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Instability of a thin film flowing on a rotating horizontal or inclined plane
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In this paper the instability of a thin fluid film flowing under the effects of gravity, Coriolis, and centrifugal
forces is investigated. It is supposed that the film flows far from the axis of rotation on a plane which may be
horizontal or inclined with respect to the horizontal. In the former case, the flow is only driven by the
centrifugal force while in the latter case, the flow is driven by the components of centrifugal force and gravity
along the plane. This case may also be considered as the flow down a rotating cone but far from the apex. The
stabilizing influence of rotation on the film flow increases with the rotation rate. Up to a certain critical rate of
rotation, the film flowing down the rotating inclined plarier cone is more stable than the flow on the
horizontal rotating plane while above this rate of rotation the situation is reversed. The instability above the
critical rate is associated with a finite wave number in contrast to the vanishing wave number of the instability
below the critical rate. The possibility of Ekman layer instabilities is also investigated. An equation describing
the nonlinear evolution of surface waves is also obtained. Moreover, this equation is simplified for the case in
which the amplitudes are very small. An equation including dissipation as well as dispersion is derived whose
solutions may possess solitary waves, as in the case of similar equations considered in the literature. These
solutions are likely to correspond to the solitary spiral waves observed in experiments.
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I. INTRODUCTION [11] investigated the transition to turbulence and ldtau
and Gollub[12]) studied the appearance and interaction of
The instability of fluid layers coating a surface is a prob-solitary waves. Three-dimensional waves and their evolution
lem of concern in many industrial applications where thetowards solitary waves were I_nvestlgayed by Eiual. [1_3]. _
finishing should be smooth. Therefore, this problem has been N€ flow on a rotating horizontal disk has been investi-

- : ; ated by several authors. Depending on whether the fluid is
Ik?;/\(/eiztrlgoaftfk?infc:irqlrﬂgr}ﬁni/se?rr]sn:r;ticgge:?,(t;j:?ndigﬁtﬁ::/istg? be|§31jected from above or below the rotating disk, different the-

) . : s Il . oretical and experimental results have been obtained. Char-
gated theoretically the linear instability of a thin film flowing |4t ot a1 [14] have measured the thickness and stability of
down an incline. The presentation of his results was simpliyhe thin film on a horizontal disk rotating about its vertical

fied by Yih [2], who also considered separately the limit of 555 and compared their results with an asymptotic solution.
small wave numbers and small Reynolds numbers. An equarheir experiments showed circular and spiral waves besides
tion for waves of finite amplitude with the small wave num- jrregular waves. From their linear analysis they obtained the
ber approximation was derived by Benr{@). This equation  result that disturbances propagating at an angle with respect
is highly nonlinear and has been reduced, by means ab the radial direction are most unstable. They found agree-
the small amplitude approximation, to the Kuramoto-ment with the measured angle of the spiral waves in their
Sivashinsky equatiof#,5]. experiment. Rauschest al. [15] presented asymptotic solu-
The possibility of propagation of solitary waves on thin tions for the thin film including various effects like surface
films down an inclined plane was first confirmed theoreti-curvature and surface tension. Needham and MefkB]
cally by Pumiret al. [6] by means of the Benney equation. developed a theory for the nonlinear description of localized
Later, using the reference frame moving with the solitarydisturbances on a steady film. They were interested in en-
wave, Nakayd7] solved the stationary Benney equation as atrance effects and they used matched asymptotic expansions.
boundary value problem. He proposed a selection rule tdhey also discussed the conditions for the instability of the
determine which kind of solitary wave really appears. film. Experiments have also been done by Azuma and
Numerical analysis of the Benney equation by means ofNunobe [17] who were concerned with the dependence
Fourier spectral methods has been done in two dimensions the stability on the input flow rate and on the height above
by Jooet al. [8] and in three dimensions by Joo and Davisthe rotating disk of the discharging circular tube. They ob-
[9]. Finite differences were used by @Eos-Orozcoet al.  served persistent perturbations presumably generated by
[10] to obtain a solution of the Benney equation which in-the tube. Similar experiments have been done more recently
cludes an extra term of an external perturbation equivalent tby Leneweitet al.[18]. Supposing that the entrance acts as a
a local sinusoidal pressure fluctuation. periodic wave generator they present, systematically for vari-
Numerous experiments on films flowing down inclined ous flow rates, results obtained through varying the height of
planes have been performed in recent years. Liu and Golluthe tube nozzle above the disk.
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z The motion is described by the Navier-Stokes and conti-
nuity equations for an incompressible fluid in a system of
coordinates fixed to the rotating plane. They are

Y Ju oo - .
pE+U-Vu+ZQxG+Qx(QXr)

= —Vp+pd+prVai, 1)

>

V-i=0, (2

wherep is the densityfi= (u,v,w) is the velocity vectorp is
the pressure, and is the kinematic viscosity. The Coriolis

FIG. 1. Sketch of the geometrical configuration for the fluid film acceleration has three components,

down a rotating inclined rigid plane or cone. The rotating horizontal
disk is obtained whery=0°. = . + .
20X 0=2|Q|(—v cosy,ucosy,—v siny), (3)

The instability of a thin film resulting from a combination
of inclination and rotation was first investigated byvasos-
Orozco and Ruiz-Chavaa[19]. They assumed a fluid flow- SN R .
ing down a rotating inclined plane close to the axis of rota- QX QXFo=—ro/Q*(cosy,0,siny), (4)
tion, in order to neglect centrifugal effects. The linear
instability of the film was described in the limit of small
wave numbers and small Reynolds numbers. A stabilizin
effect of the Coriolis force was found.

In the case of a rotating inclined plane, the centrifugal
force can be introduced in the same way as done by Hoff
mann and Buss¢20] for the problem of flow inside two _
parallel coaxial rotating cones. It is supposed that the flow is Ge= g2+ T5|Q]* (sin7,0,cos¥) 5
investigated in a region very far from the apices and that the
cones can be approximated as plane and parallel plates. TMéth
rotation vector thus makes an angjewith respect to the

while the centrifugal force is given by

wherer,= X, cosy+z;siny. For simplicity we restrict the
ttention to angley in the interval G< y<<90° correspond-
ng to a positive sense of rotation.
Centrifugal force and gravity can be combined into an
effective gravity vector

normal of the plates. This procedure is applied in the present gsiny+Tg| Q|2 cosy
paper. The mathematical formulation of the problem and the siny= ,
basic flow are presented in Sec. Il. After the linear instability A /gz+rﬁ|ﬁ|4

0

is discussed in Sec. lll, the Ekman layer instability is inves-
tigated in Sec. IV. The nonlinear problem is studied in Sec. V

and a nonlinear evolution equation of the Benney type is A gcos;f—r_o|f2|zsiny
derived to describe the thin film surface deformation for cosy= — (6)
small rotation parameter. The paper ends with the conclu- Vg +15/Q

sions in Sec. VI.
The thus defined anglg describes the direction @, in the

Il. DESCRIPTION OF THE SYSTEM AND EQUATIONS X,z pIaAne. In o_rder to avoid SE:Earat|0n of the_ film from the
OF MOTION planey<90°, i.e., tany<glro|Q2]* must be required.

Assumingd, d?/ v, v/d, andp(v/d)?, as scales for length,

The system under investigation is a thin film flowing time, velocity, and pressure, respectively, we write the equa-
down a plane which is inclined with an angjewith respect tions of motion in dimensionless form,
to the horizontal and rotating about a vertical axis as shown
in Fig. 1. The origin of the coordinate system is fixed at the u - ) ap )
unperturbed free surface of the film with tieandy axes 77 TU-Vu=2x"v=——=+V°u+Re, )
parallel to the surface and tleaxis perpendicular to it. In
the absence of rotation the basic flow is parallel toxlagis.
The angular velocity vectof) has the component&,=
—|Q]siny and Q,=|0|cosy. The acceleration of gravity
has thex andz componentg siny andg cosy. In this sense, oW ap
the problem can be regarded as an approximation for a thin _+ﬁ.€w_2X20 tany=— — +V?w—Recoty, (9)
film flowing down a rotating cone at a position sufficiently at 9z
far from the apex. For a vanishing angle of inclinatipithe
limit of a rotating horizontal plane is obtained. V.i=0, (10

Jv

+0-Vo+2)4(wtan +u)=—&—lo+V2 (8)
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where Re and x? are defined by Re
=g? +12|Q|*sin3d%17 and x?=Q cosy with the rotation

PHYSICAL REVIEW E 65 026312

IIl. LINEAR STABILITY ANALYSIS

In this section the stability of the basic flow E@.6) is

parameter given b§) =|Q|d?/v. The boundary condition at investigated with respect to infinitesimal perturbations. For

the rigid lower plane is given by
=0 atz=-1. (11

At z=H, whereH is the deviation fronz=0 of the free
surface, the normal and the tangential stresses are

N 8uH2+c9vH2+ (9U+(9v HoH av+&w Y
P ay Pyt gy Pty 72 T gy )Py
MM o M L2 L
dz = ax) ¥ az( xTHY)

=S[(1+H)Hyt (1+HHH,,

—2HHHy J(1+HZ+H)) %2 (12
ow Jdu 1 au+av H +1 (9u+(9W 1-H2
oz )2 Gy T ax /T2l G Tk /(S

L =0 13

~ 3l ay T oz) Y0 (13

ow (7UH 10u+(7v 1(?u+(?WHH

dz oy Y 2\agy x| X 2\az oax] VY
o Kl PV 14
515, W( v =0, (14

whereZ is the capillary numbery = od/pv?, with the sur-
face tensiono. The distortionH must satisfy the kinematic
boundary condition

oH
w=—+uH,+vH,. (15

ot
whereH, andH, indicate partial derivative oH with re-
spect tox andy.
The solutions for the basic flow are given by thg, and
t independent solutions=U, v=V of Egs.(7)—(10) which
can be written in the complex forfe=U +iV,
) __[cosH1l+i)xz
F—U+IV—IG<m_1), (16)
where G=Re/2¢?>. The nondimensional flow rateQ
=/%,udzis

_ G sinhy coshy —siny cosy
- 2x coslt y—sirf x

7

this purpose, the linearized versions of E(®. to (15) are
solved with a shooting methd@1]. The perturbation of the
velocity vector is introduced through the general representa-

tion for a solenoidal fieldi=V x V (k) + V X (ki) wherek

is the unit vector in the direction. The potentialg and
have a representation in normal modes of the form
f(z)exdia(xcose—ysine—ct)] where ¢ is the angle of
propagation of the perturbation with respect to shdirec-
tion. Since we use a right-handed coordinate system with the
x coordinate in the radial direction the fluid film has a nega-
tive component of velocity in they direction and a positive
anglee must be expected in general.

Critical Reynolds numbers for instability as a function of
the rotation parameter have been computed for selected val-
ues of¥y, y, andX. The corresponding critical values of the
wave number, the phase velocity, and the asgtan be used
to infer some typical properties of the instabilities.

As is evident from the variation of Re witR in Figs.
2(a), 3(a), and 4a), rotation strongly inhibits the onset of
instability. For low values of) the instability occurs in the
form of long wavelength waves in the same way as in the
nonrotating inclined layer where the critical wave number
also vanishes. The angleincreases from zero witlf) as
shown in Figs. t), 3(b), and 4b). The long-wave instability
is replaced by an instability with finite values of the wave
numbera when () exceeds a certain critical value which
increases with the parametgr This change in the character
of the instability is also reflected in Re, andc, as shown in
the figures. It is of interest to see that the flow down a rotat-
ing inclined plane is slightly more stable than that on a hori-
zontal plane in the case of the long wavelength instability.
The reverse is found for the finite wave number instability.

Typical results for the functiong and are shown in Fig.

5. The form of the function does not change much withnd
only representative examples have been plotted to exhibit the
dependence of). In the small wave number limit the am-
plitudes of ¢ and ¢ can be chosen such that the imaginary
parts vanish. In the small wave number approximation the
amplitude ofy increases with() relative to the amplitude of

¢. As the mode with a finite critical wave number becomes
preferred the form of the functiong and ¢ changes and the
u, component of the disturbance velocity shifts in phase by
nearly 90° relative to thel, component owing to the high
value of the frequency of oscillation. The typical form of the
functions¢ and ¢ at a high value of) is shown in the third
plot of the figure. The fourth plot shows the dependence on
of ¢ and ¢ in the case of the Ekman layer instability.

For small wave numbemsandy the results agree with the
analytical expressions obtained by Chanegatl. [14] for a

Note that it is proportional to the Reynolds number, but de+otating horizontal plane. Using the linearized version of the
pends in a complex way on rotation. In fact, in the limit of nonlinear equation derived in Sec. V we present here analyti-

x—0, Q—Re(1/3-68x*/315). The pressur® is obtained
through integration of Eq(9). Some graphs of) andV for
different values ofy can be found in the paper by Zalos-
Orozco and Ruiz-Chavae{19].

cal stability results for arbitrary assuming a surface defor-
mation of the formH=H,exgdia(xcose—ysine—ct)+1It].

In this way we obtain from the nonlinear E¢31) in the
small wave number and smaflapproximation the following
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FIG. 2. (a) The critical Reynolds number Rsolid curves, left
ordinate and the critical wave numbex (starred curve, right ordi-
nate as a function of the rotation paramet@rin the case ofy
=30°, 3 =500. The critical wave numbex vanishes foQ)<1.75
where the mode of instability changes. In order to indicate the
crossing more clearly the Reynolds number and other properties
have been extended by dashed lines here and in the following fiq—
ures into the region where the mode is no longer critical. The upper
(lower) curve of Re corresponds tp=20° (0°) for 1 =<1.75. For
0 =1.75 the uppeflower) curve of Re as well as af corresponds
(b) The angles (solid curve$ and the plane ve-
locity ¢ (starred curve for the same cases as (a). The upper

to y=0° (20).
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FIG. 3. (a) Same as Fig. @) except thaty=50° has been used.
The upper and lower curves of Re correspondyte40° for ()
=<2.25 and toy=0° for () <2.5, respectively. Fof)=2.5 the up-
per curve of Re as well as @ corresponds toy=0° and for(}
=2.25 the lower curve of Re as well as afcorresponds toy
=40°.(b) Same as Fig. (®) except thaty=50° has been used. The
upper(lower) curves correspond tp=0° (40°) in the case of and
0 y=40° (0°) in the case oft.

I'=a?[ ZR€& cog ¢ — Recoty—13a?

+ x? sine cose(4RE— ZRetany)]. (19

(lower) curves correspond tg=0° (20°) in the case ok and to

v=20° (0°) in the case of.

nondimensional phase velocityand growth ratd™:

c=Re(cose + % x? sine) + & y?a’Re sing,

(18)

The last term of Eq(18) arises from the first order in the
expansion and is a dispersion contribution to the phase ve-
locity due to the presence of rotation.

The angles of maximum growth is given by

30 9tan
tan 2s = X2< 7

(20
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10 —-50 FIG. 5. Graphs of the functiong and ¢ with respect taz along
10 J 70 the thickness of the fluid layer. The solid curves are the real part of
- Ton Ty T T T ¢ and the dashed ones are the real partyofThe starred curves
Q0 (solid and dashedcorrespond to the imaginary parts. The first fig-
(b) ure is for(0=1.75, Rg=54.48,6=143.7,c=9.788,G=16.56,a

—0; the second is fof)=2, Re=72.36,¢=103.55,c=27.22,
FIG. 4. (a) Same as Fig. (@) except thaty=87° and>=2500 G=19.25, a=0.3446; and the third is for0=20, Re
has been used. The upper and lower curves of Re correspopnd to=10427.68,&=223.6, c=—22.81, G=277.42, a=0.2863. All
=40° forQ)=3 and toy=0° for A =<4, respectively. Fofl=4 the three figures are foy=20°, %=30°, % =500. The fourth figure is
upper curve of Re as well as af corresponds toy=0° and for  for y=0°, %=30°, £=500000 and ha$)=7.5, Rg=3095.08,
0 =3 the lower curve of Re as well as @f corresponds toy £=15.97,¢=89.01, a=0.965. This one presents profiles corre-
=40°. (b) Same as Fig.(®) except thaty=87° andX =2500 has  sponding to the Ekman boundary layer which destabilizes at a small
been used. The uppéower) curves correspond tg=0° (40° in anglee.
the case ok and toy=40° (0°) in the case ot. Note thate for
y=40 remains negative up @=<0.12. If in addition y=0, the angle of propagation minimizing
Re, is
which depends on Re ang
The general expression for the critical Reynolds number 30,
at whichI" vanishes is rather complex and will not be given tan 2 = 7 X (22
here[see Eq(37)]. Instead we shall discuss particular cases.

For X =0 or for a very small, the critical Reynolds num- as found by Charwagt al. [14]. However, wheny#0, the

ber is minimum is given by
1 coty+ & x?tany sine cose 1 tan 26 =q—q; V1 +tarf 2z (23
Re.= . 21
Z coSe + 2 x? sine cose whose solution is
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—a1+a2—d? Reynolds number Re defined below E) sinceG corre-
tan 2= 4= f % (29 sponds to the Reynolds number used by Gusev and Bark.
1-a; The Reynolds number for the onset of the surface instability

is still lower and the critical value&,=77.7, 99.2, and
120.7 atQ)=2.5, 5, and 7.5, respectively, are attained at
much lower values of for = =5x10°. But since the two
instabilities do not interfere much with each other, they may
eventually be observed simultaneously.

with ¢,=9x?tanytany/40 andq=30y%/7—q;.

Expression(24) reduces to Eq.22) in the limit y—0. The
condition that the radicand in expressi@¥) remains posi-
tive

L (7 25
tany<———

Y 29_0X2 tany(%))(z) V. NONLINEAR WAVE EQUATION

In this section a nonlinear wave equation for the surface

yields an upper bound for the angle deformation is derived. To reach that goal, it is necessary to

Though usually positive anglesare found at finite rota- rescale Eqs(7) to (15) in a way convenient for the small
tion rates, it is possible to find the onset of disturbances wityave number and the smajll approximation. Lets be a
£<0 as shown in Fig. @). Accordingly to expressio24)  small parametefrL0] which is proportional to the ratio of the
positive angles: are obtained for thin film thicknessd and a representative disturbance wave-

lengthly, that is,5~d/ly. By means ofé the independent

_ (26) variables are scaled as=6x’, y=48y', z=2z', andt=6t’.
21 tany Note that in this calculation the solid plane will be supposed
) N ) ) located atz=0 and the free surface at=h, whereh=1

For example, in the casg=87°, y<<26.52° is required | |4
for positive &, while e becomes negative for larger inclina- ¢ dependent variables are expanflet] with respect to
tions. The reason _for the appearance of negative angles Profie two parameters and y
ably can be explained as done byva#s-Orozco and Ruiz-
Chavarra[19] for the case of a rotating vertical plane under
slow rotation.

The parameter valueg=87° and2 = 2500 in Fig. 4 have
been chosen since they are close to those of the experimentéth analogous expansions for 5~ 'w, andp.
by Leneweitet al. [18] at large distances from the rotation  In this way, following the procedurgs,2,8,9,10 for the
axis. The critical Reynolds number is shown in Figa)4 derivation of the Benney equation, an equation describing
Note that the differences in stability between the inclined andhree-dimensional waves is obtained,
horizontal plane are more marked than in the other figures.

h+Re(h?h,— 5 x*h*h,) + 8{ FRe*(h®h,),

u= U00+ 5“10"’ XZUO1+ 5)(2“11“1‘ ety (28)

IV. EKMAN BOUNDARY LAYER INSTABILITY

_1g. AN3T S o2 2
Besides the instabilities which depend on distortion of the 3V [Recotyh’Vh—SKV(VZh)]} + 5x

free surface of the film there are other instabilities which 4 8 3 5 S (515 ©

X[—(3 — 55 + (3
occur also in the absence of free surface. The analog of the [~ (3Reh’h,— ;Re tamyh®hy)y+ ReV- (3h°h, Vh
Tollmien-Schlichting-type instability in channel flow can +
usually be neglected since it occurs at rather high Reynolds
numbers. But shear flows in rotating systems typically ex- =0, (29
hibit Ekman layer instabilities which could be relevant since
their critical Reynolds numbers are usually lower. An attempt e @ . = 2 o, o
has thus been made to find Ekman layer instabilities in casewr:ﬁ;? ZS ;rij&shbiigzg?ees 'xva_n(da/&i)r; ’d(?(/:(;yt)e, :rtigla d/e(Zif/a-
of high surface tension when a distortion of the surface istives ¥his equation reduce's to tr):at obtaine% by RoERE
strongly _|nh|k2|t_ed for finite wave numpera; Usmg.2=5 (note the different nondimensional parameteasd by Joo
X 10°, y=0, =30 we found the following results: : >

and Davis[9] when y“=0.
0=25 G,=4265, s=—16.9°, a=0945 c=66.4, . Now, a rotation by the angle of the coordinate system is
one

#hVh,)— $SH(h,V2h,—h,V2h,)]

0=5 G.=240.4, £=4.1°, a=0.966, c=74.2,
x'=Xxcose —Yysine,
0=75, G,=206.4, £¢=16.0°, a=0.965 c=89.0,

whereG is defined below Eq(16). These results agree quite y'=xsine+y cose, (30
well with those of Gusev and BafR2] (see also Ref.23])

who have determined the onset of Ekman instability of typesuch that the disturbances dependxout no longer ory’.

Il or A'in a channel flow in a system rotating about an axis Accordingly, the equation for the surface deformation
normal to the wall. We have use@ here instead of the transforms into
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9 - W s , . where c.c. means complex conjugate and the complex ampli-
het - {R(3h” cose + 55 x°h sine)+ o[ &R coseh®h,  tudes A, (t) can be written in the form A(t)
=|An(t)| explif,}. Restricting the attention to just two of

—2(Rcotyh3h,— Shthy,,) ] these amplitudef25] we obtain
+ x28 [sine cose(3R?h8h,— 55 Re tanyh®h,) d|A]
_ ) T:_Clr|Al|_CZr|A1|3_(C3r COSA;
—Resins(2h%hs+ £h%h,)1}=0, (31
. . . . —CsiSinA ) |Aq]|A,], 34
where the primes have been omitted in order to simplify the 3 DlAdl1Ad 349
notation. Obviously this equation has the form of a mass dA
conservation equation: 2 .
a —gt =~ Carl Aol ~(Cyr cosA 1 +Cyy sinay) Ay,
he+Qx=0, (32 (35
i dA |A]?
whereQ represents the terms inside the curly brackets. ol BBa—(C cOSA«—C.. SiNA 1 36
The linearization of Eq(31) leads to the results of Egs. dt o~ (Ca Lo v A, (36

(18) and (19) presented in Sec. Illl when use is made of
normal modes which are assumed such #tat and 6 h,
are replaced biah and (—iac+1I")h, respectively. Note that
the last term of Eq(31) is the dispersion term which corre-
sponds to the last one of the phase velocity in @8).

Assuming spatial periodicity with a wave numberthe
solution of Eq.(31) can be analyzed in the form

whereA;=60,—26, and the subscripts andi refer to the
real and imaginary parts of the coefficients, respectively. The
coefficientsC,, (m=1,...,5) andBg are given in the Appen-
dix.

The purpose of these coupled nonlinear amplitude equa-
tions is twofold. First they allow us to determine the satura-
tion of the amplitudeA; of the wave in dependence of the
Reynolds number Re. For a given value of the wave number
h=1+2 [An(Dexpli m a x+c.cl, (33 a the g_rowth rate is negative for_low values of Re. With

m increasing Re the growth rate vanishes when the relation

a.= \/3/8\/Re2(% cog e+ % x? sine cose) — RE 5 coty+ = x2 tany sine cose) (37)

is satisfied and it becomes positive for higher values of Re. This relation describes the curve of criticality in apbujainst
Re. Below the curve of criticality the wave grows until saturation is attained. In this case, steady equilibria with

2 CerSr
|Aq]*= : - : (38
(Cg c0sA{—CgSiNA1)(C, cosA;+CyisinAq) —C,,Cs,

|As|=—(C4, cosA;+Cy sinA;)A%/Cy, , (39)  subcriticality is determined by the locus of the points in pa-
rameter space whefes, changes sign. In a plot @f; against

—6ByC,,+Cs,Cy Re, wherea, is the wave number of subcriticality, the wave
tanA; = Ce Cor 1 6BoCo (400 does not saturate in the above approximationefera for a

fixed Re or for Reynolds numbers larger than those of the
are possible according to the vanishing of the right-handturve of subcriticality when the wave number is fixed.
sides of Eqs(34), (35), and(36). Note that these equations Crossing the curve of subcriticaliys, becomes negative. In
are only meaningful as long ¢A2|<|A1|2 is satisfied since this way, the approximate curve of subcriticality for the first
otherwise the amplitudes of higher harmonics can no longeiwo Fourier modes is defined s, =0 or by
be neglected. This condition has actually been used in Eq.
(35) in order to neglect terms of higher order.

The expression left on the right-hand side of E88)
without Cs, was analyzed numerically. It was found that it is
positive in a range of Reynolds numbers not too far fromwhich reduces to that of GjevikR5] whenQ=0. Note that
criticality. ThereforeCs, should be positive and the curve of C,, is the negative of the growth rate and th@4, is the

as=3a,, (41)
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negative of the constam,, used by Gjevic. It is important as the final equation. The parameterando correspond to
to point out that condition Eq41) does not restrict, in the the velocityA and parameter-§ in Fig. 3 of Changet al.
small region between, andag, the evolution of the waves [29]. In the case of the experimerits8] the parametet is
described by Eq(31). In fact, in the case of)=0, it has  very small. However, according to its definition and Etf),
been shown by Dalos-Orozceet al.[10] through the use of o increases when the Reynolds number approaches critical-
finite differences and by Joet al.[8,26] with Fourier spec- ity in the absence of surface tensifgee Eq.(21)]. Since
tral methods that saturation may be found still far away fromsolitary waves do not occur far larger than a value around
the curve of subcriticality. However, E@41) gives an ap- 0.4 (in the case of branch in Fig. 3 of Changet al. [29]),
proximation to the limitations of the theory. Besides, it guar-we conclude that solitary waves are possible only for rela-
antees that saturation occurs in the area belgwnd above tively large Reynolds numbers.
as. Note that the derivation of Eq47) has been general,
The second purpose of Eq84)—(36) is to show that the taking into account all allowed angles of inclination. In order
linearized version of Eq.34) contains the growth rate C,, to predict the behavior of the phase velocity for future ex-
and that the imaginary part &, equalsac as given in Eq. periments we assume that=0 and select the data of Lene-
(18). weit et al. [18] corresponding to a flow fluQ=0.5. The
When the small wave amplitude assumption is introducedmagnitude ofc is taken from Fig. 3 of Changt al. [29] in
which the branchb of the figure has been selected because
Hi+cHy+ CoHHy+ 681Hyx— 6B82H xxxt B3Hxxxx=0 the associated surface profiles seem to be most similar to
(42)  those shown in the photographs of Lenevedial.[18].
. ) The phase velocity, of the spiral waves, shown fdD
is obtained from Eq(31), where =0.5 in Table I, decreases with distance from the axis of
rotation. Note that the phase velocity in the table is given in
the same nondimensional way as in Rdfg]. Calculations
(43 made for different values a also show the decrease with
5 . o . distance from the axis. This agrees with comments made by
B1=1sR€ cos' £ — 3Re coty+ x” sine coss(7R€ Azuma and NunobEL7] who say(see p. 2145 “Now, when
— 2Retany) (44) the variation of¢ (heree) anduy (the phase velocijywas
20 ) investigated for each rotation frequency and in a range of 80
to 90 mm, it was observed thathas some decrease with the
radius and alsoy has some decrease in the same direction.”

c,=Recose+2x?sine), c,=2Recose+Sy?sing),

Bo=1sx°Resine, B3=3S (45)

have been used. This equation reduces to the Kuramoto-
Sivashinsky equatiof4,5] for 8,=0. The equation with a VI. CONCLUSIONS
positive dispersion term has been shown by Kudriashov and
Zargaryan[27], Fan[28] and others to admit exact solitary The main results of this paper are that the usual surface
wave solutions. Fafi28] also has shown that it admits soli- wave instability of a fluid film flowing down an inclined
tary wave solutions when the sign of dispersion is negativeplate is only slightly modified in a rotating system as long as
as in the present case. A complete numerical investigation ghe rotation rate is small. Only the direction of propagation
the properties of Eq(42) for positive or negative dispersion Of the wave is turned, usually in a direction opposite to that
term has been done by Chaegal. [29]. In that paper, the of rotation. When the rotation rate exceeds a critical value,
branches for the appearance of solitary waves are investlowever, a new instability occurs, characterized by a finite
gated and the Shapes of the waves Corresponding to each \(ﬂlue of the critical wave number. Given a direction of the
the different branches are presented. effective gravity force, the flow for large rotation rates is
,Assuming7 that the Spira| waves shown in the photographg]ore unstable when the plate is inclined in contrast to the
of Leneweitet al. [18] are solitary waves we can calculate case of low rotation limit where the opposite situation pre-
the phase velocity based on Fig. 3 of Chaeteal. [29]. To  Vails. The Ekman layer instability has also been considered.
use the results of Chanet al. [29], it is necessary to first But except in unusual situations it will not precede the sur-
transform Eq(42) to a one parameter equation. By means offace wave instabilities.

H=({—c,)/c, the amplitude is transformed, whezg+ 0, in A three-dimensional nonlinear wave equation, generaliz-
order to obtain ing Roskes’[24] equation has been derived. The two-

dimensional version generalizes the equation obtained by

it L8t 8B1Lux— Bl yxxt B3 xxxx= 0. (46)  Benney[3]. From the resultant equation, two equations were

derived corresponding to the amplitudes of the first two Fou-

Further, this equation is transformed into a system whereier modes of the surface deformation. From this set of equa-

the wave is stationary/dt— dldt—bal dx, whereb is the  tions a condition for wave saturation can be obtained.

velocity of that system. Then, the following stretched vari-  For small amplitudes the two-dimensional nonlinear wave
ables:{=6B1\B1/ B3¢, x=1\B3/B1x", t=(B3/8BA)t', &  equation reduces into an equation which differs from the
:,32/‘/&33, andc= b/*/52/331/,83 are introduced, yielding Kuramoto-Sivashinski equation only by the dispersion term.
Transforming Eq(40) and using stretched variables we have
—CHE&E €y — &y T Eyrwixy =0 (47)  obtained the velocity of the solitary wave in terms of the
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TABLE |. Prediction of the phase velocity for future experiments. The flow flux select€=€.5. The data presented were obtained

using the formulad/r =0.701 13 Qu/|}|?r%)°3287 obtained from Fig. 5 of the paper of Leneweital.[18]. To determine the nondimen-

sional parameters, use was made 6f998.2 kg/m, »=1.007x 10 ® m%sec, andr=7.36x 10”2 N/m of water at 20 °C. In the experiments

[18], radial distances are measured in unitse{9Q?%/47?vw)¥*. The columns of the table are organized as follows. First column: the flow

flux Q; second column: radial distanecefrom the axis in centimeters and Inunits; third column: the anglé (y=0); fourth column:
experimental Reynolds number Re; fifth column: the linear critical Reynolds numbar-fdr; sixth column: the linear critical Reynolds
number whena=0.065 (as observed in the experimerts4,18)); seventh column: the capillary numbar (note S=3 6% and 6=0.1,

alwaysg; eighth column: the rotation parame®@r ninth column: the linear criticad; tenth column: the dispersion parameteof Eq. (47);

eleventh column: the linear phase veloaity, calculated from Eq(18); twelfth column: the solitary wave velocitys obtained using Eq.

(47); and the thirteenth column: the total phase velocity obtained by adding the eleventh and twelfth columns. The velocities are given here
in the nondimensional form of Reff18].

r H o
Q (units of  (units of Re, Re, (units of
(m/se¢ 10 2m) 10 °m) 5y Re (a—0) («=0.065) 3 Q € 1073 Cph Cs (o

0.5 4.38381) 3.129 86.7582 5.409 0.1393 0.5607 2274.8 0.06107 7.334 295 2.00410 0.1275 2.1310
0.5 4.9319)) 2900 87.1148 4.808 0.1244 0.5353 2108.8 0.05248 6.338 3.21 2.00323 0.1048 2.1080
0.5 6.026111) 2.549 87.6387 3.934 0.1023 0.4949 1853.3 0.0405 4.923 2.06 2.00189 0.0739 2.0758
0.5 7.669141) 2.182 88.1440 3.091 0.0806 0.4509 1586.9 0.0297 3.627 1.21 2.00101 0.0492 2.0502

parameters deduced from the experiment and shown in Table =~ APPENDIX: COEFFICIENTS OF EQS. (34)-(36)
. Th|§ sohtary wave velocity was added to the linear phase The coefficients will be written in terms of tH& param-
velocity to give the total velocity of the wave. The conclu-

) . eter groups. They are
sions are that, for each flow flux, the wave velocity decreases
with distance from the rotation axis. This result agrees with C,=3iaB;+5iaB,—a’B;+a’B,+a’Bs—a’Bs+a’B;
the experimental results by Azuma and Nundh&]. But -
convincing agreement with the measurements of the phase +ia“Bo, (A1)
velocity by Leneweitet al. [18] could not be attained. A . ! 2 2 4 9
reason for this disagreement could be the indirect way in C2=31aB1+30aB,~15a°B;+3a"B, + 3a"B5—28a"B,
which the phase velocity was measured in the experiment. +10aB;—5ia®Bg+45a°By, (A2)
They found at some radial interval that the phase velocity
first increases and later decreases. Farther away they observe&;;=6iaB, + 20iaB,—6a’B;+ 3a’B,+21a*Bs— 8a°Bg
for different flow fluxes, that the phase velocity increases 5 - . 5
monotonically at some interval after which it attains a nearly +5a°B;—4ia’Bg+30a°By, (A3)
constant magnitude. It should be noted that the exper_imentabf 6iaB,+20iaB,— 12a%B,+ 6aB,+ 6a°Bs— 16a%Bg
results depend on the flow flux and on the perturbations at
the inlet. The frequency of those perturbations is unknown +10a?B,+2ia®Bg+12ia’By, (A4)
but it seems that changes are found varying the height of the
inlet. Therefore, the experimental results are not conclusive. Cs=6iaB; + 10iaB,—4a’B;+4a’B,+ 16a’Bs—4a°Bg
With Table | our purpose is to set, theoretically, the possible

2 ia3

behavior of the phase velocity of spiral waves with respect to +4a’B7+8ia"By, (AS)

the radial distance using data taken directly from an experi- B,=lRecos, B,=+iRey?sins,

ment. Moreover, Table | can be used to check with future

experimental data. B;=2Z6R&code, B,=isRecoty, Bs=35S,
(AB)
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