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Mean electromotive force in turbulent shear flow
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We consider the mean electromotive force in turbulent shear flow taking into account the stretching of
turbulent magnetic field lines by the mean flow. The mean flow can change the properties of magneto-
hydrodynamics-turbulence in such a way that turbulent motions become suitable for the dynamo action. The
contribution of shear to the mean electromotive force cannot be described in terms of the alpha effect. The
instability of the mean field arises if shear is sufficiently strong. The growth rate of instability depends on the
length scale of the mean field being higher for the field with a smaller length scale. The considered mechanism
may be responsible for the generation of large-scale magnetic fields in various astrophysicaldaidiess,
accretion discs, jets, ejc.
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[. INTRODUCTION terms appear in the mean electromotive force that are pro-
portional to the production of spatial derivatives of the mean

It is widely believed that, under certain conditions, turbu-velocity V and the mean magnetic fiekl Note that despite
lent fluid motions may amplify a large-scale magnetic fieldthe fact that additional terms are proportional i, / 9x; ,
from a weak seed fieldsee, e.g.[1,2]). The generally ac- the effect of shear cannot generally be expressed in terms of
cepted point of view is that turbulent motions showing a lackanisotropic magnetic diffusivity because the latter enters the
of the reflection symmetry are suitable for this prod@sin ~ mean electromotive force only in products with the compo-
rotating fluid, the Coriolis force may break the reflection nents of VX B. The additional terms change the type of
symmetry of turbulent motions in such a way that the resultequation governing the mean magnetic field and may result
ing mean electromotive force has a component proportionah a turbulent dynamo mechanism. Note that the presence of
to the mean magnetic fieldhe alpha effegt The alpha ef- shear-induced terms in the mean electromotive force first has
fect is often attributed to the generation of large-scale magbeen shown by Hoyn13] who considered the particular
netic fields in various astrophysical bodie=e, e.g.[4—6]). case of differential rotation witl = (z).

However, possible mechanisms of the generation of large- The shear-driven dynamo may effectively operate even in
scale magnetic fields in turbulence obviously cannot be repthe simplest case of a plane Couette fl[d&]. The proposed
resented by the alpha effect alone. Recently, a mechanismechanism differs qualitatively from the conventional alpha
has been proposed by Yoshizawa, Yokoi, and Kate9]) dynamo. For instance, the shear-driven dynamo may gener-
who considered the transport properties of inhomogeneouste only the field that is inhomogeneous in the direction of
turbulence by making use of a two-scale direct-interactiorflow. Also, the considered mechanism does not require a
approximation. These authors argued that the induction equéarge-scale inhomogeneity of turbulence that is absolutely
tion for the mean magnetic field should be supplemented byecessary for the alpha dynamo because the pseudoacalar
a source term proportional to the product of cross helicitymay be formed from the axial vector of angular velocity only
and mean vorticity. This term plays the role of an effectiveas a scalar product with some polar vector. In contrast to the
turbulent battery that may produce a large-scale electric curmlpha dynamo, the shear-driven mechanism allows the gen-
rent and, hence, the mean magnetic field. In the proposeeration of two-dimensional fieldsl 2].
mechanism, the mean field may be induced, for example, by In the present paper, we consider in detail the shear-driven
a large-scale rotational motion in the presence of the crossiean electromotive force in a plane Couette flow. As a tool
correlation between the small-scale velocity and magnetifor our consideration, we use a simple kinematic model ne-
field. This mechanism has also been considered by Blackmaglecting the influence of a generated magnetic field on tur-
[10], who argued that the source term should be representdslilence that depends very much on assumptions regarding
also in the mean induction equation for sheared rotators. the origin of turbulence. This allows one to concentrate upon

Apart from the alpha effect and the cross-helicity effect,the main qualitative features of a generation mechanism. We
qualitatively different mechanisms of the generation of thegeneralize for the case of an arbitrary plane flow the nonlocal
mean field may operate in the presence of shear. Sheanean-field approach proposed bydRyer and Urpir{14] for
changes the intrinsic properties of magnetohydrodynamicthe simplest case of a Couette flow with linear shear. This
turbulence, stretching turbulent magnetic field lines, and duapproach allows us to consider the mean-field electrodynam-
to this, the behavior of the mean field in shear flow differsics without attributing a two-scale approximation, which is
from that predicted by simplified models taking account ofhardly fulfilled in real conditions. We show that even homo-
the alpha effect alone. By making use of a two-scale approxigeneous turbulence with mirror symmetry can lead to a gen-
mation, it has been argued by Urdihl,12 that additional eration of the mean magnetic field.
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Il. THE MEAN TURBULENT ELECTROMOTIVE FORCE &b
1

Decompose magnetic -fielfland veIocityﬁ into the mean ot
and fluctuating partsB B+b andu=V+uv, whereB andV

are the mean field and velocity, respectively. The mean InwhereAl is the corresponding Fourier amplitude/f Then,
duction equation reads,

>

— ik, V(X)By— 6,V (X)By= Ay, (2.6)

1(x,ky ,k,,t) may be represented as

>

JB
ot

> -

—VX(VXB)+ 7AB+VXE, 2.1) ba(x,ky .k, 1) =®VOB,(x ky Ky ). (27)

The equation fongz(x,ky,kz,t) does not contain the advec-

where is the magnetic viscosity artt= (v X b) is the mean tive term,

electromotive force( . . .) denotes ensemble averaging. We

consider mean electromotive foréin a quasilinear ap-
proximation. In this approximation, mean quantities are gov- abz
erned by equations including nonlinear effects in fluctuating gt
terms, while the linearized equation is used for the fluctuat-

ing quantitieg3]. A quasilinear approximation is sufficiently 1S eguation may easily be solved by Fourier transforma-
accurate, for example, to describe an ensemble of turbulefP" in t. The solution is not the complete Fourier transform
motions with relatively high frequencies and small ampli-of b(r,t), but depends on the coordinate and reads

tudes when the Strouhal numb®=uv 7// is small; here,s

— 8V (XD = TVOIA, 2.9

and/ are the correlation time and the lengthscale of turbu- ~ . i~ V' (X) . - -
lence, respectivelyy is the turbulent velocity. blw.k, ,x)==—Alw,k X)— o2 Ao,k x)ey,
We assume that the magnetic Reynolds number is very 2.9

large for turbulent motions, thus we may neglect the dissipa-
tive term in the induction equation. In what follows, we will

need only the sign of the dissipative terms to properly choos
the integration path when calculating Fourier integrals. Then,

gvhere the Fourier transformation &f(w,lzl ,X) is given by

the linearized induction equation for the fluctuating magnetic ;;‘( K X) =
field reads L
(2.10
b L * .
5 = VX (VXD)+V X (vXB). (22 wherek, =k,e,+k,e,. Note that, in fact, there is no singu-

larity in Eq. (2.9 because the neglected dissipative terms
Consider a flow with the mean velocity given by would result in small negative imaginary correctionsao

thus, we would haves—i0, instead ofw in singular terms;
_V(X)ey wherex, y, andz are the Cartesian coordinates; + o denotes a positivéor negativé contribution propor-
ex, ey, andeZ are the unit vectors. Substituting this expres-tional to .

sion into Eq.(2.2), we have Then, the solution for a fluctuating magnetic field is
b b . _ +°cdwdL VNI G | VA
E‘FV(X)W—ebeV (X)=A, (2.3 rt) f gilotkV)t=ik,r A_T xCy | -
(2.1
where
The result looks like we use a Doppler-shifted Fourier trans-
A=(B-V)o—(s-V)B, (2.4) form with the frequencyw +k,V(x).

For the sake of simplicity, we consider the case of locally

andV’(x) =dV/dx. The fluid is assumed to be incompress- isotropic and homogeneous turbulence with the correlation
ible. ' tensor given by

Equation(2.3) may be solved by making use of a partial 1
Fourier transformation. Since coefficients in E2.3) do not <{)_(w IZ)f)-(w’ IZ’)): “ 0w E)(é-- —kik /k?)
depend ory andz we make initial transformations in these R 3 AR

coordinates and obtain the equation for the quantity SRR S0t '), (212
wtw ), .

kZb(r 1), (2.5) wherev?(K,w) is the spectral functiortsee, e.g.[15]). Of
course, shear may affect the correlation properties and, prob-
ably, turbulence is not isotropic and homogeneous in real
This equation reads conditions, however, we will neglect this effect.

by(x.Ky kg, )=
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Substituting the complete Fourier transformation ofThe integral overq yields one of the representations of the

v(r,t) and the expressiof2.11) for b(r,t) into the definition
of £, we obtain the integral representation fHrwhich does

S-function(see, e.g[17]. Then, integrating ovedy’dz’, we
have for the mean electromotive force

not assume a two-scale approximation. Then, after averaging

Eq. (2.12, the expression fof transforms into

. fdw'dﬁ'dwd@

_ dy/dzldtlUZ(w/,lz/)ei(w+w')(t7t')
3273w
« ei(RﬁE’)(F'F)+ikyV(x)(tt')< i El_ Vzéyx Ez

> - - t B ’ ! ’
52_%f dw’dk’Uz(U)’,k,)J dtrel(w 7kyV)(tft)

X[El(F’,t’)—(t—t’)V’éyX EZ(F,yt’)]|F'=F7\7(tft’) :
218

Introducing @ =w’—k{V and assuming thab>kyV, we

(2.13  may expand the spectral functiol(w+ k;v,IZ) in a power
series ofV. Restricting ourselves to the lowest ordeMpwe
where have
> > 2 - kj’kr’n JBy . . . t ' N s -
Ei=V'XB-es&ix—7p — (2.14 gz—%fdwdk'z;?(w,k')f dt’e' @ O[E, (r',t")
k's oxp, —
) ) R kr,n ﬁBX L R R k),( —('[—t')V’eyXEz(r',t')]|r‘/:r‘_\7(t_t/). (219
E2=V'Bx—k'7 ; —I(k'-B) ex—k'T2 ,
k'S oxp, k 219 Since, according to our assumption, turbulence is locally iso-

tropic and homogeneous, we may averageand E, over

V' =(alax,alay’,aldz'), B in the expressiong2.14 and  directions of the vectok’, then

(2.15 is a function ofF’=(x,y’,z’) andt’; summation is
over repeated indexes.
Introducing the wave-vectoq=Kk, +k| instead ofk, ,

the integrals ovedw anddk, in Eq. (2.15 may be trans-
formed as in

. - 2. .. - o 2. -
El(r’,t’)=§V’><B(r’,t’), Ez(r’,t’)=§V’Bx(r’,t’).
(2.20

Finally, the expression for the mean electromotive force
reads

4

f dw dkl ei(w+o)’)(t7t')*i(|Z+E’)(F*F’)+ikyv(t7t’)
w

> t - - >
5=—f dt'F(t—t")[V'XB(r',t')—(t—t" )V’

o io(t—t")

:e”‘QV(t'—t)f dﬁeiqlr’—HV(t—t’)]f —dw e .
(@=e?) X ()& XV By t)][fr =i i1y, (2:2D

(2.1

) where
Integrals ovedw may be reduced to the known integrals
[16],

F(t)zgf dw dkv?(w,K)e'“t. (2.22

— p) Vﬁleﬁp

f+°°e“pxdx 2 00
if p<0,

o (] v T o . .
(ix+p) ) Note that deriving this equation, we did not assume that the
turbulent scale” is small compared to that of the mean field.

and 0 |fp>'0;.l“(v) is the gamma—funphon; Ihe. 0, Reps . _As a result, the mean electromotive for@?22 is nonlocal.
>0. Substituting the value of these integrals into equation ) S ,
(2.16), we obtain The expression fof does not contain the component propor-

tional to B that is typical for the alpha effect.

. jdw’dE'

> t . ’ ’ ’
_ 3(2 )202(“’/1k,)f dy/dz/dt/el(w —kyV)(t—t)
W — o0

IIl. TURBULENT DISSIPATION IN THE INTEGRAL
APPROACH

Consider, initially, the decay of the mean field in the case
of a vanishing mean flow(x) =0. Then, we have from Eq.

(2.21

X f dgeldlr TV -tV 6, X E— E4].
(2.17
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- L e e Then, integrals ovedw may be reduced to the table integrals
&=— f_mdt F(t—t")VXB(r,t") (see[16], p. 332. Substituting their value, we obtain
- * > - df 22 [ —¢&lr
:—foo dEF(&)B(r,t—¢€). (3.1 g vk . dée =7f(t—9), (3.9

Dissipation turns out to be local but is determined by theWhere we denote

previous evolution of the magnetic field. Substituting this 5

electromotive force into the mean induction E.1) and 2_% fW Kydk 31
assuming that the magnetic field is parallel to xhaxis, we K (k)dk. (3.10

obtain in a high-conductivity limit ) ) ) ) )
The solution of this equation may be represented in a simple

exponential form,

‘9—BX—Afd§F<§>B (Fit—6) (3.2
ot 0 an ' ' f(t)=e " (3.1

Since the coefficients of this equation do not depend on cothe exponential solution exists jf< 1/7, otherwise the in-
ordinates, we may consider the simplest solution correspondegral in Eq.(3.9) goes to infinity. The dispersion equation

ing to the plane wave for y reads
B,(r, 1) =f(t)e KT, 3.3 -
(FH=F(t) (3.3 y=2K? f e~ (WrDégg, (3.12
- 0
whereK is the wave vector. Substituting this expression into
Eqg. (3.2, we have or, calculating the integral,
T K . déF(&)f(t—¢). (3.9 v Ty+vTK 0. (3.13

This equation describes the turbulgetidy dissipation of ~The roots of dispersion equation are
the mean magnetic field. By analogy with the microscopic
magnetic viscosity, we may define the quantity 1 1 2 1 1

1 o
"=t fo deF (O (t—¢) (35 (3.14
Both these roots satisfy the conditiop ,<<1/7, which is
as a turbulent magnetic viscosity. Contrary to the standartéiecessary for the existence of an exponential solution. De-
definition (see, e.g.[3]), »t in the integral approach is gen- pending on the parameters, the decay of the mean magnetic
erally determined by the history of the mean field. field may be qualitatively different.
The solution of Eq(3.4) depends very much on the fre-  If 27vtK>1, then the rootg3.14 are complex conju-

quency dependence of the spectral functiof(w,K). For ~ 9ate, and decay is accompanied by oscillations of the field,
the sake of simplicity, we choose the simplest representation

: 1
of a spectral functiorisee, e.g.[15]), Y1252 FiQ, (3.19
2 ) " 2 2y—1
o0k =W(k)(w™+ ), 3.6 where the frequency of oscillation is given by
where 7 is the characteristic correlation time of turbulence.
Substituting this expression into E.4), we have 1
g P @49 Q=JoiK?- . (3.16
) 47
df 2, I += dw !¢
—=—gK j W(k)dkf def(t=8) | ———. Note that in this case, the decay time scale does not depend
dt 9 0 - w4+ 1/7

3.7 on the wavelength of the mean field and is equal 2

: If 2 7v7{K<1, both roots(3.14) are real and the field de-
cays monotonous. However, the rate of decay may be sub-
stantially different for different modes. In the limiting case of
a very large wavelengthvtK<1, we have

We can represent the frequency dependencaz()&;,IZ) in
this equation as

1 T
w?+172 2

1 1 1
iw+1/r iw—l/r} (3.8 VINTU'ZI'sz 72”;_TU$K2- (3.17
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The first root describes the standard decay of the mean field v2(w,K) R
caused by turbulent magnetic viscosity. The decay time scale Ap=— %f _—'zdw dk, (4.6
decreases with decreasing of the wavelengtiKas. Only [lo—T]

this decaying mode exists in a two-scale approximation. The

second root describes a qualitatively different behavior. Ir2Nd I'=T'(x)=7y—iK,V(x). The coefficientur represents
the limit rv-K<1, the mean magnetic field rapidly decays magnetic viscosity in a turbulent shear flow, the coefficient

on a time scale~ 7, which depends weakly on the length Nt describes the turbulent kinetic process that may be re-
scale of the mean field. This decaying mode only appear§ponsible for the generation of the mean field. Iaking into
due to the influence of the previous history of the magneti@ccount that for a steady-state turbulenc& w,k)=v?

field on its present evolution and does not exist in a two{— w,k), we may represent the kinetic coefficients as
scale model.

2(w,k
5 vi(w,k) -
IV. INSTABILITY OF THE MEAN FIELD MT=3 f Trzdw dk,
w
Consider instability of the mean field caused by shear.
The shear-driven dynamo may generate even two- (02=T2)02(w,K) )
dimensional magnetic field42], therefore, we consider the Nr=3 TN "~ dw dk. (4.7
mean field, which has only andy components and does not (0°+T7)
depend orz. The x component of the mean induction Eq. ) o i
(2.1) reads for a plane Couette flow Note that in our nonlocal model, all turbulent kinetic coeffi-
cients depend on the rate of a mean process that is the prin-
9B, B, . . ciple difference to any local theory such as a two-scale ap-
7+V(X)6—2(VX5)><- (4.2 proximation. The kinetic coefficients are generally complex
y sincey is complex.
Substituting the mean electromotive force from E2.21), It is convenient to represefi{x) as
we have ) \
! T
f(x)=y(x)exp =K JV’ x' —dx’). 4.8
B, B, (= o ()= (%) p(zy (X)o 4.9
V0= [ Caere)| 4B, -0
0 Then, the equation fog(x) reads
2
— &V (X) — ,BX(F’,t—g)] . d%y , T, A RS
X (9y F’:F—V(X)f E— Ky+ ;_ZKVV (X)M_%_EKyd_X \Y/ (X); lﬂ
4.2
=0. (4.9

The solution of this equation may be represented as
_ The coefficientsut and\ 1 depend generally or, and these
B =f(x)e” 'y, (4.9  dependences are determined by the spectral function. As an
example, consider again turbulence with the spectral func-

whereK, is the wave vector in thg direction andy is the tion (3.6). Then, the turbulent kinetic coefficients are

growth rate. Thenf(x) satisfies the equation

) [y= Ky V1€ v A T 4.1
. B CTy—iK V(X - -
[y—.KYV(x)]f(x)—fo deF(&)e IriKy MT=15T. M (1:T7? (4.10
d?f e df In the most interesting for applications cdse<1, we have
X F—Kyf‘l‘lgvl(X)Kyd—x
X
,U,T~7'v$, )\T%—TZU-%:—T/.LT, (4.11)
(4.4
) i and the coefficients turn out to be independent.dfor this
or, after integrating ovedg, model of turbulence, Eq4.9) may be rewritten as
2
f T df r 2 :
— =KV (X)— — — K2+—)f=0, (4.5 2 LT I : wl o
y y — K3z - — =
X2 T dx T e Kl zV -1 + 5 Ky7V" [§=0.
where (4.12
0, o To illustrate the behavior of the mean field under different
_ _gJ' v(w,K) de di conditions, consider some particular solutions of this equa-
all °] iw-T ' tion for shear flows between two planess 0 andx=d.
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(1) Turbulent drift wavesConsider initially the case of a To obtain the solution of Eq4.12, we need the correspond-
relatively weak sheaV’ r<<1, when one cannot expect insta- ing boundary conditions. Again, assuming that the fi&|ds
bility of the mean field. Assume that the velocity profile at vanishing atx=0 andx=d, we obtain the dispersion equa-
d=x=0 is given by tion

1/2

V(x)=D[d%/4— (x—d/2)?], (4.13 d T
f { dx=nar,

12
+K§

1 [
ZV'ZTZ— 1) — 5 Ky7V"
whereD is constant. Theny”(x)=—2D. If 27v1>d, then

Eq. (4.12 transforms into (4.21

wheren is integer. We may represent the dispersion equation

0

dy [y i

bl B A | by making use of the theorem on average,
" MT+Ky+ 5 Ky7V" | §=0. (4.14
H 1 "
For the sake of simplicity, we assuni to be vanishing J’ZIKy(V(Xo)— ETSU$V (Xo))
both at the top and bottom boundaries of a shear flgw,
=0 atx=0 andx=d. Then, the solution of Eq4.14) is 1
19 +7 TOTKOV 2(%0) — 07Q%, (4.22

Y=sin(nmx/d), (4.15

. . . . ) i whered>x,>0. The instability arises if Rg>0 or
wheren is integer. This solution yields the dispersion equa-

tion 1
77KV 2(x0)> Q% (4.23
y=iKyTzv$D—Tv$Q2, (4.19

where Q2=K2+ (nm/d)2. If K,7D>Q2, the dispersion SinceQ?> Kf,, the necessary condition for instability is
y : '

equation describes oscillatory drift waves that decay slowly )

because of the turbulent dissipation. The frequency of these ™V'>2. (4.24

waves is . . .
Therefore, the mean field may be unstable only if shear is

— 4K, 202V Id2, 41 suf_ﬁciently s_trong._Note that the_ partip_ular shape of th_e ve-
@d yT T  max .19 locity profile is not important for instability. The growth time

where V,,.,=Dd%4 is the maximum velocity in the flow S of the order ¢®7KJV'?)~*, and perturbations with a

(4.13. Perturbations of the mean field represented by théhorter wavelength grow faster. _ _
drift waves move in the positive direction with the drift (3) Dynamo instability for the linear velocity profildn
velocity this case, the analytic solution of E¢.12 may be obtained.

Assume that/(x) is given by
Vg=47%03V pnay/ d2. (4.189 o
V(x)=ax, x=x/d. (4.25
The drift velocity depends very much on the parameters of
turbulence and, under considered conditions, may be largérhen, Eq.(4.12 transforms into
than advection of the magnetic field lines.

(2) Dynamo waves in WKB approximatiofor some per- d2y _

turbations, Eq(4.12 may be solved by making use of the TZ—(g—ipx)zp=O, (4.26
WKB approximation, which is well justified ify has many dx
knots in thex direction(see, e.9.[18]). Note, however, that h
this approximation gives also qualitatively correct results/1€"€
even if the number of knots is 1. In the WKB approxima- ) ) 5 5
tion, we may represent(x) as vd asr aK,d

y represeni(x) g= 1 — K —2—1>, p=—L—. (427

TUT 4d TUT
=si "ydx'+C|, 4.1 . .
v(x) sm( f a(x)dx ) 4.19 Introducing the coordinate,

where q(x) is the wave vector in the direction andC is
constant. This solution strictly appliesdik=1. Then, in the
lowest order in ldx, we have

{=(ilp) ¥+ (i/p)?-g,

Eq. (4.26 may be transformed into the Airy equation,

' &y =0 (4.28
(4.20 ds? tv=0. '

g%(x)=

r 1 i
- 2 T\y12,2_ _ "
i Ky(4V T 1) 2KyTV

026301-6
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The solution of this equation may be expressed in terms of

the Airy functions of the first and second typd9],

() =a, Ai(§) +a, Bi(?), (4.29

PHYSICAL REVIEW E 65 026301

) (4.36

in the agreement with Ed4.24) (see, also[14]). If shear is
sufficiently strong, the instability may seize a wide range of
wavelength. The growth time decreases with decreasing of

wherea; anda, are constant. From the boundary conditions,he wavelength reaching the valuel/7V'?2 for waves with

we obtain the dispersion equation for eigenvalues

Bi(®)Ai(@+i~ %) =Ai(@)Bi(@+i~ %),
(4.30

i2/3 . We consider the cagé>1, which cor-

where®m=i2%g/p??

responds toaKyr>d/7vy. In this case, we may use the

asymptotic behavior of the Airy functio49]

3/2 1a 3/2
—2043 BI('(I))% e2w /3.

e ,
(4.3)

Ail(®)~
T T

Then, the dispersion E@4.30 simplifies

@ VA(5+i - Y3ple) 14 — eH3[@¥2— (B+i~ 1/3p1’3)3’2]} =0,

(4.32
or
4 ~ 3/2 ~ i —1/341/3)\ 3/ H
3LB¥= (@ +i7 ") 21=2mni, (4.33
wheren is integer. If&>p then we have
P17 Y — i, (4.34
or
a2K27_2
,_V 2 y w2
y~ TUT( 2 K<, (4.35

where K?=K?+(nw/d)2. The first term on the right-hand
side of Eq.(4.35 describes the destabilizing effect of shear,

Ky~1ltvs.

V. CONCLUSION

We have considered the turbulent dynamo action in shear
flow. The principal result is that, in the presence of shear,
even turbulent motions showing mirror symmetry become
suitable for the generation of the mean magnetic field. The
mean field amplification is caused by additional terms that
appear in the mean electromotive force and are proportional
to the production of spatial derivatives of the magnetic field
and shear stresses. These terms are nonvanishing even if tur-
bulence is isotropic and homogeneous. The considered gen-
eration mechanism is qualitatively different from the conven-
tional alpha dynamo, which apart from the lack of mirror
symmetry of turbulence, also requires a large-scale stratifi-
cation of turbulence.

In the present paper, we did not use the two-scale model
that assumes the length scale of turbulence is much smaller
than that of mean quantities, but generalized the nonlocal
approach proposed by Riger and Urpin[14]. As a result,
we obtain the integral equation governing the mean magnetic
field. For a sufficiently strong shear, this equation has the
solution that corresponds to unstable mean-field waves. The
instability arises only for waves that are nonuniform in the
direction of flow. The growth rate of unstable waves depends
on the wavelength being larger for waves with a shorter
wavelength.

The mechanism considered may play an important role in
the generation of magnetic fields in various astrophysical
bodies where hydrodynamic flows are characterized by a
strong sheafaccretion discs, galaxies, jets, étc.
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