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Mean electromotive force in turbulent shear flow
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We consider the mean electromotive force in turbulent shear flow taking into account the stretching of
turbulent magnetic field lines by the mean flow. The mean flow can change the properties of magneto-
hydrodynamics-turbulence in such a way that turbulent motions become suitable for the dynamo action. The
contribution of shear to the mean electromotive force cannot be described in terms of the alpha effect. The
instability of the mean field arises if shear is sufficiently strong. The growth rate of instability depends on the
length scale of the mean field being higher for the field with a smaller length scale. The considered mechanism
may be responsible for the generation of large-scale magnetic fields in various astrophysical bodies~galaxies,
accretion discs, jets, etc.!.
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I. INTRODUCTION

It is widely believed that, under certain conditions, turb
lent fluid motions may amplify a large-scale magnetic fie
from a weak seed field~see, e.g.,@1,2#!. The generally ac-
cepted point of view is that turbulent motions showing a la
of the reflection symmetry are suitable for this process@3#. In
rotating fluid, the Coriolis force may break the reflectio
symmetry of turbulent motions in such a way that the res
ing mean electromotive force has a component proportio
to the mean magnetic field~the alpha effect!. The alpha ef-
fect is often attributed to the generation of large-scale m
netic fields in various astrophysical bodies~see, e.g.,@4–6#!.

However, possible mechanisms of the generation of la
scale magnetic fields in turbulence obviously cannot be r
resented by the alpha effect alone. Recently, a mechan
has been proposed by Yoshizawa, Yokoi, and Kato@7–9#!
who considered the transport properties of inhomogene
turbulence by making use of a two-scale direct-interact
approximation. These authors argued that the induction e
tion for the mean magnetic field should be supplemented
a source term proportional to the product of cross helic
and mean vorticity. This term plays the role of an effecti
turbulent battery that may produce a large-scale electric
rent and, hence, the mean magnetic field. In the propo
mechanism, the mean field may be induced, for example
a large-scale rotational motion in the presence of the c
correlation between the small-scale velocity and magn
field. This mechanism has also been considered by Black
@10#, who argued that the source term should be represe
also in the mean induction equation for sheared rotators

Apart from the alpha effect and the cross-helicity effe
qualitatively different mechanisms of the generation of
mean field may operate in the presence of shear. S
changes the intrinsic properties of magnetohydrodynam
turbulence, stretching turbulent magnetic field lines, and
to this, the behavior of the mean field in shear flow diffe
from that predicted by simplified models taking account
the alpha effect alone. By making use of a two-scale appr
mation, it has been argued by Urpin@11,12# that additional
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terms appear in the mean electromotive force that are
portional to the production of spatial derivatives of the me
velocity VW and the mean magnetic fieldBW . Note that despite
the fact that additional terms are proportional to]Bi /]xj ,
the effect of shear cannot generally be expressed in term
anisotropic magnetic diffusivity because the latter enters
mean electromotive force only in products with the comp
nents of ¹W 3BW . The additional terms change the type
equation governing the mean magnetic field and may re
in a turbulent dynamo mechanism. Note that the presenc
shear-induced terms in the mean electromotive force first
been shown by Hoyng@13# who considered the particula
case of differential rotation withV5V(z).

The shear-driven dynamo may effectively operate even
the simplest case of a plane Couette flow@12#. The proposed
mechanism differs qualitatively from the conventional alp
dynamo. For instance, the shear-driven dynamo may ge
ate only the field that is inhomogeneous in the direction
flow. Also, the considered mechanism does not requir
large-scale inhomogeneity of turbulence that is absolu
necessary for the alpha dynamo because the pseudoscaa
may be formed from the axial vector of angular velocity on
as a scalar product with some polar vector. In contrast to
alpha dynamo, the shear-driven mechanism allows the g
eration of two-dimensional fields@12#.

In the present paper, we consider in detail the shear-dri
mean electromotive force in a plane Couette flow. As a t
for our consideration, we use a simple kinematic model
glecting the influence of a generated magnetic field on
bulence that depends very much on assumptions regar
the origin of turbulence. This allows one to concentrate up
the main qualitative features of a generation mechanism.
generalize for the case of an arbitrary plane flow the nonlo
mean-field approach proposed by Ru¨diger and Urpin@14# for
the simplest case of a Couette flow with linear shear. T
approach allows us to consider the mean-field electrodyn
ics without attributing a two-scale approximation, which
hardly fulfilled in real conditions. We show that even hom
geneous turbulence with mirror symmetry can lead to a g
eration of the mean magnetic field.
©2002 The American Physical Society01-1
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V. URPIN PHYSICAL REVIEW E 65 026301
II. THE MEAN TURBULENT ELECTROMOTIVE FORCE

Decompose magnetic-fieldBW and velocityuW into the mean
and fluctuating parts,BW 5BW 1bW anduW 5VW 1vW , whereBW andVW
are the mean field and velocity, respectively. The mean
duction equation reads,

]BW

]t
5¹W 3~VW 3BW !1hDBW 1¹W 3EW, ~2.1!

whereh is the magnetic viscosity andEW5^vW 3bW & is the mean
electromotive force;̂ . . . & denotes ensemble averaging. W
consider mean electromotive forceEW in a quasilinear ap-
proximation. In this approximation, mean quantities are g
erned by equations including nonlinear effects in fluctuat
terms, while the linearized equation is used for the fluctu
ing quantities@3#. A quasilinear approximation is sufficientl
accurate, for example, to describe an ensemble of turbu
motions with relatively high frequencies and small amp
tudes when the Strouhal numberS5vt/l is small; here,t
and l are the correlation time and the lengthscale of tur
lence, respectively;v is the turbulent velocity.

We assume that the magnetic Reynolds number is v
large for turbulent motions, thus we may neglect the dissi
tive term in the induction equation. In what follows, we w
need only the sign of the dissipative terms to properly cho
the integration path when calculating Fourier integrals. Th
the linearized induction equation for the fluctuating magne
field reads

]bW

]t
5¹W 3~VW 3bW !1¹W 3~vW 3BW !. ~2.2!

Consider a flow with the mean velocity given byVW

5V(x)eW y where x, y, and z are the Cartesian coordinate
eW x , eW y , andeW z are the unit vectors. Substituting this expre
sion into Eq.~2.2!, we have

]bW

]t
1V~x!

]bW

]y
2eW ybxV8~x!5AW , ~2.3!

where

AW 5~BW •¹W !vW 2~vW •¹W !BW , ~2.4!

andV8(x)5dV/dx. The fluid is assumed to be incompres
ible.

Equation~2.3! may be solved by making use of a parti
Fourier transformation. Since coefficients in Eq.~2.3! do not
depend ony andz, we make initial transformations in thes
coordinates and obtain the equation for the quantity

bŴ 1~x,ky ,kz ,t !5
1

~2p!2E dy dz eikyy1 ikzzbW ~rW,t !. ~2.5!

This equation reads
02630
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]bŴ 1

]t
2 ikyV~x!bŴ 12eW yV8~x!b̂1x5AŴ 1 , ~2.6!

whereAŴ 1 is the corresponding Fourier amplitude ofAW . Then,

bŴ 1(x,ky ,kz ,t) may be represented as

bŴ 1~x,ky ,kz ,t !5eikyV(x)tbŴ 2~x,ky ,kz ,t !. ~2.7!

The equation forbŴ 2(x,ky ,kz ,t) does not contain the advec
tive term,

]bŴ 2

]t
2eW yV8~x!b̂2x5e2 ikyV(x)tAŴ 1 . ~2.8!

This equation may easily be solved by Fourier transform
tion in t. The solution is not the complete Fourier transfor
of bW (rW,t), but depends on thex coordinate and reads

bŴ ~v,kW' ,x!52
i

v
AŴ ~v,kW' ,x!2

V8~x!

v2
Âx~v,kW' ,x!eW y ,

~2.9!

where the Fourier transformation ofAŴ (v,kW' ,x) is given by

AŴ ~v,kW' ,x!5
1

~2p!3E dy dz dt eik
W
'rW2 i (v1kyV)tAW ~rW,t !,

~2.10!

wherekW'5kyeW y1kzeW z . Note that, in fact, there is no singu
larity in Eq. ~2.9! because the neglected dissipative ter
would result in small negative imaginary corrections tov,
thus, we would havev2 i0, instead ofv in singular terms;
60 denotes a positive~or negative! contribution propor-
tional to h.

Then, the solution for a fluctuating magnetic field is

bW ~rW,t !5E
2`

1`dv dkW'

iv
ei (v1kyV)t2 ikW'rWS AŴ 2

iV8

v
ÂxeW yD .

~2.11!

The result looks like we use a Doppler-shifted Fourier tra
form with the frequencyv1kyV(x).

For the sake of simplicity, we consider the case of loca
isotropic and homogeneous turbulence with the correla
tensor given by

^v̂ i~v,kW !v̂ j~v8,kW8!&5
1

3
v2~v,kW !~d i j 2kikj /k2!

3d~kW1kW8!d~v1v8!, ~2.12!

wherev2(kW ,v) is the spectral function~see, e.g.,@15#!. Of
course, shear may affect the correlation properties and, p
ably, turbulence is not isotropic and homogeneous in r
conditions, however, we will neglect this effect.
1-2
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MEAN ELECTROMOTIVE FORCE IN TURBULENT . . . PHYSICAL REVIEW E 65 026301
Substituting the complete Fourier transformation

vW (rW,t) and the expression~2.11! for bW (rW,t) into the definition
of EW, we obtain the integral representation forEW, which does
not assume a two-scale approximation. Then, after avera
Eq. ~2.12!, the expression forEW transforms into

EW5E dv8dkW8dv dkW'

3~2p!3v
dy8dz8dt8v2~v8,kW8!ei (v1v8)(t2t8)

3ei (kW'1kW8)(rW82rW)1 ikyV(x)(t2t8)S iEW 12
V8

v
eW y3EW 2D ,

~2.13!

where

EW 15¹W 83BW 2eW i« i jk

kj8km8

k82

]Bk

]xm8
, ~2.14!

EW 25¹W 8Bx2kW8
km8

k82

]Bx

]xm8
2 i ~kW8•BW !S eW x2kW8

kx8

k82D ,

~2.15!

¹W 85(]/]x,]/]y8,]/]z8), BW in the expressions~2.14! and
~2.15! is a function ofrW85(x,y8,z8) and t8; summation is
over repeated indexes.

Introducing the wave-vectorqW 5kW'1kW'8 instead ofkW' ,

the integrals overdv and dkW' in Eq. ~2.15! may be trans-
formed as in

E dv dkW'

vn
ei (v1v8)(t2t8)2 i (kW1kW8)(rW2rW8)1 ikyV(t2t8)

5eiky8V(t82t)E dqW eiqW [ rW82rW1VW (t2t8)]E dv eiv(t2t8)

~v2v8!n
.

~2.16!

Integrals overdv may be reduced to the known integra
@16#,

E
2`

1` e2 ipxdx

~ ix1b!n
5

2p

G~n!
~2p!n21ebp if p,0,

and 0 if p.0; G(n) is the gamma-function; Ren.0, Reb
.0. Substituting the value of these integrals into equat
~2.16!, we obtain

EW5E dv8dkW8

3~2p!2
v2~v8,kW8!E

2`

t

dy8dz8dt8ei (v82ky8V)(t2t8)

3E dqW eiqW [ rW82rW1VW (t2t8)@~ t2t8!V8eW y3EW 22EW 1#.

~2.17!
02630
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The integral overdqW yields one of the representations of th
d-function~see, e.g.,@17#. Then, integrating overdy8dz8, we
have for the mean electromotive force

EW52 1
3 E dv8dkW8v2~v8,kW8!E

2`

t

dt8ei (v82ky8V)(t2t8)

3@EW 1~rW8,t8!2~ t2t8!V8eW y3EW 2~rW8,t8!#urW85rW2VW (t2t8) .

~2.18!

Introducing v5v82ky8V and assuming thatv.ky8V, we

may expand the spectral functionv2(v1ky8V,kW ) in a power
series ofV. Restricting ourselves to the lowest order inV, we
have

EW52 1
3 E dv dkW8v2~v,kW8!E

2`

t

dt8eiv(t2t8)@EW 1~rW8,t8!

2~ t2t8!V8eW y3EW 2~rW8,t8!#urW85rW2VW (t2t8) . ~2.19!

Since, according to our assumption, turbulence is locally i
tropic and homogeneous, we may averageEW 1 and EW 2 over
directions of the vectorkW8, then

EW 1~rW8,t8!5
2

3
¹W 83BW ~rW8,t8!, EW 2~rW8,t8!5

2

3
¹W 8Bx~rW8,t8!.

~2.20!

Finally, the expression for the mean electromotive for
reads

EW52E
2`

t

dt8F~ t2t8!@¹W 83BW ~rW8,t8!2~ t2t8!V8

3~x!eW y3¹W 8Bx~rW8,t8!#urW85rW2VW (x)(t2t8) , ~2.21!

where

F~ t !5 2
9 E dv dkW v2~v,kW !eivt. ~2.22!

Note that deriving this equation, we did not assume that
turbulent scalel is small compared to that of the mean fiel
As a result, the mean electromotive force~2.22! is nonlocal.
The expression forEW does not contain the component propo
tional to BW that is typical for the alpha effect.

III. TURBULENT DISSIPATION IN THE INTEGRAL
APPROACH

Consider, initially, the decay of the mean field in the ca
of a vanishing mean flowV(x)50. Then, we have from Eq
~2.21!
1-3
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V. URPIN PHYSICAL REVIEW E 65 026301
EW52E
2`

t

dt8F~ t2t8!¹W 3BW ~rW,t8!

52¹W 3E
0

`

djF~j!BW ~rW,t2j!. ~3.1!

Dissipation turns out to be local but is determined by
previous evolution of the magnetic field. Substituting th
electromotive force into the mean induction Eq.~2.1! and
assuming that the magnetic field is parallel to thex axis, we
obtain in a high-conductivity limit

]Bx

]t
5DE

0

`

djF~j!Bx~rW,t2j!. ~3.2!

Since the coefficients of this equation do not depend on
ordinates, we may consider the simplest solution correspo
ing to the plane wave

Bx~rW,t !5 f ~ t !e2 iKW •rW, ~3.3!

whereKW is the wave vector. Substituting this expression in
Eq. ~3.2!, we have

d f

dt
52K2E

0

`

djF~j! f ~ t2j!. ~3.4!

This equation describes the turbulent~eddy! dissipation of
the mean magnetic field. By analogy with the microsco
magnetic viscosity, we may define the quantity

hT5
1

f ~ t !E0

`

djF~j! f ~ t2j! ~3.5!

as a turbulent magnetic viscosity. Contrary to the stand
definition ~see, e.g.,@3#!, hT in the integral approach is gen
erally determined by the history of the mean field.

The solution of Eq.~3.4! depends very much on the fre
quency dependence of the spectral function,v2(v,kW ). For
the sake of simplicity, we choose the simplest representa
of a spectral function~see, e.g.,@15#!,

v2~v,kW !5W~kW !~v211/t2!21, ~3.6!

wheret is the characteristic correlation time of turbulenc
Substituting this expression into Eq.~3.4!, we have

d f

dt
52

2

9
K2E W~kW !dkWE

0

`

dj f ~ t2j!E
2`

1` dv eivj

v211/t2
.

~3.7!

We can represent the frequency dependence ofv2(v,kW ) in
this equation as

1

v211/t2
5

t

2 F 1

iv11/t
2

1

iv21/tG . ~3.8!
02630
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Then, integrals overdv may be reduced to the table integra
~see@16#, p. 332!. Substituting their value, we obtain

d f

dt
52vT

2K2E
0

`

dj e2j/t f ~ t2j!, ~3.9!

where we denote

vT
25

2

9
ptE W~kW !dkW . ~3.10!

The solution of this equation may be represented in a sim
exponential form,

f ~ t !5e2gt. ~3.11!

The exponential solution exists ifg,1/t, otherwise the in-
tegral in Eq.~3.9! goes to infinity. The dispersion equatio
for g reads

g5vT
2K2E

0

`

e2(1/t2g)jdj, ~3.12!

or, calculating the integral,

g22
1

t
g1vT

2K250. ~3.13!

The roots of dispersion equation are

g15
1

2t
2A 1

4t2
2vT

2K2, g25
1

2t
1A 1

4t2
2vT

2K2.

~3.14!

Both these roots satisfy the conditiong1,2,1/t, which is
necessary for the existence of an exponential solution.
pending on the parameters, the decay of the mean mag
field may be qualitatively different.

If 2 tvTK.1, then the roots~3.14! are complex conju-
gate, and decay is accompanied by oscillations of the fie

g1,25
1

2t
7 iV, ~3.15!

where the frequency of oscillation is given by

V5AvT
2K22

1

4t2
. ~3.16!

Note that in this case, the decay time scale does not dep
on the wavelength of the mean field and is equal 2t.

If 2 tvTK,1, both roots~3.14! are real and the field de
cays monotonous. However, the rate of decay may be s
stantially different for different modes. In the limiting case
a very large wavelengthtvTK!1, we have

g1'tvT
2K2, g2'

1

t
2tvT

2K2. ~3.17!
1-4
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The first root describes the standard decay of the mean
caused by turbulent magnetic viscosity. The decay time s
decreases with decreasing of the wavelength asK22. Only
this decaying mode exists in a two-scale approximation. T
second root describes a qualitatively different behavior.
the limit tvTK!1, the mean magnetic field rapidly deca
on a time scale;t, which depends weakly on the leng
scale of the mean field. This decaying mode only appe
due to the influence of the previous history of the magne
field on its present evolution and does not exist in a tw
scale model.

IV. INSTABILITY OF THE MEAN FIELD

Consider instability of the mean field caused by she
The shear-driven dynamo may generate even t
dimensional magnetic fields@12#, therefore, we consider th
mean field, which has onlyx andy components and does no
depend onz. The x component of the mean induction E
~2.1! reads for a plane Couette flow

]Bx

]t
1V~x!

]Bx

]y
5~¹W 3EW!x . ~4.1!

Substituting the mean electromotive force from Eq.~2.21!,
we have

]Bx

]t
1V~x!

]Bx

]y
5E

0

`

djF~j!FDW 8Bx~rW8,t2j!

2jV8~x!
]2

]x8]y8
Bx~rW8,t2j!G

rW85rW2VW (x)j

.

~4.2!

The solution of this equation may be represented as

Bx5 f ~x!egt2 iK yy, ~4.3!

whereKy is the wave vector in they direction andg is the
growth rate. Then,f (x) satisfies the equation

@g2 iK yV~x!# f ~x!5E
0

`

djF~j!e2[g2 iK yV(x)] j

3F d2f

dx2
2Ky

2f 1 i jV8~x!Ky

d f

dxG
~4.4!

or, after integrating overdj,

d2f

dx2
2 iK yV8~x!

lT

mT

d f

dx
2S Ky

21
G

mT
D f 50, ~4.5!

where

mT 52 2
9 E v2~v,kW !

iv2G
dv dkW ,
02630
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lT 52 2
9 E v2~v,kW !

@ iv2G#2
dv dkW , ~4.6!

and G5G(x)5g2 iK yV(x). The coefficientmT represents
magnetic viscosity in a turbulent shear flow, the coefficie
lT describes the turbulent kinetic process that may be
sponsible for the generation of the mean field. Taking in
account that for a steady-state turbulencev2(v,kW )5v2

(2v,kW ), we may represent the kinetic coefficients as

mT5 2
9 GE v2~v,kW !

v21G2
dv dkW ,

lT 5 2
9 E ~v22G2!v2~v,kW !

~v21G2!2
dv dkW . ~4.7!

Note that in our nonlocal model, all turbulent kinetic coef
cients depend on the rate of a mean process that is the
ciple difference to any local theory such as a two-scale
proximation. The kinetic coefficients are generally compl
sinceg is complex.

It is convenient to representf (x) as

f ~x!5c~x!expS i

2
KyE V8~x8!

lT

mT
dx8D . ~4.8!

Then, the equation forc(x) reads

d2c

dx2
2FKy

21
G

mT
2

1

4
Ky

2V82~x!
lT

2

mT
2

2
i

2
Ky

d

dx S V8~x!
lT

mT
D Gc

50. ~4.9!

The coefficientsmT andlT depend generally onx, and these
dependences are determined by the spectral function. A
example, consider again turbulence with the spectral fu
tion ~3.6!. Then, the turbulent kinetic coefficients are

mT5
tvT

2

11Gt
, lT52

t2vT
2

~11Gt!2
. ~4.10!

In the most interesting for applications caseGt!1, we have

mT'tvT
2 , lT'2t2vT

252tmT , ~4.11!

and the coefficients turn out to be independent ofx. For this
model of turbulence, Eq.~4.9! may be rewritten as

d2c

dx2
2F G

mT
2Ky

2S 1

4
V82t221D1

i

2
KytV9Gc50.

~4.12!

To illustrate the behavior of the mean field under differe
conditions, consider some particular solutions of this eq
tion for shear flows between two planes,x50 andx5d.
1-5
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V. URPIN PHYSICAL REVIEW E 65 026301
~1! Turbulent drift waves. Consider initially the case of a
relatively weak shearV8t,1, when one cannot expect inst
bility of the mean field. Assume that the velocity profile
d>x>0 is given by

V~x!5D@d2/42~x2d/2!2#, ~4.13!

whereD is constant. Then,V9(x)522D. If 2tvT.d, then
Eq. ~4.12! transforms into

d2c

dx2
2F g

mT
1Ky

21
i

2
KytV9Gc50. ~4.14!

For the sake of simplicity, we assumeBx to be vanishing
both at the top and bottom boundaries of a shear flowc
50 at x50 andx5d. Then, the solution of Eq.~4.14! is

c5sin~npx/d!, ~4.15!

wheren is integer. This solution yields the dispersion equ
tion

g5 iK yt
2vT

2D2tvT
2Q2, ~4.16!

where Q25Ky
21(np/d)2. If KytD.Q2, the dispersion

equation describes oscillatory drift waves that decay slo
because of the turbulent dissipation. The frequency of th
waves is

vd54Kyt
2vT

2Vmax/d2, ~4.17!

where Vmax5Dd2/4 is the maximum velocity in the flow
~4.13!. Perturbations of the mean field represented by
drift waves move in the positivey direction with the drift
velocity

Vd54t2vT
2Vmax/d2. ~4.18!

The drift velocity depends very much on the parameters
turbulence and, under considered conditions, may be la
than advection of the magnetic field lines.

~2! Dynamo waves in WKB approximation. For some per-
turbations, Eq.~4.12! may be solved by making use of th
WKB approximation, which is well justified ifc has many
knots in thex direction ~see, e.g.,@18#!. Note, however, that
this approximation gives also qualitatively correct resu
even if the number of knots is;1. In the WKB approxima-
tion, we may representc(x) as

c~x!5sinS E q~x8!dx81CD , ~4.19!

whereq(x) is the wave vector in thex direction andC is
constant. This solution strictly applies ifqx@1. Then, in the
lowest order in 1/qx, we have

q2~x!5F2
G

mT
1Ky

2S 1

4
V82t221D2

i

2
KytV9G .

~4.20!
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To obtain the solution of Eq.~4.12!, we need the correspond
ing boundary conditions. Again, assuming that the fieldBx is
vanishing atx50 andx5d, we obtain the dispersion equa
tion

E
0

dF2
G

mT
1Ky

2S 1

4
V82t221D2

i

2
KytV9G1/2

dx5np,

~4.21!

wheren is integer. We may represent the dispersion equa
by making use of the theorem on average,

g5 iK yS V~x0!2
1

2
t3vT

2V9~x0! D
1

1

4
t3vT

2Ky
2V82~x0!2tvT

2Q2, ~4.22!

whered.x0.0. The instability arises if Reg.0 or

1

4
t2Ky

2V82~x0!.Q2. ~4.23!

SinceQ2.Ky
2 , the necessary condition for instability is

tV8.2. ~4.24!

Therefore, the mean field may be unstable only if shea
sufficiently strong. Note that the particular shape of the
locity profile is not important for instability. The growth tim
is of the order (t3vT

2Ky
2V82)21, and perturbations with a

shorter wavelength grow faster.
~3! Dynamo instability for the linear velocity profile. In

this case, the analytic solution of Eq.~4.12! may be obtained.
Assume thatV(x) is given by

V~x!5ax̃, x̃5x/d. ~4.25!

Then, Eq.~4.12! transforms into

d2c

dx̃2
2~g2 ipx̃!c50, ~4.26!

where

g5
gd2

tvT
2

2Ky
2d2S a2t2

4d2
21D , p5

aKyd
2

tvT
2

. ~4.27!

Introducing the coordinate,

z5~ i /p!21/3x̃1~ i /p!2/3g,

Eq. ~4.26! may be transformed into the Airy equation,

d2c

dz2
2zc50. ~4.28!
1-6
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The solution of this equation may be expressed in terms
the Airy functions of the first and second types@19#,

c~z!5a1 Ai ~z!1a2 Bi~z!, ~4.29!

wherea1 anda2 are constant. From the boundary condition
we obtain the dispersion equation for eigenvalues

Bi~ṽ !Ai ~ṽ1 i 21/3p1/3!5Ai ~ṽ !Bi~ṽ1 i 21/3p1/3!,
~4.30!

whereṽ5 i 2/3g/p2/3. We consider the caseṽ@1, which cor-
responds toaKyt.d/tvT . In this case, we may use th
asymptotic behavior of the Airy functions@19#

Ai ~ṽ !'
ṽ21/4

2Ap
e22ṽ3/2/3, Bi~ṽ !'

ṽ21/4

Ap
e2ṽ3/2/3.

~4.31!

Then, the dispersion Eq.~4.30! simplifies

ṽ21/4~ṽ1 i 21/3p1/3!21/4$12e4/3[ṽ3/22(ṽ1 i 21/3p1/3)3/2]%50,
~4.32!

or

4

3
@ṽ3/22~ṽ1 i 21/3p1/3!3/2#52pni, ~4.33!

wheren is integer. Ifṽ.p1/3 then we have

p1/3ṽ1/2/ i 1/3'2 ipn, ~4.34!

or

g'tvT
2S a2Ky

2t2

4d2
2K2D , ~4.35!

where K25Ky
21(np/d)2. The first term on the right-hand

side of Eq.~4.35! describes the destabilizing effect of she
and the second term is associated with turbulent dissipa
Obviously, this dispersion equation may correspond to
stable dynamo modes ifa2t2/4d2.1 or, in other words, if
-
e,

-

-

D.

02630
of

,

,
n.
-

tV8.2 ~4.36!

in the agreement with Eq.~4.24! ~see, also,@14#!. If shear is
sufficiently strong, the instability may seize a wide range
wavelength. The growth time decreases with decreasing
the wavelength reaching the value;1/tV82 for waves with
Ky;1/tvT .

V. CONCLUSION

We have considered the turbulent dynamo action in sh
flow. The principal result is that, in the presence of she
even turbulent motions showing mirror symmetry beco
suitable for the generation of the mean magnetic field. T
mean field amplification is caused by additional terms t
appear in the mean electromotive force and are proportio
to the production of spatial derivatives of the magnetic fie
and shear stresses. These terms are nonvanishing even
bulence is isotropic and homogeneous. The considered
eration mechanism is qualitatively different from the conve
tional alpha dynamo, which apart from the lack of mirr
symmetry of turbulence, also requires a large-scale stra
cation of turbulence.

In the present paper, we did not use the two-scale mo
that assumes the length scale of turbulence is much sm
than that of mean quantities, but generalized the nonlo
approach proposed by Ru¨diger and Urpin@14#. As a result,
we obtain the integral equation governing the mean magn
field. For a sufficiently strong shear, this equation has
solution that corresponds to unstable mean-field waves.
instability arises only for waves that are nonuniform in t
direction of flow. The growth rate of unstable waves depen
on the wavelength being larger for waves with a shor
wavelength.

The mechanism considered may play an important role
the generation of magnetic fields in various astrophys
bodies where hydrodynamic flows are characterized b
strong shear~accretion discs, galaxies, jets, etc.!.
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