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Statistical mechanics of axisymmetric vortex rings
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We construct maximum entropy states of a collection of interacting uniform (v/R5const) axisymmetric
vortex rings in a semiperiodic bounded volume. Following Miller@Phys. Rev. Lett.65, 2137 ~1990!# and
Robert and Sommeria@J. Fluid Mech.229, 291 ~1991!#, we obtain an equilibrium measure that preserves all
the ideal invariants such as the total energy, total impulse, circulation, and an infinity of Casimirs. The
numerical solution for a wide range of total flow energy and for given values of total circulation and total
impulse is presented.
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I. INTRODUCTION

The formation of coherent vortical structures in tw
dimensional ~2D! hydrodynamic turbulence has attract
much attention@1#. In the past, many interesting statistic
mechanical models have been proposed to address this i
For example, Onsager@2# introduced the concept ofnegative
temperaturein his point ~or line! vortex model, wherein a
continuous 2D vorticity field is decomposed into large nu
ber of point ~or line! vortices interacting with each othe
through a logarithmic potential. Later, Taylor@3# first ob-
tained an expression~though incorrect! for Wc , the critical
energy for transition from positive to negative temperatu
for a neutral vortex gas. Montgomery and Joyce@4# corrected
Taylor’s expression by subtracting the self-energy com
nent of individual point vortices; they also constructed
mean field theory for such a collection ofN-point vortices
using Boltzmann’s combinatorial method. Edwards and T
lor @5# obtained the equation of state; and Seyler@6# gave the
quantitatively correct expression forWc by including the ef-
fect of imagevorticity. Pointin and Lundgren@7# constructed
the nonlinear partial differential equations for neutral a
non-neutral point vortex systems; they also gave a rigor
proof of the equation of state with an arbitrary bounda
shape using the Kirchhoff-Routh technique. For a more co
prehensive discussion of the statistical mechanics of p
vortices we refer the reader to Ref.@8# and references
therein. For an alternative viewpoint regarding the definit
of temperature for a finite dimensional vortex system, e
see Ref.@9# and references therein.

More recently, Milleret al. @10# and Robert and Somme
ria @11# ~MR! proposed a statistical mechanical theory th
qualitatively reproduces many numerically observed featu
of coherent structure formation in planar Euler flows@12,13#.
Miller constructed a family of discrete vorticity fields tha
could share common values for a large number of Casim
~invariants! by simply permuting the vorticities in a finite
number of boxes~the group of area-preserving diffeomo
phisms!. The free energy of this many-invariant system
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obtained by assuming a scale separation betweenmicro-
scopicandmacroscopicvorticity fluctuations which with the
long range of the Coulomb interaction leads to an ex
mean field theory. On the other hand, Robert and Somm
obtained the same mean field equations, which respect
invariance of the Casimirs, by introducing a Boltzman
Shannon-Jaynes information-theoretic entropy functional
contrast to the permutative methods~such as Miller’s! which
crucially depend on the strong assumption of ergodic
Robert and Sommeria prove a weak concentration prop
of the underlying microstates~flow! that allows them to de-
fine a macrostate probability distribution, which is shown
be ‘‘the most probable probability distribution function
among all possible distributions subject to the informati
already known~i.e., invariance of energy and Casimirs!.

Another such interesting class of hydrodynamic flows
the axisymmetricflows in inviscid, incompressible fluids; in
such flows, the equivalent of a line vortex is a vortex rin
Unlike their planar counterparts, vortex rings have se
induced motion~because one part of a vortex ring can inte
act with another part of itself!; consequently, an individua
vortex ring embedded in a fluid has many interesting f
tures. In the past, there has been a large body of work
such ‘‘deterministic’’ ~as against our ‘‘turbulent’’! steady,
axisymmetric vortex rings. For example, Maruhn@14# and
Fraenkel@15# showed theoretically the existence of vorte
rings with small cross sections. Norbury@16,17# obtained
numerically the self-induced uniform speed, the shape of
cross section, and the stream function of a uniform vor
ring. Similar studies have been reported on hollow or st
nant vortex rings@18# and convex vortex rings@19#, etc. In
particular, the uniform axisymmetric vortex ring has been
favorite for over a century; the best known example is Hil
spherical vortex, which is the only steady ‘‘ring’’~of zero
radius! represented by an exact solution in closed form. W
@20# applied a variational technique for a single fat ring e
bedded in an infinite fluid; he obtained Hill’s vortex as
‘‘nondegenerate’’ maximum of energy subject to a fix
value of impulse and Norbury’s spherical vortex ring with
hole as an extremum state of energy subject to fixed va
of both impulse and circulation.

The stability aspects of vortex rings have also attrac
considerable attention. Notably, Widnall and co-worke
@21,22# have shown that vortex rings are unstable along

ng
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perimeter even according to ideal flow theory. More recen
there has been a lot of interest in the formation of vor
rings @23#, in the so-called universal ‘‘formation time’’ o
nearly inviscid axisymmetric vortex rings@24#, etc. How-
ever, although considerable attention has been paid to
properties of a single deterministic vortex ring, very few r
ports ~almost none! exist so far on a statistical equilibrium
theory of formation of~in general! nonuniform, steady vor-
tex rings as coherent structures~macrostates! arising out of
turbulent conditions.

In the present work, we propose one such statistical
chanical theory for axisymmetric Euler flows, along the lin
of MR statistics, for construction of late time turbulent c
herent structures. In particular, we will restrict ourselves t
collection of axisymmetric vortex rings in a semiperiod
bounded domain and construct axisymmetric maximum
tropy states out of interacting uniform vortex rings (v/R
5const) of small but finite core size~‘‘hard core’’!. Late
time structures thus constructed are shown to be macrosc
cally uniform or nonuniform, depending upon the initial va
ues of ‘‘robust’’ conserved quantities such as total ener
impulse, and circulation. Our formulation also conserves
infinite number of Casimirs~integrals of arbitrary but suffi-
ciently smooth functions ofv/R! and other constants arisin
out of the symmetry of the confining geometry. The theory
elucidated by numerically solving the mean field equatio
for a simple initial condition with two-level vorticity.

In Sec. II, we present the geometry, the model equatio
and the conservation laws. In Sec. III, the statistical mech
cal formulation is presented, which results in a set of me
field equations. In Sec. IV we present numerical solutions
the mean field equations for the special case of initial con
tions with two vorticity levels. In Sec. V we discuss th
validity of our model and other open questions relevant
both planar and axisymmetric Euler flows.

II. MODEL EQUATIONS

We use cylindrical coordinates to describe the dynam
of axisymmetric Euler flows in a domainV ~see Fig. 1!. Our
basic equation is the well known vorticity equation@25# of
an axisymmetric, inviscid, incompressible flow given by

Dv

Dt
5~v•“ !v with v5“3v ~1!

whereD/Dt5]/]t1(v•“).
In Cartesian three-space, if the flow is planar then

right hand side~which is also called thestretching term! of
Eq. ~1! is identically zero. In an axisymmetric flow withou
swirl ~i.e., axisymmetric component of the flow! since v
5@vR,0,vZ# the flow is only in the ~R,Z! plane. Conse-
quently, the vorticity equation will have only theu compo-
nent, i.e.,v5@0,vu,0# ~which henceforth will be referred to
asv!, whose governing equation is given by

]v

]t
1vR

]v

]R
1vZ

]v

]Z
5

vvR

R
.
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This can be rewritten as

DV

Dt
50 ~2!

whereV5v/R is the vorticity per unit length. For conve
nience, we refer toV as the vorticity throughout. Equatio
~2! can be classically solved by introducing the stream fu
tion for axisymmetric flowC such that

v5“3S C

R
ûD ~3!

andv can be rewritten as

2D* C52S ]2

]R2 1
]2

]Z22
1

R

]

]RDC5R2V, ~4!

whereD* is the operator indicated in the parentheses. T
value of the associated stream functionC can be specified a
the boundaries, which in turn@through Eq.~3!# will deter-
mine the flow pattern at the boundaries.

Equation~2! conserves the total flow energyW, impulse
P, total circulationC, and an infinity of Casimirs, sayI f
~defined below!, arising out of conservation ofV along the
flow. The total flow energy is given by@25#

W5pE
V
Cv dR dZ5

1

2 EV
CV dx ~5!

wheredx52pR dR dZandV is the volume bounded by th
boundary]V ~for convenience, the value of fluid density%,
which is a constant, is set to unity!.

If f is any smooth function ofV, then the CasimirsI f
defined by

FIG. 1. Schematic view of the coordinate system; theZ direc-
tion is periodic, theR direction is bounded.
2-2
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STATISTICAL MECHANICS OF AXISYMMETRIC . . . PHYSICAL REVIEW E 65 026402
I f5E f ~v!dR dZ5E f ~V!dx ~6!

are all conserved by the axisymmetric Euler flow. One c
also see that the total circulationC is a member ofI f when
f (V)5V, i.e.,

C5E V dx. ~7!

The total fluid impulseP is defined as

P5pE v~R22R0
2!dR dZ5

1

2 E V~R22R0
2!dx. ~8!

Note that the above definition could be referred to as
relative impulse. It must be clear that the usual definition f
the total impulsePN ~say! is related toP through circulation,
i.e., PN5P1R0

2C/2.
It should be obvious from the equations presented ab

that, although the integrals are defined over the volume
ment dx, the definition is only formal. The entire formula
tion is relevant only in the incompressible plane~R,Z!, mak-
ing it effectively two dimensional.

III. STATISTICAL MECHANICAL FORMULATION

Euler flows are known to possess Hamiltonian struct
@26,27#. However, the problem of finding canonically conj
gate coordinates for such Hamiltonian flows has not yet b
solved. Thus, in general, the existence of Liouville’s theor
for systems governed by such noncanonical Hamilton
flows is questionable. Nevertheless, a large class of sys
that may be classified as noncanonical Hamiltonian flows
shown to be amenable to statistical mechanical treatmen
ing what are known as Lie-Poisson brackets@28#. For ex-
ample, in their elegant work Milleret al. @10# formulated the
statistical mechanics of Euler flow using ideas developed
Ref. @28#. Here, however, we follow Robert and Somme
@11#.

A. Entropy

To define an appropriate phase space, note that the vo
ity transport equation@Eq. ~2!# is known to be well posed fo
bounded, measurable vorticity functions@29#. More pre-
cisely, if V0(x)5V(x,t50) is a member of thè function
space ofV’s in the domainV, i.e., L`(V), at some initial
time t50, then for all timet.0, V(x,t) will be a member of
L`(V) with supuV(x,t)u5supuV0(x)u. From the transport
equation shown above@Eq. ~2!# it follows that the maximum
vorticity value at time t50 is preserved by the flow dynamic
during all times.This bound provides sufficient smoothne
on the velocity field@see Eq.~3!# to ensure the existence an
uniqueness of fluid particle pathsẋ5v(x,t), x(t50). Thus,
we consider an infinite collection of bounded vorticity fun
tionsV(x) that satisfy Eq.~2! as our phase space. With tim
the solutions to Eq.~2! become rapidly irregular even whe
the initial vorticity function is smooth. This phenomenon
due to the growth of a vorticity gradient that results from t
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complex distortions suffered by the vorticity as it is advect
in the flow it induces. To formulate a question at late tim
these microstates@V(x)# would have to be connected to
macrostate through a proper entropy functional.

To define our macrostate, a number of assumptions
garding the nature of the flow are necessary to proceed
ther. We assume that the underlying flow isergodic. Further-
more, without attempting to prove it, if some form o
concentration property~similar to the one proved by Robe
and Sommeria@11# for planar flows! of accumulation of a
large number of microstates~consistent with the conserve
quantities! in the neighborhood of a macrostate~defined be-
low! is assumed, then the actual flow evolution will mos
stay near the macrostate.

We now proceed to show using heuristic combinator
arguments how such a macrostate could be defined. For
ity of presentation, we focus on a simple case when the
tial vorticity field V0(x) is made up ofn small patches of
given vorticity levels$ai%, i 51,2, . . . ,n, each level occupy-
ing a total ‘‘area’’$Ai%. Due to the nature of the underlyin
flow, it is reasonable to expect vorticity fluctuations of a
possible levels at any pointx at t5`. Let $ei(x)% be the
probability of finding levels$ai% at x at t5`. We would like
to determine that particular field, say$ei* %, out of all pos-
sible probability fields consistent with the constants of m
tion, which would maximize a certain entropy functiona
Thus$ei% will be our macrostate.

To obtain such an entropy functional, let us first consid
a small region of areaA around a pointx. At t5`, one may
expect to find all possible vorticity levels$ai%, each level
occupying a small area$Ai%. If the domainA is divided into
N equal, nonintersecting subparts and ifNi is the number of
such subparts having the vorticity levelai , then ei(x)
5Ai /Aux5Ni /Nux . The number of ways in which such
field $ei(x)%, i 51, . . .n, can be obtained by permuting th
subparts is given by the weightW„$ei(x)%…5N!/
(N1!N2!¯Nn!) 5N!/ @(e1N)!(e2N)!¯(enN)! #. Here we
have used Fermi counting for nonoverlapping subparts. T
the normalized logarithmic weight atx in the limit of infinite
subparts, i.e., whenN→`, is given by2( i 51

n ei(x)ln ei(x).
The limit N→` becomes necessary in order to define
entropy functional without introducing any artificial lengt
scales~at which the vorticity fluctuations may be washe
out!. Upon computing for the entire domainV, the entropy
of the macrostate$ei(x)% becomes

S„$ei~x!%…52E
V
(

i
ei~x!ln@ei~x!#dx. ~9!

It is important to note that for the microstates@V(x)# to be
equiprobable, the flow should be necessarily mixing, i.e.,
godic. Once this condition is satisfied, the maximum entro
state is then the most probable state.

B. Constants of motion in terms of macrostateŝ ei„x…‰

The constants of motion restrict the macrostate by c
straining the accessible microstates to a submanifold of
phase space. For an initial condition of nonoverlapp
2-3



f

-

p
n

e
y

e
in

r
on
un

e
f

q.
-
-
ap-
ws

ic-
av-
the
his
per

id
ac-

tent
rgy

nd
e

ity
be
ith

ost
,

-
rgy
lity
of

so-

R. GANESH AND K. AVINASH PHYSICAL REVIEW E65 026402
patches of vorticityai , the CasimirsI f5*Vf (V)dx may be
written as( i f (ai)Ai , which is simply the discrete sum o
the continuum Casimir integral, whereAi is the total area
containing the vorticity levelai . Since the axisymmetric Eu
ler flow preservesai and consequentlyf (ai), the conserva-
tion of Casimirs amounts to conservation ofAi for each i.
Thus, in terms of the fractional areaei(x) at x, the total area
Ai becomes

Ai5E
V
ei~x!dx. ~10!

Note that at each pointx the total probability should add u
to 1, i.e.,( i 51

n ei(x)51. To express other constants of motio
in terms of the macrostate variablesei(x), we proceed as
follows. Since the microscopic vorticity fieldV(x) at any
point x is fluctuating rapidly, the macroscopic or measur
vorticity at any pointx will be the average of each vorticit
level ai according to its local probabilityei(x) at that point.
That is,

V̄~x!5(
i

aiei~x!. ~11!

The constants of motion such asP, the total fluid impulse,
that are linear functions of the microscopic fields@V(x)# can
be written directly in terms of the probability fieldei(x) and
hence in terms ofV̄(x), as it is reasonable to replace th
fluctuating microscopic field with its local average defined
Eq. ~11!. Thus, Eq.~8! becomes

P5
1

2 E V̄~x!~R22R0
2!dx. ~12!

The Green function is defined for our problem as@20#

2
R0

2

R2 DR,Z* GC5d~x2x8!, ~13!

whose solution for the unbounded case is

GC~x2x8!5
~RR8!1/2

2pkR0
2 @~22k2!K~k2!22E~k2!# ~14!

where

k25
4RR8

@~R1R8!21~Z2Z8!2#

and K(k2) and E(k2) are the usual elliptic integrals. Fo
bounded flows, an appropriate image vorticity contributi
should be added to the Green function. Once the Green f
tion is defined, the stream functionC(x) for any source dis-
tribution V(x) can be obtained as

C~x!5E GC~x2x8!V~x8!dx8

and thus the energyW ~or the Hamiltonian! can be written as
02640
d

c-

W5
1

2 E V~x!dxE GC~x2x8!V~x8!dx8.

The fluid flow energy is thus a quadratic function of th
microscopic vorticity fieldV(x). To express this in terms o
the macroscopic or average vorticityV̄, we first define a
macroscopic stream functionC̄(x) as

2D* C̄5R2V̄ ~15!

and write the flow kinetic energy as

W5
1

2 EV
C̄V̄ dx. ~16!

There is a fundamental assumption involved in writing E
~16!, using Eqs.~5! and~15!. We have ignored the contribu
tion to the total flow energy from microscopic vorticity fluc
tuations whereas that due to large scale flow is aptly c
tured. This assumption of separation of length scales allo
us to write the total flow energy in terms of the mean vort
ity and mean stream function. Physically, it amounts to h
ing averaged out the smallest vorticity scales. Thus only
mean fieldis considered. We present more discussion of t
assumption and its limitations toward the end of this pa
~see Sec. V!.

Now that all physical quantities such as Casimirs, flu
impulse, and flow energy are expressed in terms of the m
rostate probability field$ei(x)%, we proceed to obtain the
most probable macrostate out of all possible states consis
with the conservation laws. For this purpose, the free ene
F of the system may be defined as

F5S2bW2gP2 (
i 51

n21

m iAi ~17!

where b, g, and m i ( i 51, . . . ,n21) are undetermined
Lagrange multipliers for the flow energy, fluid impulse, a
Casimirs ~which includes circulation as its simplest cas!
while S, W, P, andAi are defined through Eqs.~9!, ~16!, ~12!,
and ~10!, respectively. Note that, since the local probabil
( i 51

n ei(x)51 is conserved, one of the unknowns can
eliminated. Upon extremizing the free energy functional w
respect to arbitrarydei variations subject to( i 51

n ei(x)51,
we obtain, after some straightforward calculation, the m
probable probability distribution for various vorticity levels
$ei* %, as

ei* 5
1

$11( i 51
n21 exp@m i1aibC̄1aig~R22R0

2!#%
. ~18!

Here we have setmn[0 without loss of generality. The as
terisk indicates that the state is an extremum free ene
state. With this expression for the most probable probabi
distribution function, we may express the complete set
equations for bounded axisymmetric Euler flows and the
called rugged constants of motions in terms of theaveraged
macroscopic quantities as follows:
2-4
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V̄* ~x!5(
i 51

n

aiei* ~x!,

2D* C̄* 5R2V̄* ,

W„V0~x!…5
1

2 EV
V̄* C̄* dx,

P„V0~x!…5
1

2 EV
V̄* ~R22R0

2!dx, ~19!

C„V0~x!…5E
V
V̄* dx,

with

C̄~R5R1 ,Z!5C̄~R5R2 ,Z!50,

C̄~R,Z5Z1!5C̄~R,Z5Z1!.

ei* (x) is given by Eq.~18!; R5R1 , R5R2 , Z5Z1 , andZ
5Z2 are the confining boundaries~see Fig. 1! and are de-
fined by R22R152b, R21R152R0 , Z152b, and Z2
5b; R0 is the mean distance betweenR1 andR2 . ~Here the

boundary conditions onC̄ are formal. Our results do no
depend on them. Thus, one could useno-slip conditions as
well.!

For a given initial vorticity field@V0(x)# ~which in turn
would completely fix the values of@W,P,C#! and boundary
conditions, Eq.~19! gives the statistical mechanical descri
tion of the system att5`. Note that, in general, the equa
tions are nonlinear, with nonlinear integral constraints~non-
local! and hence may involve multiple solutions an
bifurcations. Also, in cases of physical interest like coher
structures,b is generally negative. This can be seen as f
lows. The inverse temperatureb is defined asb5]S/]W,
which is the ratio of the change in entropy of a system t
given change in total energy. Ifb is negative, then it implies
that for anincreasein the energy, the entropy of the syste
decreasesor the system goes to a moreorganizedstate and
hence coherent structures. Therefore, in the statistical th
of turbulence,b,0 necessarily implies merger of vortices
formation of coherent structures. In the next section,
solve these equations for a simple case and show that in
they are rich and complex solutions to the stated probl
For convenience, in what follows, the asterisk will b
dropped from the macroscopic variables.

IV. NUMERICAL RESULTS: THE CASE OF TWO
VORTICITY LEVELS

As an example, we consider initial conditions with on
two vorticity levels, viz., 0 anda ~say!. Even in this simple
case, we do not know any way of solving the problem a
lytically. Hence in this section we compute numerical so
tions for the two-level case.

In solving Eq. ~19!, we use the following scaling: the
02640
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distances are scaled tob ~half the length between two wall
alongR̂!, the vorticity is scaled toa, its maximum value, and
the stream function is scaled to circulationC ([b3a). Con-
sequently, the velocity is scaled toC/b2, the energy toC2,
the fluid impulse toCb2, b to b3/C, andg to b/C. Hence,
the maximum vorticity levela becomes equal to 1.@Note that
a has the dimensions of vorticity/length; henceC0 has the
correct dimensions of vorticity3~length!2.# In the following
sections, we use the same variables as before, but it is t
understood that they are in dimensionless form. Thus
boundaries extend fromR151/e21 to R251/e11 alongR̂

and from21 to 1 alongẐ, wheree is the inverse aspect rati
defined ase5b/R0 , which is bounded by 0,e,1.

Solutions to Eq.~19! are constructed using a scheme d
to Turkington and Whitaker@30# ~TW! for a given value of
the set~W,C,P!. The TW algorithm, which is an efficien
scheme for constructing solutions of Eq.~19! when there are
multiple solutions, relies on the fact that in the negative te
perature regime the entropy density is a concave functio
while the energy density is a convex function ofea(x). As a
result the iteration procedure quickly converges to the so
tion with the desired number of vortices from an initial gue
seeded with the same number of vortices. In our numer

procedure, the solutionC̄ in each subiteration converge
with a relative accuracy of (1 – 5)31027. The variational
problem is considered solved if the~maximum! relative error
between two successive iterations forea(x) andW is of the
order (1 – 5)31023. The initial seed is so chosen that
conserves the circulation constraintsC and P and has seed
energyW0.W. Typically, for a given set~W, C, P!, the TW
scheme takes 10–15 iterations.

We show typical phase diagrams in Figs. 2–4, calcula
using the TW algorithm withC52 and P51.361. For the
rest of the calculationse is set equal to 0.9 unless state
otherwise. Physically, specifying a value fore amounts to
fixing the distance from the geometric center of the bound
region to theẐ axis ~see Fig. 1!. At the outset, one can se
from Fig. 2 that the energy is bounded from above and

FIG. 2. b-W curve using the TW algorithm. Bifurcation from
1D to 2D is also shown.
2-5
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R. GANESH AND K. AVINASH PHYSICAL REVIEW E65 026402
low, implying that there are a minimum and a maximum
the energy at which the inverse temperatureb is positive and
negative, respectively. Now, note that the phase curve fob
vs W shows three distinct regimes.~i! At low energies, there
is a positiveb region~see Figs. 2 and 4!, where with increase
in energy the entropy of the system increases, implyingb
5]S/]W.0; ~ii ! at a particular energy value~sayWc!, the
entropy reaches a maximum value andb goes to 0;~iii ! after
Wc , with increase in energyb goes to negative values. Wit
further increase in energy, there is the onset of a bifurca
phenomenon which leads to 1D and 2D solutions; in t
region, there is a steep increase in the values ofb. In the
negativeb regime, note that the entropy of the system d
creases with increase in energy. In theb.0 regime, as the
entropy increases with increasing energy, these 1D state

diffuse ~or unconfined! in nature, with moreV̄ distribution
toward the boundaries than in the center;b.0 implies a

FIG. 3. g-W curve using the TW algorithm. Bifurcation from
1D to 2D is also shown. Note that there are multiple energy val
for a giveng in some regions.

FIG. 4. S-Wcurve. Note that the entropy of the 1D solution
smaller and that of the 2D solution is large at a chosen value
energy after bifurcation.
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nearly homogeneousV̄ distribution, which would be ex-
pected in an infinite temperature system. Our interest will
primarily in the region of formation of 2D coherent stru

tures with both nonuniform and uniform distributions ofV̄.
Thus we will concentrate on the bifurcated 2D domain w
energiesW.Wc , whereWc is the energy whereb50. Stud-
ies regarding bifurcation in the ring configuration have be
extensive@31,32#. In the following sections, we will concen
trate only on the negativeb regime.

A. Finite negative b regime: Nonuniform vortex rings

As discussed before, negativeb implies coherent~or con-

fined! equilibria with peakedV̄ distributions. To clearly
bring out the basic feature~s! of this model, we present in
Figs. 5 and 6 solutions at two distinct values of2b or W.
Note that the larger the value of negativeb ~or W!, the more
coherent are the solutions and the smaller is the corresp
ing entropy. In the past, the concept of the ordering of
tropy of negative temperature states has served as a m
for ‘‘explaining’’ coherent structure formation in 2D larg
Reynolds number turbulence in both screened and
screened systems@32,36#.

For energies in the intermediate range where the co
spondingb values are negative but finite~Fig. 5!, the coher-
ent vortex ring has a nonuniform distribution. The mean p
sition of this ‘‘fat ring’’ along R̂ is defined by the value ofP
while the extent of the nonzero region of distribution d
pends on the total circulation, as the peak vorticitya is
scaled to unity. Since the boundary conditions are perio

theV̄ peak, in principle, could be positioned anywhere alo
Ẑ. One could chooseZ50 as the mean peak position b
appropriate choice of the initial condition in the TW alg
rithm.

s

of

FIG. 5. Equilibrium solutions forC52, P51.361, andW

50.07. ~a! shows equi-C̄ contours;~b! shows the corresponding
flow profile—note that the flow is finite at theR boundaries;~c!

shows the surface plot ofV̄ exhibiting the nonuniform nature of the
‘‘fat ring;’’ ~d! is a contour plot of~c!. For presentation purposes
the labels in~b! and~d! are suppressed; they are the same as in~a!.
2-6
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Since the impulse constraint is geometric in nature a
the system is bounded inR̂ ~note that the boundary conditio
along R̂ is free slip!, there will be bounds on the allowe
values ofP for a given value ofe. Since the energyW and
impulseP are independent isolating integrals, following Re

@32#, we setb50 @such that Eq.~19! becomes linear inC̄#
and obtainP5P(e,g1) ~which in turn can be solved fo
bounds onP! as

P5
C

2 F11
1

g1
2

2

e
cothS 2g1

e D G . ~20!

Note that for a given value ofe, the absolute ofP, i.e., uPu,
is bounded~say Pmax! as a function ofg1 ; as e→0, this
bound not only increases in magnitude, but also beco
symmetric with respect to theP50 line. Similarly, ase
→1, the bound becomes asymmetric with respect toP50
while the magnitudes are small but finite. These features
brought out in Fig. 7, where we have shown how the pro
of P/Pmax changes withe. As described in Ref.@32#, al-
though Eq.~20! was obtained forb50, due to the geometric
nature of the constraint, the bounds thus obtained rem
valid for any nonzero value ofb.

Next, to bring out the effect of theP constraint on theV̄

distribution, we show in Fig. 8 theV̄ contours at the sam
values of energy and circulation, but for two different valu
of P ~of course, well within the bounds!. Clearly, theP val-
ues affect the mean position of the fat ring; that is, the rad
position of the fat ring is essentially governed by the value

P. Thus, at any finite negativeb value, the distribution ofV̄
is nonuniform. Moreover, the speed of the fat ring,g ~W of
Norbury’s work@16,17#!, and its shape emerge naturally o
of our problem, onceP andW are specified.

As we show in the next section, although our model
statisticalin nature, when the vorticity fluctuations are sma
i.e., whenb→2` ~i.e., wherever the vorticity is nonzero!,

FIG. 6. Equilibrium solutions forC52, P51.361, andW
50.10 with the same meaning as in Fig. 5. For given values oC
andP, as the energyW increases the profiles tend to become mo
coherent. For presentation purposes, the labels in~c! and ~d! are
suppressed; they are the same as in~a!.
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ea(x) becomes nearly equal to 1, and zero otherwise. C
sequently, one may obtain adeterministicmodel for bounded
domains as a limiting case, similar to those obtained in R
@15–17# for unbounded domains.

B. Infinite negative b regime: Uniform vortex rings

It is worthwhile to note that, unlike the point vortex fo
mulation, which has no energy bounds~as two vortex rings
of zero size can come arbitrarily close to each other! and
hence has no zero entropy solutions~Kraichnan collapse set
in!, a hard core vortex ring model~such as ours! admits zero
entropy solutions, in the limitb→2`. As noted by earlier

FIG. 7. Plot of Eq.~20! for various values ofe. As e→1, the
asymmetry aboutP50 increases whereasPmax itself decreases.

FIG. 8. Contours for two values ofP, namely,P51.361 and
2.045, for fixed values ofW andC. As P increases, the mean pos
tion of the fat ring alongR increases, and vice versa.
2-7
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workers for planar flows@29,30#, within such a statistica
model, asb→2`,ea→1, implying that the deterministic
limit is embedded as the zero entropy solution in our sta
tical theory. Hence, one might expect that, for a givene
value, the limitb→2` would yield the deterministic solu
tion for these boundary conditions. In Fig. 9, we show
~nearly! deterministic solution obtained for large2b.

Clearly, V̄ is nearly uniformacross the fat ring and falls of
sharply to zero, mimicking a deterministic solution. To ma
this point clear, let us rewriteb asb521/uTu such that the
expression for the free energy@Eq. ~17!# for the two-level
case becomes

F̃5uTuS1W2g̃P2m̃C ~21!

whereuT u is the absolute temperature.~Note that, as the are
Ai occupied by the vorticity levela and the circulationC
differ only by a constanta, which may be absorbed inm̃, we
have replacedAi by C.! According to our model, asuTu
→`, S→0 such thatuTuS→a, wherea is some constant
Since the total energy is only the flow energy~which in-
cludes fluctuating flow plus steady flow!, in the limit where
the entropy goes to zero~i.e., the large energy limit!, the total
energy is due only to the steady flow, which is already c
tained inW. Thusa becomes zero. In general, one may
defineW asW1a5W̃ irrespective of the value ofa. Thus
Eq. ~21! becomes

F̃5W̃2g̃P2m̃C. ~22!

Hence extremization of the free energy in the limitb→
2` amounts to extremization of the energy subject to
constraints ofP and C. Wan @20# has already shown tha
Hill’s spherical vortex is the maximum energy state subj
to the P constraint and Norbury’s class of vortices are t
maximum energy state subject to bothP and C constraints.

FIG. 9. Equilibrium solutions for given values ofC, P, andW
50.12. Note that the solutions are nearly deterministic, mean

that V̄ is nearly uniform on the fat ring and falls off sharply at th
edge. Note that the entropyS.0.95 as compared to its maximum
value ofS.7.3 atb50. For presentation purposes, the labels in~b!
and ~d! are suppressed; they are the same as in~a!.
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Thus our model could be viewed as the generalization
Wan’s results to bounded systems with appropriate bound
conditions in the limit whenb→2`. Of particular interest
would be the limite→1, b→2`, P→2Pmax for any arbi-
trary C, which would be the equivalent of Hill’s spherica
vortex in the current context.

V. DISCUSSION

As mentioned before, our model is based on the works
Miller et al. @10# and Robert and Sommeria@11# for planar
Euler flows. Therefore, we discuss here the core issu
which are relevant to both planar and axisymmetric flows

As is common to many other physical models that co
struct a thermal equilibrium measure, the unproven assu
tion of ergodicity is at the heart of the present work. A
though it is well known that a collection of ‘‘point vortices
(N.3) in a 2D planar flow is chaotic@37# and may well be
mixing, it is not clear if for any given initial condition the
continuum dynamics will eventually be ergodic. There a
many examples of initial conditions that are mixing as w
as the nonmixing kind. Thus, the justification for our a
sumption of ergodicity should comea posteriori. However, it
should be mentioned here that, if not ergodicity, it w
shown by Robert and Sommeria@11# that a concentration
property does exist@that is, a great majority of microscopi
vorticity fluctuations ~microstates! V(x) are concentrated
around a macrostate$ei(x)%#. Therefore, if ergodicity is in-
deed satisfied, then at infinite time the flow will most pro
ably stay near this macrostate.

The second crucial issue common to planar and axis
metric flows discussed here is the assumption of scale s
ration: meaning that, while the microscopic vorticity fluctu
tions contribute to the entropy functional, the very sam
fluctuations are completely ignored while computing the
tal flow energy of the system. In other words, the micr
scopic fluctuations are averaged out and only the mean
contribution to the total energy is considered. Such a sep
tion of vorticity scales allows one to attain closure. Thu
whereas this class of statistical model may well capture
large scale features, the results may not in general be
Recently, Chorin@33# presented some numerical evidence
the case of three-level@i.e., ~0,1,21!# vorticity, in which the
MR statistics is shown to be invalid for large energies~large
negativeb values!, whereas reasonable agreement is sho
at low or intermediate energy ranges.

In spite of these outstanding issues, the problem of
mulation of statistical equilibrium theories for planar an
axisymmetric flows is interesting for the following reason
There has been numerical evidence showing the emerg
of coherent structures from~nearly! arbitrary initial condi-
tions in the case of incompressible, inviscid, large Reyno
number 2D turbulence@1#. Furthermore, the numerical simu
lations reported in Ref.@12# for an annulus are encouraging
Finally, there have been a number of useful qualitative
well as quantitative predictions based on these models.
example, the results of experiments in non-neutral elect
plasmas trapped in an applied magnetic field@35# agree well
with the predictions of these statistical models. So do

g
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numerical experiments on Euler and quasigeostrophic fl
@34#. From these considerations, we take the standpoint
it is still premature to conclude anything from the negat
results obtained hitherto for planar Euler flows.

In the present work, we have developed a statistical m
chanical model for an incompressible, inviscid, axisymm
ric Euler flow. Due to the nature of the governing equatio
the vorticity per unit length~which we have called the vor
ticity throughout! is conserved by the flow dynamics. Thu
the role of vorticity in planar Euler flows is assumed byV
[v/R in axisymmetric flows. Once cast in the form of
transport equation forV, the axisymmetric and planar flow
fall into the same class of noncanonical Hamiltonian flow

The late time states are defined completely by specify
the initial vorticity field, which in turn specifies the values
r.

-

02640
s
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constants of motion. To illustrate various features of o
model, we have numerically solved the equations for
case of two-level vorticity. In particular, we show that fini
size vortex rings are convex when they are typically char
terized by negativeb values. Thus, nonuniform vortex ring
are obtained whenb is negative and finite while uniform
vortex rings result for infinite negativeb. In the latter limit,
we argue that, due to the absence of vorticity fluctuatio
~the entropy goes to zero!, this class of solutions may b
considered as ‘‘deterministic.’’ This then could be th
bounded analog of the past work of Wan@20# and Norbury
@16,17#. Moreover, in contrast to the past work, here, spe
fying the values of global constraints, namely,W,C,P, com-
pletely determines the shape and speed of the vortex and
position of the vortex center with respect to the axis.
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