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Stability of connected cylindrical liquid bridges
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Two cylindrical liquid bridges, with a conduit to facilitate flow of liquid from one bridge to the other, were
levitated against gravity in a magnetic field gradient. The stability limit of the bridges subjected to near zero
total body force was measured as a function of their slenderness ratios, and found to be in good agreement with
theoretical predictions.
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Liquid bridges, which are regions of liquid supported
two or more solid surfaces, have been attracting scien
attention since the time of Plateau and Rayleigh@1,2#. The
stability and ultimate collapse of such bridges is of inter
because of their importance in industrial processes suc
zone refining, and their potential for low gravity applic
tions. For a weightless cylindrical bridge of lengthL and
diameterd ~supported by two circular disks!, it was shown
theoretically@1–3# and experimentally@1,4# that the maxi-
mum stable slenderness ratioL @[L/d# is p. When sub-
jected to gravity, the cylindrical shape of a bridge tends
deform, limiting its stability and decreasing the maximu
achievable value ofL. Extensive investigations, both theo
retical and experimental, have examined the stability of
lindrical volume bridges as a function of Bond numberB
@[grd2/4s#, whereg is the gravitational acceleration,r the
density, ands the surface tension. Both axial@5–10# and
lateral @5,11–13# gravitational forces have been analyzed.

Nothwithstanding our extensive knowledge of isolat
liquid bridges and other fluid structures, many practical pr
lems involving disconnected free surfaces, such as liquid
porous media, have received scant attention. Example
such systems include a pair of pendant or sessile fluid d
lets or a pair of liquid bridges connected through a liqu
filled tube, where each bridge or droplet surface is referre
as a ‘‘connectivity component’’ of the free surface. Here o
must consider the connectivity components, solid wall~s!,
and liquid region together, with the constraint that the to
liquid volume be constant. Despite the fact that general
lution methods and applications to specific configurations
connected domains have been discussed theoretically in
literature@8,14–17#, there are no extant experimental data
our knowledge, largely owing to the difficulty in maintainin
zero total body force in a non-space-borne environment
address this deficiency we examined experimentally
problem of two weightless cylindrical liquid bridges co
nected by a single conduit. Our approach is to use the te
nique of magnetic levitation@18,19#, which facilitates con-
tinuous control of the total body force, and thus allows a z
body force environment.

The bridge assembly is placed in a Faraday mag
whose pole pieces are shaped so that the quantityHx]Hx /]z
is nearly uniform over a sizable volume of space, where
vertical axisz is parallel to the gravitational field and is d
1063-651X/2002/65~2!/026306~4!/$20.00 65 0263
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rected upward. Figure 1~a! shows a top view and Fig. 1~b!
shows an end view of the magnet and liquid bridge appa
tus. A paramagnetic liquid of susceptibilityx experiences
two body forces: a magnetic force per unit volum
xHx]Hx /]z directed along the1z axis, as well as a down
ward gravitational force per unit volumerg. The Bond num-
ber corresponding to ‘‘effective gravity’’ must therefore b
redefined asB[(gr2xHx]Hx /]z)d2/4s. By adjusting the
magnet current so that these two forces cancel, a qu
gravity-free environment may be obtained. We have pre
ously used this powerful technique to examine the stabi
of single bridges @18#, including noncylindrical volume
bridges having reduced volumeVrÞ1 @19#. ~Note thatVr is
defined as the volume of fluid divided bypd2L/4.! We have
also performed dynamic studies of collapsing liquid bridg
@20# and bridge resonances@21# by temporally varying the
magnet current. The profiles of bothHx and]Hx /]z for our
magnet are reported in Ref.@18#. Despite the near zero tota
body force, small residual forces remain, which tend

FIG. 1. Schematic view of experimental setup.~a! Top view.~b!
End view. Arrow shows direction of gravity; magnetic force is equ
and antiparallel to gravity.
©2002 The American Physical Society06-1



ti

-
is
o
s.
o
i

t

lin
to

ce
e
id
te

ec
an

-
i-
5

a-

rg
it

at
g

t
a
n
tw
fly
te
e
en
o

o
a

d
d

in

.0

a
d
bl

5
m

l t
id

sed.

be-
n
y-
r

ult
ility
e

me

the
ur
it.
ta-

s-
d
eo-

s
s

ace

-

d

NEHA M. PATEL et al. PHYSICAL REVIEW E 65 026306
slightly reduce the stability of the system. First, the magne
component of force along thez axis is uniform to better than
62% over a 4 mmdistance—this corresponds to the diam
eter of the bridges~Fig. 1!. Second, because the bridge
centered between the two pole pieces, by symmetry the h
zontal forcexHx]Hx /]x vanishes along the bridges’ axe
Off axis, however, there is a nonzero force proportional tx
that pulls the fluid toward the two pole pieces. This force
largest at the bridges’ maximum value ofx, and corresponds
to about 0.03g. Taken together, these residual forces tend
reduce stability, as will be discussed below.

The bridge support apparatus consists of a pair of cy
drical aluminum rods that were machined with conical tips
serve as wetting barriers@see Fig. 1~a!#. The diameter of the
tips is 4.00 mm. Additionally, a short cylindrical center pie
was machined with similar conical tips at both ends, as w
as a 2 mmdiameter axial hole to serve as a conduit for flu
between the two liquid bridges. The two rods were moun
horizontally along they axis on ay-axis microtranslation
stage, and centered midway between the magnet pole pi
The center piece was mounted coaxially with the rods,
was fixed in position. In this manner the slenderness ratioL i
of each of the two bridgesi ( i 51,2) could be adjusted sepa
rately and with fine precision by adjusting the two m
crotranslation stages. Mirrors were affixed at an angle of 4
as shown in Fig. 1~b!. This facilitated simultaneous observ
tion of both x-axis and z-axis deformations of the two
bridges by means of a boroscope attached to a cha
coupled device camera. The image was viewed on a mon
and recorded by a video cassette recorder.

A 62.5 wt % mixture of manganese chloride tetrahydr
(MnCl2•4H2O) in distilled water was used as the parama
netic liquid. Previously, we determined thatr51.45
60.01 g cm23, s56565 erg cm22, and x55.54
60.0525 cgs for this mixture@18,20#. The magnet curren
was first increased so that the upward magnetic force
proximately balanced the downward gravitational force, a
the two rods were translated so that the gaps for the
bridges were small, typically about 2 mm. Using a butter
syringe and hypodermic needle, a small amount of the wa
MnCl2•4H2O mixture was injected into the axial hole in th
center piece, filling the entire conduit. More liquid was th
injected, wetting the ends of the rods and filling the tw
gaps, thereby creating two connected liquid bridges. N
that a container of steaming water was kept below the m
net in order to saturate the air and prevent evaporation
water from the bridges. One of the gaps was then widene
a fixed separationL1 using the microtranslation stage, an
more liquid was injected so that the liquid bridge was cyl
drical and of slenderness ratioL1 . Keeping the length of this
bridge fixed, gap 2 was then opened in small steps of 0
mm, each opening requiring approximately 2 s tocomplete.
Between each step liquid was injected into the gap over
proximately a 5 s time period so that both bridge 1 an
bridge 2 were again cylindrical. If the bridges were sta
and maintained their cylindrical shape for approximately
min, the gap in bridge 2 was further increased by 0.05 m
liquid was added, and the procedure was repeated unti
bridge collapsed. Note that it made no difference if the liqu
02630
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was injected first, and the gap was subsequently increa
We examined numerous bridge pairs whose values forL1
were in the region 1.352,L1,p. ~This region corresponds
to nonisochoric critical perturbations; see the discussion
low.! For a given value ofL1 , we found that above a certai
value ofL2 the bridges would no longer maintain their c
lindrical shapes: The liquid would flow from the longe
bridge to the shorter bridge irreversibly, which would res
in a collapse of both bridges. This was taken as the stab
limit for the pairL1 , L2 , and is shown in Fig. 2. The entir
process was then repeated for a new value ofL1 . For L1
,1.352, the breaking process was different: bridge 2 beca
unstable and broke forL2 nearp. Note that we never ob-
served a pair of deformed but stable bridges. Rather,
bridges remained cylindrical, at least within the limits of o
ability to detect shape changes, right up to the stability lim
When the bridges did begin to deform, they did so ca
strophically.

Let us now turn to the theoretical predictions for our sy
tem. The problem of two weightless cylindrical liqui
bridges connected by a single conduit was examined th
retically by Gillette and Dyson@15#. Assuming that both
bridges are of diameterd and their length-to-diameter ratio
are L1 and L2 , they found that the region of stability i
bounded not only by the conditions 0,L1,p and 0,L2
,p, but also by the inequality

(
i 51

2
cosL i

sinL i2L i cosL i
.0. ~1!

The boundary segmentsL15p ~andL25p! correspond to
perturbations that are isochoric on each cylindrical surf
and are critical for bridge 1~and, respectively, for bridge 2!.
Along L15p, the normal component of critical perturba

FIG. 2. Experimental data for stability limit of bridge. Soli
trace is theoretical prediction.
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tions to the surface for componenti 51 is C1 sin(2py1 /L1),
wherey1 is measured along the axis of symmetry from o
of the disks of bridge 1. The loss of stability results in t
breaking of bridge 1 into two unequal parts@22,23#. In con-
trast, the curve defined by Eq.~1! in the region 1.352,L i
,p ( i 51,2) corresponds to critical perturbations that a
nonisochoric on each cylindrical surface, but satisfy the
uid volume conservation in aggregate. When losing stabi
one bridge increases in volume and the other decrease
particular, for the case ofL15L2 , the critical value isL i
5p/2 (i 51,2), and the critical perturbations a
Ci sin(pyi /Li) ( i 51,2), whereC152C2 . Here, under criti-
cal perturbations, one of the bridges protrudes symmetric
about its equatorial plane, and the other narrows symm
cally. Bifurcation analysis performed in Ref.@23# for equidi-
mensional critical bridges has shown that the pointL15L2
5p/2 is a turning point in pressure. Finally, since the boun
ary curve@Eq. ~1!# is a locus of turning points in pressur
there is no stable equilibrium beyond this curve.

Let us now examine the experimental data in light
theory. Figure 2 shows both the experimental data~points!
and theoretical predictions~solid lines! for the stability limit
of the double bridge system. The apparent scatter in
data—as opposed to discrepancies between experimen
theory—comes about for two reasons: Unavoidable conv
tion currents in the air due to magnet heating tend to de
bilize the the bridge randomly near its stability limit, and o
ability to obtain a precise cylinder volumeVr51 is limited
by our imaging system. We estimate that convection may
responsible for scatter of approximately 2%. To underst
the role of deviations from cylindricality, we estimate thatVr
may differ from unity by as much as 2% or 3% for any giv
bridge. Since the theory of generalized double bridges,
VrÞ1, is not completely developed, we will use known r
sults from the theory of single bridges in order to estim
the effect that uncertainties inVr have on the experimenta
scatter.@Note, however, that the single bridge theory is fu
valid for boundary segmentsL i5p/2 (i 51,2).# For a single
weightless bridge withVr close to 1, the critical valueL may
be found from the relation@24#

Vr5112S L

p
21D1

5

2 S L

p
21D 2

. ~2!

Consequently, the criticalL equals 0.99p when Vr50.98.
Thus, the scatter in the data due to deviations from cylin
cality would correspond to approximately 1–2 %.

The agreement between experiment and theory is v
good, although not excellent. Over most ofL1 , L2 param-
eter space the measured stability of the bridges is less
the predicted values. Although the observed discrepan
would be considered moderately large for vertical bridges
an axial gravity environment, discrepancies of this size
not unusual in experiments in which the bridge axis is p
pendicular to gravity@5,19#. One source for the discrepancie
between experiment and theory is alignment in the magn
field: If the magnetic force is not precisely antiparallel to t
gravitational force, a nonzero axial Bond number~i.e., a very
small axial component of force in the horizontal bridge! may
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exist in what is supposed to be a weightless enironm
Alignment precision of the pole pieces relative to the ho
zontal direction in the laboratory frame is limited to an ang
of approximately;0.002 rad; the end rods and center pie
were then aligned with the magnet pole pieces. In con
quence, an axial component of gravity as large as 0.0g
may have been present, corresponding to a small but non
axial Bond numberBaxial;0.0015. The asymptotic form fo
L for an isolated single bridge in the presence of a nonz
axial force is@12#

L5pF12S 3

2D 4/3

Baxial
2/3 2

1

4
p2Blat

2 G , ~3!

where Blat is the vertical component of the Bond numb
and, in principle, is adjusted to zero experimentally. Th
for a single bridge at least, the maximum achievable slen
ness ratioL would be reduced by approximately 2% in th
presence of an axial gravity component havingBaxial
50.0015. If the same situation were applicable to the dou
bridge, it would account for approximately half of the di
crepancy between theory and experiment in the vicinity
the straight boundary segments, where the single bri
theory is applicable. Unfortunately, the weight and design
the magnet prevent us from performing this experiment w
the bridges’ axes perfectly parallel to the gravitational for
Another issue is convection in the air, which comes ab
because of magnet heating and the necessity to mainta
humid atmosphere. We have worked diligently to minimi
this problem, although we cannot completely eliminate it.
addition to convection causing scatter in the data, it also
the effect of slightly reducing the overall stability by pertur
ing the bridges when they are near their stability limit. T
accuracy of the experiment is also limited by the nonunif
mity of “H2. As noted above, the total body force vanish
only along the axes of the bridges; there is a nonzero fo
increasing with radiusr, as one moves radially from the cen
ter of the bridges. This force is neither azimuthally symm
ric nor equivalent to a nonzero Bond number~which in-
volves a spatially uniform force!. For example, along thex
axis the horizontal forcexHx]Hx /]x vanishes at the cente
of the bridge, but is approximately 0.03g at the bridge’s
outer surface. Although there is no extant theory for the
fect of this force on the stability of the bridge, we believ
that it tends to reduce the overall stability of the syste
Finally, we point out that the apparent rounding of the d
near the intersections of the stability curves comes ab
because in this region the system may become unstabl
two processes, as described in the theory above. Overal
bridges are more sensitive to any external perturbations
to imperfections in the supporting disk edges to which
liquid surface is pinned. Thus, it becomes more difficult
move close to the cusp regions formed by the intersection
the stability curves.

The problem of stability in connected fluid domains
complex, and has many practical implications. Until no
there had been no experimental verification of these issue
our knowledge. We have examined one of the simplest pr
lems, viz., a pair of connected cylindrical bridges. Desp
6-3
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the small artifacts inherent in the magnetic levitation te
nique, it is clear that our experimental results confirm
theoretical predictions for connected cylindrical bridges. A
though incremental improvements would be likely in
space-borne microgravity environment, our technique ne
theless allows us to examine both the stability and dynam
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of connected domains in a wide variety of configuration
These will be the subject of future investigations.
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