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Fractal spin glass properties of low energy configurations in the Frenkel-Kontorova chain
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We study, numerically and analytically, the classical one-dimensional Frenkel-Kontorova chain in the regime
of pinned phase characterized by phonon gap. Our results show the existence of exponentially many static
equilibrium configurations that are exponentially close to the energy of the ground state. The energies of these
configurations form a fractal quasidegenerate band structure that is described on the basis of elementary
excitations. Contrary to the ground state, the configurations inside these bands are disordered.
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The Frenkel-KontorovdFK) model[1] describes a one- ties of the dimensionless particle density that is given by the
dimensional chain of atoms/particles with harmonic cou-ratio of the mean interparticle distance to the period of the
plings placed in a periodic potential. This model was intro-external field.
duced more than sixty years ago with the aim to study crystal In more recent studig20—23, the attention was mainly
dislocationd 1,2]. However, it was also successfully applied concentrated on phonon modes in incommensurate one-
for the description of commensurate-incommensurate phastimensional chains. Indeed, the phonon modes contribute to
transitions[3], epitaxial monolayers on the crystal surfacethe specific heat of the system and, hence, they are respon-
[4], ionic conductors and glassy materigs-7] and, more sible for the heat conduction along the cha#®,23. The
recently, to charge-density waved and dry friction[9—11].  propagation and localization of phonon mod@26,21] have
In addition, the FK model has also found its implementationbeen studied for small vibrations of particles around their
in the investigation of the Josephson junction cHai?]. The  equilibrium positions in theround state In particular, very
physical properties of the FK model are very rich. Moreover,accurate results were obtained in R&fL], where the fractal
different types of interaction between atoms can be effecproperties(or self-similarity) of the ground state were used
tively reduced to the case of FK model and, due to that, thisn a very efficientdecimation scheme
model continues to attract the active interest of different re- However, we would like to stress that fir>K, besides
search groups. the ground state, there exist othexxcitedequilibrium con-

The ground state of the classical FK model is defined agigurations, corresponding to local minima of the potential,
the static, equilibrium configuration of the chain, which cor- with energies very close to the ground state. To our knowl-
responds to thabsoluteminimum of the chain potential en- edge only few studies were dedicated to excited equilibrium
ergy. More than twenty years ago, Aubry discoveredconfigurations, see, for example R€f$9,18,24. In particu-
[6,13,14 that theground states unique and is characterized lar, on the example of exactly solvable models, it was found
by a special regular order of atoms in the chain. In fact, thehat the number of such configurations can be exponentially
positions of atoms in the chain are described by an aredarge and their energy can be exponentially close to the
preserving map, which is well known in the field of dynami- ground stat¢25]. In this paper, we study the properties of
cal chaos and which is called the Chirikov standard maphe low energy equilibrium configurations in the more gen-
[15]. The density of particles in the FK model determines theeral case represented by the FK model. We determine the
rotation number of the invariant curves of the map, while thestructure of the configuration energy spectrum and its depen-
amplitude of the periodic potential gives the value of thedence on the strength of the periodic potential and on the
dimensionless paramet&. For K<K., the Kolmogorov- chain length. The obtained results show that these configu-
Arnold-Moser (KAM) curves are smooth and the spectrumrations are exponentially close in energy to the ground state
of long wave phonon excitations in the chain is characterizednd the number of configurations grows exponentially with
by a linear dispersion law starting from zero frequency. Ornthe length of the chain. We also show that these configura-
the contrary foikK >K., the KAM curves are destroyed and tions have interesting fractal properties, which we will de-
replaced by an invariant Cantor set that is called cantorus. Iacribe in detail. The transition between different configura-
this regime the phonon spectrum has a gap so that the phtiens can be understood on the basis of elementary
non excitations are suppressed at low temperature. The efxcitations that we call “bricks.” The numerical and analyti-
fects of the cantorus on the dynamical properties of the mapal study of these elementary excitations allows to under-
were discussed in Reffl16,17]. Later[18], on the example stand and describe the fractal structure of energy bands cor-
of Ising spin model to which the FK model can bpproxi-  responding to equilibrium configurations. Since the excited
matelyreduced 19], it has been shown that the ground stateequilibrium configurations are exponentially close to the
has some well defined hierarchical structure. The main feaground state, they will strongly contribute to the physical
tures of this structure are determined by the number propesystem properties at finite temperature. Contrary to the
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ground state in which atoms form a regular structure, in the 154 L
excited configurations this order is partially destroyed and K=5
some chaotic feature appears. In some sense, the existence of Th |
an exponential number of configurations exponentially close EO 178
in energy, reminds of the situation in classical spin glasses > /
[26]. However, contrary to the usual spin glass models, the L T
FK model is described by a simple Hamiltonian without any ot k=2
disorder. Therefore, the appearance of exponentially quaside- Z30 —20 0 0
generate configurations in the FK system can be viewed as a log, [AU]
dynamical spin glass model. Thus, the rich variety of prop-
erties of the FK model can find application in different areas FIG. 1. Integrated number of equilibrium configuration states
of physics. Ncs as a function of the energy differendd) between the energy
of configurationU and the ground state enerdy;, counted per
|. THE MODEL particle. Here the number of particlesss-89 and the number of
wellsr =55. The bands are shown fir=5 (6 upper segmentsand
Let us consider a chain of particles with pairwise elasticfor K=2 (5 lower segmenjs Horizontal dashed lines show the
interactions between nearest neighbov§x; ,x;_1)=v(X; border between energy bands. All equilibrium configurations are
_Xi—l):(xi_xi—l)zlz- This chain is placed in a periodic counted. Dimensionless units are used here and in all other figures.
external field:W(x;) = —K cosf;), where (without any loss
of genera"ty the period is taken equal tor2 Therefore, the the external periodical field and the whole chain is pinned.
Hamiltonian of the FK model reads Stable configurations of the chain correspond to minima of
the potential energy:

P?  (X—Xi-1)?
H= —+—————Kcogx)|. ) =X _1)?
Z 2 2 o U({x})=2i W—Kcos(xi)- (4)

Here we have taken the mass of the particles and the
elastic constant equal to unity. Thus, all the variables are The static ground state correspondsatsoluteminimum

dimensionless throughout the paper. given by Aubry’s solution. However, as we will see in the
At the equilibrium the moment®;=0 and in addition next section, there are other local minima of the chain poten-
tial U({x}) that give equilibrium static configurations with
dH . energy being very close to the ground state. The number of
ax Xi+1 2% =Xy T K sin(x;) =0. @ such configurational statéé.s grows exponentially with the
chain lengths.
After the introduction of new variablgs , ;=X;, 1—X;, this
equation can be written in the form of an area-preserving Il. ENERGY SPECTRUM OF EQUILIBRIUM
map CONFIGURATIONS
Pir1=PitKsiN(X), Xj41=Xi+Pis1, 3 In Fig. 1, we present a typical result for the integrated
number N.s of excited equilibrium configurations versus
which is known as the Chirikov standard mib]. their energy difference, per particle, from the ground state

We concentrate our investigation on the case of goldelMU=(U—Ug)/s where Ug is the energy of the ground
mean dimensionless particle density: (\5—1)/2. This ir-  state. Here we have number of particees 89, number of
rational value can be approximated by rational approximantsvells r=55 and two values oK, K=5 andK=2. This
that form the Fibonacci sequensgwith number of particles figure shows that the energy of configurations form a se-
sand chain lengtt. = 27r. In this way, the rational approxi- quence of narrow energy bands, the width of which is much
mants arev,=r,/s,=s,_1/S,, with s,=1,2,3,5,8,8. .. smaller than the distance between bands, at least in the very
and the average distance between particles527v,. For  vicinity of the ground state. At higher energies, the band-
the map(3), the parameter determines the rotation number width starts to grow and eventually nearest bands almost
of the invariant KAM curve. At the golden mean valuewgf — merge into each other. It is interesting to note that the num-
the KAM curve is analytical and smooth foK<K, ber of states in each band is practically independen, afs
=0.9716% ... [27]. ForK>K,, the curve is destroyed and it is shown by dashed lines in Fig. 1: with the increasépf
the transition by the breaking of analyticity takes pla6g  each band is shifted to smaller valuesAdd (in logarithmic
As a result, the invariant curve is replaced by a cantorusscalg but the number of states in each band is not changed.
which forms an invariant fractal set in the phase space of the It should be stressed, that even at a moderate valle of
map. For the FK model, the cantorus corresponds to the=2 the energy spacing between the ground state and the first
ground state with minimal energy as it was shown by Aubryexcited configuration band is of the order of 18 If one
[6,7,13,14. assumes that in E@4) a unit of energy is~1 eV, then this

In this paper, we restrict ourselves to the case Wth band is already excited at temperatdre 10 ° K. Hence,
>K,., when each patrticle is locked by potential barriers ofone may conclude that the pure ground state is practically
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inaccessible, even for a chain with less than one hundred 1 13 15 , K 5 .
atoms. 1T ' -l—-—
The total number of different local minimid, is enor- ‘—l_!:—!—--_! -
mous and it grows very rapidly witk. Therefore, to numeri- 1 “‘:f\:‘\’“\\_:‘" i
cally find all these configurations, one needs to use special g ~10- =~ \‘\\‘ T4
methods. Our approach to this problem is the following. 2 = T
First, we find the ground state by the gradient method devel- 2™ Tl i
oped by Aubry[7,28,29. Then we find the excited equilib- —20- Tt
rium configurations with the help of the Metropolis algo- 05 =
rithm [30]. In this method, the system is considered at some 0.0 0.4 038 12 16

properly chosen temperatufeAt given T, we can probe the A
configurations witlA U=<T while the probability to find con- FIG. 2. Band energy spectrum of equilibrium configurations

figurations with higher energy is exponentially suppressedversus the chaos parametérupper scalpand the phonon gap

Our implementation of the Metropolis algorithm looks as (lower scalg. The bands are marked by filled areas corresponding
follows. We start from a certain configuratiqn};, which ~ to a givenK value. The chain is the same, as in Fig. rls
corresponds to some local minimudy of the chain poten- =_55/89. The dashed curves are given by the semiempirical expres-
tial energy U({x};). Then, we take randomly one of the 5'°" ®).

chain particles and try to move it into one of the neighboring

wells. Next, with the new distribution of particles among the 2
This allows to compute the total number of equilibrium con-

wells we search for a new local minimud. A new €on- g rations in the system, which, fé¢=>5 is of the order of
figuration withU; , 1 =U is accepted if exp-(U—U,)/T|=¢, 105,

where ¢ is a random number homogeneously distributed in - The energy band spectrum for different valueskofis

the interval[0,1], otherwise we try a new attempt. Notice shown in Fig. 2. It clearly shows that the nhumber of bands
that our Metropolis procedure uses partiglespsfrom well  pecomes larger for large and, in addition, the lowest

to well rather thar(smaID variations of their coordinates. In bands approach exponentia”y the ground state. The existence
this way, we solve the problem of the Peierls-Nabarro barriof such bands exponentially close to the ground state is re-
ers[6] and obtain a method with good performance. Physiqated to the specific properties of the FK chain in the pinned
cally the Peierls-Nabarro barriers are not important since Wehase K>K_). This phase is characterized by a phonon
are interested in static configurations and not in the transitiogap)\ [6,28], due to which any static displacement perturba-
rate between different states. tion ox; of particlei (corresponding to a zero-frequency

_ In general, the space of Iow-energy configurations can _be honon”) decays exponentially along the chain:
viewed as a set of disconnected islands. Therefore, there |s§< ocexp(-fi—ig)). In fact, \ is the Lyapunov exponent of
, i—ig)). ,

d?‘F‘Qef that, starting near one island,.wg can remain in itfhelz map(3) computed on the cantorus. This exponential de-
vicinity forever. To avoid this, we periodically heat/freeze cay of perturbations is responsible for the appearance of ex-
egionentially narrow bands exponentially close to the ground

higher excitation energies when the bands begin to merge.

scribed iterations with chosen temperattirén this way, the
system can move from one island to another and visit differ-

I . ) In order to describe the band positions as a function of
ent equilibrium configurations.

Since the number of equilibrium confiqurations is e 0_system parameters, it is convenient to label the bands by the
: u quitibnu 'gurati IS €XPO-index k in order of increasing energy. Then the energies of

nenU?IIy Iartlge(sl?ae th'ﬁ' L 'L'S not p(?[ﬁs[ble to t\)/'s't andb the four lowest bands are well described by a simple empiri-
count exactly all of them. However, their number can be ., 5.1 see Fig. 2,

counted approximately with sufficiently good accuracy in the
following way. In the lowest excited band, the number of
equilibrium configurations is not so large and it can be com- (AU)=Cexp(— av'sypk+)?), ®)
puted exactly. In order to determine the number of states in . )

the next band, we start from a representative sample of cotwhere(AU )y is the average energy &th (excited band,s
figurations, which is in fact a small part of their total numberis the number of particles in the chain, and the numerical
in one band. Then with the help of Metropolis algorithm values of parameters ar€~1, a~0.59, f~0.12. It is
described above, we determine the ratio between the numbggther interesting to note that this simple formula describes
of configurations inside the first and second band. To do thisguite well even the region with small values »&0.8 (K

we choose the temperature valliein such a way thaff ~ <2). At largerK (and longer chains this formula can be
~10AU,>AU,, whereA U , are the excitation energies for replaced by its even more simple limiting expression

the first and second band counted from the ground state.

From the computed ratio, we determine, with sufficiently (AU)=C exp( — av¥s)). (6)
good accuracy, the total number of configurations in the sec-

ond band. By iterating this process, we determine the total According to Eqs(5) and (6), the spacings between the
number of states in all bands. Moreover, by gradually changbands and the ground state drops exponentially with the
ing the temperatur€, this procedure can be easily adapted tolength of the chain. In Fig. 3, we present the dependence of
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FIG. 3. Dependence of the band energies on the siakthe FIG. 5. The particle positiorx; mod 27 versus the particle

chain forK=2 (A\=0.7859). Dashed lines are given by empirical index (multiplied the average distan@=27r/s) mod 2. This
formula (5). Horizontal dotted lines allow to compare the band hull function is shown for =89, s=144, andK=2.
positions for differens.
Ill. SPATIAL STRUCTURE OF EQUILIBRIUM
the band structure on the number of partidés the chain, CONFIGURATIONS
for the rational approximants's of the golden meamw.

The results presented in Figs. 2 and 3 show that the
simple Semiempirical formul&5), shown by dashed lines, To analyze the origin of the FK chain hierarchical struc-
describes the positions of the bands in the interval of 3Qure, let us start with the study of iground statelt is very
orders of magnitude. It is interesting to note that bands arénstructive to analyze regularities of particle positions inside
also ordered in some horizontal leveinarked by dotted the wells. In particular, their positions modulo the period of
lines), which are practically independent of the size of thethe external field are given by the broadly discussed hull
chain. However, the bandwidth and the number of states infunction[7,13,14,28. Its typical example is presented in Fig.
side the band of the same horizontal level grows with theb.

A. Structure of the ground state

chain sizes. In the following section, we will see how all In this plot, the bottoms of potential wells correspond to
these features can be understood on the basis of the spatial mod 27=0 and 2r. It is easy to see that a considerable
properties of the chain structure. amount of particles is located very close to the bottoms. To

Finally, in Fig. 4 we show that the energy band structurerender this observation even more significant, the absolute
is characterized by fractal properties. Here the third excitedalues of deviations from the bottom versus the particle
band for the chain witl/s=55/89 andK =4 is shown with  numberi are plotted in logarithmic scale in Fig. 6.
subsequently growing resolutiojsee magnification factors We see that some of particles are at the well bottoms with
in the figure caption The hierarchical structure of the bands extremely good accuracy. Moreover, the values of small de-
is evident. Such a structure becomes deeper and deeper withations are grouped into three well resolved hierarchical lev-
the increase of the chain lengshin the following section, els. Separations along the chain for these particles are also
we show the origin of this structure and develop a simpleordered in some regular way. The two particles closest to the

model to describe it. bottom|Ax|~4.7x 10~ ?° are separated by the distances 55
and 89(the chain is periodic Then, eight particleginclud-
(a) () (e) (d) ing the previous twpwhose deviation from the bottoms is
37 ' 330 |Ax|<3x10 6, are separated by distances 13 and 21, see
| I Fig. 6. Finally, 34 particles whose deviation from bottoms is
021 |Ax|<10"! are separated by distances 3 and 5. The greater
”.’Z = N o is K, the closer these particles are to the bottoms, yet their
o 1 separations along the chain remain the same. By taking a
04 <0 Ov‘ et es i ee L ee ee ise e lee  tees iee sene . |
° 1oA;¢su8 ° 1oilst1b ° 1012532 ° 101&]0 7 21 et 217160 21t 21 i
x —104 P
FIG. 4. Fractal energy band structure for a chain Wth 4, s < _5d ! fE
=89, andr=>55. Four hierarchical level$a), (b), (c), (d) with 5_20_ 3
growing resolution are shown from left to right. The total magnifi- q
cation factor forsU scale is: 5000 from levela) to level (b), 2.5 254 ° % F 8 F
X 10° from (a) to (c), and 8<10° from (a) to (d). Here, SU=U -30d1- . : :
—Unmin, WhereU is the chain energy per particle at,,;, gives ° o0 190 150
min number of particle

the energy of the leftmost band in each panel. The vertical $¢ale

gives the integrated number of equilibrium configurations counted FIG. 6. Absolute value of the particle deviations from the near-
from the bottom of the leftmost band in each panel. The verticalest potential well bottom versus particle number along the chain.
magnification is changed in ten times from left to right. The chain parameters are as in Fig. 5.
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chain  with longer  length  r(s=144/233,233/ O v vo el
377,377/610. . .) one carpbserve subsequent levels of the I A
hierarchical structure. —wod i
The fact that some particles are very close to the bottom E}

of the wells, is very important. Indeed, let us assume for a gf —154 3
moment that these particles aegactlyat the well bottoms. T -204 -
This means that tension forces acting from both sides on any -254 3
such particle, called hereafter a “glue” particle, balance each _spd_ . . .

other exactly. Now, let us cut the chain at glue particles into 0 50 100 150

i e - ber of particl
fragments, or “bricks.” Then we can interchange any two number ot particie

fragments of the chain without changing the chain potential g, 7. Deviations of the particles from potential well bottoms
energy. In general, the interchanged bricks are different, ang; an excited configuration taken from the first excited energy band
we get in this way a new configuration with the same poten{see Fig. 3 fos=144). The separation of this band from the ground
tial energy. So we may conclude that we can get a combinastate of Fig. 5 isAU;~ 10" 2%, which implies that the deviations of
torially large number of degenerate configurations in theglue particles from the well bottoms afex<10"° (dashed ling
ground state whose number grows exponentially with the
length of the chain. given by the Fibonacci numbers. For exampleg2)

In fact, our glue particles are lying very close to, Imait =3,(g4)=5,(g2g4)=38, etc.
exactlyat, the bottoms of wells. Actually, they are slightly  The composition rules for the brick construction at any
shifted from the bottoms, and, therefore, the tensiaaisthe  hjerarchical level can be summarized in following way. Sup-
ends of different bricks areotthe same. As a consequence, pose that a given level of hierarchy is composed by two

when we eXChange two different bricks, each brick’s end W|”br|cksA andB, with the |ength ofA smaller tharB. Then the
be slightly distorted. The distortion is proportional to the pricks A’,B’ of the next level can be built as
difference in boundary tensiodsf of the nearby bricks. This

leads to a local change of the chain energy A’=BgAgB B'=BgAgBgAgBg ®)

AU~AU,+AU,, (7)  Letus note that the hierarchical structure of the ground state
has been also considergt8] in the frame of the Ising spin
model to which the FK model can laproximatelyreduced

where AUp~(Af)?/2 is due to the distortion of nearby rq) However, we stress that our composition rules differ
bricks, andAU ;=K (Ax)?/2=(Af)%2K is the change of po- 1Eror]ﬁ those obtained in Ref18]. P

tential energy due to the shift of the glue particle between the | principle, the composition rules just described allow to

bricks. We note that, since glue particle deviations are €xpog g the ground state for a chain of any length. It is also
nentially small and hierarchically ordered, then the corre-

. . . ; lear that for long enough chains one does not need to search
sponding tension differences are also exponentially smaE

“the global minimum of the potential energy. Instead, it is
and ordered. Therefore, the energy change caused by briCkgicient to minimize the energy of bricks up to some hier-

per_mutation depen_ds on the level of the hierarchy insidearchical level: any further optimization goes beyond any rea-
which the permutation is done. The lowest level of the hier-g,, 16 precision. This, however, also means that within the
archy is built by bricks of two types, which consists of two

: . i same precision, the ground state configuration described by
and four particles, respectively. For the sake of brevity, let u ubry is indistinguishable from exponentially marsor-
denote them as 2 and 4. Then a chain that consists of eig

) kredexcited configurations.

particles can be denoted g2g4 (the letterg stands for a
glue particle. The tension difference at this level of the hi- ) . )
erarchy isAf=K Ax~10"L. B. Structure of the excited configurations

The next level of hierarchy has bricks #24g2g4) and The picture of the ground state described above also al-
20=(4929492g4). The brackets are introduced for conve- lows us to understand the structure of excited configurations.
nience, to denote the form of the brick. The tension differ-However, in this case, the structure can be a bit less self-
ence at this level is much smalleAf=K Ax~10"°. Fi-  evident. To illustrate this, in Fig. 7 we plot particles devia-
nally, the third level of the hierarchy is composed in thetions from well bottoms for a configuration from the first
similar way: 54=(20g12920) and 88-(20912920g12920), excited band in the chain shown in Fig. 6. The hull function
with the corresponding tension differencAf=K Ax  for a typical configuration in this band is shown in FigaB
~10"2% With increasing particle number, the above de-The hull function for a typical configuration in the second,
scribed process proceeds in a similar way. A simple estimatthird, and fourth excited bandsee the band structure in Fig.
for the tension difference valid at any hierarchical level, and3 with s=144) is shown in Fig. 8. Contrary to the monotonic
for anyK, can be written asA f ~K exp(—ASmin), wheres,,i,  hull function of the ground state, here the hull function be-
is the number of particles in the smallest brick at the givencomes not monotonic and one can see the overlap between
level of hierarchy and\ is the phonon gap that depends horizontal plateaus.
implicitly on K. Notice that a brick with the addition of the From Fig. 7, we see that for the first two levels of hierar-
glue particle forms an elementary cell, the size of which ischy, the deviations of glue particles from the well bottom are
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With the configuration from the first band they give all pos-
sible different combinations of three bricks 12 and five
bricks 20, which are used in the composition of the ground
state.

The third bandk=3 has the excitation energyU;
=108 This band has too many configurations to be listed
here. Let us, however, mention a new phenomenon that ap-
pears in this band, namely, a brick “chemical” reaction with
dissociation oflarger elementary bricks of the second hier-
archical level,

™ (i-1a Mod 27
20+20—12+28, 20+28—12+36. 9
FIG. 8. The hull function for a typical equilibrium configuration
in the kth excited band foK =2 andr/s=89/144:(a) k=1, (b) k Note, that a “free radical” 8 coming from dissociation
=2, (c) k=3, (d) k=4. The energy band structure is shown in Fig. 20— 12+ 8 is easily captured by other long bricks, so that
3. Compare with the hull function of the ground state shown in Fig.there is a considerable contribution of long commensurate
5. structures. Near the bottom of the band, a typical configura-

tion is g20912929912g20912912g920, while at the top, one
practically the same as in the ground st@tee Fig. 6. How- ~ N12s953912912912912912912. .
ever, at the third hierarchical level the deviations of two glue  The fourth banck=4 has energi\U,=<10"". Here we
particles(below the dashed linébecome considerably larger S€e€ a dissociation of the bricks from the second hierarchical
than the corresponding ones in the ground ste¢e Fig. 6. 'evel,
In order to give an unambiguous definition of bricks, let
us remind that we want to split the chain into bricks, whose

permutations keep the chain configuration inside the samgng appearance of elementary bricks 4 from the first hierar-

band. According to Eq(7), the energy change due to a per- chica| level. Here are some examples of configurations in
mutation, produced by the tension differences between pegnis pand with bricks 4:

muted bricks, can be estimated &8~ (Ax)2. Therefore,

12+20—-4+28, 12+28-4+36,..., (10)

the deviations of glue particles from the bottom between the 020920g28920g1291294920,
bricks is restricted by the conditioAx<(AU,)'? where
AU, is the band energy counted from the ground state. Tak- 012912912928912920g4936, . . . .

ing this condition into account, we can write for the configu- ) . ]
ration shown in Fig. 7 its decomposition into bricks as Further_ steps in the whole picture are stra|ghtf.orvyard. Now
g20g122=g20g(20912920g12920g12920), where the ex- we.outlm.e a S|mple' th(_aory Whlqh turns our gualitative obser-
pansion of the configuration is shown up to bricks of thevations into quantitative predictions for the band energy
second level, 12 and 20. As mentioned above, by brackets w&P€ctrum.
mark the chain fragments in which permutations should be

considered as a single brick, since their destruction results in

the energy change exceeding the bandwidth. _In fact, the construction of bricks is based on the exis-
Let us now discuss the properties of the bricks expansiofence of an intrinsic small parameter that allows to develop a
on the example of a periodical chain withs=89/144 and  gimple rapidly converging perturbation theory. Here we out-
K=2 (see Fig. 3 The first excited bané=1 has the exci- |ine its main elements. Let us consider the FK chain vgith
tation energyAU,~9.16x10 *! and is composed from one particles and fixed ends a,=0 and x,=2xr. Then the
configurationg20g(20912920912920912920) (here we do  |argest brick containa=s— 1 particles. If the glue particles
not count the configurations with a shift along the chain and(i =0,=s) are slightly shifted from the well bottoms, ,
reflection. It is interesting to note that this configuration has < <1 then the brick energy can be written as '
a long commensurate fragme(di23/144.
The second excited bard=2 has energpU,=<10"2 It X2 X3
is composed by three configurations: UM (xq,xp) = U = F 0%+ 0, + + Rgn)§+ Rf)n)j

912920920920912920920912,

C. An analytical approach

—TMx.x,, 11)
a”b

where UV =U(M(0,0) is the unperturbed energfi) and
Rg“t)) are tensions and rigidities at the left/right ends of the
brick, andT(" is the static “transmission” factor along the
brick with n particles. If the brick is symmetric thef{"
=fW=fM and RMW=R{M=RM. The key point of the
theory is that in the presence of a nonzero phononxgahe
transmission factor T is exponentially small: T("

12920g20g20g20g12920g12,

and

920920g20920g920g12912912.
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~exp(—A\n). Therefore, it can be very efficiently used as an 10

expansion parameter in the calculations of the energy band .

spectrum. e
Suppose that at some hierarchical level we have two el- g

ementary brick#\ andB, with lengthsn,<ng. According to EO 54 . L

our rule of brick compositior(8), we can calculate the en- o

ergy of the brickA’=BgAgBas, 2

UAD (Xq,Xp) =min[UB(x5,X;) + UA(X1,X2) + UB (x5, Xp) 1. ad

X1Xp 0 100 200 300 400
(12 s

Then, rewriting Eq(12) in the form (11), we obtain the FIG. 9. The number of equilibrium configuratiohg with ex-
transformation rules for brick parametd®s f, andT. Inthe  citation energy from the ground statJ<2x10 2 as a function
leading order approximation in the small paraméfgthese  of the number of particles in the chain forK=2. The dashed line
rules have the form shows the fitted exponential dependehig=1.78 exp(0.055¢).

RA’ — RA i . . .
' (11), can be insufficient to reproduce with high accuracy, the
B/ B fA deep levels of hierarchical band structure. To this end, one
, TE(F5—17) : .
FA —§B_ ... (13) should take into account _h|gh.er ordgr terms.
RA+RB+K The results presented in this section show that the number
of equilibrium configurations grows very quickly with the
TA(TB)? length of the chain and with the chaos paraméteiThese
configurations form bands that are placed exponentially close
to the ground state. As a result, even in a fixed very small
vicinity of the ground state, the number of configurations
grows exponentially with the chain length. This fact is illus-

A _
(RA+R®+K)?

In the same way foB’ we obtain

RB =RB trated in Fig. 9.
B =fA 1+ (Af), (14) IV. DISCUSSION AND CONCLUSIONS
T8(TATE)?2 In this paper, we studied the properties of equilibrium

B _ static configurations in the Frenkel-Kontorova chain in the
(RA+RB4K)*' regime of pinned phase characterized by phonon gap. This

FK model is rather general and finds applications not only

where the tension differencé\¢)’ =8 —fA" between new for commensurate-incommensurate transition for atoms
bricks A’ andB’ can be expressed through the brick tensionplaced on a periodic substrate but also in many other fields of

difference A f)=fB—fA as physics. In addition, near the equilibrium, also the cases with
TA(TE)2 long range interactions between atoms can be effectively re-

(Af) =— (A). (15) duced to the FK model with only nearest neighbors interac-
(RA+RB+K)? tion. We have shown that energies of equilibrium configura-

tions form a hierarchical band structure so that exponentially
To apply these transformation rules, one needs to knownany configurations become exponentially close to the
the bricks parameters at the lowest hierarchical levelunique ground state. In this respect, the FK model has certain
e.g., for bricks 2 and 4. In this case, the number of particlesimilarities with classical spin glass models, which also are
is small and the expansiofil) can be performed analyti- characterized by existence of exponentially many quaside-
cally. For the caseK=2 considered above, we get generate statd®6]. At the same time, in the FK model the
T(®=0.24, R®=0.454, TW=0.0533, R¥=0.32, and disorder is absent and the quasidegenerate configurations
(Af)@9=0.21. By applying the transformation rules to form a fractal sequence of energy bands, which in a sense
these data, we obtain for the bricks of the next hierarchicatan be considered a dynamical spin glass. On the basis of
level 12 and 20: T(1?=8.86x10° T(9=1.796 extended numerical and analytical investigations, we deter-
X107, (Af)(1220=—-6,93<10°5. The exact numerical mined the low energy excitation inside the quasidegenerate
simulation gives T(2=982x10° T(Y=1.799 bands that have a form of bricks from which the whole chain
X107, (Af)(1220=—716x10 . Starting with exact val- can be composed. On the basis of these results, we have
ues for bricks 12 and 20, the transformation rules give forshown that while the ground state is characterized by regular
bricks 54 and 89, results which are correct within four digitsstructure, the low energy excited configurations are disor-
accuracy. dered due to elementary brick displacements. This means
Therefore, this simple approach can quantitatively explairthat exponentially close to the ground state, there are disor-
the splitting of the whole spectra into bands. Surely, the leaddered configurations that may have rather different physical
ing terms in the small paramet&r as well as the expansion properties compared to the ground state. For example, this
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