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Signatures of the correlation hole in total and partial cross sections
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~Received 3 August 2001; published 24 January 2002!

In a complex scattering system with few open channels, say a quantum dot with leads, the correlation
properties of the poles of the scattering matrix are most directly related to the internal dynamics of the system.
We may ask how to extract these properties from an analysis of cross sections. In general this is very difficult,
if we leave the domain of isolated resonances. We propose to consider the cross correlation function of two
different elastic or total cross sections. For these we can show numerically and to some extent also analytically
a significant dependence on the correlations between the scattering poles. The difference between uncorrelated
and strongly correlated poles is clearly visible, even for strongly overlapping resonances.
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I. INTRODUCTION

Starting from Bohr’s compound nucleus suggestion,
idea of considering the dynamics in the interaction reg
almost separately from the scattering process has b
proven very successful in different fields. Wigner’s R-mat
method@1# gives the formal background to the separation
internal dynamics and ‘‘free’’ motion in the channel spac
Based on this idea we study whether chaoticity or integra
ity of the internal dynamics can be detected in the scatte
data. For this purpose we apply Fourier transform te
niques, which have proved successful in spectral anal
@2–4#, to total and partial cross sections.

To build the scattering ensembles, we shall assume
there are no correlations between channel space and th
ternal structure. This assumption is usually well fulfilled f
systems with topological chaos, while it is often not fulfille
for integrable systems@5#. Nevertheless, we use this assum
tion in order to compare the chaotic and regular case i
direct and minimally biased way. Any differences we th
find are basis independent and minimal in the sense
correlations would usually increase the dissimilarity to t
chaotic case. We, therefore, use orthogonally invariant r
dom matrix models to describe the internal structure. For
chaotic case the choice is obviously the Gaussian orthog
ensemble~GOE! if time reversal symmetry is conserve
Following Berry and Tabor@6# we associate integrability
with a random Poissonian spectrum, thus excluding h
monic oscillators explicitly. For this case the Poisson
thogonal ensemble~POE! was proposed some years ago@7#.
The case of time reversal symmetry breaking can be tre
analogously using the unitary ensembles, but this will not
discussed in the present paper.

We consider three different absorption regimes. Forweak
coupling the resonances are isolated, and conventional s
tral analysis is satisfactory; if we wish we may add an ana
sis of the widths. Then follows what is usually calledstrong
absorption, where we find overlapping resonances, b
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where the individual transmissions from all channels
considerably smaller than one. Next we have the case w
the transmissions are close to one. To differentiate the la
two regimes, we shall speak ofstrong transmissionin this
case. It corresponds to the semiclassical limit, where tun
ing effects become negligible.

For level spectra as well as for intensity spectra, Fou
transform methods and the so-called ‘‘correlation hole’’ ha
been very successful tools to identify the effects of integ
bility and chaos@2–4,8#. Yet it is not clear to what exten
such an analysis remains useful, when the resonances a
longer isolated. An exact theory is only available for tw
point functions of S-matrix elements in the GOE case. T
so-called Verbaarschot-Weidenmu¨ller-Zirnbauer~VWZ! inte-
gral @9# allows to calculate correlation functions of tot
cross sections by means of the optical theorem. In contra
that, we have no such theory in the POE case or for corr
tion functions of partial cross sections. In these cases,
had to fall back on the so-called ‘‘Breit-Wigner’’ approxima
tion @10#, which becomes valid in the weak coupling limi
To extend the validity of this approximation we take adva
tage of the well known fact that the Satchler transmiss
matrix @11# or, in the absence of direct reactions as in o
case, the transmission coefficients are the only way in wh
the coupling strength influences the physically relevant qu
tities. By using the transmission coefficients rather than
coupling constants as input, which amounts to a rescal
we are able to extend the validity of this approximation
the regime ofstrong absorption, where the resonances a
overlapping, but the absorption in each channel is still m
erate.

We perform numerical simulations with two purposes:
check the range of validity of the rescaled Breit-Wigner fo
malism, and to find situations, which show significant diffe
ences between GOE and POE. We will concentrate on F
rier transforms of auto and cross correlation functions, a
we shall see that in particular for the latter the differences
in some cases very promising. In particular we find that cr
correlations between cross sections from different chan
show strong signatures.

In Sec. II we present the model we use. In Sec. III w
introduce the correlation functions of S-matrix elements a
cross sections, our basic tool for the statistical analysis of

t-
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scattering systems. Next we discuss the ‘‘rescaled Br
Wigner’’ approximation in Sec. IV. It allows to get results
closed form for the correlation functions between total
partial cross sections. In Sec. V we derive a twofold integ
expression for the Fourier transform of the VWZ integral@9#.
This simplifies the numerical treatment considerably, an
is used in Sec. VI, to test the validity of the rescaled Bre
Wigner approximation. After these theoretical consid
ations, we turn to the numerical study of the two scatter
ensembles, the POE and the GOE. This is done in Sec.
which is divided into two subsections. The first deals w
correlation functions between total cross sections, and
second with correlation functions between partial cross s
tions. Section VIII contains a short summary.

II. THE SCATTERING ENSEMBLES

We wish to construct scattering ensembles for the t
contrary cases, where the dynamics in the interaction reg
is predominantly integrable, or completely chaotic. We
this under the assumption that the scattering system ma
separated into an internal part restricted to a finite interac
region and an external part described by some super
grable Hamiltonian. Though some complexity may show
in the coupling of the two parts also, i.e., in the mismatch
channel functions and internal functions, the dominant p
of the complexity should be contained in the internal pa
Then the subsystem that describes the complex internal
namics has a discrete spectrum, such that its statistical p
erties can be modeled with an appropriate random ma
ensemble. In order to construct the scattering ensembles
fix the external part and use standard techniques, origin
introduced to describe nuclear compound reactions@12–14#,
to assign to each element from the random matrix ensem
a scattering matrix. Thus we obtain a set of scattering ma
ces provided with the measure inherited from the origi
random matrix ensemble. For simplicity we will denote t
scattering ensembles obtained from the GOE and the PO
the same names whenever there is no danger for confus

To be more precise, we consider complex scattering s
tems with many, possibly overlapping, resonances, where
S matrix can be cast into the following form:

S~E!512 iV†
1

E2H
V, H5H int2

i

2
VV†. ~1!

HereH int is a real, symmetricN3N matrix that describes the
internal dynamics, andV is a realN3M matrix, describing
the coupling to theM channels. The matrixH is the so-called
effective Hamiltonian@15#. In order to arrive at Eq.~1! it is
assumed that the coupling matrix elements between cha
states and internal eigenstates are energy independent@14#.
Furthermore one should either neglect the direct reaction
perform an Engelbrecht-Weidenmu¨ller transformation@16# if
it is necessary to take them into account. The effect
HamiltonianH can be diagonalized, such that its eigenvalu
Ẽj5Ej2 iG j /2 give the positions and widths of the res
nances if they are isolated. In the eigenbasis ofH, the
S-matrix elements can be written as
02621
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Sab~E!5dab2 i(
j 51

N
ṼjaṼjb

E2Ẽj

,

Ṽ5ATV, ATHA5diag~Ẽj !. ~2!

This equation shows that the complex poles of theS matrix
are precisely theN eigenvalues ofH. If the coupling matrix
elements are small enough, their real parts are well appr
mated by the discrete levels ofH int , whereas their imaginary
parts are given by the diagonal elements ofVV†. This
amounts to the Breit-Wigner approximation, which resu
from applying first order perturbation theory to the effecti
HamiltonianH.

In this paper we consider two scattering ensembles:
GOE and the POE. Both are invariant with respect to
thogonal transformations. Hence in the eigenbasis ofH int the
M channel vectors are random orthogonal vectors. In pr
tice, we use independent random vectors with Gaussian
tributed components forV, which are orthogonal only up to
order O(N21). However, as we used relatively large mat
cesN5300, the violation of the orthogonal invariance ha
certainly no noticeable effect on our numerical resu
Hence, for both ensembles the nonzero eigenvalues ofVV†

~given by the norm squared of the column vectors!, and the
level density ofH int are the only independent parameters.

In the GOE case, the elements of the diagonal matrixH int
are distributed according to the joint probability distributio
of the GOE spectrum@17#, so that for largeN, the level
density approaches the semicircle distribution. In the P
case, the elements are independently distributed, and in p
ciple the level density can be of any form. Our main obje
tive is the distinction between both ensembles, based on
observation of correlations. Hence we find it convenient
use the semicircle distribution in the POE case also.

The main theoretical tool for the calculation of correlatio
functions will be the rescaled Breit-Wigner approximatio
introduced in Sec. IV. In fact, it can be applied in much mo
general situations. This is of particular importance for p
tially integrable scattering systems, where the assumptio
orthogonal invariance does often not hold. Then the distri
tion of the matrix elements ofV are typically very different
from simple uncorrelated Gaussian distributions.

In cases as they are studied here, the openness o
scattering system is commonly described, borrowing the
minology from the so-called ‘‘optical model’’~cf. @14# and
references therein!, which was originally developed to de
scribe nuclear compound reactions with two well separa
time scales. Consider the partial cross section in appropr
units, which is given by:sab5udab2Sabu2. Then one defines
the optical partial cross section assab

opt5udab2^Sab&u2,
where the different time scales are used to obtain a w
defined averageS matrix ^Sab& by averaging over an appro
priately chosen energy window. Here^Sab& is simply defined
by the ensemble average, avoiding in this way any arbitr
ness. The openness of the scattering system is then ch
terized by so called ‘‘transmission coefficients,’’ defined f
each entrance channela,
4-2
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SIGNATURES OF THE CORRELATION HOLE IN TOTAL . . . PHYSICAL REVIEW E 65 026214
Ta5^s tot
(a)&2s opt

(a) 512 (
c51

M

u^Sac&u2, ~3!

where s tot
(a)5(c51

M sac is the total cross section, ands opt
(a)

5(c51
M sac

opt is the total optical cross section, with respect
the entrance channela. The unitarity of theSmatrix leads to

s tot
(a)52~12ReSaa!, ~4!

which is sometimes called the ‘‘optical theorem.’’
The scattering ensembles defined above, i.e., the GOE

the POE, are completely characterized by the average l
distanced5(Nr)21 in the center of the spectrum ofH int ,
and the variance of the coupling matrix elements^Via

2 &,
which are independent ofi due to orthogonal invariance
From those we define the following dimensionless coupl
parameters:

ka5
p

2d
^Via

2 &. ~5!

Here and in what follows, the brackets^ . . . & stand for the
ensemble average. As discussed in the Appendix, the ave
S matrix is diagonal. Its diagonal elements, the transmiss
coefficients, and the coupling parameters are related to e
other,

^Saa&5
12ka

11ka
⇔Ta5

4ka

~11ka!2
, ~6!

which is, however, true in the center of the spectrum only~a
more detailed discussion is given in the Appendix!.

As mentioned in the introduction, we distinguish thr
different regimes. Now, these can be defined more quan
tively in terms of the transmission coefficients: The first
the weak absorption regime, where the resonances are
well separated, so that(a51

M Ta!1. Next comes the regime
of strong absorption, where the resonances overlap, bu
transmission from each channel is still small:(a51

M Ta.1,
; a:Ta!1. Note, that this implies in particular, that th
number of channelsM is large. Finally we have the regime o
strong transmission:;a:Ta&1 where the transmissions i
all channels are close to one.

III. CORRELATION FUNCTIONS OF TOTAL AND
PARTIAL CROSS SECTIONS

Correlation functions are our principal tool for the stat
tical analysis of total and partial cross sections. We dis
guish between autocorrelation functions, where one cr
section is correlated with itself, and cross correlation fu
tions, where two different cross sections are correlated w
each other. First we define the correlation functions in g
eral, in order to introduce our notation. Then we use
optical theorem, to relate the correlation function of two to
cross sections to one of corresponding S-matrix eleme
For the latter, the VWZ integral@9# provides the exact resu
in the GOE case. In the POE case an exact result exists
in the one channel case@23#, and we use the rescaled Bre
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Wigner approximation there. For partial cross sections,
exact theory exists at all. In this case, we first use the
called ‘‘diagonal approximation’’ to express the partial cro
sections in such a form, that the rescaled Breit-Wigner
proximation can be applied.

Dealing with matrix ensembles, it is convenient to defi
the correlation functions as ensemble averages, rather
energy averages. Therefore, we eventually have to face
ergodicity question@18#, which is unclear in the POE case
Note, however, that in quantum dot experiments ensem
averages may actually be the relevant ones@19#. We calcu-
late the correlation functions always in the center of the sp
trum ~see Appendix!, where we setE50. Given then two
complex functionsf andg of the energy, we define the co
relation function as follows:

C@ f ,g#~v!5 K f S 2vd

2 DgS vd

2 D L 2 K f S 2vd

2 D L K gS vd

2 D L .

~7!

Hered is the mean level distance in the center of the sp
trum of H int which is assumed to be constant on the sc
where we expect correlations. Note that, there is no unfo
ing involved. The mean level distanced simply serves as a
convenient energy scale. For the discrete spectrum of s
random Hamiltonian:f (E)5( id(E2Ei), the autocorrela-
tion function becomes:C@ f , f * #(v)511d(v)2Y2(v),
whereY2 is the two-point cluster function as defined in Re
@17#.

We will mainly analyze the correlations in the time d
main, and by consequence deal with the Fourier transfo
of correlation functions. In general, we denote the Four
transform of a given function of the energyf (E) by

f̂ ~ t !5F @ f #~ t !5E dve2p ivt f ~vd!, ~8!

where the Fourier transform is taken with respect to the
ergy measured in units ofd, and the factor 2p in the expo-
nent assures proper normalization. For two spectral functi
f andg, the following relation holds:

Ĉ@ f ,g#~ t !5
1

L
$^ f̂ 8~2t !ĝ8~ t !&2^ f̂ 8~2t !&^ĝ8~ t !&%, ~9!

where the functionsf 8(x) and g8(x) are equal tof (x) and
g(x) inside the intervalux/du,L/2 and zero outside, and th
limits N,L→`,L/N→0 are taken. Equation~9! is based on
the convolution theorem@20# applied to the fluctuating part
of the spectral functionsf and g, where the convolution in-
tegral is expressed as a correlation function as in Eq.~7!
assuming stationarity. The limitN,L→` is necessary, to al-
low the correlation function to go to zero quickly enough,
that the Fourier integral of the correlation function is we
defined. The limitL/N→0 serves to obtain stationarity in th
interval where the correlation function is calculated. In p
ticular, the average level~or resonance! density and the av-
erageS matrix should not vary noticeably in this interva
4-3
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Equation~9! is used in the numerical calculation of the co
relation functions. It turned out, thatL5N/2,N5300 already
gives well converged results.

Note that we measure the energy in units of the m
level spacingd. As a result, the argument of a correlatio
function is dimensionless, and so is the argument of its F
rier transform. Nevertheless the latter is denoted byt, as its
significance is still time—though measured in units ofd21.

Total cross sections. Consider the correlation function o
two total cross sectionss tot

(a) ands tot
(b) with possibly different

entrance channelsa andb. As the total cross sections depen
linearly on the respective diagonal S-matrix elements@see
Eq. ~4!# the correlation function can be expressed as follo

C@s tot
a ,s tot

b #5C@Saa1Saa* ,Sbb1Sbb* #52 Re~C@Saa ,Sbb#

1C@Saa ,Sbb* # !52 ReC@Saa ,Sbb* #. ~10!

The correlation function of nonconjugated eleme
C@Saa ,Sbb# vanishes@21#. Relation ~10! is essential, as it
relates experimentally accessible quantities to analytical
sults@9,22,23#. For the Fourier transform of Eq.~10! we get

Ĉ@s tot
a ,s tot

b #~ t !52F ReC@Saa ,Sbb* #~ t !5Ĉ@Saa ,Sbb* #~ t !

1Ĉ@Saa ,Sbb* #~2t !5Ĉ@Saa ,Sbb* #~ t !,

~11!

where it is assumed thatt.0. ThenĈ@Saa ,Sbb* #(2t) van-
ishes, because of its negative argument@24# ~see also Sec
IV A !. For the sake of brevity let us think of a correlatio
function and its Fourier transform as a single object rep
sented in the energy domain and in the time domain, res
tively. and call it simply ‘‘correlation function’’ or ‘‘C func-
tion’’ in either case.

Partial cross sections. Partial cross sections are given b
sab5udab2Sabu2. The theoretical treatment of correlatio
functions of partial cross sections is complicated by the f
that one has to average over a product of four S-matrix
ments. The insertion of the S-matrix elements as given in
~2! leads to a double sum of resonance terms. As an e
analytical treatment seems to be impossible, we employ
diagonal approximation, which consists in retaining the
agonal terms of the double sum only. This is justified
sufficiently weak coupling and leads to

sab'sab8 5(
j 51

N
g jag jb

~E2Ej !
21G j

2/4
, g ja5uṼjau2. ~12!

The right-hand side can be written as the imaginary part
function *ab(E), which has the same pole structure as
S matrix,

sab8 ~E!522 Im*ab~E!,

*ab~E!5(
j 51

N
1

G j

g jag jb

E2Ej1 iG j /2
. ~13!
02621
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Due to the linear relation between the diagonal approxim
tion sab8 and the spectral function*ab , we may again expres
correlation functions of the former by corresponding cor
lation functions of the latter. In fact, we have

C@sab ,scd#~v!'C@sab8 ,scd8 #~v!52 ReC@*ab ,*cd* #~v!.

~14!

It remains to calculate the correlation function of*ab and
*cd* . This will be done in the following section using th
rescaled Breit-Wigner approximation. In order to calcula
the Fourier transform of Eq.~14!, we note that the pole struc
ture of*ab(E) is the same as that of the trueSmatrix, so that
Ĉ@*ab ,*cd* #(2t) is again zero~for t.0). Therefore, we ob-
tain

Ĉ@sab ,scd#~ t !'Ĉ@sab8 ,scd8 #~ t !5Ĉ@*ab ,*cd* #~ t !.
~15!

IV. RESCALED BREIT-WIGNER APPROXIMATION

In this section we calculate the correlation function of tw
arbitrary S-matrix elements using the Breit-Wigner appro
mation, followed by a phenomenological rescaling proc
dure. To this end Eq.~9! is used, which means that w
first calculate the Fourier transform of the respect
S-matrix elements~this can be done exactly!, and then
we average over the resonance parame

$Ej ,G j ,Ṽj 1 , . . . ,ṼjM %1< j <N . The average over the rea
parts of the S-matrix poles$Ej% can still be done in a for-
mally exact manner, but then we have to use the approxi
tion mentioned above, in order to finish the task. To obt
the correlation functions of partial cross sections, the sa
steps have to be done with the matrix elements*ab instead
@see Eq.~13!#.

A. Formally exact treatment

Here, we do all those steps of the calculation which
exact. We first calculate the Fourier transform of o
S-matrix element, using its pole expansion~2!. For t.0, we
get

Ŝab~2t !5
2 i

d (
j 51

N

ṼjaṼjbE
2L/2

L/2

dv
e22p ivt

v2
Ej2 iG j /2

d

5
2 i

d (
j 51

L

ṼjaṼjbe22p iEj t/de2pG j t/d. ~16!

Here it was used, that the poles with real parts outside
integration region do not contribute to the Fourier transfor
and for those inside, it is well justified to extend the integ
tion up to infinity becauseG j /L!1.

In the same way, we may obtain an analogous expres
for Ŝcd(t). The Fourier transforms of the average S-mat
elements are taken into account in the numerical calcula
only. Here by contrast, we notice that the average S-ma
elements are almost constant in the integration inter
4-4
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which means that in the limitN,L→` their Fourier trans-
forms will becomed functions situated att50. Thus they
play no rôle in the current calculation which is restricte
to t.0. Note that we may defineĈ@Sab ,Scd* #(0)

5 limt→0Ĉ@Sab ,Scd* #(t). Inserting the expressions forŜab

(2t) andŜcd* (t) into Eq. ~9! and ignoring the Fourier trans
forms of the average S-matrix elements, we obtain

Ĉ@Sab ,Scd* #~ t !5
1

d2L
(

j ,k51

L

ṼjaṼjbṼkc* Ṽkd*

3exp@22p i~Ej2Ek!t/d#e2p(G j 1Gk)t/d

5
1

d2
$^ṼjaṼjbṼjc* Ṽjd* e22pG j t/d&1~L21!

3^ṼjaṼjbṼkc* Ṽkd* e2p(G j 1Gk)t/d

3exp@22p i~Ej2Ek!t/d#&%. ~17!

As the ensemble average is invariant for any permutation
the resonance indices, the double sum can be evaluate
the final expression the resonance indicesj Þk are arbitrary.
Note thatĈ@Sab ,Scd* #(t) vanishes fort,0, because in this

case both Fourier transformsŜab(2t) and Ŝcd* (t) vanish, as
can be easily seen by applying the residue theorem~cf. also
@24#!.

At last, we average formally over the real parts$Ej% of
the S-matrix poles. For fixed values of the partial amplitud
and the total widths, the average over2L exp@22pi(Ej
2Ek)t/d# for L→` gives the two-point form factor@17# of
the random sequence$Ej%, which we denote byb̃2(t). In
general,b̃2(t) still depends on the parameters fixed. In t
weak coupling limit, however, the positions of the res
nances on the one hand, and the partial amplitudes and
widths on the other hand, become statistically independ
so thatb̃2(t) converges to the two-point form factor of th
closed system. After all we may write

Ĉ@Sab ,Scd* #~ t !5
1

d2
$^ṼjaṼjbṼjc* Ṽjd* e22pG j t/d&

2^ṼjaṼjbṼkc* Ṽkd* e2p(G j 1Gk)t/db̃2~ t !&%.

~18!

This is so far an exact but rather formal result. However
clearly shows that the correlation function is no direct m
sure for spectral correlations. The first term in Eq.~18!,
which may very well dominate the correlation function, co
tains the parameters of only one single resonance. There
it cannot describe correlations between different resonan
that are the ones we are really interested in. It is typicall
monotonously decreasing function, where the decay is g
erned by the average width of the resonances. It is the se
term in Eq.~18!, which contains the parameters of two d
ferent resonances. It vanishes completely if there are no
relations between them. For our investigations it is import
02621
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to find situations, where the first term is relatively small,
that one may retrieve as much information as possible on
correlations between different resonances.

B. Approximation

In order to evaluate the remaining averages in Eq.~18! we
have to introduce some approximations. To this end, cons
the weak coupling limit:; a: ka→0. Using first order per-
turbation theory in the expression for theS matrix, Eqs.~1!
and~2!, we get thepure Breit-Wigner approximation for the
S matrix,

Sab~E!'dab2 i(
j 51

N
VjaVjb

E2« j1 i(
c

Vjc
2 /2

. ~19!

This amounts to make the following replacements in the p
expansion of the S-matrix~2!,

Ṽja→Vja , G j→(
c51

M

Vja
2 , Ej→« j , ~20!

where « j are the eigenvalues ofH int . Hence, in order to
obtain the correlation functions in the Breit-Wigner appro
mation, we simply do the same replacements in Eq.~18!.
Then the partial amplitudes become real uncorrelated Ga
ian random variables, the total widths become simple fu
tions of the partial amplitudes, andb̃2(t) becomes the two-
point form factorb2(t) of the spectrum ofH int :

Ĉ@Sab ,Scd* #~ t !'
1

d2 H KVjaVjbVjcVjde22p(
c

Vjc
2 t/dL

2 KVjaVjbVkcVkde
2p(

c
(Vjc

2
1Vkc

2 )t/dL
3b2~ t !J . ~21!

The remaining Gaussian averages are relatively simple
that in many cases the respective correlation function can
calculated in closed form. Note that the averages are dif
ent from zero, only if all partial amplitudes appear in ev
powers.

Unfortunately, the pure Breit-Wigner approximation drif
quickly away from the exact result, as the coupling to t
continuum increases. The following phenomenological p
cedure improves the approximation considerably. It cons
in rescaling the variance of the partial amplitudes as follow

^Vja
2 &→

^Vja
2 &

~11ka!2
. ~22!

We call the result the ‘‘rescaled Breit-Wigner’’ approxima
tion. As shown in Ref.@26#, it leads to partial fluctuating
cross sections of the Hauser-Feshbach type@27#, showing
elastic enhancements of 2~GOE case! and 3 ~POE case! in
agreement with earlier theoretical results@28,25,29#. The oc-
currence of Ericson fluctuations@30# with the correlation
4-5
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length GC5d(a51
M Ta /(2p) is also correctly described. In

Sec. V it is shown that in the time domain this approximati
gives results for the correlation functions between S-ma
elements which become exact ast→0.

Note that the rescaled Breit-Wigner approximation can
applied in a wide range of situations, while it conserves
simplicity of the pure Breit-Wigner approximation. Th
makes it a valuable tool for the statistical description of co
plex scattering systems. This approximation can be justi
to some extent with the following reasoning: It is we
known, that the properties of a scattering system are de
mined by the Satchler transmission matrix@11#, if the entire
process is occurring on two different time scales, one as
ciated with direct processes and one with long time proce
also called compound processes in Nuclear physics
the absence of direct reactions or after an Engelbre
Weidenmu¨ller transformation@16#, this implies the depen
dence on the transmission coefficients only. They are dire
related to the variances of the partial amplitudes as m
tioned above. The rescaled approximation thus implies
we use the transmission coefficients of the system rather
the coupling constants. This can be viewed as a nonpe
bative input, or as using phenomenological parameters.

Total cross sections

According to Eq.~11!, the C function between two tota
cross sections is equal to the C function between the res
tive diagonal S-matrix elements. HenceĈ@s tot

(a) ,s tot
(b)#(t) is

given by the rhs of Eq.~18! settingb←a andd←c←b. In
order to calculate this C function in the rescaled Bre
Wigner approximation, we use the Eqs.~5! and~6! to express
the ensemble averages as integrals over normalized squ
amplitudesg1 , . . . ,gM ,

Ĉ@s tot
(a) ,s tot

(b)#~ t !'TaTb$^gagbe2Gt&2^gae2Gt/2&

3^gbe2Gt/2&b2~ t !%, ~23!

with G5(c51
M Tcgc . The normalized squared amplitudesgc

are distributed as the random variablesVia
2 /^Via

2 &, i.e., they
are Porter-Thomas distributed@31#

p~gc!5
1

A2pgc

e2gc/2, c51, . . . ,M . ~24!

Now, the remaining averages in Eq.~23! can be calculated
easily@26#. For the auto C function of the total cross secti
we get

Ĉ@s tot
(a)#~ t !'Ta

2H 3~112Tat !25/2)
cÞa

~112Tct !
21/2

2~11Tat !23)
cÞa

~11Tct !
21b2~ t !J . ~25!

Note, that this result is very similar to the result of Ref.@32#
for the spectral autocorrelation function of the photodissoc
tion cross section in weakly coupled chaotic systems~there
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the rescaling is used also, though without mentioning it; n
that these authors obtain a rescaled formula for their spe
case directly as an approximation to exact results@33#!. For
the cross C function of two different total cross sections,
get:

Ĉ@s tot
(a) ,s tot

(b)#~ t !'TaTbH ~112Tat !23/2~112Tbt !23/2

3 )
cÞa,b

~112Tct !
21/22~11Tat !22

3~11Tbt !22 )
cÞa,b

~11Tct !
21b2~ t !J .

~26!

In what follows, we assume that all coupling strengths
equal:; a: k5ka ,T5Ta . For convenience, the numerica
analysis~Sec. VII! is restricted to this case only. The Eq.~25!
and Eq.~26! simplify considerably and can be combined in
a single one:

Ĉ@s tot
(a) ,s tot

(b)#'T2$~112dab!~112Tt!222M /2

2~11Tt!222Mb2~ t !%. ~27!

To lowest order in the transmission coefficientT the rhs be-
comesT2@112dab2b2(t)# in agreement with results on in
tensity weighted stick spectra@4,8# and the asymptotic be
havior of the exact analytical result for the GOE case@see
Eq. ~56! in Sec. V#. The difference in the C function at sma
times between GOE and POE is known as the correla
hole. In order to quantify it, we use its size att50 relative to
the maximal size of the C function in the POE case. Fr
Eq. ~27! it follows that the correlation hole is 1/3 in the cas
of the auto C function (a5b), while it is one in the case o
the cross C function (aÞb).

Partial cross sections

According to Eq.~15!, the C function of two partial cross
sections in the diagonal approximation is equal to the
function of the matrix elements*ab and*cd* , defined in Eq.
~13!. Following the same lines as in the case of the tr
S matrix, we arrive at the following expression for the latt
C function:

Ĉ@*ab ,*cd* #~ t !'
4p2

d2 H K g1ag1bg1cg1d

G1
2

e22pG1t/dL
2 K g1ag1b

G1

g2cg2d

G2
e2p(G11G2)t/db̃2~ t !L J ,

~28!

which is the analog of Eq.~18!. To this expression we can
apply the rescaled Breit-Wigner approximation. The par
widths g ja , are replaced by Porter-Thomas distributed ra
dom variables with average value^g ja&5Tad/(2p), the to-
tal widths become the sums of the partial widths, and
4-6
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two-point form factorb̃2(t) becomes the two-point form fac
tor of the spectrum ofH int . Thus we get

C@sab ,scd#~ t !'TaTbTcTdH K gagbgcgd

G2
e2GtL

2 K gagb

G
e2Gt/2L K gcgd

G
e2Gt/2L b2~ t !J ,

~29!

where G5(cTcgc . The ensemble average can be p
formed, using the following identities:

G21e2aG5E
a

`

da8e2a8G,

G22e2aG5E
a

`

da8E
a8

`

da9e2a9G, a.0. ~30!

Exchanging the integration ona8 anda9 with the ensemble
average, we can do the ensemble average analytically,
we are only left with the integrals over the auxiliary variabl
a8 anda9. With the exception of some special cases, th
integrals have to be evaluated numerically~for details, see
Ref. @26#!. In the case of equal coupling strengths, howev
we obtain the following analytical expression:

Ĉ@sab ,scd#~ t !'
T2

~21M !2 H ~112/M !2

~116/M !~114/M !
A

3~112Tt!222M /2

2B~11Tt!222Mb2~ t !J . ~31!

Here,A andB depend on the actual combinations of part
widths in Eq.~29!, i.e., whether any of the channels involve
coincide or not. The following cases occur in the pres
paper:

The autocorrelation function:Ĉ@sab#:A59196dab ,B
5118dab .

The cross correlation function between two different el
tic cross sections:Ĉ@saa ,sbb#:A59,B59.

The cross correlation function between an elastic and
inelastic cross section:Ĉ@saa ,sab#:A515,B53.

According to Eq.~31!, the coefficientsA andB determine
the relative depth of the correlation hole in the limit of ma
channels M→`. The prefactor (112/M )2/@(116/M )(1
14/M )# in front of A may, however, lead to a considerab
deeper correlation hole, as long asM is not too large.

For M→` and MT fixed, the algebraic decay in Eq
~31! turns into an exponential one: (112Tt)222M /2,(1
1Tt)222M→exp(2MTt). This means, that we obtain Eric
son fluctuations@30# in this limit. The reason for the occur
rence of Ericson fluctuations can be understood from
~29!: Only in the case of many channels and small transm
sion coefficients, does the central limit theorem lead to n
02621
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ligible fluctuations of the total width around its averag
value. Then we may treatG as a constant, which leads im
mediately to the expected exponential decay. Note that
implies that Ericson fluctuations are no reliable signature
chaotic scattering, because the central limit theorem m
work, even if the partial amplitudes are not Gaussian dist
uted, thus leading again to Ericson fluctuations. In suc
situation, the deviation from the exponential decay due
b2(t), would be the only reliable signature of the chao
dynamics.

V. THE FOURIER TRANSFORM OF THE VWZ
INTEGRAL

In this section we derive a general formula for the Four
transform of the VWZ integral@9#. This allows to obtain
quasiexact results for the correlation functions of total cr
sections in the GOE case. We need these results, in ord
check the accuracy of the rescaled Breit-Wigner approxim
tion. Apart from that it will turn out, that numerically it is
much easier to calculate the Fourier transform than the or
nal VWZ integral,

C@Sab ,Scd* #~v!

5
1

8E E
0

`

dl1dl2E
0

1

dl

3
l~12l!ul12l2ue2 ipv(l11l212l)

Al1~11l1!l2~11l2!~l1l1!2~l1l2!2

3)
e51

M
12Tel

A~11Tel1!~11Tel2!
$dabdcdDaDc

1~dacdbd1daddbc!Pab%,

Da5TaA12TaS l1

11Tal1
1

l2

11Tal2
1

2l

12Tal D ,

Pab5TaTbS l1~11l1!

~11Tal1!~11Tbl1!
1

l2~11l2!

~11Tal2!~11Tbl2!

1
2l~12l!

~12Tal!~12Tbl! D . ~32!

The main interest in the VWZ integral has been the calcu
tion of average fluctuating cross sections@21,34–36#, which
corresponds to the casev50 in Eq.~32!. Only a few papers
treat thev dependence of the VWZ integral@37,24,38#, and
even then the analysis was usually restricted to partic
limits such asv→0 (t→` in the time domain!, or many
channels:M→` and Ericson fluctuations. Quite often th
existence of the correlation hole was simply ignored.

In the present analysis, the correlation hole and its dep
dence on the coupling strengths is of great importance.
needed to distinct regular from chaotic dynamics. Therefo
we will analyze the Fourier transform of the VWZ integral
4-7
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some detail. We will also observe the behavior of the cor
lation hole in the limits:t→0 ~Sec. V A! and ;a:Ta→0
~Sec. V B!.

Let us start our derivation by applying the Fourier tran
form ~8! to Eq.~32!. We exchange the Fourier integration o
v with the integrals onl,l1, andl2. For the Fourier inte-
gration we then simply need to calculate

E dv exp$2p iv@ t2~l11l212l!/2#%

5d@ t2~l11l212l!/2#. ~33!

The d function can be used to remove thel integral. To the
remaining double integral, the following transformations a
applied:
f

a
e
st

02621
-

-

e

l1 ,l2→r 5
l11l2

2
, s5l22l1

followed by s→x5r 22s2/4. ~34!

This leads to

Ĉ@Sab ,Scd* #~ t !5
1

4Emax(0,t21)

t

dr ~ t2r !~r 112t !

3)
e51

M

@12Te~ t2r !#U~r !, ~35!

where
U~r !52E
0

r 2

dx
dabdcdDaDc1~dacdbd1daddbc!Pab

~ t22r 21x!2Ax~x12r 11!A)
e51

M

~112Ter 1Te
2x!

, ~36!

Da52TaA12TaS r 1Tax

11Ta~2r 1Tax!
1

t2r

12Ta~ t2r ! D , ~37!

and

Pab52TaTbS TaTbx21@TaTbr 1~Ta1Tb!~r 11!21#x1r ~2r 11!

~112Tar 1Ta
2x!~112Tbr 1Tb

2x!
1

~ t2r !~r 112t !

@12Ta~ t2r !#@12Tb~ t2r !# D . ~38!
ven
-

er-

r

In order to remove the 1/Ax singularity in the integrand o
U(r ), we substitute consecutively,

x5~y21!b/2, y5~z1z21!/2, z52u11

where b5112r , ~39!

which gives

U~r !54E
0

r du

2u11

dabdcdDaDc1~dacdbd1daddbc!Pab

~ t22r 21x!2A)
e51

M

~112Ter 1Te
2x!

,

x5
bu2

2u11
. ~40!

The Eqs.~35! and~40! together with Eq.~37!, ~38! form our
final result for the correlation functionĈ@Sab ,Scd* #(t) @it is
understood, to replacex by bu2/(2u11) wherever it oc-
curs#. One may readily use these formulas for numerical c
culations. All problematic singularities have been remov
from the integration region. Our result if followed by a fa
l-
d

Fourier transformation back to the energy domain, may e
be a quite efficient way of computing the original VWZ in
tegral.

Figures 1 and 2 show examples of the Fouri

FIG. 1. The exact result~35! for the autocorrelation function

Ĉ@s tot#(t) divided byT2. While k50.1 is kept fixed, the numbe
of channels is varied:M52 ~solid line!, M53 ~long dashed line!,
M510 ~short dashed line!, M520 ~dotted line!, andM540 ~long
dotted line!.
4-8
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SIGNATURES OF THE CORRELATION HOLE IN TOTAL . . . PHYSICAL REVIEW E 65 026214
transformed auto and cross correlation functions of the t
cross section, calculated with the help of Eq.~35!, etc. The
coupling strength for all channels was fixed to the valuek
50.1, while the number of channelsM was varied. The
qualitative features of the C functions are almost the sa
for anyM. In the first place,M determines the falloff at large
times. Note, however, that in the case of extremely sm
total transmission, we would obtain a ‘‘true’’ correlation ho
at t50 ~i.e., a positive slope!. See also the related discussio
below Eq.~27!# which is concerned with the rescaled Bre
Wigner result. In all, it permits us to restrict the numeric
studies~Sec. VII! to the caseM52.

Figure 1 shows the autocorrelation function divided
T2, which starts att50 with the value 2, independent of th
number of channels. It decays with time, the larger the nu
ber of channels, the faster. This is very reasonable, as
decay must be related to the total transmission(aTa5MT.
Note that there is no qualitative signature~positive slope at
t50) of the correlation hole.

In Fig. 2 the cross correlation function is shown, whi
starts att50 with zero. It increases linearly with time, and
seems that now the slope is independent of the numbe
channels. At large times, the cross C function must go to z
in the same way as the auto C function shown in Fig.
Hence, after reaching a maximum that decreases and m
to the left with increasingM, the cross C function decays t
zero. Therefore, we see a clear signature of the correla
hole.

To conclude this section we will consider two differe
asymptotic limits: First we will prove, that fort→0 the
asymptotic behavior of the various C functions is indep
dent of M. Second we will show with very high numerica
precision, that for small transmission coefficients,;a: Ta
→0, the cross C functions coincide~if properly normalized!
with the two-level form factorb2(t) for the GOE.

A. The limit of small times

In the limit t→0, the Eq.~35! can be approximated by

FIG. 2. As in Fig. 1, but for the cross correlation functio

Ĉ@s tot
a ,s tot

b #(t) divided byT2.
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Ĉ@Sab ,Scd* #~ t !;
t2

4E0

1

d%~12% !U~ t% !

5
1

4E0

1

d%~12% !Ũ~% !, ~41!

whereŨ(%)5t2U(tr). Hence settingr 5tr in Eq. ~40! the
following limits can by taken:b;1, 2u11;1, andx;u2.
Then substitutingu5tv we get

Ũ~% !;
4

t E0

1

dv@dabdcdDaDc1~dacdbd1daddbc!Pab#

3F ~12%21v2!2A)
e51

k

~112Tet%1Te
2t2v2!G

;
4

t E0

1

dv
dabdcdDaDc1~dacdbd1daddbc!Pab

~12%21v2!2
.

~42!

To lowest order~37! and ~38! simplify also,

Da;2TaA12Tat~11Tatv2!;2TaA12Tat ~43!

Pab;2TaTbt@11~Ta1Tb21!tv2#;2TaTbt. ~44!

This shows, that if the C function contains theD-term only,
we get a linear increase starting att50, whereas if it con-
tains theP term also, we get a finite value att50, but no
valid value for the slope. The slope in the first case and
finite value in the second are both determined by the sa
integral I 1

Ĉ@Sab ,Scd* #~ t !;@4dabdcdTaTcA~12Ta!~12Tc!t

12~dacdbd1daddbc!TaTb#I 1 , ~45!

I 15E
0

1

d%~12% !E
0

1 dv

~12%21v2!2

5E
0

1

d%~12% !F 1

2p3
arctanS %

p D1
%

2p2G , ~46!

wherep2512%2. Splitting I 1 into two parts and substituting
x5arctan(%/p) in the first one, we can evaluateI 1 analyti-
cally,

I 15
1

2E0

p/2

dx
x

11sinx
1

1

2E0

1

d%
%

11%

5
ln 2

2
1

12 ln 2

2
5

1

2
. ~47!

In order to contain theD term only, the C function must be
of the form:Ĉ@Saa ,Sbb* # with aÞb. Then its asymptotic be-
havior is
4-9



.
n
n
n
an
ge
ta

t
tio
-

r C

der

he
ar-
tion
es.
reit-
the
his
tion

se
ons
-
-
ons

d

led

se.

T. GORIN AND T. H. SELIGMAN PHYSICAL REVIEW E65 026214
Ĉ@Saa ,Sbb* #;2TaTbA~12Ta!~12Tb!t. ~48!

If the C function is of the formĈ@Sab ,Sab* #5Ĉ@Sab ,Sba* #,
then it contains theP term also. In this case we get

Ĉ@Sab ,Sab* #~0!5~11dab!TaTb . ~49!

These results confirm our observations in Fig. 1 and Fig
The cross correlation function of two total cross sectio
vanishes att50. This holds for all values of the transmissio
coefficient. Moreover, the slope only depends on the tra
mission coefficients of the entrance and exit channels,
thus does not change if the number of channels is chan
In contrast to that, for the autocorrelation function of a to
cross section we get:Ĉ@s tot

(a)#(0)52Ta
2 . Again this value

does not depend on the number of channels.
Comparing the asymptotic results~48! and ~49! to the

rescaled Breit-Wigner approximation~27! we find agreemen
in lowest order—for the slope in the case of cross correla
functions, and for the value att50 in the case of auto cor
relation functions.

B. The limit of small transmission coefficients

In the case; a: Ta→0, the Eq.~35! and Eq.~40! sim-
plify to

Ĉ@Sab ,Scd* #~ t !;
1

4Emax(0,t21)

t

dr ~ t2r !~r 112t !U~r !,

~50!

where

U~r !;4E
0

r du

2u11
@dabdcdDaDc1~dacdbd1daddbc!Pab#

3S t22r 21
bu2

2u11D 22

. ~51!

In the same limit, the expressions forDa ~37! and for Pab
~38! become

Da;2Tat

Pab;2TaTbF ~ t2r !~r 112t !1r ~2r 11!2
bu2

2u11G .
Defining the two integrals

I 25E
0

r

du
2u11

@~ t22r 2!~2u11!1bu2#2
, ~52!

I 35E
0

r

du
u2

@~ t22r 2!~2u11!1bu2#2
, ~53!

the asymptotic limit ofU(r ) can be written as
02621
2.
s

s-
d
d.
l

n

U~r !;8$2dabdcdTaTct
2I 21~dacdbd1daddbc!

3TaTb@~r 212tr 1t2t2!I 22bI3#%. ~54!

In order to keep the discussion short, we shall conside
functions of the typeĈ@Saa ,Sbb* # only. Then we only need to
calculateI 2. Defining p25t22r 2 andR25b2p2, I 2 can be
written as follows:

I 252
1

2p
]pE

0

r du

bu212p2u1p2

52
1

2p
]p

1

pRS arctan
br1p2

pR
2arctan

p

RD
5

R22p2

2p3R3 S arctan
br1p2

pR
2arctan

p

RD2
r ~r 11!

2t2p2R2

5
R22p2

2p3R3
arctan

rR

~r 11!p
1

r ~r 11!

2t2p2R2
. ~55!

Inserting Eq.~54! into ~50!, we get the following result for
Ĉ@Saa ,Sbb* #:

1

TaTb
Ĉ@Saa ,Sbb* #~ t !;4t2E

max(0,t21)

t

dr ~ t2r !~r 112t !I 2 ,

~56!

where I 2 is given in Eq.~55!. We have evaluated Eq.~56!
numerically and compared to the expected result 12b2(t),
for the discrete GOE spectrum. The difference is of the or
of the machine precision ('10211) for any value oft.

VI. TEST OF THE RESCALED BREIT-WIGNER
APPROXIMATION

The aim of the present paper is actually twofold. In t
first place, we analyze correlation functions of total and p
tial cross sections, to search for signatures of the correla
hole, in particular in the regime of overlapping resonanc
In the second place we wish to establish the rescaled B
Wigner approximation as a simple and general tool for
analysis of correlations in different scattering situations. T
section is devoted to the latter, whereas the the correla
hole will be studied in Sec. VII.

We use the rescaled Breit-Wigner approximation in tho
cases, where no exact theory is available, i.e., for C functi
of partial cross sections~where we need the additional diag
onal approximation! and for C functions of total cross sec
tions, in the POE case. In this section we use the C functi
of total cross sections in the GOE case~for which we have
exact analytic results! to check the validity of the rescale
Breit-Wigner approximation.

The Figs. 3–6 show the difference between the resca
Breit-Wigner approximation~27! and the exact result~35!
for C functions of the total cross section in the GOE ca
This is done for different numbers of channels~Fig. 3 and
Fig. 5!, and for different coupling strengths~Fig. 4 and Fig.
4-10
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6!. As the error of the rescaled Breit-Wigner approximati
is zero for t50 ~see Sec. V A!, all curves for the auto and
cross C functions begin at zero. In the case of the aut
function the rescaled Breit-Wigner approximation mostly u
derestimates the exact result. In particular at small times
get maximal deviations, which decrease again ast→`. In
the case of cross C functions the error curves depend
more irregular way on the number of channels or on
coupling strength. Though the error is of comparable size
all cases, the error curves att→0 seem to behave linearly i
the case of the auto C functions and quadratically in the c
of the cross C-functions~in agreement with our theoretica
expectations; see Sec. V A!. Yet the cross C function van
ishes fork51, while the approximation does not and mu
therefore, be considered with great reservations. In gen
the error is rather an absolute then a relative one. We m
say that the rescaled Breit-Wigner approximation wo
quite well up tok50.1, and that for largerk the approxima-

FIG. 3. Difference between the rescaled Breit-Wigner appro
mation ~27! and the exact result~35! for the autocorrelation func-

tion Ĉ@s tot#(t) divided byT2. The coupling strength is kept fixe
k50.1, and the number of channels is varied:M53 ~solid line!,
M510 ~long dashed line!, M520 ~short dashed line!, andM540
~dotted line!.

FIG. 4. As in Fig. 3, but here, the number of channelsM52 is
kept fixed, and the coupling strength is varied:k50.01~solid line!,
k50.03 ~long dashed line!, k50.1 ~medium dashed line!, k50.3
~short dashed line!, andk51 ~dotted line!.
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tion still behaves qualitatively well except for the cross
function for k51.

In Fig. 7, we compare the rescaled and the ordinary Br
Wigner approximation. The latter is obtained by undoing t
rescaling and replacingT by 4k in Eq. ~27!. As we have no
exact theory in the POE case@Fig. 7~b!#, we use numerical
Monte Carlo data instead~cf. Sec. VII!. The data may be
considered as exact up to the small fluctuations, seen in
data points. Though the resonances are well separated fk
50.1 which is used here, the pure Breit-Wigner approxim
tion is already far off the exact result, in particular at sm
times. This is true for the GOE case shown in Fig. 7~a!, as
well as for the POE case in Fig. 7~b!. In fact, the rescaled
Breit-Wigner prediction in the GOE case is much closer
the POE case, which makes it practically impossible to d
tinguish between correlated and uncorrelated spectra. N
that the auto C function shown here, is monotonously
creasing without showing any qualitative sign of the corre
tion hole.

The rescaled Breit-Wigner approximation by contrast,
produces the exact values of the C function att50 in the
GOE and apparently also in the POE case. This allows
detect the correlation hole if present, at least in princi

i- FIG. 5. As in Fig. 3, but for the cross correlation functio

Ĉ@s tot
a ,s tot

b #(t) divided byT2.

FIG. 6. As in Fig. 4, but for the cross correlation functio

Ĉ@s tot
a ,s tot

b #(t) divided byT2.
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T. GORIN AND T. H. SELIGMAN PHYSICAL REVIEW E65 026214
~absolute cross sections must be available with sufficient
curacy!. Though the rescaled Breit-Wigner approximati
underestimates the auto C function at intermediate time
the GOE case@Fig. 7~a!#, it agrees very nicely with the nu
merical data in the POE case@Fig. 7~b!#.

It seems that the rescaled Breit-Wigner accounts very w
for uncorrelated resonances that diffuse independently
the complex plane~similar to what one would expect from
an effective mean field theory!. For resonances which ar
strongly correlated from the very beginning, the dynamics
the resonances is more complicated, and the rescaling pr
dure cannot fully account for that. However, in cases wh
deviations of a few percents~of the maximal C-function
value! are still acceptable, the rescaled Breit-Wigner a
proximation can be applied up to quite large coupli
strengths, which reach well into the strong absorption
gime. While it is convenient to consider the absolute erro
small times~in the correlation hole region!, the relative error
is more appropriate at large times, i.e., in the tails of the
function. The latter apparently scales with the total transm
sion (a51

M Ta ~we have checked this separately!, in line with
earlier theoretical work@34#.

VII. NUMERICAL ANALYSIS: GOE VERSUS POE

Here we perform Monte Carlo simulations for correlati
functions of partial and total cross sections. The aim is

FIG. 7. The auto C functionĈ@s tot#(t) divided by T2 for M
52 andk50.1. The long dashed line is the rescaled Breit-Wign
approximation~27!, and the short dashed line is the ordinary Bre
Wigner approximation~details see text!. In ~a! we show the GOE
and in~b! the POE case. The solid line in~a! shows the exact resul
~35!, whereas the crosses in~b! show numerical Monte Carlo cal
culations.
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distinguish the situations, where the internal Hamiltonian h
a purely random spectrum~POE!, from those where it has a
spectrum with correlations~GOE!. We restrict the analysis to
coupling strengths 0,k<1 that covers the whole range fo
the transmission coefficient. As discussed amongst other
Refs. @7,39,40# the scattering ensemble may show quite
different behavior whenk@1. The results are presented fo
two open channels. Calculations for larger channel numb
have been performed, but they show no significantly diff
ent behavior. In the case of total cross sections and GOE,
can be seen from the results for the VWZ integral obtained
Sec. V~see for example Fig. 1!. In the other cases, i.e., PO
or partial cross sections, the rescaled Breit-Wigner appro
mation gives the same answer@see Eq.~31!#. In all cases the
number of channels merely enters as a scale factor.

The numerical data are obtained using Eq.~9!, i.e., we
calculate the Fourier transforms of the two cross section
question and then take the ensemble average~400 runs! over
their ~complex conjugated! product. Finally the product of
the average cross sections is subtracted to eliminate the
at t50. The dimension of the effective HamiltonianH @see
Eq. ~1!# is N5300. Where the resulting data are smooth
this is done using ax2 fit to a natural cubic spline. The
length of its curve segments was 28 points that correspo
to Dt'0.26@41#. From the spline, 150 equidistant points int
are finally plotted. Note, that there is no free fit parame
and the curves are not normalized. The factorT2 by which
we divide, is directly determined from the input parameterk,
using Eq.~6!.

A. Total cross sections

We start the numerical analysis with auto and cross c
relation functions of total cross sections. While this case
relatively easy to handle in theory, it is usually very difficu
to obtain total cross sections from an experiment, in parti
lar if two independent total cross sections are needed.

Autocorrelation functions

As a starting point consider the correlation hole@2# in the
Fourier transform of a discrete energy spectrumĈ(t);1
2b2(t), that distinguishes the GOE from a purely rando
spectrum~POE!. In the limit of vanishing couplingk→0,
the auto C functionĈ@s tot#(t) divided byT2 converges not
to Ĉ(t), but toĈ(t)12. The reason is that the resonances
weighted by Porter-Thomas distributed intensities~or partial
widths! @4,8#, which leads to a reduced correlation hole
1/3.

Figure 8 showsĈ@s tot#(t)/T
2, for the GOE and the POE

case. We find the behavior described above, but with
difference, that due to the finite couplingĈ(t) must be mul-
tiplied with roughly an exponential decaying function. In th
four panels~a!–~d!, the the coupling parameter is increas
from k50.03 tok51. In the GOE case the numerical resu
are compared with the exact theory, Eq.~35!, but in the POE
case we are dependent on the rescaled Breit-Wigner app
mation, Eq.~27!. We find perfect agreement for the GO
which shows that the numerical Monte-Carlo calculation

r
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FIG. 8. The autocorrelation function of the total cross section divided byT2. The GOE versus the POE case, for coupling streng
k50.03~a!, k50.1 ~b!, k50.3 ~c!, andk51. ~d!. The circles show the smoothed numerical GOE data; the crosses the equally treate
data. In all cases~a!, . . . ,~d! the exact VWZ integral is used for the GOE theory~solid line! and the rescaled Breit-Wigner approximatio
for the POE~dashed line!.
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reliable. Interestingly the rescaled Breit-Wigner approxim
tion describes the POE data almost as well. Only fork51
we find minor deviations at intermediate times. This re
firms, that the rescaled Breit-Wigner approximation is b
suited for cases where the correlations are relatively wea

Cross correlation functions

Let us again think of a discrete stick spectrum where
levels are weighted by intensities~or partial widths!. In order
to calculate the C function between two spectra related
different channels, it is reasonable to assume that the p
tions of the resonances are the same, but the correspon
intensities are uncorrelated. Then this cross C function
comesĈ(t);12b2(t), i.e., we obtain the full correlation
hole @42# ~see also the Eqs.~23!–~27! and the following dis-
cussion!. For the GOE case, this has been shown numeric
in Sec. V B.

In Fig. 9 we show numerical and theoretical results for
cross C function. In the GOE case we plot the numeri
results together with the exact theory, Eq.~35!, and we find
again perfect agreement well within the statistical error~note
that for k51, the cross correlation function vanishes iden
cally!. In the POE case we compare our numerical data w
the rescaled Breit-Wigner approximation, Eq.~27!. In the
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panels~a! and ~b!, which correspond to the weak couplin
case, the theory agrees very well with the numerical data.
k50.3 ~c!, however, we find first systematic deviations. T
rescaled Breit-Wigner approximation begins to overestim
the true C function, which becomes even worse fork51 ~d!.

Possibly the deviations fork*0.3 may be due to the ap
pearance of correlations when the resonances begin to o
lap. The fact that the deviations are more pronounced h
than in the case of auto C functions can be explained i
natural way by the higher sensitivity of the cross C functi
to correlations. Moreover, it has been proven in Ref.@23#
~though only for the one channel case! that the coupling to
decay channels may indeed induce correlations even in
regimek,1.

In the GOE case, we know from Sec. V A that the re
caled Breit-Wigner approximation reproduces the ex
value of auto and cross C functions att50 for arbitrary
coupling strengths. This can also be proved for the POE
the one channel case@43#. Here, Fig. 8 and Fig. 9 give nu
merical evidence, that the same is true in the many chan
case as well. Thus the relative size of the correlation h
seems to be independent of the coupling strengths, wh
turns the correlation hole into a persisting signature of ch
even in the limit of strong transmission; a: Ta→1. This
4-13
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FIG. 9. As in Fig. 8 but for the cross correlation function divided byT2. Note, however, that in part~d!, the C function in the GOE case
is exactly zero, and not plotted.
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may be contrasted to the behavior in the energy dom
where the correlation hole forC@s tot

(a) ,s tot
(b)#(v) gradually

disappears with increasing number of channels or total tra
mission. Note, however, that in the time domain, the cor
lation hole becomes compressed to short times. One w
then need very long spectra with many resonances to res
the correlation hole. The generality of this invariance pro
erty and its implications will be the subject of future studie

B. Partial cross sections

In this section we show results of Monte Carlo calcu
tions for C functions of partial cross sections. Though
obtained a closed formula even here~using the diagonal ap
proximation for the partial cross sections and the resca
Breit-Wigner approximation for the correlation function!, we
must be prepared for the approximation to deviate relativ
early from the true result. The main advantage of par
cross sections, is their easy experimental accessibility.
cording to our approximation, the relative size of the cor
lation hole is given by

Q5
B

A

~116/M !~114/M !

~112/M !2
, ~57!

@see Eq.~31! and the list below#. Note that for particular
choices of the partial cross sections, this quotient may
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come even larger than one, which implies that the cor
sponding C function for the GOE becomes negative at sm
times.

Autocorrelation functions

According to Eq.~31! we have to distinguish between th
auto C function of an elastic or inelastic cross section. In
elastic case,B/A53/35 so that the relative sizeQ of the
correlation hole varies fromQ53/35'0.0857 for M→`,
and 9/35'0.257 for M52. In the inelastic case,B/A51/9
so that Q varies from Q51/9'0.111 for M→`, and Q
51/3'0.333 forM52.

In Fig. 10~elastic case! and Fig. 11~inelastic case! we set
the coupling parameter tok50.1. The numerical data is
shown together with our approximate result, Eq.~31!. In
both figures, the approximation clearly deviates from the
merical result~which we may consider to be exact!. The
deviations are more pronounced in the GOE case, which
line with earlier observations in the context of total cro
sections. The deviations occur just in the region of the c
relation hole, and thus diminish the difference between G
and POE considerably. In Fig. 10 it seems, that the theor
cal values att50 are still quite accurate, so that the corr
lation hole could be detected there. However, the curves
the GOE and POE merge very rapidly~at t'0.5). In Fig. 11
we see that our approximation fails even att50. The nu-
4-14
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SIGNATURES OF THE CORRELATION HOLE IN TOTAL . . . PHYSICAL REVIEW E 65 026214
merical curves for POE and GOE lie so close together, th
is practically impossible to identify the correlation hol
Similar investigations@8# gave essentially the same result

Cross correlation functions

As the number of channels isM52, we need to conside
only two different types of cross C functions: the C functi
of two elastic cross sections, and of an elastic and an ine
tic cross section~sharing the same entrance channel!. In the
list below Eq.~31! we find thatB/A51 in the first case, and
B/A51/5 in the latter. Hence we may expect to obtain co
siderably larger correlation holes. For the case of two ela
cross sections the relative sizeQ of the correlation hole is
Q51 for M→` andQ53 for M52. This means, that the C
function in the GOE case becomes negative at small tim
For the case of one elastic and one inelastic cross sec
Q51/5 for M→` and Q53/5 for M52. This is the most
natural constellation in experiments. Unfortunately the c
responding correlation hole is not very large.

Figure 12 shows the cross C function of two elastic cr
sections divided byT2. In the four panels~a!–~d! the cou-

FIG. 10. The autocorrelation function for the elastic cross s
tion divided byT2 with the coupling strengthk50.1. The numeri-
cal data are shown by circles~GOE! and crosses~POE!. The theo-
retical curves are the rescaled Breit-Wigner approximation,
~31!, for the GOE~solid line! and the POE~dashed line!.

FIG. 11. As in Fig. 10 but for inelastic cross sections.
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pling strength is increased fromk50.03 up tok51. The
correlation hole is so big (Q53), that the GOE curve be
comes indeed negative at smallt, with the only exception of
panel ~d!. The rescaled Breit-Wigner approximation work
quite well in ~a! and~b!, begins to fail in~c!, and fails com-
pletely in ~d!. Surprisingly the error becomes large in th
POE case first, while the agreement in the GOE case is
reasonable. This contradicts to some extent, what we h
found and partially explained in the case of total cross s
tions. Further studies are probably necessary to clarify
point.

Figure 13 shows the cross C function of an elastic and
inelastic cross section. Not only is the correlation ho
smaller, the deviations between our approximation and
numerical data are also larger than in the previous case~Fig.
12!. In panel~b! for k50.1 we find already noticeable de
viations in the POE case, and the correlation hole has p
tically disappeared fork50.3, in panel~c!. In panel~d! fi-
nally, the numerical data practically coincide for the PO
and the GOE case. It seems that the C function in this cas
negative for any value oft. Again this is an aspect, which
deserves further studies.

In this section, we saw that the validity of our approxim
tion for partial cross sections is restricted to coupli
strengths that are typically much smaller than in the case
total cross sections. Moreover we can no longer obtain
exact value of the C functions att50. However, we found
here the largest effects of the correlation hole. In particu
the case of two elastic cross sections is very promising
view of a possible realization in an experiment.

VIII. SUMMARY

By introducing an appropriate rescaling of the coupli
strengths in the conventional theory of multichannel scat
ing for weak absorption, we have been able to extend
domain of validity far into the region of overlapping res
nances. We have used this method~which we call the res-
caled Breit-Wigner approximation! to calculate auto and
cross correlation functions for total and partial cross secti
both for the POE and the GOE case, i.e., in situations
consider as ‘‘integrable’’ and ‘‘chaotic.’’

Starting from the VWZ integral@9#, which describes the
GOE case, we have performed exact calculations for the
relation functions of total cross sections in the time doma
By comparison with these results and numerics, we de
mined the domain of validity of the rescaled Breit-Wign
approximation. It turned out, that it works particularly we
in the case of weak correlations.

We showed the differences between POE and GOE all
way up to the domain of strong transmission in all channe
and we found that autocorrelation functions are a poor me
of determining the chaoticity or integrability of a scatterin
system in strong absorption, whereas certain cross corr
tion functions are quite sensitive. A particularly strong effe
is seen in cross correlation functions of two different to
cross sections. Unfortunately total cross sections are usu
very hard to measure and, therefore, this observation ma
of little practical value. As far as partial cross sections a

-

.
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T. GORIN AND T. H. SELIGMAN PHYSICAL REVIEW E65 026214
FIG. 12. Cross correlation functionĈ@s11,s22#(t) divided byT2. The coupling strength is varied:k50.03 ~a!, k50.1 ~b!, k50.3 ~c!,
andk51 ~d!. The numerical data is shown with circles~GOE! and crosses~POE!. The rescaled Breit-Wigner approximation~31! is plotted
for the GOE~solid line! and for the POE~dashed line!.
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concerned, we find that cross correlations of two elastic cr
sections are also very sensitive, far more than either the o
between an elastic and an inelastic cross section or betw
two inelastic ones.

For systems where two asymptotic channels are stable
cross correlation of two elastic cross sections is a very att
tive means of analyzing the reaction. Also at least for int
mediate coupling, i.e., overlapping resonances with mode
coupling in each channel we have a theoretical result w
which to compare. This is particularly important for the i
tegrable case where we know that nongeneric behavior m
be quite common. First experiments on microwave billia
to check our results are on their way.
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APPENDIX: AVERAGE S MATRIX

The S matrix given in Eq.~1! may equivalently be ex-
pressed in terms of the so-called ‘‘K matrix’’ @14#,
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S5
12 iK

11 iK
, K~E!5

1

2
V†

1

E2H int
V. ~A1!

As we will see below, the averageS matrix can be obtained
easily from the averageK matrix. This offers a convenien
way to define the openness of the system, i.e., the coup
strengths to the decay channels.

In the eigenbasis ofH int we get the following expression
for the elements of theK matrix ~A1!:

Kab~E!5
1

2 (
i 51

N
ViaVib

E2« i
, ~A2!

where $« i% are the eigenvalues of the closed systemH int .
The coupling matrix elements$Via% and the eigenvalues$« i%
are statistically independent in the ensembles considered~the
GOE and the POE!. Therefore, we get for the average
Kab(E),

^Kab~E1!&5dab

N

2
^ViaVib&K 1

E2«1 i0 L
r

, ~A3!

which holds for anyi. Here ^ . . . &r stands for the averag
over the level densityr. Using that^ViaVjb&5d i j dab^Via

2 &,
which again holds for the scattering ensembles conside
here~see Sec. II!, we get
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FIG. 13. Same as in Fig. 12, but for the cross correlation function between an elastic and an inelastic cross sectionĈ@s11,s12#(t) divided
by T2.
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^Kab~E1!&5dab

N

2
^Via

2 &F« d«
r~«!

E2«
2 ipr~E!G , ~A4!

where we split the integral used to average over the le
density, into its principle value part and the residue. No
that the averageK matrix is diagonal. We define the cent
E050 of the spectrum as that point where the principle va
integral vanishes. Then we obtain

^Kaa~01!&52
ip

2
N^Via

2 &r~0!. ~A5!

Finally we define the ‘‘coupling parameters’’ka as follows:

ka5 i^Kaa~01!&5
p

2d
^Via

2 &, d5
1

Nr~0!
. ~A6!
ys
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It can be shown@21# that due to the analytic properties of th
S matrix its average is directly related to the averageK ma-
trix

^S~E!&5
12 i^K~E1!&

11 i^K~E1!&
. ~A7!

The averageS matrix is also diagonal. In the center of th
spectrum the averageK matrix is purely imaginary, so tha
^S(E)& is real. Its elements are then given by

^Saa~0!&5
12ka

11ka
. ~A8!
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