of motion in terms of macrostatege;(x)}
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patches of vorticitya;, the Casimird ;= [, f({)dx may be 1 , S,

written as=;f(a;)A;, which is simply the discrete sum of W= Ef Q(x)dxf G (x=x")Q(x")dx".

the continuum Casimir integral, whers is the total area

containing the vorticity leved; . Since the axisymmetric Eu- The fluid flow energy is thus a quadratic function of the
ler flow preserves; and consequentl§(a;), the conserva- microscopic vorticity field()(x). To express this in terms of
tion of Casimirs amounts to conservation Af for eachi.  the macroscopic or average vorticify, we first define a
Thus, in terms of the fractional arex(x) atx, the total area  macroscopic stream functioki(x) as

A; becomes

—A*P=R2Q (15)

A= | e(x)dx. 10
' Jv 0 (10 and write the flow kinetic energy as

Note that at each point the total probability should add up
to1,i.e., 2 ,e/(x)=1. To express other constants of motion
in terms of the macrostate variablegx), we proceed as
follows. Since the microscopic vorticity fiel@l(x) at any  There is a fundamental assumption involved in writing Eq.
point x is fluctuating rapidly, the macroscopic or measured(16), using Egs(5) and(15). We have ignored the contribu-
vorticity at any pointx will be the average of each vorticity tion to the total flow energy from microscopic vorticity fluc-
level a; according to its local probabilitg;(x) at that point.  tuations whereas that due to large scale flow is aptly cap-
That is, tured. This assumption of separation of length scales allows
us to write the total flow energy in terms of the mean vortic-
ity and mean stream function. Physically, it amounts to hav-
ing averaged out the smallest vorticity scales. Thus only the
mean fields considered. We present more discussion of this
The constants of motion such &s the total fluid impulse, assumption and its limitations toward the end of this paper
that are linear functions of the microscopic fiefd3(x)] can  (see Sec. Y.

be written directly in terms of the probability fiekj(x) and Now that all physical quantities such as Casimirs, fluid
hence in terms of)(x), as it is reasonable to replace the impulse, and flow energy are expressed in terms of the mac-

fluctuating microscopic field with its local average defined infostate probability fieldei(x)}, we proceed to obtain the
Eq. (11). Thus, Eq.(8) becomes most probable macrostate out of all possible states consistent

with the conservation laws. For this purpose, the free energy

1 ——
W= —f Q) dx. (16)
2 v

Q)= ag(x). (11)

1(— 2 o2 F of the system may be defined as
Pz—f Q(X)(R°—R§)dx. (12
2 n-1
The Green function is defined for our problem[26] F=S=pW=yP- ,21 i (17)
B R_SA* Gy = S(x—x") (13 where B, y, and u; (i=1,...n—1) are undetermined
R2 “RZI¥T ’ Lagrange multipliers for the flow energy, fluid impulse, and
_ _ Casimirs (which includes circulation as its simplest cpase
whose solution for the unbounded case is while S W, P, andA; are defined through Eq), (16), (12),
1 and (10), respectively. Note that, since the local probability
Gu(x=x')= (RR)2 [(2—K)K(K?)—2E(KD)] (14) E{‘:l_ei(x)zl is conserv_eq, one of the unknown_s can _be
27kRy eliminated. Upon extremizing the free energy functional with
respect to arbitraryse; variations subject t&_,e;(x) =1,
where we obtain, after some straightforward calculation, the most
: probable probability distribution for various vorticity levels,
K2= 4RR {e*}, as
[(R+R")?+(Z2-2")?]
1
and K(k?) and E(k?) are the usual elliptic integrals. For er = — . (19
bounded flows, an appropriate image vorticity contribution {1+ 2{‘;11 exd ui+a;BY +a;y( RZ—R(Z,)]}

should be added to the Green function. Once the Green func-
tion is defined, the stream functiok(x) for any source dis- Here we have set,=0 without loss of generality. The as-
tribution Q(x) can be obtained as terisk indicates that the state is an extremum free energy
state. With this expression for the most probable probability
, o, distribution function, we may express the complete set of
\I'(X):f Gy (x=x")Q(x")dx equations for bounded axisymmetric Euler flows and the so-
called rugged constants of motions in terms of éveraged
and thus the energy (or the Hamiltoniahcan be written as macroscopic quantities as follows:
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o n 150
Q*(0) =2, aef(x),
i=1
—A* \I_’* — sz_l*
1D
0_
W)+ [ 0*¥d
0 1 Seipe_n2
P03 [ 07 (R-Rax, a9
2 Jv 2D
C(Qo(x))=f Q* dx, 1D
%
. Y W 0.12
with
FIG. 2. B-W curve using the TW algorithm. Bifurcation from
W(R=R;,Z)=%(R=R,,Z)=0, 1D to 2D is also shown.
g(R,z:zl)za(R,zzzl)_ distances are scaled bo(half the length between two walls

along R), the vorticity is scaled ta, its maximum value, and
e’ (x) is given by Eq.(18); R=R;, R=R;, Z=Z;, andZ  the stream function is scaled to circulatiGn(=b3a). Con-
=Z, are the confining boundarigsee Fig. 1 and are de- sequently, the velocity is scaled @b?, the energy taC?,
fined by R;—R;=2b, R;+R;=2Ry, Z;=—b, and Z,  the fluid impulse toCb?, B to b%/C, andvy to b/C. Hence,
=b; Ry is the mean distance betweBq andR;. (Here the  the maximum vorticity leveh becomes equal to INote that
boundary conditions onP are formal. Our results do not @& has the dimensions of vorticity/length; henCg has the

depend on them. Thus, one could useslip conditions as ~ correct dimensions of vorticity(length?.] In the following
well.) sections, we use the same variables as before, but it is to be

For a given initial vorticity field 2°(x)] (which in tum  understood that they are in dimensionless form. Thus the
would completely fix the values dWw,P,d) and boundary boundaries extend froR;=1/e—1 to R,=1/e+1 alongR

conditions, Eq(19) gives the statistical mechanical descrip- gnd from—1to 1 alongZ, wheree is the inverse aspect ratio
tion of the system at=o. Note that, in general, the equa- defined ase=b/R,, which is bounded by €& e<1.

tions are nonlinear, with nonlinear integral constraifntsn- Solutions to Eq(19) are constructed using a scheme due
loca) and hence may involve muitiple solutions and to Turkington and Whitakef30] (TW) for a given value of
bifurcations. Also, in cases of physical interest like coherengne set(W,C,B. The TW algorithm, which is an efficient
structures 8 is generally negative. This can be seen as fol-scheme for constructing solutions of E@9) when there are
lows. The inverse temperatuggis defined ag8=dS/oW,  multiple solutions, relies on the fact that in the negative tem-
which is the ratio of the change in entropy of a system to gerature regime the entropy density is a concave functional
given change in total energy. # is negative, then it implies \yhijle the energy density is a convex functiongy{x). As a
that for anincreasein the energy, the entropy of the system regyt the iteration procedure quickly converges to the solu-
decrease®r the system goes to a mooeganizedstate and  tion with the desired number of vortices from an initial guess
hence coherent structures. Therefore, in the statistical theoeeded with the same number of vortices. In our numerical

of turbulence 8<0 necessarily implies merger of vortices or rocedure. the solution? in each subiteration Converaes
formation of coherent structures. In the next section, we’" o 7 onverg
th a relative accuracy of (1-5910 ‘. The variational

solve these equations for a simple case and show that inded

they are rich and complex solutions to the stated problen"grObIem s considered. solyed if tienaximurm) relat.ive error
For convenience, in what follows, the asterisk will be etween two successive iterations &y(x) andWis of the

dropped from the macroscopic variables order (1-5)10 3. The initial seed is so chosen that it
' conserves the circulation constrair@sand P and has seed

energyW,>W. Typically, for a given setW, C, B, the TW
scheme takes 10-15 iterations.

We show typical phase diagrams in Figs. 2—4, calculated
As an example, we consider initial conditions with only Using the TW algorithm wittC=2 andP=1.361. For the
two Vorticity |eve|s’ ViZ., 0 anc (Saw_ Even in this Simp'e rest of the calculationg is set equal to 0.9 unless stated

case, we do not know any way of solving the problem anaOtherwise. Physically, specifying a value feramounts to

lytically. Hence in this section we compute numerical solu-fixing the distance from the geometric center of the bounded

tions for the two-level case. region to theZ axis (see Fig. 1 At the outset, one can see
In solving Eg.(19), we use the following scaling: the from Fig. 2 that the energy is bounded from above and be-

IV. NUMERICAL RESULTS: THE CASE OF TWO
VORTICITY LEVELS
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FIG. 5. Equilibrium solutions forC=2, P=1.361, andW

FIG. 3. y-W curve using the TW algorithm. Bifurcation from =0.07.(a) shows equ@ contours;(b) shows the corresponding
1D to 2D is also shown. Note that there are multiple energy valueslow profile—note that the flow is finite at thR boundaries;(c)
for a giveny in some regions. shows the surface plot ¢ exhibiting the nonuniform nature of the

“fat ring;” (d) is a contour plot of(c). For presentation purposes,

low, implying that there are a minimum and a maximum of {he |abels in(b) and(d) are suppressed: they are the same aa)in
the energy at which the inverse temperatgrie positive and

negative, respectively. Now, note that the phase curvesfor _

vs W shows three distinct regime8) At low energies, there nearly homogeneou$) distribution, which would be ex-

is a positiveg region(see Figs. 2 and)4where with increase pected in an infinite temperature system. Our interest will be
in energy the entropy of the system increases, implyéng primarily in the region of formation of 2D coherent struc-
=dS/oW=0; (ii) at a particular energy valusayWe), the  tyres with both nonuniform and uniform distributions @f
entropy reaches a maximum value ghdoes to Ofiii) after  Thys we will concentrate on the bifurcated 2D domain with
W, Wit_h increas_e in energy goes to negative values. With energiesV>W,, whereW, is the energy wherg=0. Stud-
further increase in energy, there is the onset of a bifurcatiofes regarding bifurcation in the ring configuration have been
phenomenon which leads to 1D and 2D solutions; in thisextensive[31,32. In the following sections, we will concen-
region, there is a steep increase in the value@.on the  {rate only on the negativg regime.

negativeB regime, note that the entropy of the system de-

creases with increase in energy. In {820 regime, as the

entropy increases with increasing energy, these 1D states are A. Finite negative 8 regime: Nonuniform vortex rings

diffuse (or unconfined in nature, with moreQ) distribution As discussed before, negatimmp“es Coherentor con-

toward the boundaries than in the cent@r-0 implies a fined) equilibria with peaked() distributions. To clearly
bring out the basic featuf® of this model, we present in
Figs. 5 and 6 solutions at two distinct values-68 or W.

Note that the larger the value of negatiggor W), the more

1D coherent are the solutions and the smaller is the correspond-
ing entropy. In the past, the concept of the ordering of en-
tropy of negative temperature states has served as a model
for “explaining” coherent structure formation in 2D large
Reynolds number turbulence in both screened and un-
» screened systenj82,36|.

For energies in the intermediate range where the corre-
oD spondingB values are negative but finit€ig. 5), the coher-

ent vortex ring has a nonuniform distribution. The mean po-
sition of this “fat ring” along R is defined by the value d?
while the extent of the nonzero region of distribution de-
1D pends on the total circulation, as the peak vortictyis
scaled to unity. Since the boundary conditions are periodic,

the(—lpeak, in principle, could be positioned anywhere along

FIG. 4. S-Wcurve. Note that the entropy of the 1D solution is Z. One could choos&=0 as the mean peak position by
smaller and that of the 2D solution is large at a chosen value ofippropriate choice of the initial condition in the TW algo-
energy after bifurcation. rithm.

7.5

)
0.01 W 0.12
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FIG. 6. Equilibrium solutions forC=2, P=1.361, andW "

=0.10 with the same meaning as in Fig. 5. For given value€ of

andP, as the energyV increases the profiles tend to become more  FIG. 7. Plot of Eq.(20) for various values ok. As e—1, the
coherent. For presentation purposes, the label®)irand (d) are ~ asymmetry abouP=0 increases whered,,,, itself decreases.
suppressed; they are the same a&jn

) ) o o e,(X) becomes nearly equal to 1, and zero otherwise. Con-
Since the impulse constraint is geometric in nature andequently, one may obtaindeterministicmodel for bounded
the system is bounded R (note that the boundary condition domains as a limiting case, similar to those obtained in Refs.

along R is free slip, there will be bounds on the allowed [15-17 for unbounded domains.
values ofP for a given value ofe. Since the energyVv and
impulseP are independent isolating integrals, following Ref. B. Infinite negative B regime: Uniform vortex rings

[32], we setB=0 [such that Eq(19) becomes linear inV"]
and obtainP=P(e,vy;) (which in turn can be solved for

bounds onP) as
1 2 2
1+ —— —cott‘(ﬂ) .
Y1 € €

It is worthwhile to note that, unlike the point vortex for-
mulation, which has no energy boun@ss two vortex rings
of zero size can come arbitrarily close to each otreard
hence has no zero entropy solutigksaichnan collapse sets
(20 in), a hard core vortex ring modé&luch as oupsadmits zero
entropy solutions, in the limiB— —«~. As noted by earlier

e
S 2

Note that for a given value of, the absolute oP, i.e.,|P|,
is bounded(say P, as a function ofy,; as e—0, this 1
bound not only increases in magnitude, but also becomes
symmetric with respect to th®=0 line. Similarly, ase
—1, the bound becomes asymmetric with respecP te0
while the magnitudes are small but finite. These features are Z
brought out in Fig. 7, where we have shown how the profile
of P/P,.x changes withe. As described in Ref[32], al-
though Eq.(20) was obtained fo3=0, due to the geometric

nature of the constraint, the bounds thus obtained remain -1
valid for any nonzero value g8.
Next, to bring out the effect of thE constraint on the) 1 (0)

distribution, we show in Fig. 8 th€ contours at the same

values of energy and circulation, but for two different values

of P (of course, well within the boundgsClearly, theP val-

ues affect the mean position of the fat ring; that is, the radial Z
position of the fat ring is essentially governed by the value of

P. Thus, at any finite negativg value, the distribution of)

is nonuniform. Moreover, the speed of the fat ring(W of

Norbury’s work[16,17]), and its shape emerge naturally out —01 11 R 211

of our problem, oncé andW are specified. : :
As we show in the next section, although our model is FIG. 8. Contours for two values d?, namely,P=1.361 and

statisticalin nature, when the vorticity fluctuations are small, 2.045, for fixed values oV andC. As P increases, the mean posi-

i.e., whenpB— —x (i.e., wherever the vorticity is nonzero tion of the fat ring aloncR increases, and vice versa.
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Thus our model could be viewed as the generalization of
Wan's results to bounded systems with appropriate boundary
conditions in the limit when3— —o. Of particular interest
would be the limite—1, B— —«©, P— — P, for any arbi-
trary C, which would be the equivalent of Hill's spherical
vortex in the current context.

2.1
@ V. DISCUSSION

As mentioned before, our model is based on the works of
O Miller et al. [10] and Robert and Sommerja1] for planar
Euler flows. Therefore, we discuss here the core issues,
which are relevant to both planar and axisymmetric flows.
g ol As is common to many other physical models that con-
-1 01 struct a thermal equilibrium measure, the unproven assump-
tion of ergodicity is at the heart of the present work. Al-
hough it is well known that a collection of “point vortices”
N>3) in a 2D planar flow is chaotig37] and may well be
mixing, it is not clear if for any given initial condition the
continuum dynamics will eventually be ergodic. There are
many examples of initial conditions that are mixing as well
as the nonmixing kind. Thus, the justification for our as-
sumption of ergodicity should congeposteriori However, it
should be mentioned here that, if not ergodicity, it was
shown by Robert and Sommerjal] that a concentration
property does exidithat is, a great majority of microscopic
vorticity fluctuations (microstates 2(x) are concentrated
around a macrostatee;(x)}]. Therefore, if ergodicity is in-

FIG. 9. Equilibrium solutions for given values &f, P, andW
=0.12. Note that the solutions are nearly deterministic, meanin
that() is nearly uniform on the fat ring and falls off sharply at the
edge. Note that the entro®~=0.95 as compared to its maximum
value ofS=7.3 atB=0. For presentation purposes, the labelin
and(d) are suppressed; they are the same ds)in

workers for planar flowg29,30, within such a statistical
model, asp— —»,e,—1, implying that the deterministic
limit is embedded as the zero entropy solution in our statis
tical theory. Hence, one might expect that, for a giwen
value, the limit3— —o would yield the deterministic solu-
tion for these boundary conditions. In Fig. 9, we show a g T :
(nearly deterministic solution obtained for large- 3. deed satisfied, th_en at infinite time the flow will most prob-
— ) ) ably stay near this macrostate.
Clearly, Q) is nearly uniformacross the fat ring and falls off The second crucial issue common to planar and axisym-
sharply to zero, mimicking a deterministic solution. To makemetric flows discussed here is the assumption of scale sepa-
this point clear, let us rewrit@ as 8= — 1//T| such that the  ation: meaning that, while the microscopic vorticity fluctua-
expression for the free energf£q. (17)] for the two-level  tions contribute to the entropy functional, the very same
case becomes fluctuations are completely ignored while computing the to-
~ o tal flow energy of the system. In other words, the micro-
F=|T[S+W-%P—%C (21) scopic fluctuations are averaged out and only the mean flow
i contribution to the total energy is considered. Such a separa-
where[T| is the absolute temperatur@ote that, as the area oy of vorticity scales allows one to attain closure. Thus,
A; occupied by the vorticity levea and the circulationC  \yhereas this class of statistical model may well capture the
differ only by a constana, which may be absorbed fa, we |56 scale features, the results may not in general be true.
have replacedd; by C.) According to our model, asT|  Recently, Chorifi33] presented some numerical evidence for
—00, S0 such thafT|S—a, wherea is some constant. he case of three-levéi.e., (0,1—1)] vorticity, in which the
Since the total energy is only the flow ener@yhich in- R statistics is shown to be invalid for large energiesge
cludes fluctuating flow plus steady flowin the limit where negative values, whereas reasonable agreement is shown
the entropy goes to zefae., the large energy limitthe total ¢ |ow or intermediate energy ranges.
energy is due only to the steady flow, which is already con- | gpjte of these outstanding issues, the problem of for-
tained inW. Thus & becomes zero. In general, one may re-my|ation of statistical equilibrium theories for planar and
defineW asW+ a=W irrespective of the value o&. Thus  axisymmetric flows is interesting for the following reasons.
Eq. (21) becomes There has been numerical evidence showing the emergence
of coherent structures frortnearly arbitrary initial condi-
F=W-3P-7%C. (22)  tions in the case of incompressible, inviscid, large Reynolds
number 2D turbulencgl]. Furthermore, the numerical simu-
Hence extremization of the free energy in the lingit- lations reported in Ref.12] for an annulus are encouraging.
—oo amounts to extremization of the energy subject to theFinally, there have been a number of useful qualitative as
constraints ofP and C. Wan [20] has already shown that well as quantitative predictions based on these models. For
Hill's spherical vortex is the maximum energy state subjectexample, the results of experiments in non-neutral electron
to the P constraint and Norbury’s class of vortices are theplasmas trapped in an applied magnetic f{@6] agree well
maximum energy state subject to bd®hand C constraints.  with the predictions of these statistical models. So do the
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numerical experiments on Euler and quasigeostrophic flowsonstants of motion. To illustrate various features of our
[34]. From these considerations, we take the standpoint thahodel, we have numerically solved the equations for the
it is still premature to conclude anything from the negativecase of two-level vorticity. In particular, we show that finite
results obtained hitherto for planar Euler flows. size vortex rings are convex when they are typically charac-
In the present work, we have developed a statistical meterized by negativgd values. Thus, nonuniform vortex rings
chanical model for an incompressible, inviscid, axisymmet-are obtained wherB is negative and finite while uniform
ric Euler flow. Due to the nature of the governing equationsyortex rings result for infinite negativg. In the latter limit,
the vorticity per unit lengtiwhich we have called the vor- we argue that, due to the absence of vorticity fluctuations
ticity throughouy is conserved by the flow dynamics. Thus (the entropy goes to zexothis class of solutions may be
the role of vorticity in planar Euler flows is assumed @y  considered as “deterministic.” This then could be the
=w/R in axisymmetric flows. Once cast in the form of a bounded analog of the past work of WE20] and Norbury
transport equation fof), the axisymmetric and planar flows [16,17]. Moreover, in contrast to the past work, here, speci-
fall into the same class of noncanonical Hamiltonian flows. fying the values of global constraints, namely,C,P, com-
The late time states are defined completely by specifyingletely determines the shape and speed of the vortex and the
the initial vorticity field, which in turn specifies the values of position of the vortex center with respect to the axis.
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