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Statistically preserved structures in shell models of passive scalar advection

Yoram Cohen, Thomas Gilbert, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 24 July 2001; published 25 January 2002!

It was conjectured recently that statiscally preserved structures underlie the statistical physics of turbulent
transport processes. We analyze here in detail the time-dependent~noncompact! linear operator that governs
the dynamics of correlation functions in the case of shell models of passive scalar advection. The problem is
generic in the sense that the driving velocity field is neither Gaussian nord correlated in time. We show how
to naturally discuss the dynamics in terms of an effective compact operator that displays ‘‘zero modes,’’ which
determine the anomalous scaling of the correlation functions. Since shell models have neither a Lagrangian
structure nor ‘‘shape dynamics,’’ this example differs significantly from standard passive scalar advection.
Nevertheless, with the necessary modifications, the generality and efficacy of the concept of statistically
preserved structures are further exemplified. In passing we point out a bonus of the present approach, in
providing analytic predictions for the time-dependent correlation functions in decaying turbulent transport.

DOI: 10.1103/PhysRevE.65.026314 PACS number~s!: 47.27.2i
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I. INTRODUCTION

Turbulent transport processes refer to the advection
transported fieldf(r ,t) ~scalar or vector! by a turbulent ve-
locity field u(r ,t) @1,2#. The basic equation of motion is lin
ear, having the form

] tf5Lf. ~1!

HereL is an operator that is built out of the turbulent velo
ity field, and as such may be stochastic. Examples are
advection of a passive scalaru(r ,t), with the equation of
motion

]u

]t
1u•“u5k“2u, ~2!

or a vector such as a magnetic fieldB(r ,t) satisfying@3#

]B

]t
1~u•“ !B5~B•“ !u1k“2B. ~3!

We may also consider advection, as in@4#, of a vector fieldw
whose divergence vanishes,“•w50,

]w

]t
1~u•“ !w52“p1k“2w. ~4!

In all these equations the velocity fieldu comes from either
a solution of a fluid-mechanical equation, or is a rand
field defined with some statistical properties. A fundamen
consequence of the linearity of the equations of motion
that the correlation functions may be expressed as

^f~r1 ,t !¯f~rN ,t !&5E Pr ur
~N!~ t !^f~r1,0!¯f~rN,0!&dr,

~5!

where ^¯& is an average over the statistics of the init
conditionsand the statistics of the advecting velocity field
The notationr5(r1 ,...,rN) is used for simplicity. Note tha
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we have used the passive nature of the transported field,
the fact that the velocity is independent of theinitial distri-
bution of f, to separate the averages over the initial con
tions and the velocity. Such a decoupling cannot be affor
at any other time because of the buildup of correlations
tween the advecting and advected fields. The linear oper
Pr ur

(N)(t) propagates theNth-order correlation function from
time zero to timet.

The evolution operatorL generally includes dissipative
terms, and without fresh input~forcing! the statistics of the
field f is time dependent, this is thedecaying case, Eq. ~1!.
A related problem of much experimental and theoretical
terest isforced turbulent transport where an input termf is
added to Eq.~1!. The situations of interest in turbulence typ
cally involve an input acting only at large scales of orderL.
The objects of major interest are the stationary correlat
functionsF (N) of the advected field,

F ~N!~r1 ,...,rN![^f~r1 ,t !¯f~rN ,t !& f . ~6!

One cares about the scaling properties at distances m
smaller thanL and in a stationary state. As usual in turbule
flows, the correlation functions of the advected field are
pected to contain anomalous contributions behaving as

^f~lr1 ,t !¯f~lrN ,t !& f5lzN^f~r1 ,t !¯f~rN ,t !& f ,
~7!

with scaling exponentszN that cannot be inferred from di
mensional analysis.

Recently@5#, two conjectures were proposed, pertaini
to a wide variety of turbulent transport processes, with
special provisos on the properties of the advecting velo
field

~i! In the decaying case, despite the nonstationarity of
statistics, there exist special functionsZ(N)(r ) such that

I ~N!~ t !5E Z~N!~r !^f~r1 ,t !¯f~rN ,t !&dr ~8!
©2002 The American Physical Society14-1
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are statistical integrals of motion. In the limit of an infinite
large system,I (N) does not change with time. It follows from
Eq. ~5! and the conservation ofI (N)(t) that in the infinite size
limit the Z(N)’s are left eigenfunctions of the operator,

Z~N!~r !5E Prur
~N!~ t !Z~N!~r!dr. ~9!

Note that this does not mean that the operatorPrur
(N)(t) admits

an eigenvector decomposition, and see below for a fur
discussion of this point.

~ii ! The anomalous part of the stationary correlation fu
tions in the forced problem is dominated by statistically co
served structures. In other words, at least in the scaling s

F ~N!~r !;Z~N!~r !. ~10!

A direct consequence is that the small-scale statistics of
transported fieldf in the forced case rests on the understa
ing of the decaying problem. A by-product is that the scal
exponentszN are universal, i.e., independent of the forci
mechanisms for any forcing that is statistically independ
of the velocity field.

The conjectures were exemplified in the context of sh
models of passive scalar advection. The model’s equat
read@5,6#

dum

dt
5 i ~km11um11um111kmum21um* !2kkm

2 um , ~11!

[Lm,m8um8 ,

where the variablesun are generated by the ‘‘Sabra’’ she
model @7#

dun

dt
5 i ~akn11un12un11* 1bknun11un21* 1ckn21un21un22!

2nkn
2un1 f n . ~12!

Here the coefficientsa, b, and c are real. In Eqs.~11! and
~12! the wave vectors arekn5k02n. The velocity forcingf n
is limited to the first shelln50. In the absence of forcing, fo
k5n50 anda1b1c50 the energies(nuunu2 and(nuunu2
are dynamically conserved, i.e., realization by realization
The statistical physics of this model was studied carefully@7#
in the regime ofb'20.5. Taking the forcing to be random
~with random phases! leads to nontrivial statistics of the ve
locity field, with anomalous exponents that characterize
scaling behavior of the correlation functions.

The operatorP(N) of Eqs. ~5! and ~9! takes here the ex
plicit form

Pnum
~N! ~ t !5^Rn1 ,m1

~ tu0!¯RuN ,mN
~ tu0!&, ~13!

wheren5(n1 ,...,nN) and

Rn,m~ tu0![T1H expF E
0

t

dsL~s!G J
n,m

, ~14!
02631
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with T1 being the time ordering operator. Note that for n
tational simplicity we dropped the dependence on the ini
time from P(N), but left it, for future purposes,in R(tu0).

To demonstrate thestatistical conservation laws, two
things were done@5#. First the forced problem was consid
ered, adding random forcing to Eq.~11!,

dum

dt
5Lm,m8um81 f m , ~15!

^ f m~ t ! f n* ~ t8!&5Cmdm,nd~ t2t8!. ~16!

Due to phase symmetry constraints@7#, there is only one
nonzero second-order correlation, but a number of differ
higher-order ones. For example, the correlati
^un12un11* un11* un21& f is not zero. For concreteness we w
concentrate our attention on the following ones~we put a
subscriptf to stress that these are statistical averages in
stationary forced ensemble!:

Fn
~2![^uunu2& f , ~17!

Fn,m
~4! [^uunu2uumu2& f , ~18!

Fn,m,k
~6! [^uunu2uumu2uuku2& f . ~19!

Second, the decaying problem was examined, prepa
initial statesun(t50) and following their evolution. Without
forcing, the sums over the correlation functions

C~2!~ t ![(
n

^uun~ t !u2&, ~20!

C~4!~ t ![(
n,m

^uun~ t !u2uum~ t !u2&, ~21!

C~6!~ t ![ (
n,m,k

^uunu2uum~ t !u2uuk~ t !u2&, ~22!

depend strongly on time. The following objects were th
computed:

I ~2!~ t ![(
n

^uun~ t !u2&Fn
~2! , ~23!

I ~4!~ t ![(
n,m

^uun~ t !u2uum~ t !u2&Fn,m
~4! , ~24!

I ~6!~ t ![ (
n,m,k

^uun~ t !u2uum~ t !u2uuk~ t !u2&Fn,m,k
~6! . ~25!

Figure 1 summarizes the results that are reproduced f
@5#. We show, for the second, fourth, and sixth orders,~i! the
time dependence of thenth-order decaying correlation func
tions C(N)(t) themselves,~ii ! the time dependence ofI (N)

3(t). In panel ~c! we show also for comparison the tim
dependence of
I (6)(t) if we replace the measured forcedF (6) by its dimen-
sional shell dependence~i.e., the shell dependence if the Ko
4-2
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STATISTICALLY PRESERVED STRUCTURES IN SHELL . . . PHYSICAL REVIEW E 65 026314
FIG. 1. Panel~a!: time dependence of the decaying second-or
correlation functions~3!, together with the time dependence of th
statistically conserved quantitiesI (2) ~h!. Equations~11! and ~12!
have been integrated with a total number of shellsN533. Time in
the horizontal axis is given in units of the large eddy turn over ti
TL51/(k0A^uu0u2&) . Panel~b!: the same as panel~a! but for the
fourth-order correlation function and withN525. Panel~c!: the
same as panel~b! but for the sixth-order correlation function. Her
we also presentI (6) when we replace the forced solutionFn,m,k

(6) with
its dimensional prediction~* !. In the simulationsk5n5531027,
a51, b520.4, andc5a1b. The wave vectors arekn5k0 2m with
n50, . . . ,N. The smallest wave vector is given byk050.05 while
N defines the ultraviolet cutoff. As initial states distributions
un50 were taken, except forn514,15 where the field was initial
ized with a constant modulus and random phases, the random
ing of the passive scalar was restricted to the first shell.
02631
mogorov theory were right!. We see that only the properl
computedI (n)(t) are time independent for times smaller th
the large-scale eddy turn over timeTL . The decay observed
for times larger thanTL is simply due to finite size effects
intervening when the decaying field reaches the larg
scales.

In trying to understand these results, it is very tempting
interpret Eq.~9! as an eigenvalue equation, withZ(N) being
an eigenfunction of eigenvalue 1. Unfortunately, the opera
P(N) is not Hermitian, and in addition it does not lend itse
to an expansion in terms of eigenvectors and eigenvalue
is not defined on a compact space. There are two ‘‘nonco
pact’’ directions, that of length scale and that of time. W
thus need to learn how to take care of these before we
write down a proper theory.

In the context of the passive scalar advection proble
Eq. ~2!, these issues were solved elegantly in the framew
of Lagrangian dynamics@8–12#. For the passive scalar equa
tion ~2! the advected field is conserved along the trajecto
of the tracer particlesdr (t)5u„r (t),t…dt1A2kdb(t),
whereb(t) is a Brownian process. To know the scalar fie
at positionr and timet it is enough to track the correspond
ing tracer particle back to its initial positionr. The evolution
operatorPr ur

(N)(t) in Eq. ~5! coincides then with the probabil
ity density thatN tracer particles reach the positionsr at time
t given their initial positionsr. For example, to understan
the exponentz3 one needs to focus on the dynamics of thr
tracer particles. Obviously, three particles define at any m
ment of time a triangle, which in turn is fully characterize
by one length scaleR ~say the sum of the lengths of it
sides!, two of its internal angles, and all the angles th
specify the orientation of the triangle in space. When
particles are advected by the turbulent velocity field, t
scaleR of the triangle and its shape~angles! change continu-
ously. The statement that can be made is thatthere exist
distributions on the space of the triangle configurations, th
are statistically invariant to the turbulent dynamic
@8–10,12#. In other words, if we release trios of Lagrangia
tracers many times into the turbulent fluid, and we choo
the distribution of their shapes and sizes correctly, it w
remain invariant to the turbulent advection@13#. Such statis-
tically conserved structures are the aforementioned z
modes and they come to dominate the statistics of the sc
field at small scales. The anomalous exponents of the z
modes, such asz3 , can be understood as the rescaling exp
nents characterizing precisely such special distributions.
course, the same ideas apply to correlation functions of
order with the appropriate shape dynamics. The relevanc
Lagrangian trajectories can be also demonstrated for
magnetic field case~3!, by adding a tangent vector to th
tracer particle; see@14# for more details.

The problem of noncompactness due to the explicit ti
dependence of the operator is taken care of here by exp
ing time in terms of a single scale variableR, using the
Richardson law of turbulent diffusion@11#. Then instead of
looking at the problem on the noncompact space of part
separation, one focuses on the space of shapes that is
pact, and in which one can demonstrate the existence
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YORAM COHEN, THOMAS GILBERT, AND ITAMAR PROCACCIA PHYSICAL REVIEW E65 026314
eigenfunctions and eigenvalues@11,12#. Obviously, for the
case of the shell model considered here we cannot re
verbatim the same procedure. There are no ‘‘shapes,’’ an
is not immediately obvious how to relate time to scales. T
Lagrangian invariance is broken by the discretization of sh
space, and the genericity of the time properties of the ve
ity field does not allow explicit calculations of the operat
Pmun

(N) (t).
The aim of this paper is to achieve the equivalent und

standing for the shell model, which in@5# was originally
chosen to be as far removed as possible from the continu
passive scalar problem. We will discover that also in t
case there is a typical ‘‘moving’’ scale that carries the expl
time dependence. By considering the relevant operators
shell indices expressed in terms of the moving scale,
compactify the picture with respect to its time dependen
Moreover, in this moving frame we will discover that th
operators decay rapidly as a function of shell differenc
This will allow us to compactify the theory altogether and
offer a satisfactory understanding of the existence of the
tistically preserved structures and its implication for t
forced problem.

In Sec. II we present the theory for second-order obje
On the basis of numerical simulations we offer an analy
form for the operatorP(2). We show that it has an explici
time dependence in addition to a dependence on a mo
scale that we identify analytically. In Sec. III we use t
explicit form of P(2) to explain whyI (2) is a statistical con-
stant of motion. The basic property that is crucial is the
fective compactness of the operator in the space of sh
once it is expressed in terms of the moving scale. Next
show how the forced stationary correlation functionF (2) is
obtained by solving the forced problem with the same pro
gatorP(2). Finally we derive the fact thatF (2) acts as a left
eigenvector ofP(2) with eigenvalue 1. To help clarify som
issues, we also consider in that section a simple model
tained by replacing the Sabra model for the velocity field
a delta-function correlated field~the Kraichnan shell mode
@6,15#!. In Secs. IV and V we turn to a discussion of th
fourth-order objects. We proceed in parallel to what had b
achieved in Secs. II and III. We first derive, on the basis
simulations and the fusion rules@16#, the analytic form of
P(4). Using this form we explain whyI (4) is a statistical
constant of the motion when the stationary correlation fu
tion F (4) is identified withZ(4). Last we turn to the forced
problem, and demonstrate thatF (4) is indeed the forced so
lution. This calculation is not trivial, calling for a carefu
discussion of the time-decay and decorrelation propertie
the operatorsRn,m(tu0). Throughout the discussion we mak
use of the simpler Kraichnan shell model in which the o
erators are all computed analytically~see the Appendix! to
further our understanding of the generic case. In Sec. VI
present a discussion and a summary of the paper. One
important conclusion is that we can in fact offer ananalytic
solution for the time-dependent correlation functions in t
decaying case; this is a considerable bonus of the pre
approach.
02631
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II. THE FORM OF THE SECOND-ORDER TIME
PROPAGATOR

A. Simulations

In this section we analyze the form of the second-or
propagator that governs the dynamics of the second-o
passive structure function. It is defined by

^uun~ t !u2&5(
m

Pnum
~2! ~ t !^uum~0!u2&. ~26!

Here and below,num stands forn,n* um,m* . The ^¯& aver-
age is over realizations of the velocity field and the init
conditions of the passive field. As mentioned above at ti
t50 the statistics of the advected field is independent of
statistics of the velocity field. Using simulations we can ge
erate the matrix representation ofPnum

(2) (t) column by initiat-
ing a decaying simulation~without forcing! starting with
d-function initial conditions in shellm. Measurinĝ uun(t)u2&
and averaging over many realizations of the Sabra velo
field we collect data forPnum

(2) (t).
In Fig. 2 we show a typical column ofPnum

(2) (t), where
m520. We used 28 shells in both velocity and passive fie
with the dissipative scales being aroundn525.

We observe two effects. First, the overall area under
curve decreases with time, this is the effect of the dissipat
Second, the maximum in the curve shifts to lower shell nu
bers. These are the two issues that we need to tackle, the
dependence and the increase in length scale~or, equivalently
the decrease in shell number!, which contribute to the non-
compact nature of our operator.

In attempting to contain these two issues we try the f
lowing ansatz for the propagator:

Pnum
~2! ~ t !5

tm

t
H†n2m̃~ t,m!‡ for t@tm , ~27!

FIG. 2. Typical time dependence of one column of the seco
order propagatorPnum

(2) (t). Shown here isPnu20
(2) (t) for the different

times displayed in the inset in units oft0 . Note that the maximum
moves in time to lower shell numbers.
4-4
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wheretm is a typical time scale associated with the shell
which the simulation was initiated. We use below

tm522mz2/@k0A^uu0u2&#, ~28!

with z2 being the scaling exponent of the second-order str
ture function, cf. Eq.~7!. Accordingly, all timest below are
also measured in units oft051/@k0A^uu0u2&#. The function
H(x) has a peak atx50, with H(0)51 and forx.0 it has
the form

H~x!;22z2x, ~29!

The location of the maximum ofPnum
(2) (t) is m̃(t,m), and is a

real valued function of time and of the initial peak locatio
for t50, which ism. For t.0 it satisfiesm̃(t,m),m.

To show that the ansatz~27! is well supported by the data
we show in Fig. 3tPnum

(2) (t) as a function ofn2m̃(t,m). The
quality of the data collapse speaks for itself. We draw
attention of the reader to the fact that the function shown
Fig. 3 falls off sharply around the maximum. This will be th
clue to understanding how to remove the noncompact de
dence on the ever increasing scalem̃(t,m). Sums overn will
be extended below from2` to `, with impunity. The im-
portant conclusion is that to a good approximation, the f
lowing sum:

(
n

H~n2m̃!5 (
n2m̃

H~n2m̃!5(
k

H~k!5const ~30!

is time independent.

B. The time dependence of the maximum

Next we want to find an analytic expression for the mo
ing scalem̃(t,m). In order to find the time behavior of th
peak we examine Eq.~26! for an initial condition

FIG. 3. A plot of tPnu20
(2) (t) as a function ofn2m̃(t,20). The

quality of the data collapse is deteriorating at the right tail beca
of viscous effects, where power law scaling crosses over to ex
nential decay.
02631
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^uuk(0)u2&5dk,m . On the one hand, for these initial cond
tions, after time differentiating Eq.~28! we get

d

dt (n
^uun~ t !u2&5

d

dt (n
Pnum

~2! ~ t !. ~31!

On the other hand, using Eq.~11! one finds

d

dt (n
^uun~ t !u2&522k(

n
kn

2^uun~ t !u2&. ~32!

To evaluate the sum on the right-hand side~RHS! of Eq.
~32!, we note that for this linear problem the shelld from
which the dissipation of the scalar becomes significan
independent of the scalar value~and thus time independent!.
We can estimate it by comparing the terms on the RHS
Eq. ~11!

kkd
2'udkd . ~33!

We can now estimate the scalar dissipation under the
proximation that it takes place mainly in shells withm.d.
In this region the value of̂uun(t)u2& begins to fall off expo-
nentially with kn , and the sum in Eq.~32! is well approxi-
mated by the first termkkd

2^uud(t)u2&. Plugging in the func-
tional form of P(2) given by Eq.~27!, using Eqs.~30!–~32!
we get

d

dt (n
Pnum

~2! ~ t !52
1

t2 (
k

H~k!

'2
ckkd

2tm

t
22z2@d2m̃~ t,m!#. ~34!

Examining Eq.~34! we conclude that in order for the RHS t
scale like t22 for t@tm , while demanding that fort
'tm m̃(t,m)'m, we must have

m̃~ t,m!5m2
1

z2
log2FgS t

tm
D G ,

g~0!51, lim
x→`

g~x!5x, ~35!

wheretm was defined in Eq.~28!. Thus for large times we
will use

m̃~ t,m!52
1

z2
log2S t

t0
D , t@tm . ~36!

Note that for large time (t@tm), m̃(t,m) becomes indepen
dent ofm. This is appropriate, since the exponential increa
in typical time scalestm when the shell index decreases im
plies that the position of the maximum becomes independ
of its initial position. We can now express the time depe
dence of the operatorP(2) in Eq. ~27! solely through the time
behavior ofm̃(t,m) by inverting Eq.~35!, to find t,

Pnum
~2! ~ t !}22z2~m2m̃!H~n2m̃!, t>tm . ~37!

e
o-
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Having done so, we have gotten rid altogether of the exp
time dependence ofPnum

(2) (t). Note that the dependence of th
operator on both its shell indices turns naturally to a dep
dence on the difference between these indices and the s
moving shell. This is the first important step in overcomi
the noncompactness of our second-order operator.

III. CONSEQUENCES OF THE FORM OF THE SECOND-
ORDER PROPAGATOR

At this point we can reap the benefit of the explicit for
of the second-order propagator Eq.~37!. First we derive the
existence of the statistical constant of the motionI (2).

A. Second-order constant of the motion

Returning to the definition ofI (2), Eq. ~23!, and recogniz-
ing thatFn

(2)}22z2n ~which is also demonstrated in the ne
section!, we see that we need to evaluate the weighted s
(n^uun(t)u2&22z2n. Since the problem is linear, any initia
condition can be represented as a weighted sum ofd-function
initial conditions, and therefore we only need to consid
sums of the form

(
n

Pnum
~2! ~ t !22z2n522z2m(

n
H~n2m̃!22z2~n2m̃!.

~38!

As the components of the sum are a function ofn only
through the combinationn2m̃, we can change the summa
tion to run onn2m̃. In light of Eq. ~30! the sum is time
independent. In Fig. 4 we show the summand as a func
of time andn2m̃.

B. The forced second-order steady-state solution

For the forced solution we can use again the fact that
statistics of the velocity field has no correlation with t
forcing of the passive scalar field at any time. Therefore,
have

FIG. 4. The summandH(n2m̃)22z2(n2m̃) as a function ofn
2m̃.
02631
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^uun~ t !u2& f5E
0

t

(
k

Pnuk
~2!~ t2t8!^u f k~ t8!u2&dt8. ~39!

We should think of this equation only in the limit oft→`,
since we need to eliminate the effects of exponentially
caying initial value terms that do not contribute to the s
tionary forced correlation function. With a force that
Gaussian white noise, we writêu f k(t)u2&5 f 2dk,m . Using
Eq. ~37! for the propagator we get

^uun~ t !u2& f} f 2E
0

t2tm
H@n2m̃~ t2t8,m!#

322z2@m2m̃~ t2t8,m!#dt8. ~40!

We remind the reader thattm is the time it takes for the
initial d function to develop a ‘‘scaling tail’’ forn.m, and
now m is the shell at which the random forcing is localize
The idea here is to use the fact that we know how to elim
nate the time variable in favor of the moving scale varia
m̃(t,m). Changing variables of integration tom̃, using Eq.
~35! we can write explicitly form̃!n,

^uun~ t !u2& f}z2 ln~2! f 2

3E
2`

m

22z2~n2m̃!22z2~m2m̃!22z2m̃dm̃.

~41!

Note that we have extended in a formal manner the rang
shell indices all the way to2`, to allow for a long develop-
ment of a self-similar solution. Naturally, since the integ
converges quickly, this is immaterial. Finally, using~17!

Fn
~2!5const322z2n . ~42!

This solution has the expected 22z2n and is time indepen-
dent.

We note at this point that the forced solutionFn
(2) had

been shown to be a left eigenfunction of eigenvalue 1 in
~38!. Thus the first two sections together fully demonstra
the two conjectures~i! and~ii ! from the Introduction for the
case of the second-order objects.

C. Why this simple time dependence?

The knowledgeable reader might have noticed at t
point that the explicit time dependence of the second-or
propagator, as displayed in Eq.~27!, is very simple. The
exponent of timet21 is an integer, and appears independe
of the second-order exponent of the velocity field. This is n
so in the understood example of the Kraichnan model
passive scalar advection, in which the time dependenc
the operator is anomalous@11,15#. To clarify this point we
turn to the analysis of the passive scalar shell model dri
by a d-correlated velocity field@6#. In other words, for the
velocity field u in Eq. ~11!, we use a Gaussian field,d cor-
related in time, which satisfies
4-6
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^un~ t !um* ~ t8!&5dn,md~ t2t8!Cn ,

Cn5C022zn. ~43!

The calculations are described in the Appendix, with the f
lowing results:

d

dt
^uun~ t !u2&5Mn,m

~2! ^uum~ t !u2&, ~44!

where the matrixM (2) is given by

Mn,m
~2! 52

2dn,m

tn
211tn11

21 1
2dm,n11

tn
1

2dm,n21

tn11
. ~45!

Heretn[22(22z)n/k0C0 . Since this matrix is time indepen
dent we have

Pnum
~2! ~ t !5@exp~ tM ~2!!#n,m . ~46!

It is straightforward to check that the second-order forc
solution ^uunu2& f;22(22j)n;tn is a zero mode ofM (2). In
this case it is also straightforward to prove thatI (2) in Eq.
~23! is a conserved variable~in the infinite system limit!. To
do so we note that on the one hand from Eq.~A5! we have
the following exact equation:

d

dt (n51

d

^uun~ t !u2&52
^uud~ t !2u&

td11
. ~47!

The explicit form of the quantityI (2) is in this case

I ~2!5(
m

tm^uum~ t !u2&. ~48!

The rate of change of this object is

d

dt (m tm^uum~ t !u2&5(
m,n

tmMm,n
~2! ^uun~ t !u2&. ~49!

Using the properties ofM (2) we can write

d

dt (n
tn^uun~ t !u2&52^uud~ t !u2&. ~50!

Taking the ratio of Eq.~47! and Eq.~50! we see that for
the limit d→` the quantityI (2) is conserved with respect t
the sum(m^uum(t)u2&.

Now we write the propagator in the form pertaining
t@tm ,

Pnum
~2! ~ t !5cS tm

t D a

H@n2m̃~ t,m* !#, ~51!

with

m̃~ t !5m02
1

22j
log2~ t/tm!. ~52!

Next we write the conservation law just proven as
02631
l-

d

I ~2!5(
n

tnPnum
~2! ~ t !'const. ~53!

Using the form~51! we require

(
n

H„n2m̃~ t,m* !…22~22j!„n2am̃~ t,m* !…5const. ~54!

Obviously, this is constant iffa51, demonstrating the poin
that the explicit time dependence in our propagator is
anomalous.

IV. THE FOURTH-ORDER PROPAGATOR

Simulations

The fourth-order propagator is defined by

^uun~ t !u2uum~ t !u2&5Pn,mup,q
~4! ~ t !^uup~0!u2uuq~0!u2&.

~55!

We remind the reader that the LHS has al
contributions from other initial conditions, i.e
^un12(0)un11* (0)un11* (0)un21(0)&, but these contributions
appear in the numerics to be very small and will not
considered in this paper. Ford-function initial conditions
~say on shellp! it is sufficient to considerPn,mup,p

(4) (t). For
m,n!p,q and for large times,Pn,mup,q

(4) (t) is indistinguish-
able fromPn,mup,p

(4) (t).
First we studied the typical time dependence of the ope

tor via direct simulations. In Fig. 5 we plot the diagon
elementsPn,nu25,25

(4) (t) as functions ofn for different times.
Note the movement of the peak and the decay of the fu
tion. This is very similar to what we found for the secon
order propagator. In order to proceed we need to gues
analytic form for the propagator and compare it with t
numerical data.

FIG. 5. The diagonal elements ofPn,nu25,25
(4) (t) as functions ofn

for five different times. The simulations were performed with
shells.
4-7



te
-
ll

o
ed
t

r

.

ct
an

t
th

r

t ion

YORAM COHEN, THOMAS GILBERT, AND ITAMAR PROCACCIA PHYSICAL REVIEW E65 026314
Our ansatz for the fourth-order propagator is construc
using the fusion rules@16#. For the forced fourth-order cor
relation functions the fusion rules predict that asymptotica
for un2mu@1

Fn,m
~4! }22z4 min~m,n!22z2um2nu. ~56!

This form was amply tested and demonstrated for shell m
els in@17#. It was shown that the asymptotic form is obtain
very rapidly for anyun2mu>1. Accordingly, we expect tha

Pn,mup,p
~4! ~ t !5S tp

t D z4 /z2

G@min~m,n!2m̃~ t,p!#22z2um2nu,

~57!

where the functionm̃(t,p) is the same as in Eq.~35! but with
p replacingm. The functionG(x) is expected to have, fo
x@0, the scaling form

G~x!}22z4x. ~58!

The form ~57! is very well supported by the data. In Fig
6 we replot the data of Fig. 5 multiplied bytz4 /z2 as a func-
tion of n2m̃(t,25), wherem̃(t,25) solves Eq.~35!. It is
obvious that the form~57! is justified for the diagonal.

It is more difficult to demonstrate the full tensor by dire
simulations; the off-diagonal elements are more noisy,
the scaling behavior is somewhat less apparent than on
diagonal. We can, however, obtain much better data for
Kraichnan model, for whichPn,mup,p

(4) (t) can be computed
essentially analytically. In the Appendix we present the de
vation. Here we show in Fig. 7Pn,mu18,18

(4) (t) for three differ-
ent times. The spread and decay are apparent. In Fig. 8
same data is shown after multiplying it bytz4 /z2, and replot-
ting it as a function of@n2m̃(t,18),m2m̃(t,18)#. Now the
function is preserved with respect to time.

FIG. 6. The diagonal elements oftz4 /z2Pn,nu25,25
(4) (t) as a function

of n2m̃(t,25).
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V. CONSEQUENCES OF THE FORM OF THE
FOURTH-ORDER PROPAGATOR

A. The fourth-order constant of the motion

According to the conjectures discussed in the Introduct
@in particular, Eq.~10!#, we expect the forced solutionF (4) to
act as theleft eigenfunction of eigenvalue 1,Z(4). Here we
demonstrate thatI (4) as defined by Eq.~24! is indeed a con-

FIG. 7. The logarithm of the elements ofPn,mu18,18
(4) (t) for the

Kraichnan shell model as a function ofn and m for the three dif-
ferent times 1.5431026t0 @panel ~a!#, 1.6731025t0 @panel ~b!#,
and 1.7431024t0 @panel~c!#
4-8
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stant of the motion. Using forF (4) Eq. ~56!, and expressing
tz4 /z2 in terms ofm̃ we get

l ~4!~ t !5(
n,m

G@min~m,n!2m̃~p,t !#

3222z2um2nu22z4@min~m,n!2m̃~p,t !# ~59!

As in Eq.~38!, the time dependence of the sum is climinat
because time is introduced only through the express

FIG. 8. The logarithm of the elements oftz4 /z2Pn,mu18,18
(4) (t) for

the Kraichnan shell model as a function of@n2m̃(t,18),m
2m̃(t,18)#. The times are the same as in Fig. 7. The invariance
the function is rather clear.
02631
n

min(m,n)2m̃(p,t). Consequently the objectI (4) becomes time
independent. We demonstrate this invariance for the diago
part of the summand in Fig. 9.

To display the invariance for the whole weighted tens
we employ again the data presented in Fig. 7. After multip
cation by the weightsFn,m

(4) and replotting in moving coordi-
nates, the constancy of the summand ofI (4) is demonstrated.
This is done in Fig. 10, using the analytic results of t
Appendix.

B. The forced fourth-order steady-state solution

Finally, we can calculate the analog of Eq.~39!, for the
steady state four-point function in a system forced by Gau
ian white noise. Returning to Eq.~14! we write

Fn,m
~4! 5E

0

t

¯E
0

t

ds1¯ds4^Rn,p~ tus1!Rn,p8
* ~ tus2!

3Rm,q~ tus3!Rm,q8
* ~ tus4!&

3^ f p~s1! f p8
* ~s2! f q~s3! f q8

* ~s4!&, ~60!

where we have used the statistical independence of the f
ing from the velocity field. We note that in Eq.~60! the time
integration can be~and should be! extended to arbitrarily
long times to get a stationary forced correlation functio
This way we also get rid of exponentially decaying initi
value terms. Using the correlation properties of the forc
equation~16! we obtain

Fn,m
~4! 52CpCqE

0

t

ds1E
0

t

ds2^uRn,p~ tus1!u2uRm,q~ tus2!u2&.

~61!

We next split the integral into two domains in whichs2
<s1 and vice versa. Consider the first domain in which t
integral on the RHS has the form

f

FIG. 9. The weighted elementsFn,n
(4)Pn,mu15,15

(4) (t) as a function of
n2m̃(t,15).
4-9
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E
0

t

ds1E
0

s1
ds2^uRn,p~ tus1!u2uRm,q~ tus2!u2&

5E
0

t

ds1E
0

s1
ds2^uRn,p~ tus1!u2uRm,l ~ tus1!u2

3uRl ,q~s1us2!u2&. ~62!

To proceed we need to consider the decay time of the op

FIG. 10. The elements ofFn,m
(4) Pn,mu18,18

(4) ^t& for the Kraichnan
shell model as a function of„n2m̃(t,18),m2m̃(t,18)…. The times
are the same as in Fig. 7. The invariance of the function is obvio
02631
a-

tor Rn,m(tut0) compared to the decorrelation properties
products of such operatorsat different times. On the one
hand, we know that these operators depend explicitly
time, decaying like a power of time@cf. Eq. ~57!#. On the
other hand, we expect the correlation of products of differ
time operators to decay exponentially, since the opera
Rn,m(tut0) contain the chaotic velocity field that appears
the exponential, cf. Eq.~14!. The time domain is arbitrarily
long, but throughout most of the time integration the prod
is actually decorrelated, and we can write

E
0

t

ds1E
0

s1
ds2^uRn,p~ tus1!u2uRm,l ~ tus1!2uRl ,q~s1us2!u2&

'E
0

t

ds1^uRn,p~ tus1!u2uRm,l ~ tus1!u2&

3E
0

s1
ds2^uRl ,q~s1us2!u2&. ~63!

We can now perform the integral overs2 , with a result in-
dependent of eithers1 or t. Finally, if we choose the forcing
in Eq. ~60! as a single shell forcing on the shellp,
^u f k(t)u2u f l (t)u2&5Cp

4dk,pd l ,p , we get

Fn,m
~4! }22z2um2nu E

0

t2tpS tp

t2t8D
z4 /z2

322z4@min~m,n!2m̃~ t2t8,p!#dt8, ~64!

where we have used the analytic asymptotic form
Pn,mup,p

(4) (t), Eq. ~57!. Changing the integration variable t
m̃(t2t8,p) we get

Fn,m
~4! }22z2um2nu22z4@min~m,n!#E

2`

p

22z4m̃22z2m̃dm̃.

~65!

We thus find a time-independent solution

Fn,m
~4! 5const322z2um2nu22z4 min~m,n!. ~66!

As expected, this is the correct form of the fourth-order c
relation function, in agreement with the fusion rules.

The theory for the sixth- and higher-order correlati
functions follows the same lines and will not be reproduc
here.

VI. SUMMARY AND CONCLUDING REMARKS

In summary, we examined in detail the statistical phys
of the shell model of a passive scalar advected by a turbu
velocity field. We presented a theory to explain and solid
the two conjectures proposed in@5# and reproduced in the
Introduction. These conjectures state that~i! in the decaying
problem there exist infinitely many statistically conserv
quantities, denoted above asI (N), ~ii ! these quantities are
obtained by integrating~or summing! the decaying correla-
tion functions against the stationary correlation functions
the forced problem. We have pointed out that the conjectu
imply that the forced solutions areleft eigenvectors of eigen

s.
4-10
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value 1 of the propagatorsP(N). For the model discusse
above we have established these conjectures by exam
the form of the propagatorsP(N). Using numerical simula-
tions as a clue, we proposed analytic expressions for
operatorsP(2) and P(4), pointing out that similar concept
~fusion rules@16#, in particular! can be used to write down
also the higher-order operators. We checked the ana
forms against the simulations, and proceeded to demons
that the forced, stationary correlation functions are left eig
vectors of eigenvalue 1 of these operators. This implies
the objectsI (N) are indeed constants of the motion. Next w
derived the forced, stationary correlation functions, a
showed that the form of our operators dictates scaling s
tions, in agreement with the fusion rules. As a result the t
conjectures were confirmed. In our analytic calculations,
used repeatedly the fact that the operators ‘‘compactify’’
shell space once expressed in terms of a single moving s
whose dynamics was determined analytically.

One should state a caveat at this point: the analytic fo
of the operatorsP(2) and P(4) was guessedon the basis of
numerics and the fusion rules. Although they appear to ag
with the simulations, we cannot state that the forms areex-
act. Accordingly, until these forms are derived from fir
principles, the exact status of the conjectures is not es
lished. It may be that the conjectures are only satisfied
good approximation. This question needs to be addresse
future research.

Notwithstanding this caveat, we should point out a s
prising bonus of the approach discussed in this paper:
have at hand an analytic form of the propagators.We can
thus provide analytic predictions for the decaying correlati
functions for arbitrary initial conditions. Considering that
the velocity field is a solution of a highly nontrivial chaot
dynamical system, and that the passive scalar is slaved
it is quite gratifying that nevertheless one can offer analy
solutions for the time-dependent correlation functions of
latter. It is of course very tempting to hope that a simi
theory can be developed in other cases of turbulent trans
leading to analytic predictability of the time-dependent c
relation functions in the decaying case. Since this paper d
onstrated that the Lagrangian structure is not a prerequ
for the existence of statistically preserved structures, we
that such a theory should be sought in the Eulerian fram
which calculations are much easier than in the Lagrang
frame. This development should be addressed in future
search.
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APPENDIX: THE KRAICHNAN SHELL MODEL

For the velocity fieldu in Eq. ~11! we use a Gaussian
delta correlated in time field that satisfies

^un~ t !um* ~ t8!&5dn,md~ t2t8!Cn ,

Cn5C022jn, ~A1!

For this simple model we can find a closed form equation
the time derivative ofP(2)(t). For simplicity we set the dif-
fusivity k50, and replace its effect by truncating the ope
tor at the dissipative shelld @cf. Eq. ~33!#.

1. The second-order operator

We evaluate the second-order propagator’s time deriva
by multiplying Eq.~11! by un* and adding the complex con
jugate to get

d

dt
^uun~ t !u2&5 ikn11^un11~ t !un11~ t !un* ~ t !&

1 ikn^un* ~ t !un* ~ t !un21~ t !&1c.c. ~A2!

Using Gaussian integration by parts we compute the th
order correlation functions including the velocity,

^un* ~ t !um~ t !um~ t !&5E dt8(
p

^um~ t !up* ~ t8!&

3F K dun* ~ t !

dup* ~ t8!
um~ t !L

1K un* ~ t !
dum~ t !

dup* ~ t8!L G . ~A3!

From Eq.~11! we have for the functional derivatives

dup~ t !

duq* ~ t8!
5 iQ~ t2t8!dp,qkquq21~ t8!,

dup* ~ t !

duq* ~ t8!
52 iQ~ t2t8!dp11,qkquq* ~ t8!, ~A4!

whereQ(t) is the step function,Q(t)50, t,0, Q(t)51, t
.0, Q(0)5 1

2 . Plugging Eqs.~A1! and ~A4! into Eq. ~A3!,
Eq. ~A2! becomes

d

2dt
^uun~ t !u2&5Cn11kn11

2 ^uun11~ t !u2&1Cnkn
2^uun21~ t !u2&

2~Cnkn
21Cn11kn11

2 !^uun~ t !u2&. ~A5!

This can be written in matrix form as

d

dt
^uun~ t !u2&5Mn,m

~2! ^uum~ t !u2&, ~A6!
4-11
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where the matrixM (2) is given by Eq.~45!. It is time inde-
pendent and thus a solution forPnum

(2) (t), defined in Eq.~39!,
can be written as Eq.~46!

2. The fourth-order operator

Let us consider the propagator of the four-point corre
tion function ^uun(t)u2uum(t)u2&,

d

dt
^uun~ t !u2uum~ t !u2&5Mn,m,p,q

~4! ^uup~ t !u2uuq~ t !u2&,

~A7!

where the operatorM (4) can be computed in analogy to Eq
~A5!, ~A6!, ~45!,

Mn,m,p,q
~4! 5 1

2 ~Mn,p
~2! dm,q1Mn,q

~2!dm,p1dn,pMm,q
~2! 1dn,qMm,p

~2! !

12tn
21~dn,m2dn,m11!~dn,pdn21,q1dn,qdn21,p!

12tn11
21 ~dn,m2dn11,m!

3~dn,pdn11,q1dn,qdn11,p!. ~A8!

We note thatM (4) is not symmetric under the exchange
left and right indices, i.e.,Mn,m,p,q

(4) ÞM p,q,n,m
(4) , and thus ad-

mits different left and right eigenvectors. The zero mode
Eq. ~A7! satisfies

Mn,m,p,q
~4! Yp,q

~4! 50 ~A9!

and is expected to be a symmetric function of the form

Yn,m
~4! 522z4 min~m,n! f R~ um2nu!. ~A10!

Equivalently one can consider a left zero mode ofM (4),
which we denoted above byZ(4) @cf. Eq. ~9!#,

M p,q,n,m
~4! Zp,q

~4! 50, ~A11!

Zn,m
~4! 522z4 min~m,n! f L~ um2nu!. ~A12!

We will show that both left and right zero modes have
overall scaling exponentz4 , multiplied by a function
f R/L(um2nu), which scales like 22z2um2nu providedum2nu
@1, in agreement with the fusion rules. We therefore p
pose the following ansatz:
,

la

02631
-

f

-

f R/L~q!5(
j 51

`

aj
R/Lt q

j , q.0. ~A13!

Plugging this ansatz into Eqs.~A9! and~A11!, we find three
different cases:~i! m5n, ~ii ! m5n61, and ~iii ! um2nu
.1. This last case, which is identical for both left and rig
equations, reads~assumingm.n11!

~tn
211tm

211tn11
21 1tm11

21 ! f R/L~m2n!

5tm11
21 f R/L~m2n11!1tm

21f R/L~m2n21!

1tn11
21 22z4f R/L~m2n21!1tn

212z4f R/L~m2n11!,

~A14!

which, definingb5z422z2 , yields the following recursion
relation for the coefficientsaj

R/L in Eq. ~A13!:

aj
R/L52

11t1
21222bt j 22

21 22bt j 23

11t1
212t j 212t j

21 aj 21
R/L , j >2.

~A15!

It then remains to determineb, f R/L(0) anda1
R/L , which is

done with the help of cases~i! and~ii ! above. In the case o
the right zero mode, we have

~11t1
21! f R~0!52t1

21~112bt1
21! f R~1!, ~A16!

~114t1
211t2

21! f R~1!

5~t1
21122bt1! f R~0!1~112b!t2

21f R~2!, ~A17!

whereas the left zero mode yields

~11t1
21! f L~0!5t1

21~112bt1
21! f L~1!, ~A18!

~114t1
211t2

21! f L~1!

52~t1
21122bt1! f L~0!1~112b!t2

21f L~2!. ~A19!

We note that, provided we imposef L(0)51/2 f R(0), which
amounts to fixing the arbitrary relative multiplicative fact
betweenY(4) and Z(4), we obtain two identical solutions
i.e.,aj

R5aj
L ; j >1. The anomalyb is then the same for both

systems of equations and can be determined numerically
.
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