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Statistically preserved structures in shell models of passive scalar advection
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It was conjectured recently that statiscally preserved structures underlie the statistical physics of turbulent
transport processes. We analyze here in detail the time-depefmigm@iompadtlinear operator that governs
the dynamics of correlation functions in the case of shell models of passive scalar advection. The problem is
generic in the sense that the driving velocity field is neither Gaussia@ norrelated in time. We show how
to naturally discuss the dynamics in terms of an effective compact operator that displays “zero modes,” which
determine the anomalous scaling of the correlation functions. Since shell models have neither a Lagrangian
structure nor “shape dynamics,” this example differs significantly from standard passive scalar advection.
Nevertheless, with the necessary modifications, the generality and efficacy of the concept of statistically
preserved structures are further exemplified. In passing we point out a bonus of the present approach, in
providing analytic predictions for the time-dependent correlation functions in decaying turbulent transport.
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[. INTRODUCTION we have used the passive nature of the transported field, i.e.,
the fact that the velocity is independent of tingial distri-
Turbulent transport processes refer to the advection of ution of ¢, to separate the averages over the initial condi-
transported fieldp(r,t) (scalar or vectdrby a turbulent ve- tions and the velocity. Such a decoupling cannot be afforded
locity field u(r,t) [1,2]. The basic equation of motion is lin- at any other time because of the buildup of correlations be-
ear, having the form tween the advecting and advected fields. The linear operator
PW(t) propagates thlth-order correlation function from
p=Ld. (D time zero to timet.
The evolution operato generally includes dissipative
terms, and without fresh inpyforcing) the statistics of the
feld ¢ is time dependent, this is thdecaying caseEq. (1).
A related problem of much experimental and theoretical in-
terest isforced turbulent transport where an input terfnis
90 added to Eq(1). The situations of interest in turbulence typi-
— +u-Vo=«V?20, (2) cally involve an input acting only at large scales of ortler
at The objects of major interest are the stationary correlation
functionsF(N) of the advected field,

Here L is an operator that is built out of the turbulent veloc-
ity field, and as such may be stochastic. Examples are t
advection of a passive scal@(r,t), with the equation of
motion

or a vector such as a magnetic fi@dr,t) satisfying[3]

9B FN(ry, ... i) =(d(ry,0) - d(ry, ). (6)
—+(u-V)B=(B-V)u+ kVB. 3 A= {0 v D)t

. . _ One cares about the scaling properties at distances much
We may also consider advection, ag4i, of a vector fieldv ~ smaller tharl and in a stationary state. As usual in turbulent
whose divergence vanishegé, w=0, flows, the correlation functions of the advected field are ex-

pected to contain anomalous contributions behaving as

oW
—+(u-V)w=—Vp+«V2w. 4
gt (VWS T VR RV @ <¢<xr1,t>---¢<er,t)>f=x4N<¢<r1,t>---¢<rN.t>>f.(7)

In all these equations the velocity fieldcomes from either
a solution of a fluid-mechanical equation, or is a randorrifz

. : . - . ith scaling exponentgy that cannot be inferred from di-
field defined with some statistical properties. A fundamenta ensional analysis.

Cr? nsiquencelof_ th? Iine_arity of ths equations dOf motion is Recently[5], two conjectures were proposed, pertaining
that the correlation functions may be expressed as to a wide variety of turbulent transport processes, without
special provisos on the properties of the advecting velocity

(B(r1,0)-p(ry.1)= f PN S(p1,0) - d(py,0)dp,  field

5) (i) In the decaying case, despite the nonstationarity of the
statistics, there exist special functioB€"(r) such that
where (---) is an average over the statistics of the initial

conditionsand the statistics of the advecting velocity field. Ny — [N
The notationr =(ry,...,ry) is used for simplicity. Note that 1= Z(r)((r,t) - (ry,b)dr ®)
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are statistical integrals of motion. In the limit of an infinitely with T being the time ordering operator. Note that for no-

large systemlN) does not change with time. It follows from tational simplicity we dropped the dependence on the initial

Eq. (5) and the conservation ofV)(t) that in the infinite size  time from P), but left it, for future purposesn R(t|0).

limit the Z(N)’s are left eigenfunctions of the operator, To demonstrate thestatistical conservation laws, two
things were dong5]. First the forced problem was consid-

ered, adding random forcing to E(L1),
ZN(r)= J PYOZMN(p)dp. © 9 gto EqD
N dom
Note that this does not mean that the oper@ﬁf(t) admits dt = Lonm O+ T, (15
an eigenvector decomposition, and see below for a further .
discussion of this point. (Fn(OFF (1)) =Crpémnd(t—t’). (16)

(ii) The anomalous part of the stationary correlation func-
tions in the forced problem is dominated by statistically con-
served structures. In other words, at least in the scaling sen

Due to phase symmetry constrairi], there is only one
nzero second-order correlation, but a number of different
igher-order ones. For example, the correlation
FN(r)~2zMN(r). (10)  (On+20h4105+100-1) iS NOt zero. For concreteness we will
- - concentrate our attention on the following ongge put a
A direct consequence is that the small-scale statistics of theubscriptf to stress that these are statistical averages in the
transported fields in the forced case rests on the understandstationary forced ensembie
ing of the decaying problem. A by-product is that the scaling

exponents/y are universal, i.e., independent of the forcing FiE'=(16n%)s, 17

mechanisms for any forcing that is statistically independent @) .

of the velocity field. Fom={]0nl“l 0ml*)t , (18
The conjectures were exemplified in the context of shell

models of passive scalar advection. The model’s equations Fromi={10n|?] 6ml? 6,7+ . (19

read[5,6]

Second, the decaying problem was examined, preparing
dé, 5 initial statesd,(t=0) and following their evolution. Without
Wzl(kmﬂamﬂumﬁ KmOm-1Um) — kK0, (11)  forcing, the sums over the correlation functions

=Lonm O » c<2>(t)s; (| 6,(1)]%), (20)
where the variablesi,, are generated by the “Sabra” shell
model[7] CUt) = (|00 0n(D)[?), (21)
n,m
du, . N .
W:|(akn+lun+2un+1+bknun+lun71+Cknflunflunfz)

COD= 2, (10 0m()I| (DI, (22
—vkCup+ . (12) o
depend strongly on time. The following objects were then

Here the coefficients, b, andc are real. In Eqs(11) and computed:

(12) the wave vectors are,=ky2". The velocity forcingf ,

is limited to the first shelh=0. In the absence of forcing, for @Dy ()

k=v=0 anda+b+c=0 the energieE ,|u,|?> andZ | 6,|? ' (t)=§n: (10a(OIHFL, (23
are dynamically conservedi.e., realization by realization.

The statistical physics of this model was studied careflly

in the regime ofb~ —0.5. Taking the forcing to be random D)= (|6n(1)]% 6m(DDFL, (24)
(with random phasegdeads to nontrivial statistics of the ve- nm

locity field, with anomalous exponents that characterize the

scaling behavior of the correlation functions. 1Ot)= > {(|6a(1)]2]6m(1)|2 6(H)|DFE) . (25)
The operatorP™) of Egs.(5) and (9) takes here the ex- n,mk o
plicit form

Figure 1 summarizes the results that are reproduced from
N) ()= (R t0)---R {10 13 [5]. We show, for the second, fourth, and sixth ordéinsthe
Pg‘m( )=(Roy my(110):+*Ruy m (110}, (13 time dependence of theth-order decaying correlation func-
tions CN(t) themselves(ii) the time dependence dfV)
X(t). In panel(c) we show also for comparison the time
} dependence of
n,m

wheren=(ny,...,ny) and

(14 16)(t) if we replace the measured forc&d® by its dimen-
sional shell dependengke., the shell dependence if the Kol-

t
Rn,m(t|0)ET+{exp{f ds£(s)
0
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10 FT T TTTTT T T T TTTTT T T mogorov theory were right We see that only the properly

i computed ("(t) are time independent for times smaller than
the large-scale eddy turn over tiig . The decay observed
for times larger tharT is simply due to finite size effects
intervening when the decaying field reaches the largest
scales.

In trying to understand these results, it is very tempting to
interpret Eq.(9) as an eigenvalue equation, wit") being
an eigenfunction of eigenvalue 1. Unfortunately, the operator
P(N) is not Hermitian, and in addition it does not lend itself
107° ) 4 1a1y [ R 1 to an expansion in terms of eigenvectors and eigenvalues: it

0.1 1 3 is not defined on a compact space. There are two “noncom-
t/T1 pact” directions, that of length scale and that of time. We
thus need to learn how to take care of these before we can
write down a proper theory.

In the context of the passive scalar advection problem,
Eq. (2), these issues were solved elegantly in the framework
of Lagrangian dynamicg8—12]. For the passive scalar equa-
tion (2) the advected field is conserved along the trajectories
of the tracer particlesdr(t)=u(r(t),t)dt+ V2xda(t),
where 3(t) is a Brownian process. To know the scalar field
at positionr and timet it is enough to track the correspond-
ing tracer particle back to its initial positign The evolution
operatorPErl‘](t) in Eq. (5) coincides then with the probabil-
ity density thatN tracer particles reach the positionat time
t given their initial positionsp. For example, to understand
the exponent; one needs to focus on the dynamics of three

10°‘||||||| T T T T 11T T

101

10° tracer particles. Obviously, three particles define at any mo-
101 F e _ ment of time a triangle, which in turn is fully characterized
S by one length scal&k (say the sum of the lengths of its

102 | xxx - sideg, two of its internal angles, and all the angles that

= % specify the orientation of the triangle in space. When the

*:10'3 B 1 particles are advected by the turbulent velocity field, the

scaleR of the triangle and its shagangle$ change continu-
--------------- BB H LD 0 B T R ously. The statement that can be made is thatre exist

10-5 | oW REE distributions on the space of the triangle configurations, that
"""" * are statistically invariant to the turbulent dynamics
10°¢ (L a T [8-10,13. In other words, if we release trios of Lagrangian
0.1 1 3 tracers many times into the turbulent fluid, and we choose
/Ty, the distribution of their shapes and sizes correctly, it will

remain invariant to the turbulent advectifitB8]. Such statis-
tically conserved structures are the aforementioned zero
) ] modes and they come to dominate the statistics of the scalar

FIG. 1. Panela): time dependence of the decaying second-ordergio 4 ot small scales. The anomalous exponents of the zero
correlation functiongX), together with the time dependence of the .

i iy . modes, such a&;, can be understood as the rescaling expo-
statistically conserved quantiti¢§” (). Equations(L1) and (12 nents characterizing precisely such special distributigonspOf
have been integrated with a total number of shafts 33. Time in . . . )

. A .__course, the same ideas apply to correlation functions of any
the horizontal axis is given in units of the large eddy turn over tlmeOrder with the appropriate shape dynamics. The relevance of
T =1/(koV %)) . Panel(b): the same as panéh) but for the . . . ’

L= 1/ (Ko (] uol*)) (b) panéd) bu Lagrangian trajectories can be also demonstrated for the

fourth-order correlation function and with/=25. Panel(c): the i fiel . h
same as pandb) but for the sixth-order correlation function. Here magnetic _'e d cas¢3), by adding a_ tangent vector to the
tracer particle; segl4] for more details.

we also preserit® when we replace the forced soluti), , with N
its dimensional predictio). In the simulationsc=y=5x10"7, The problem of noncompactness due to the explicit time

a=1,b=—0.4, andc=a+b. The wave vectors alle, =k, 2™ with ere.nder?ce of the operator is taken care of here. by express-
n=0,... N. The smallest wave vector is given ky=0.05 while  INg time in terms of a single scale variabi® using the

N defines the ultraviolet cutoff. As initial states distributions of Richardson law of turbulent diffusiofL1]. Then instead of
6,=0 were taken, except far= 14,15 where the field was initial- |00king at the problem on the noncompact space of particle
ized with a constant modulus and random phases, the random foréeparation, one focuses on the space of shapes that is com-
ing of the passive scalar was restricted to the first shell. pact, and in which one can demonstrate the existence of
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eigenfunctions and eigenvalugtl,12. Obviously, for the x 10°
case of the shell model considered here we cannot repeat 33 —— =310
verbatim the same procedure. There are no “shapes,” and it 2 U t;6.2XI04
is not immediately obvious how to relate time to scales. The | [ '\ | __ t=9:3X104
Lagrangian invariance is broken by the discretization of shell 2.5l e el 0
space, and the genericity of the time properties of the veloc- — 1500
ity field does not allow explicit calculations of the operator < 2f
Pa(t). Qn,%

" The aim of this paper is to achieve the equivalent under- L5p
standing for the shell model, which if5] was originally !
chosen to be as far removed as possible from the continuous
passive scalar problem. We will discover that also in this 0.5
case there is a typical “moving” scale that carries the explicit N
time dependence. By considering the relevant operators with 0 ‘ '
shell indices expressed in terms of the moving scale, we 3 10 n 15 20 25

compactify the picture with respect to its time dependence.

Moreover, in this moving frame we will discover that the  FIG. 2. Typical time dependence of one column of the second-
operators decay rapidly as a function of shell differencesorder propagatoP{(t). Shown here i (t) for the different
This will allow us to compactify the theory altogether and to times displayed in the inset in units of. Note that the maximum
offer a satisfactory understanding of the existence of the stdl'0Ves in time to lower shell numbers.

tistically preserved structures and its implication for the

forced prob|em. II. THE FORM OF THE SECOND-ORDER TIME
In Sec. Il we present the theory for second-order objects. PROPAGATOR
On the basis of numerical simulations we offer an analytic A. Simulations

2) . . .
form for the operator™. We show that it has an eXpI'C't. In this section we analyze the form of the second-order

[gropagator that governs the dynamics of the second-order

scale that we identify analytically. In Sec. Il we use the passive structure function. It is defined by

explicit form of P) to explain whyl ) is a statistical con-
stant of motion. The basic property that is crucial is the ef- ) 2) )
fective compactness of the operator in the space of shells, (|00 >:§ 7jnlrn(t)<|0m(0)| ) (26)
once it is expressed in terms of the moving scale. Next we

show how the forced stationary correlation functieff) is
obtained by solving the forced problem with the same propa
gatorP?). Finally we derive the fact tha&t () acts as a left
eigenvector ofP?) with eigenvalue 1. To help clarify some

Here and belown|m stands fom,n* |m,m*. The(---) aver-
age is over realizations of the velocity field and the initial
conditions of the passive field. As mentioned above at time
. . . . X t=0 the statistics of the advected field is independent of the
issues, we also consider in that section a simple model o

tained by replacing the Sabra model for the velocity field by statistics of the velocity field. Using simulations we can gen-
: ) . erate the matrix representation Bf) (t) column by initiat-
a delta-function correlated fielthe Kraichnan shell model P @f‘m( ) y

[6,15). In Secs. IV and V we turn to a discussion of the ing a decaying simulatiorfwithout forcing starting with

X X S-function initial conditions in shelin. Measuring(| 6,(t)|?)
fm::_th-o;d_er ngeCtS”' Wedplrlf’c\?vedf!n fzral_lel to Wkt‘;"t hbad _beefﬁnd averaging over many realizations of the Sabra velocity
achieved in Secs. Il and Ill. We first derive, on the basis of; 2)
simulations and the fusion rulg46], the analytic form of f|ellcr11V\é?gcozllis';dsa;z\,{/o?tyggél column gp@ (1), where
PA). Using this form we explain why® is a statistical ' njmt 7

. . ) m=20. We used 28 shells in both velocity and passive fields,
constant of the motion when the stationary correlation funCWith the dissipative scales being around 25
tion F is identified withZ¥. Last we turn to the forced |

@ is i We observe two effects. First, the overall area under the
problem, and demonstrate that"’ is indeed the forced so- e decreases with time, this is the effect of the dissipation.
lution. This calculation is not trivial,

! ! _ calling for a careful gecond, the maximum in the curve shifts to lower shell num-
discussion of the time-decay and decorrelation properties Qfgrs These are the two issues that we need to tackle, the time
the operator®, (t|0). Throughout the discussion we make dependence and the increase in length s@aleequivalently

use of the simpler Kraichnan shell model in which the op-the decrease in shell numbewhich contribute to the non-
erators are all computed analyticallyee the Appendjxto compact nature of our operator.

further our l_Jnders.tandlng of the generic case. In Sec. VI we |, attempting to contain these two issues we try the fol-
present a discussion and a summary of the paper. One Ve[¥wing ansatz for the propagator:

important conclusion is that we can in fact offer amalytic

solution for the time-dependent correlation functions in the

decaying case; this is a considerable bonus of the present Tm ~

ZDPrOAth. P Pir(="THIn=MEm] for torp, (27
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7X10-3 {|6(0)|?)=8¢.m- On the one hand, for these initial condi-
i1 tions, after time differentiating Eq28) we get
I A S (e t=6.2x107* d d ,
————— =9.3x107* &2 <|0n(t)|2>=m2 Prim(t). (32
st - =12x1070 i "
ol — 1=1.5x10”" On the other hand, using E¢L1) one finds
~ N
Q=
. d
< 3 Gt (1001 =—2x2 k(D). (32
2 To evaluate the sum on the right-hand siRHS of Eq.
1l (32), we note that for this linear problem the shdlfrom
which the dissipation of the scalar becomes significant is
0 . , , , independent of the scalar val@and thus time independent
-15 -10 -5 0 5 10 15 We can estimate it by comparing the terms on the RHS of
n—m(t,20) Eqg. (11)
FIG. 3. A plot of tPf)((t) as a function ofn—(t,20). The k2~ Ugky. (33)

quality of the data collapse is deteriorating at the right tail because

of vi;cous effects, where power law scaling crosses over to eXpPope can now estimate the scalar dissipation under the ap-
nential decay. proximation that it takes place mainly in shells with>d.

In this region the value of| 6,(t)|?) begins to fall off expo-
nentially with k,,, and the sum in Eq32) is well approxi-
mated by the first ternkk?(| 64(t)|?). Plugging in the func-
Tm=2""2/[Ko\([uo|?)], (29 yv‘;”ggorm of P?) given by Eq.(27), using Egs(30)—(32)

where 7, is a typical time scale associated with the shell in
which the simulation was initiated. We use below

with ¢, being the scaling exponent of the second-order struc- d 1
ture function, cf: Eq(?). Accordingly, all timest below are az nfr)n(t): - FE H(k)
also measured in units af,=1/[kov{[uc]?)]. The function n k

H(x) has a peak at=0, with H(0)=1 and forx>0 it has

the form ~—

CKkng

2~ {old—m(t,m)] (34)

H(x)~2" ¢, (29

1
m(t,m)=m— —log,
P

Examining Eq(34) we conclude that in order for the RHS to
The location of the maximum gP{7)(t) ism(t,m), andisa  scale like t~% for t>r,, while demanding that fort
real valued function of time and of the initial peak location =~ 7m M(t,m)~m, we must have
for t=0, which ism. Fort>0 it satisfiesh(t,m)<m.

To show that the ansat27) is well supported by the data, g( L”
we show in Fig. 37>§§2n(t) as a function oh—m(t,m). The Tm/ |’
quality of the data collapse speaks for itself. We draw the
attention of the reader to the fact that the function shown in %=1, limg(x)=x, (35
Fig. 3 falls off sharply around the maximum. This will be the X
clue 1o understanding hOW. to remove the noncompact.deper\}\—/here Tm Was defined in Eq(28). Thus for large times we
dence on the ever increasing sca@i@,m). Sums oven will

be extended below from- to <, with impunity. The im- will use

portant conclusion is that to a good approximation, the fol- 1 t

lowing sum: m(t,m)=— Zlogz T—), t>7. (36)
2 0

> H(n—m)= 2, H(n—mM)=>, H(k)=const (30)  Note that for large timet& ,,), M(t,m) becomes indepen-

n n-m K dent ofm. This is appropriate, since the exponential increase
in typical time scales,, when the shell index decreases im-
plies that the position of the maximum becomes independent
of its initial position. We can now express the time depen-

B. The time dependence of the maximum dence of the operatd®? in Eq. (27) solely through the time
Next we want to find an analytic expression for the mov-behavior ofm(t,m) by inverting Eq.(35), to findt,
ing scalem(t,m). In order to find the time behavior of the 2 o _
peak we examine EQ.26) for an initial condition Phim(Doe2” M= MH(n—), t=7p. (37)

is time independent.
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0.2r t
----- 1=62110° (|0 ¢= J > Plt—t)(Ifut)]Hdt. (39
S Y Y 1=9.3:16" 0k
;: 0.15} - t=]-2X]0? . . . . ..
§ 7 — =1 520 We should think of this equation only in the limit ¢f>«,
£ since we need to eliminate the effects of exponentially de-
il caying initial value terms that do not contribute to the sta-
~ Olf tionary forced correlation function. With a force that is
= Gaussian white noise, we writgf(t)|?)=128 . Using
e Eq. (37) for the propagator we get
& 0.05f t
=2 ~Tm - ,
S (1060 [ =it m1

® 0 _ 5 15 20 x 2~ Lam=T(t—t" m1qyr 40
n-m(t,10) 40
We remind the reader that, is the time it takes for the
initial & function to develop a “scaling tail” fom>m, and
now mis the shell at which the random forcing is localized.

Having done so, we have gotten rid altogether of the explicitThe idea here IS to use the fact that we k_now how to Pfl'm"
nate the time variable in favor of the moving scale variable

; 2
time dependence .d?ﬁ‘“)”(t)'.the that the dependence of the m(t,m). Changing variables of integration fo, using Eq.
operator on both its shell indices turns naturally to a depen—35) we can write explicitly form=<n

dence on the difference between these indices and the singﬁe plicitly '
moving shell. This is the first important step in overcoming
the noncompactness of our second-order operator.

FIG. 4. The summandt(n—f)2~%("~M a5 a function ofn
—m.

(|6n(D)]?)5£2In(2)F2

X fm 27 L2n=Mp= (M=~ LMg

—o0

IIl. CONSEQUENCES OF THE FORM OF THE SECOND-

ORDER PROPAGATOR
(41)

At this point we can reap the benefit of the explicit form
of the second-order propagator E87). First we derive the Note that we have extended in a formal manner the range of

existence of the statistical constant of the motif. shell indices all the way te-<, to allow for a long develop-
ment of a self-similar solution. Naturally, since the integral

A Second-order constant of the motion converges quickly, this is immaterial. Finally, usifi?)

Returning to the definition aft®), Eq.(23), and recogniz- F(=const 242", (42)
ing thatF (22~ ¢2" (which is also demonstrated in the next

section, we see that we need to evaluate the weighted surThis solution has the expected 2" and is time indepen-
S (] 0a(1)|?)27%2", Since the problem is linear, any initial dent.

condition can be represented as a weighted sugfonction We note at this point that the forced solutié®® had
initial Conditions, and therefore we Only need to ConSiderbeen shown to be a left eigenfunction of eigenva|ue 1in Eq
sums of the form (38). Thus the first two sections together fully demonstrate
the two conjecture§) and(ii) from the Introduction for the
; Pﬁwﬂ(t)z—éznzz—{zmg H(n— )2~ f0-m, case of the second-order objects.
(38)

C. Why this simple time dependence?

As the components of the sum are a functionrobnly The knowledgeable reader might have noticed at this
through the combination—fh, we can change the summa- Point that the explicit time dependence of the second-order
tion to run onn—m. In light of Eq. (30) the sum is time Propagator, as displayed in E?7), is very simple. The

independent. In Fig. 4 we show the summand as a functiogxponent of time ~* is an integer, and appears independent
of time andn— . of the second-order exponent of the velocity field. This is not

so in the understood example of the Kraichnan model of
passive scalar advection, in which the time dependence of
the operator is anomaloy41,15. To clarify this point we

For the forced solution we can use again the fact that théurn to the analysis of the passive scalar shell model driven
statistics of the velocity field has no correlation with the by a &correlated velocity field6]. In other words, for the
forcing of the passive scalar field at any time. Therefore, wevelocity field u in Eq. (11), we use a Gaussian field,cor-
have related in time, which satisfies

B. The forced second-order steady-state solution

026314-6
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(Un(tur(t"))=
Cn: C027§n.

5nm5t t )Cnl

(43

The calculations are described in the Appendix, with the fol-

lowing results:

d
Fe{l0nO1 =M 0m(D?), (44
where the matrixv(?) is given by
26, 26, 26— 1
Mg]zyr)nz_ +nml m,n+1+ m,n . (45)
Tn+1 Tn Th+1

Here rnEZ‘(Z‘g)“/kOCO. Since this matrix is time indepen-
dent we have
Phim(t)

=[exptM@)], . (46)

It is straightforward to check that the second-order forcecf

solution (| 8,|?)i~2" 9"~ 7 is a zero mode oM?), In
this case it is also straightforward to prove th& in Eq.
(23) is a conserved variablgn the infinite system limijt To
do so we note that on the one hand from E45) we have
the following exact equation:

<|d

E (|6a(0)]?) =~

|>_ @
1

The explicit form of the quantity(® is in this case

I(z):% Tm<|0m(t)|2>- (48)
The rate of change of this object is
d
Gt milm(D7) =2 M 0(DI7). (49
Using the properties df1(®) we can write
d 2 2
gi 2 il 601 =—(164(D[?). (50

Taking the ratio of Eq(47) and Eq.(50) we see that for
the limit d— o the quantityl ® is conserved with respect to
the sumz= (| (1) |%).

Now we write the propagator in the form pertaining to
>,

Pﬁm(t)=0<?) H[n—m(t,m*)], (51)
with
1
m(t)=mgy— 2T§|092(t/7'm)- (52

Next we write the conservation law just proven as

PHYSICAL REVIEW E 65 026314

3g§10
------- 1=0.9x10°
2.5 — t=1.1X102
L | = =120
| =140
q == =15u0f
8 -
o _
_S1st
S
A
1_
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FIG. 5. The diagonal elements f‘%‘zs,zs(t) as functions oh
for five different times. The simulations were performed with 30
hells.

2= 7, Pf(t)~const. (53)

Using the form(51) we require
> H(n—f(t,m*))2~ 2= O0—eMtm) = const, (54)
n

Obviously, this is constant iff=1, demonstrating the point
that the explicit time dependence in our propagator is not
anomalous.

IV. THE FOURTH-ORDER PROPAGATOR
Simulations

The fourth-order propagator is defined by

(100D 3] Om(1)[2) =Py .a(D{1 ()2 85(0) ).
(55)

We remind the reader that the LHS has also
contributions  from  other initial conditions, i.e.,
(64+2(0)6r,1(0)6r,1(0)6,-1(0)), but these contributions
appear in the numerics to be very small and will not be
considered in this paper. Fa¥function initial conditions
(say on shellp) it is sufficient to conside{’);, ,(t). For
m,n<p,q and for large tlmes;D( mip,q(t) is |nd|st|ngmsh-
able fromP{, (1.

First we studied the typical time dependence of the opera-
tor via direct simulations. In Fig. 5 we plot the diagonal
elementsP{’) ,s..4t) as functions ofn for different times.
Note the movement of the peak and the decay of the func-
tion. This is very similar to what we found for the second-
order propagator. In order to proceed we need to guess an
analytic form for the propagator and compare it with the
numerical data.
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FIG. 6. The diagonal elements 6 /%2P{’) 5 ,4t) as a function
of n—m(t,25).
=
Our ansatz for the fourth-order propagator is constructed \5-9
using the fusion rule§l6]. For the forced fourth-order cor- @
relation functions the fusion rules predict that asymptotically —~§
N
for [In—m|>1 NS
a,
Fglylr)nxzfg min(m,n)zfgzlmfn\_ (56)
This form was amply tested and demonstrated for shell mod-
els in[17]. It was shown that the asymptotic form is obtained
very rapidly for anyjn—m|=1. Accordingly, we expect that
T {4180
(4) _|'p . = —{plm—n|
Pn,m|p,p(t)_ T G[mln(mrn) m(t'p)]z 2 y
(57) 2
e
where the functioiin(t, p) is the same as in E§35) but with 2
p replacingm. The functionG(x) is expected to have, for SE
x>0, the scaling form A
G(x)ox2~ éax, (59
The form(57) is very well supported by the data. In Fig.
6 we replot the data of Fig. 5 multiplied b4’z as a func- . "
t|on Of n_'rvn(t,25), Where'f’n(t,ZS) Solves Eq(35) It |S FIG. 7. The IOgarlthm of the elements @g,mu&lét) for the
obvious that the forn{57) is justified for the diagonal. Kraichnan shell model as a function nfand m for the three dif-

It is more difficult to demonstrate the full tensor by direct ferent times 1.5% 10"°7 [panel (@], 1.6710"°7o [panel (b)],
simulations; the off-diagonal elements are more noisy, an@"d 1.74<10""7, [panel(c)]
the scaling behavior is somewhat less apparent than on the
diagonal. We can, however, obtain much better data for the V. CONSEQUENCES OF THE FORM OF THE
Kraichnan model, for whictP{), ,(t) can be computed FOURTH-ORDER PROPAGATOR
essentially analytically. In the Appendix we present the deri-
vation. Here we show in Fig. P 1.,41) for three differ-
ent times. The spread and decay are apparent. In Fig. 8 the According to the conjectures discussed in the Introduction
same data is shown after multiplying it b% /%2, and replot-  [in particular, Eq(10)], we expect the forced solutid®*) to
ting it as a function of n—m(t,18),m—(t,18)]. Now the  act as thdeft eigenfunction of eigenvalue Z®*). Here we
function is preserved with respect to time. demonstrate thdf*) as defined by Eq24) is indeed a con-

A. The fourth-order constant of the motion
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FIG. 9. The weighted elemeni) P\ 15 14t) as a function of
n—m(t,15).

min(m,n)—M(p,t). Consequently the objett") becomes time
independent. We demonstrate this invariance for the diagonal
part of the summand in Fig. 9.

To display the invariance for the whole weighted tensor
we employ again the data presented in Fig. 7. After multipli-
cation by the weight& ("), and replotting in moving coordi-
nates, the constancy of the summand ®¥is demonstrated.

This is done in Fig. 10, using the analytic results of the
Appendix.

t¢1/¢2p 1(:,’1)77./18, 18(t)

B. The forced fourth-order steady-state solution

Finally, we can calculate the analog of E§9), for the
steady state four-point function in a system forced by Gauss-
ian white noise. Returning to E¢l4) we write

t¢1/¢2p 1(1,41);-4/13, 18(t)

t t
Fim= fo---fodsl---ds4<Rn,p<t|s1>R:,p,<t|s2>

X Rm,q(t|s3) R:cn_qr(” 54)>

X<fp(sl)f;f(SZ)fq(SS)f;f(S4)>a (60)

where we have used the statistical independence of the forc-
FIG. 8. The logarithm of the elements t#/%P4}) 15 {t) for  ing from the velocity field. We note that in E¢60) the time
the Kraichnan shell model as a function ¢h—m(t,18)m  integration can bgand should beextended to arbitrarily
—m(t,18)]. The times are the same as in Fig. 7. The invariance ofong times to get a stationary forced correlation function.
the function is rather clear. This way we also get rid of exponentially decaying initial

value terms. Using the correlation properties of the forcing
stant of the motion. Using fof(*) Eq. (56), and expressing equation(16) we obtain
té4/¢2 in terms offh we get

t t
1@ (t)=", G[min(m,n)—(p,t)] Fhim= ZCqufodslfodszd R, p(t[S1) 1R g(t]S2)[?).-

(61)
x 2~ 28m=nly—gminmn -] (5g)

We next split the integral into two domains in which
As in Eq.(38), the time dependence of the sum is climinated<s, and vice versa. Consider the first domain in which the
because time is introduced only through the expressiointegral on the RHS has the form
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tor R, m(t|ty) compared to the decorrelation properties of
products of such operatot different times On the one
hand, we know that these operators depend explicitly on
time, decaying like a power of timgcf. Eq. (57)]. On the
other hand, we expect the correlation of products of different
time operators to decay exponentially, since the operators
Rn.m(t|to) contain the chaotic velocity field that appears in
the exponential, cf. Eq14). The time domain is arbitrarily
long, but throughout most of the time integration the product
is actually decorrelated, and we can write

F 1(1,41)nP 1(171)n/18, 18(1)

t s
| 051 aslIRapttlsn 2R 5 7IR (51522
t
~ [ asufIRn ttlspl?Re (07

« fosldsz<|R/,q(sllsz>|2>- (63

We can now perform the integral oves, with a result in-
dependent of eithes; or t. Finally, if we choose the forcing
in Eqg. (60) as a single shell forcing on the she,
(TP ADI?)=Cpdipd, . we get

trp( T )54/42

F 1(L,41)np 1g,41)7L/18, 18(t)

Fggnocg—gﬂm—n\f

0 t—t’

><2—§4[min(m,n)—ﬁ1(t—t’,p)]dt/’ (64)

where we have used the analytic asymptotic form of
Pinp.p(D), Eq. (57). Changing the integration variable to

= m(t—t’,p) we get

Nl

2 p o

g‘ Fg{lr)noc2—§2|m—n\2—§4[min(m,n)]J 22§4m2—§2md'rn_
1 h (65)

&
S
;\g We thus find a time-independent solution
N

N Fh = constx 2~ f2im=ni= ¢ minmn) (66)

As expected, this is the correct form of the fourth-order cor-
relation function, in agreement with the fusion rules.

The theory for the sixth- and higher-order correlation
functions follows the same lines and will not be reproduced
here.

FIG. 10. The elements o) P 15141t) for the Kraichnan
shell model as a function dfh—m(t,18),m—m(t,18)). The times VI. SUMMARY AND CONCLUDING REMARKS
are the same as in Fig. 7. The invariance of the function is obvious.

In summary, we examined in detail the statistical physics
of the shell model of a passive scalar advected by a turbulent
t $1 ) ) velocity field. We presented a theory to explain and solidify
fodsljo dsy(| Ry p(t]S1)[“|Rm q(tlS2)|%) the two conjectures proposed 6] and reproduced in the
Introduction. These conjectures state thain the decaying

e 1 ) ) problem there exist infinitely many statistically conserved
_Jodslfo ds(|Rn,p(tIS1)[*| R, (t]S1)] quantities, denoted above &9V, (i) these quantities are
obtained by integratingor summing the decaying correla-

><|R/'q(sl|sz)|2). (62  tion functions against the stationary correlation functions of

the forced problem. We have pointed out that the conjectures
To proceed we need to consider the decay time of the operamply that the forced solutions ateft eigenvectors of eigen-
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value 1 of the propagator®N). For the model discussed and complexity. T.G. thanks the Israeli Council for Higher
above we have established these conjectures by examinirgfucation and WIS for financial support.

the form of the propagator®™. Using numerical simula-

tions as a clue, we proposed analytic expressions for the =~ APPENDIX: THE KRAICHNAN SHELL MODEL
operatorsP®) and ), pointing out that similar concepts  ror the velocity fieldu in Eq. (11) we use a Gaussian,
(fusion rules[16], in particulay can be used to write down gg|ta correlated in time field that satisfies

also the higher-order operators. We checked the analytic

forms against the simulations, and proceeded to demonstrate (Un(Dupm(t"))= 6 md(t—t")Cy,
that the forced, stationary correlation functions are left eigen-
vectors of eigenvalue 1 of these operators. This implies that Ch=Co2 ", (A1)

the objectd () are indeed constants of the motion. Next we o ] ]
derived the forced, stationary correlation functions, and=Or this simple model we can find a closed form equation for
showed that the form of our operators dictates scaling solthe time derivative ofP*)(t). For simplicity we set the dif-
tions, in agreement with the fusion rules. As a result the twdusivity x=0, and replace its effect by truncating the opera-
conjectures were confirmed. In our analytic calculations, wdor at the dissipative shedi [cf. Eq. (33)].
used repeatedly the fact that the operators “compactify” in
shell space once expressed in terms of a single moving scale 1. The second-order operator
whose dynamics was determined analytically.

One should state a caveat at this point: the analytic for
of the operator$™? and P*) was guessecn the basis of
numerics and the fusion rules. Although they appear to agr

We evaluate the second-order propagator’s time derivative
n?)y multiplying Eq.(11) by 6} and adding the complex con-
ejEl}Jgate to get

with the simulations, we cannot state that the formsexre d

act Accordingly, until these forms are derived from first a<|Hn(t)|2>:ikn+1<un+1(t)0n+1(t)0:(t)>

principles, the exact status of the conjectures is not estab-

lished. It may be that the conjectures are only satisfied to a +ikn(UX (1) 6% (1) 6,_1(1))+c.c. (A2)
good approximation. This question needs to be addressed in

future research. Using Gaussian integration by parts we compute the third-

Notwithstanding this caveat, we should point out a sur-order correlation functions including the velocity,
prising bonus of the approach discussed in this paper: we
have at hand an analytic form of the propagatde can * _ / * (41
thus provide analytic predictions for the decaying correlation {0 (1) fn(t)Um(1)) f at % (um(t)up(t )
functions for arbitrary initial conditions Considering that
the velocity field is a solution of a highly nontrivial chaotic
dynamical system, and that the passive scalar is slaved to it,
it is quite gratifying that nevertheless one can offer analytic
solutions for the time-dependent correlation functions of the « . 00n(1)
latter. It is of course very tempting to hope that a similar +< o5 (1) 5u*(t’)>
theory can be developed in other cases of turbulent transport, P
leading to analytic predictability of the time-dependent cor-From Eq.(11) we have for the functional derivatives
relation functions in the decaying case. Since this paper dem-

807 (1)
(i)

. (A3)

onstrated that the Lagrangian structure is not a prerequisite 80,(1) —iO(t—1")8, kyBq_1(t')

for the existence of statistically preserved structures, we feel sul(t’) P.ataTa- 11t

that such a theory should be sought in the Eulerian frame in

which calculations are much easier than in the Lagrangian 865 (1) ) ) .

frame. This development should be addressed in future re- mz—@(t—t )Op+1Kqtg (1), (A4)
search.

where®(t) is the step function® (t)=0, t<0, O(t)=1,t
>0, ©(0)=3. Plugging Eqs(A1) and (A4) into Eq. (A3),
ACKNOWLEDGMENTS Eq. (A2) becomes

It is a pleasure to acknowledge extensive discussions with g
l. Arad, L. Biferale, A. Celani, K. Gawedzki, P. Muratore- E(Iﬁn(t)|2>=Cn+lkﬁ+l<|0n+1(t)|2)+an§<|en_l(t)|2>
Ginanneschi, and M. Vergassola. Special thanks are due to L.
Biferale for sharing with us his numerical results, and to L. —(Cpk2+Cpi1k2 (] 0,(D)[?). (A5)
Biferale, A. Celani, and M. Vergassola for a critical reading
of a draft of this paper. This work has been supported in parThis can be written in matrix form as
by the European Union under the TMR program “nonideal q
turbulence,” the German Israeli Foundation, and the Naftali u 2\ _ap(2) 2
and Anna Backenroth-Bronicki Fund for Research in chaos dt<|6’“(t)| )=Man[6m(D[%), (A6)
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where the matrixM(?) is given by Eq.(45). It is time inde-
pendent and thus a solution f@¥{)(t), defined in Eq/(39),
can be written as Eq46)

2. The fourth-order operator

PHYSICAL REVIEW E65 026314

fR’L(q):JZl a7, g>o0. (A13)

Plugging this ansatz into Eq6A9) and(Al11), we find three
different cases(i) m=n, (i) m=n=1, and (i) |m—n|

tion function(| 6,(t)|? Om(t)|?),

d
i OnOP0m(D 2y = MG o (| 607 6 (D)[?),
(A7)

where the operatdv () can be computed in analogy to Egs.

(A5), (A6), (45),

M p.0= 2 (ME20 0t Mg 0m o+ Sn pMin g+ 0n,gMin )
+27, (Snm= Snm+ 1) (Snpdn—19T On.gdn-1p)
+27,55(8nm= Sns1m)

X(gn,p5n+l,q+ 5n,q5n+1,p)- (A8)

We note thatM® is not symmetric under the exchange of It then remains to determing, f¥'*(0) andaf

=M

p.q.nm» and thus ad-

left and right indices, i.eM{}),

equations, read@ssumingn>n+1)
(Tq '+ T+ Ta i1+ Tpi ) FRH(M—n)
=i Y (m=n+ 1) + 7 ¥ (m—n—1)
+7, 127 %R (m—n—1)+ 7, 12%fF (m—n+1),
(A14)

which, definingB8={,—2¢,, yields the following recursion
relation for the coefficienta]-R/ Lin Eq. (A13):

1+ TIl_ZiﬂTji,lz_zBijg RIL

— = a_;,
1+7‘11_7'j_1_Tj1 -1

allt=

j=2.
(A15)

RIL which is

done with the help of casdg and(ii) above. In the case of

mits different left and right eigenvectors. The zero mode ofthe right zero mode, we have

Eq. (A7) satisfies

M@y

) —
n,m,p,q p,q_o (A9)

and is expected to be a symmetric function of the form
YW =2 Gaminmm £R(|m—n|), (A10)

Equivalently one can consider a left zero modeNf*),
which we denoted above B4 [cf. Eq. (9)],

(4) (4) —
Mp,q,n,mzp,q_o’ (AL)
Z{y=2 - femnmO(|m—n). (A12)

(1+ 7, HiRO0)=27r 1 (1+ 2P HTR(D), (Al6)
(1+47 M+, HER)
= (1 '+ 27 Pr)fR0)+(1+2P) 7, 1R(2), (A7)
whereas the left zero mode vyields
(1+ 7 HfY0) =7 H1+2P7 HEY(1), (A18)
(1+4r 4+
=2(r M2 Pr)fH(0) + (14 28) 7, 1L (2).  (A19)

We will show that both left and right zero modes have anWe note that, provided we impog$é(0)=1/2fR(0), which

overall scaling exponent,, multiplied by a function
fR(Jm—nl), which scales like 2¢22Im="I provided|m—n|

amounts to fixing the arbitrary relative multiplicative factor
betweenY® and Z*, we obtain two identical solutions,

>1, in agreement with the fusion rules. We therefore proJ.e.,ajR=ajLVj>1. The anomaly3 is then the same for both

pose the following ansatz:

systems of equations and can be determined numerically.
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