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Signatures of the correlation hole in total and partial cross sections
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In a complex scattering system with few open channels, say a quantum dot with leads, the correlation
properties of the poles of the scattering matrix are most directly related to the internal dynamics of the system.
We may ask how to extract these properties from an analysis of cross sections. In general this is very difficult,
if we leave the domain of isolated resonances. We propose to consider the cross correlation function of two
different elastic or total cross sections. For these we can show numerically and to some extent also analytically
a significant dependence on the correlations between the scattering poles. The difference between uncorrelated
and strongly correlated poles is clearly visible, even for strongly overlapping resonances.
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I. INTRODUCTION where the individual transmissions from all channels are
considerably smaller than one. Next we have the case where
Starting from Bohr's compound nucleus suggestion, thehe transmissions are close to one. To differentiate the latter
idea of considering the dynamics in the interaction regiontwo regimes, we shall speak sfrong transmissiorin this
almost separately from the scattering process has bearase. It corresponds to the semiclassical limit, where tunnel-
proven very successful in different fields. Wigner's R-matrixing effects become negligible.
method[1] gives the formal background to the separation of For level spectra as well as for intensity spectra, Fourier
internal dynamics and “free” motion in the channel space.transform methods and the so-called “correlation hole” have
Based on this idea we study whether chaoticity or integrabilbeen very successful tools to identify the effects of integra-
ity of the internal dynamics can be detected in the scatterindility and chaog2-4,8. Yet it is not clear to what extent
data. For this purpose we apply Fourier transform techsuch an analysis remains useful, when the resonances are no
niques, which have proved successful in spectral analysi®nger isolated. An exact theory is only available for two-
[2—4], to total and partial cross sections. point functions of S-matrix elements in the GOE case. This
To build the scattering ensembles, we shall assume thaio-called Verbaarschot-Weidenheu-Zirnbauer(VWZ2) inte-
there are no correlations between channel space and the igral [9] allows to calculate correlation functions of total
ternal structure. This assumption is usually well fulfilled for cross sections by means of the optical theorem. In contrast to
systems with topological chaos, while it is often not fulfilled that, we have no such theory in the POE case or for correla-
for integrable system$]. Nevertheless, we use this assump-tion functions of partial cross sections. In these cases, one
tion in order to compare the chaotic and regular case in &ad to fall back on the so-called “Breit-Wigner” approxima-
direct and minimally biased way. Any differences we thention [10], which becomes valid in the weak coupling limit.
find are basis independent and minimal in the sense thalo extend the validity of this approximation we take advan-
correlations would usually increase the dissimilarity to thetage of the well known fact that the Satchler transmission
chaotic case. We, therefore, use orthogonally invariant ranmatrix [11] or, in the absence of direct reactions as in our
dom matrix models to describe the internal structure. For thease, the transmission coefficients are the only way in which
chaotic case the choice is obviously the Gaussian orthogon#he coupling strength influences the physically relevant quan-
ensemble(GOE) if time reversal symmetry is conserved. tities. By using the transmission coefficients rather than the
Following Berry and Tabof6] we associate integrability coupling constants as input, which amounts to a rescaling,
with a random Poissonian spectrum, thus excluding harwe are able to extend the validity of this approximation to
monic oscillators explicitly. For this case the Poisson or-the regime ofstrong absorptionwhere the resonances are
thogonal ensembl@POE) was proposed some years ddg. overlapping, but the absorption in each channel is still mod-
The case of time reversal symmetry breaking can be treategrate.
analogously using the unitary ensembles, but this will not be  We perform numerical simulations with two purposes: to
discussed in the present paper. check the range of validity of the rescaled Breit-Wigner for-
We consider three different absorption regimes. Weak  malism, and to find situations, which show significant differ-
couplingthe resonances are isolated, and conventional speences between GOE and POE. We will concentrate on Fou-
tral analysis is satisfactory; if we wish we may add an analy+ier transforms of auto and cross correlation functions, and
sis of the widths. Then follows what is usually callslong  we shall see that in particular for the latter the differences are
absorption where we find overlapping resonances, butin some cases very promising. In particular we find that cross
correlations between cross sections from different channels
show strong signatures.
*Present address: Theoretical Quantumdynamics, Albert- In Sec. Il we present the model we use. In Sec. Il we
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scattering systems. Next we discuss the “rescaled Breit- N Vi
Wigner” approximation in Sec. IV. It allows to get results in Sap(E) = 5ab—i_2 £,
closed form for the correlation functions between total or =1 E—E;
partial cross sections. In Sec. V we derive a twofold integral
expression for the Fourier transform of the VWZ inted &l ~ L~
b a6 V=ATV, ATHA=diagE)). )

This simplifies the numerical treatment considerably, and it
is used in Sec. VI, to test the validity of the rescaled Breit-
Wigner approximation. After these theoretical consider-This equation shows that the complex poles of $hmatrix
ations, we turn to the numerical study of the two scatteringare precisely thé\ eigenvalues of. If the coupling matrix
ensembles, the POE and the GOE. This is done in Sec. Vlklements are small enough, their real parts are well approxi-
which is divided into two subsections. The first deals withmated by the discrete levels Hf,;, whereas their imaginary
correlation functions between total cross sections, and thparts are given by the diagonal elements \6¥'. This
second with correlation functions between partial cross secamounts to the Breit-Wigner approximation, which results

tions. Section VIII contains a short summary. from applying first order perturbation theory to the effective
HamiltonianH.
Il. THE SCATTERING ENSEMBLES In this paper we consider two scattering ensembles: the

) ) GOE and the POE. Both are invariant with respect to or-
We wish to construct scattering ensembles for the twanogonal transformations. Hence in the eigenbasidgfthe
contrary cases, where the dynamics in the interaction regiofy channel vectors are random orthogonal vectors. In prac-
is predominantly integrable, or completely chaotic. We dotjce, we use independent random vectors with Gaussian dis-
this under the assumption that the scattering system may Rfpyted components fov, which are orthogonal only up to
separated into an internal part restricted to a finite interactiogrdero(N—l)_ However, as we used relatively large matri-
region and an external part described by some superintessN =300, the violation of the orthogonal invariance had
grable Hamiltonian. Though some complexity may show Upcertainly no noticeable effect on our numerical results.
in the coupling of the two parts also, i.e., in the mismatch OfHence, for both ensembles the nonzero eigenvaludg\of
channel functions and internal functions, the dominant parﬁgiven by the norm squared of the column vectoesid the
of the complexity should be contained in the internal partg,g| density ofH;,; are the only independent parameters.
Then the subsystem that describes the complex internal dy- |, the GOE case, the elements of the diagonal mtrix
namics has a discrete spectrum, such that its statistical progye gistributed according to the joint probability distribution
erties can be modeled with an appropriate random matrixs the GOE spectrunil7], so that for largeN, the level
ensemble. In order to construct the scattering ensembles, Wensity approaches the semicircle distribution. In the POE
fix the external part and use standard techniques, originall¢ase  the elements are independently distributed, and in prin-
introduced to describe nuclear compound react{ds-14,  cjple the level density can be of any form. Our main objec-
to assign to each element from the random matrix ensemblgyq is the distinction between both ensembles, based on the
a scattering matrix. Thus we obtain a set of scattering matrigpservation of correlations. Hence we find it convenient to
ces provided with the measure inherited from the original se the semicircle distribution in the POE case also.
random matrix ensemble. For simplicity we will denote the  Tha main theoretical tool for the calculation of correlation
scattering ensembles obtained from the GOE and the POE Ry tions will be the rescaled Breit-Wigner approximation,
the same names whenever there is no danger for confusiofhoqyced in Sec. IV. In fact, it can be applied in much more
To bg more precise, we con5|d¢r complex scattering SYSjeneral situations. This is of particular importance for par-
tems with many, possibly overlapping, resonances, where thgy |y integrable scattering systems, where the assumption of
S matrix can be cast into the following form: orthogonal invariance does often not hold. Then the distribu-
) tion of the matrix elements of are typically very different
V, H=H,— I_VVT_ (1) from simple uncorrelated Gau_ssian distributions.
2 In cases as they are studied here, the openness of the
scattering system is commonly described, borrowing the ter-
HereH is a real, symmetritd X N matrix that describes the minology from the so-called “optical model(cf. [14] and
internal dynamics, an¥ is a realNXM matrix, describing references thereinwhich was originally developed to de-
the coupling to thévl channels. The matrik is the so-called scribe nuclear compound reactions with two well separated
effective Hamiltoniar{15]. In order to arrive at Eq(1) itis  time scales. Consider the partial cross section in appropriate
assumed that the coupling matrix elements between channehits, which is given by ,,=| 8, — Sap/2. Then one defines
states and internal eigenstates are energy indepefitint the optical partial cross section as;'“:|5ab—<sab>|2,
Furthermore one should either neglect the direct reactions qghere the different time scales are used to obtain a well
perform an Engelbrecht-Weideﬁﬁm transformatior[lG] if defined averags matrix <Sab> by averaging over an appro-
it is necessary to take them into account. The effectiveyriately chosen energy window. He(8,,) is simply defined
HamiltonianH can be diagonalized, such that its eigenvaluesby the ensemble average, avoiding in this way any arbitrari-
Ej:Ej—iFjlz give the positions and widths of the reso- ness. The openness of the scattering system is then charac-
nances if they are isolated. In the eigenbasisHyfthe terized by so called “transmission coefficients,” defined for
S-matrix elements can be written as each entrance channa|

S(E)=1-iV' =

026214-2



SIGNATURES OF THE CORRELATION HOLE IN TOTA. .. PHYSICAL REVIEW E 65 026214

M Wigner approximation there. For partial cross sections, no
To= (@) - 0@ =1-2> [(Si)l?, (3)  exact theory exists at all. In this case, we first use the so
c=1 called “diagonal approximation” to express the partial cross
sections in such a form, that the rescaled Breit-Wigner ap-
proximation can be applied.
Dealing with matrix ensembles, it is convenient to define
the correlation functions as ensemble averages, rather then

where o(8)=S 0, is the total cross section, and3)

=3M o %is the total optical cross section, with respect to
the entrance channal The unitarity of theS matrix leads to

@ =2(1-ReS,,) 4) energy averages. Therefore, we eventually have to face the
tot aan ergodicity questiorf18], which is unclear in the POE case.
which is sometimes called the “optical theorem.” Note, however, that in quantum dot experiments ensemble

The scattering ensembles defined above, i.e., the GOE arfyerages may actually be the relevant offed. We calcu-
the POE, are completely characterized by the average levéate the correlat|on.funct|ons always in the center of the spec-
distanced=(Np) ! in the center of the spectrum of,, trum (see Appendl)( where we seE=0. leen' then two
and the variance of the coupling matrix elemefi&’), complex functiond andg of the energy, we define the cor-
which are independent df due to orthogonal invariance. "€lation function as follows:
From those we define the following dimensionless coupling

parameters: [ wd w_d) B (—_wd) (w_d)
C[f,g](w)—<f( 5 )9(2 > <f 5 9l 5 /-
Ka:%<vi2a>' &) )

Hered is the mean level distance in the center of the spec-
Here and in what follows, the brackets . .) stand for the  trum of H,,, which is assumed to be constant on the scale
ensemble average. As discussed in the Appendix, the averaggere we expect correlations. Note that, there is no unfold-
Smatrix is diagonal. Its diagonal elements, the transmissiolhg involved. The mean level distancesimply serves as a
coefficients, and the coupling parameters are related to eagfpnvenient energy scale. For the discrete spectrum of some

other, random Hamiltonian:f(E)=3,;8(E—E;), the autocorrela-
tion function becomes:C[f,f*](w)=1+ 6(w)—Y,(w),
(San)= 1- Ka 1 = 4Ka ©6) whereY, is the two-point cluster function as defined in Ref.
W ltka Tt (14kp? [a7].

We will mainly analyze the correlations in the time do-
which is, however, true in the center of the spectrum d@aly main, and by consequence deal with the Fourier transforms
more detailed discussion is given in the Appendix of correlation functions. In general, we denote the Fourier

As mentioned in the introduction, we distinguish threetransform of a given function of the enerdgyE) by
different regimes. Now, these can be defined more quantita-
tively in terms of the transmission coefficients: The first is . ,
the weak absorption regime, where the resonances are still f(t)=f[f](t)=f doe®™'f(wd), (8)
well separated, so tha) ,T,<1. Next comes the regime

of strong absorption, where the resonances (g/lverlap, but thEhere the Fourier transform is taken with respect to the en-
transmission from each channel is still small;_,T,>1, ergy measured in units @, and the factor  in the expo-

V a:T,<1. Note, that this implies in particular, that the pent assures proper normalization. For two spectral functions
number of channeld! is large. Finally we have the regime of f anqg, the following relation holds:

strong transmissionYa:T,<1 where the transmissions in
all channels are close to one. . 1 . A . .
ClHgl=AF' (=g (1) —(F'(=)g" ()}, (9
I1l. CORRELATION FUNCTIONS OF TOTAL AND

PARTIAL CROSS SECTIONS .
where the functiong’(x) andg’(x) are equal tof (x) and

Correlation functions are our principal tool for the statis-g(x) inside the intervalx/d|<L/2 and zero outside, and the
tical analysis of total and partial cross sections. We distin{imits N,L—o,L/N—0 are taken. Equatio(®) is based on
guish between autocorrelation functions, where one crosthe convolution theorerf20] applied to the fluctuating parts
section is correlated with itself, and cross correlation func-of the spectral function§ and g, where the convolution in-
tions, where two different cross sections are correlated withegral is expressed as a correlation function as in &y.
each other. First we define the correlation functions in genassuming stationarity. The limiN,L — < is necessary, to al-
eral, in order to introduce our notation. Then we use thdow the correlation function to go to zero quickly enough, so
optical theorem, to relate the correlation function of two totalthat the Fourier integral of the correlation function is well
cross sections to one of corresponding S-matrix elementslefined. The limil./N— O serves to obtain stationarity in the
For the latter, the VWZ integrdPB] provides the exact result interval where the correlation function is calculated. In par-
in the GOE case. In the POE case an exact result exists onticular, the average levebr resonancedensity and the av-
in the one channel ca$@3], and we use the rescaled Breit- erageS matrix should not vary noticeably in this interval.
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Equation(9) is used in the numerical calculation of the cor- Due to the linear relation between the diagonal approxima-

relation functions. It turned out, that=N/2,N=300 already tion o, and the spectral functiofy,,,, we may again express

gives well converged results. correlation functions of the former by corresponding corre-
Note that we measure the energy in units of the meamation functions of the latter. In fact, we have

level spacingd. As a result, the argument of a correlation

function is dimensionless, and so is the argument of its Fou-Cl[ oap,0cal(@)~C[ 0}y, ,0¢4l(w) =2 ReC[ [ 5, [ tgl( ).

rier transform. Nevertheless the latter is denoted, t®s its (14

significance is still ime—though measured in unitsdof®. . . .
Total cross sectionsConsider the correlation function of It*remal_ns to calculate Fhe correlatlc_)n funcﬂ_o . bﬁfb. and

two total cross sections') anda®) with possibly different Jca- This will be done in the following section using the

entrance channetsandb. As the total cross sections depend rescaled_ Breit-Wigner approximation. In order to calculate

linearly on the respective diagonal S-matrix elemdistse the Fourier transform of Eq14), we note that the pole struc-

Eq. (4)] the correlation function can be expressed as followsture of [ap(E) is the same as that of the trematrix, so that

C[fab,fé‘d](—t) is again zerdfor t>0). Therefore, we ob-
C[O-Ziobo-l%ot]zc[saa_k S;aasbb"_ S:)(b]zz REC[Saa,Sob] tain

+C[Sza,S5p]) =2 ReC[ Saa, S - (10 Cloap, 0cal()~Clahy, otal(t)=Cl[ [ ap. S 551(1).
(15
The correlation function of nonconjugated elements
C[Saa:Spp] vanishes[21]. Relation(10) is essential, as it IV. RESCALED BREIT-WIGNER APPROXIMATION
relates experimentally accessible quantities to analytical re-
sults[9,22,23. For the Fourier transform of E¢10) we get In this section we calculate the correlation function of two

arbitrary S-matrix elements using the Breit-Wigner approxi-
Ar a b _ * _A * mation, followed by a phenomenological rescaling proce-
Clo ot Tl ()= 27 RECT Saar Spp) (1) = Cl Saa, Sl (1 dure. To this end Eq(9) is used, which means that we
+C[Saa, Sl (— 1) =C[Saa. SEp1(1), first calculate the Fourier transform of the respective
S-matrix elements(this can be done exacily and then
(1) we average over the resonance parameters
o . . {E;.T'}.Vj1, ... Viuli=j=n. The average over the real
where it is assumed that-0. ThenC[S,a,Sp](—1) Van-  naris of the S-matrix poleEE;} can still be done in a for-
ishes, because of its negative argumigt] (see also Sec. mg|ly exact manner, but then we have to use the approxima-
IV'A). For the sake of brevity let us think of a correlation tjon mentioned above, in order to finish the task. To obtain
function and its Fourier transform as a single object repreyye correlation functions of partial cross sections, the same

sented in the energy domain and in the time domain, respeGieps have to be done with the matrix elemefis instead
tively. and call it simply “correlation function” or “C func-  [see Eq(13)].

tion” in either case.

Partial cross sectionsPartial cross sections are given by
Tab=|8ap— Sap/%. The theoretical treatment of correlation
functions of partial cross sections is complicated by the fact Here, we do all those steps of the calculation which are
that one has to average over a product of four S-matrix eleexact. We first calculate the Fourier transform of one
ments. The insertion of the S-matrix elements as given in EgS-matrix element, using its pole expansi@. Fort>0, we
(2) leads to a double sum of resonance terms. As an exa@get
analytical treatment seems to be impossible, we employ the

A. Formally exact treatment

. . . . A . .. . —i N L2 —2miot
diagonal approximation, which consists in retaining the di- & ()= — 2 YY) f do e
agonal terms of the double sum only. This is justified for ab d & 2 by E;—il'j/2
sufficiently weak coupling and leads to w— d
N it
oy~ L= > YiaYib Yia= |\~/J_a|2_ (12) T Z VjavjbefZﬂ'lEjt/defTrl"jt/d_ (16)

=1 (E-E)2+T74 =1

The right-hand side can be written as the imaginary part of yere It was us_ed, that the po_Ies with real parts outside the
integration region do not contribute to the Fourier transform,

function E), which has the same pole structure as the T S .
S matrix [an(E) P and for those inside, it is well justified to extend the integra-

tion up to infinity becausé’; /L<1.

ol (E)=—21mf (E), Irj the same way, .we may obtain an analogous express.lon
for S 4(t). The Fourier transforms of the average S-matrix
elements are taken into account in the numerical calculation

[ ap(E) = 2 i Vian_b _ (13) only. Here by contrast, we notice_ that th_e average S-matrix
=1 'y E-Ej+il'y/2 elements are almost constant in the integration interval,
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which means that in the limiN,L—oc their Fourier trans- to find situations, where the first term is relatively small, so
forms will becomes functions situated at=0. Thus they that one may retrieve as much information as possible on the
play no rde in the current calculation which is restricted correlations between different resonances.
to t>0. Note that we may defineC[S,y,S"](0)
=lim;_oC[Sap.S54](t). Inserting the expressions fds,y,
(—t) andS¥,(t) into Eq.(9) and ignoring the Fourier trans-  In order to evaluate the remaining averages in(E8) we
forms of the average S-matrix elements, we obtain have to introduce some approximations. To this end, consider
the weak coupling limit¥ a: x,—0. Using first order per-

B. Approximation

. 1 L turbation theory in the expression for tBematrix, Eqs.(1)
C[Sap,Stal(t) = L ';1 ViaVibVieVia and(2), we get thepure Breit-Wigner approximation for the
e S matrix,

xexd —2mi(Ej— Et/d]e m(j+lovd

N
. ViaVib
. . San(E)~ Sap =12, = (19
_ E{(VjanbecVTde_zwr"t Y+ (L—1) E—sﬁi% VA2
x(\”/javjb\”/*krc” e m(Lj+Tt/d This amounts to make the following replacements in the pole
_ expansion of the S-matrif?),

X exd —2mi(E;— Et/d])}. a7 "

As the ensemble average is invariant for any permutation of T/J-a—>vja, Fj—>2 ija, Ej—ej, (20
c=1

the resonance indices, the double sum can be evaluated. In
the final expression the resonance indiggsk are arbitrary. where ; are the eigenvalues dfl,. Hence, in order to

Note thatC[ S,p, Sgql(t) vanishes fot<0, because in this  gptain the correlation functions in the Breit-Wigner approxi-
case both Fourier transforng,(—t) andSi4(t) vanish, as mation, we simply do the same replacements in 8@).
can be easily seen by applying the residue thedigmalso  Then the partial amplitudes become real uncorrelated Gauss-
[24])). ian random variables, the total widths become simple func-
At last, we average formally over the real paft;} of  tions of the partial amplitudes, ar(t) becomes the two-
the S-matrix poles. For fixed values of the partial amplitudesyoint form factorb,(t) of the spectrum ofd
and the total widths, the average overl exqd —2i( E;
—Ey)t/d] for L—o gives the two-point form factdrl7] of
the random sequenciE;}, which we denote byb,(t). In
general,b,(t) still depends on the parameters fixed. In the
weak coupling limit, however, the positions of the reso- —<Vjankach de*”z (V,-20+V§C)t/d>
nances on the one hand, and the partial amplitudes and total ¢
widths on the other hand, become statistically independent,
so thatb,(t) converges to the two-point form factor of the
closed system. After all we may write

int -

~ 1 - 5
ClSap, Stal ()~ ¥{<VjaVJijCV1de 2”2 Vjct/d>

x bz(t)]. (21)

The remaining Gaussian averages are relatively simple, so
that in many cases the respective correlation function can be

ClSab. Sial(V) = i{<va\~/.bw Ve 2y calculated in closed form. Note that the averages are differ-
cd 2 j j jcVijd
d ent from zero, only if all partial amplitudes appear in even
~ e e powers.
—(ViaVjpVieVige "0t Tty (t)) ). Unfortunately, the pure Breit-Wigner approximation drifts

(18) quickly away from the exact result, as the coupling to the
continuum increases. The following phenomenological pro-

This is so far an exact but rather formal result. However, itcedure improves the approximation considerably. It consists
clearly shows that the correlation function is no direct meadn rescaling the variance of the partial amplitudes as follows:
sure for spectral correlations. The first term in E8), 2
which may very well dominate the correlation function, con- <V-2 - <Vja> 22)
tains the parameters of only one single resonance. Therefore, ja (1+ Ka)Z'
it cannot describe correlations between different resonances
that are the ones we are really interested in. It is typically aVe call the result the “rescaled Breit-Wigner” approxima-
monotonously decreasing function, where the decay is gowion. As shown in Ref[26], it leads to partial fluctuating
erned by the average width of the resonances. It is the secomtoss sections of the Hauser-Feshbach t8, showing
term in Eq.(18), which contains the parameters of two dif- elastic enhancements of (BOE casgand 3 (POE casgin
ferent resonances. It vanishes completely if there are no corgreement with earlier theoretical resu®8,25,29. The oc-
relations between them. For our investigations it is importanturrence of Ericson fluctuations80] with the correlation
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length I'c= dEQ’LlTa/(Zw) is also correctly described. In the rescaling is used also, though without mentioning it; note

Sec. V it is shown that in the time domain this approximationthat these authors obtain a rescaled formula for their specific

gives results for the correlation functions between S-matrixcase directly as an approximation to exact resi#). For

elements which become exacttas 0. the cross C function of two different total cross sections, we
Note that the rescaled Breit-Wigner approximation can beéJet:

applied in a wide range of situations, while it conserves the

simplici_ty of the pure Breit—Wigngr. approxirr_\at_ion. This (‘;[(T(%)t ,U(t%)t](t)NTaTb (1+2T,t) ¥4 1+2T,t) 32

makes it a valuable tool for the statistical description of com-

plex scattering systems. This approximation can be justified

to some extent with the following reasoning: It is well x [T (1+2Tt) Y2—(1+T,t) 2

known, that the properties of a scattering system are deter- c#ab

mined by the Satchler transmission mafiid], if the entire

process is occurring on two different time scales, one asso- X (1+Tyt) 2 H (1+Tt)  *hy(t) .
ciated with direct processes and one with long time processes c#ab

also called compound processes in Nuclear physics. In (26)

the absence of direct reactions or after an Engelbrecht-

Weidenmiler transformation[16], this implies the depen- In what follows, we assume that all coupling strengths are

dence on the transmission coefficients only. They are directlequal:V a: k=«,,T=T,. For convenience, the numerical
related to the variances of the partial amplitudes as menanalysis(Sec. VlI) is restricted to this case only. The Eg5)
tioned above. The rescaled approximation thus implies thaind Eq.(26) simplify considerably and can be combined into
we use the transmission coefficients of the system rather thaan single one:

the coupling constants. This can be viewed as a nonpertur-

bative input, or as using phenomenological parameters. Clo®, o I=~T(1+268,,)(1+2Tt)"2-M?2

Total cross sections —(1+Tt) "2 Mby(t)]. (27)

According to Eq.(11), the C function between two total To lowest order in the transmission coeffici@hthe rhs be-
cross sections is equal to the C function between the respegomesT?[1+25,,— b,(t)] in agreement with results on in-
tive diagonal S-matrix elements. Hen@ o@),o(®)](t) is  tensity weighted stick spectfa,8] and the asymptotic be-
given by the rhs of Eq(18) settingb«—a andd«c«b. In  havior of the exact analytical result for the GOE c@see
order to calculate this C function in the rescaled Breit-Eq. (56) in Sec. V]. The difference in the C function at small
Wigner approximation, we use the E@S) and(6) to express times between GOE and POE is known as the correlation
the ensemble averages as integrals over normalized squarkdle. In order to quantify it, we use its sizetatO relative to

amplitudesgy, ... ,.9w, the maximal size of the C function in the POE case. From
Eq. (27) it follows that the correlation hole is 1/3 in the case
Clo®, o) ~T.T{(gagse Y —(g.e C¥?) of the auto C functiong=b), while it is one in the case of

the cross C functiongd#b).
X(gpe” " b,(1)}, (23) D

with G==M . T.g.. The normalized squared amplitudgs
are distributed as the random variablg/(V2), i.e., they
are Porter-Thomas distribut¢d1]

Partial cross sections

According to Eq.(15), the C function of two partial cross
sections in the diagonal approximation is equal to the C
function of the matrix elementf,, and [ 34, defined in Eq.
(13). Following the same lines as in the case of the true

p(g.) = e 92 c=1,... M. (24)  Smatrix, we arrive at the following expression for the latter
2mg, C function:
Now, the remaining averages in E@3) can be calculated . 47 | | Y1a¥1bV1cY1d Cord
easily[26]. For the auto C function of the total cross section ClJap.Jeal(D~— 1| ——F%—— e “"?
d i
we get
Y1aV1ib Y2cY2d
A - _ _( £tasib Fecred (I +Tp)t/dp,
CLo@I(0~T2 31+ 2T, [ (1+2T0) 2 < r, T, ° b2(t)> ]

(28)

—(1+T0) 3] (1+TH) (b)), (2
( at) cLIa ( D)ot (29 which is the analog of Eq.18). To this expression we can

apply the rescaled Breit-Wigner approximation. The partial
Note, that this result is very similar to the result of Rg2]  widths y;,, are replaced by Porter-Thomas distributed ran-
for the spectral autocorrelation function of the photodissociadom variables with average vale;,)=T,d/(2m), the to-
tion cross section in weakly coupled chaotic systdthere tal widths become the sums of the partial widths, and the
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tWO_point form factoﬁ)z(t) becomes the tWO_point form fac- |Ig|ble fluctuations of the total width aroum;l its avel’.age
tor of the spectrum oH,,. Thus we get value. Then we may tredd as a constant, which leads im-

mediately to the expected exponential decay. Note that this

0a909.04 implies that Ericson fluctuations are no reliable signature for

Cloap,0cql()=T,T,TTy —ze’Gt chaotic scattering, because the central limit theorem may

G work, even if the partial amplitudes are not Gaussian distrib-

> uted, thus leading again to Ericson fluctuations. In such a
bz(t)} ,

_<%eet/2> <%eet/2 situation, the deviation from the exponential decay due to

G G b,(t), would be the only reliable signature of the chaotic
(29 dynamics.
where G=X:T.g.. The ensemble average can be per- V. THE FOURIER TRANSFORM OF THE VWZ
formed, using the following identities: INTEGRAL

g * o In this section we derive a general formula for the Fourier
G le®®=| da'e @€ ; : )
N ' transform of the VWZ integra[9]. This allows to obtain
quasiexact results for the correlation functions of total cross
o o ) sections in the GOE case. We need these results, in order to
G*Ze*“sz da’f da"e ¢, «>0. (30) check the accuracy of the rescaled Breit-Wigner approxima-
@ o tion. Apart from that it will turn out, that numerically it is

Exchanaing the int i " anda” with th bl much easier to calculate the Fourier transform than the origi-
xchanging the integration om’ anda” wi e ensemble n(?l VWZ integral,

average, we can do the ensemble average analytically, an

we are only left with the integrals over the auxiliary variables "

a’ and «”. With the exception of some special cases, those ClSap,Seal(@)

integrals have to be evaluated numericallgr details, see 1 w 1

Ref.[26]). In the case of equal coupling strengths, however, = —f J d)\ld)\zf dh
0 0

we obtain the following analytical expression: 8

. T2 (1+2/M)?2 ML=Vl meheE
C[Uablgcd](t)N (2+M)2 (1+6/M)(1+4/M)A \/)\1(1+)\1))\2(1+)\2)()\+)\1)2()\+)\2)2
M
X (1+2Tt)~2-M~2 <11 1-Teh (BunBogh
e IHTAD ATy e
_ —-2—-M
BTy bz(”]' sy +(BacBoa™ Saadoo) ash,
Here, A and B depend on the actual combinations of partial N N o\
widths in Eq.(29), i.e., whether any of the channels involved A=T.1-T, L "2 4 ,
coincide or not. The following cases occur in the present 1+Tahy 14Tk 1-Ta

paper:
The autocorrelation functionC[o,,]:A=9+968,;,,B Ni(1+Nq) No(1+1N5)
—1+85 Hap=TaTy
ab- . . _ (I+TAD)(I+TpN)  (I+TaA)(1+TpAp)
The cross correlation function between two different elas-
tic cross sectionsC[ o4, 0pp]:A=9,B=9. n 2M(1—M) ) 32)
The cross correlation function between an elastic and an (1-=T AN (1=TyN) )"

inelastic cross sectiol€[ o,,,04,]:A=15B=3.

According to Eq.(31), the coefficientA andB determine  The main interest in the VWZ integral has been the calcula-
the relative depth of the correlation hole in the limit of many tion of average fluctuating cross sectig24,34—36, which
channelsM—~. The prefactor (#2/M)?/[(1+6/M)(1  corresponds to the cage=0 in Eq.(32). Only a few papers
+4/M)] in front of A may, however, lead to a considerably treat thew dependence of the VWZ integrg87,24,38, and
deeper correlation hole, as long lslsis not too large. even then the analysis was usually restricted to particular

For M—c and MT fixed, the algebraic decay in Eq. limits such asw—0 (t—« in the time domaijy or many
(31) turns into an exponential one: 12Tt)"2"M2 (1  channels:M —< and Ericson fluctuations. Quite often the
+Tt) " 2~M_ exp(—MTt). This means, that we obtain Eric- existence of the correlation hole was simply ignored.
son fluctuationg3Q] in this limit. The reason for the occur- In the present analysis, the correlation hole and its depen-
rence of Ericson fluctuations can be understood from Eqgdence on the coupling strengths is of great importance. It is
(29): Only in the case of many channels and small transmisneeded to distinct regular from chaotic dynamics. Therefore,
sion coefficients, does the central limit theorem lead to negwe will analyze the Fourier transform of the VWZ integral in
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some detail. We will also observe the behavior of the corre- N+,
lation hole in the limits:t—0 (Sec. VA and Va:T,—0 A Np—r= 5 S=N2—Ag
(Sec. VB.
Let us start our derivation by applying the Fourier trans- a5
form (8) to Eq.(32). We exchange the Fourier integration on followed by s—x=r®-s%/4. (34)
o with the integrals om\,\;, and\,. For the Fourier inte- This leads t
gration we then simply need to calculate IS leads to
. 1t
J dw exp{2miw[t— (A 1+ Np+2N)/2]} C[Sap,Seal(t) = Zf dr(t—r)(r+1-t)
max(0f—1)

=0[t— (N1 +Ny+2N)/2]. (33 M
| _ <1 [1-Tet=n]u(r), (39
The § function can be used to remove thentegral. To the e=1
remaining double integral, the following transformations are
applied: where

r2 5ab5ch aAc+ ( 5a(:5bd+ 5ad5bc)Hab
ur=2| dx y , (36)
0
(t2—r2+x)2\x(x+2r +1) \/H (1+2Tor +T2x)
e=1

A 2T 1T r+Tax t—r 3

2= 21V el T 21T 0 1ot 37
and
ToTpXH+[TaTpl +(Ta+ Tp)(r+1)—1]x+r(2r+1 t—r)(r+1—t
HabZZTaTb a'b [ a'b ( az b)( ) ]2 ( ) ( )( ) . (38)
(142Tor + T2x) (14 2T,r + T2x) [1-Ta(t—r)J[1-Ty(t—r)]

In order to remove the 3k singularity in the integrand of Fourier transformation back to the energy domain, may even

U(r), we substitute consecutively, be a quite efficient way of computing the original VWZ in-
tegral.
x=(y—1)b/2, y=(z+z Y2, z=2u+1 Figures 1 and 2 show examples of the Fourier-
where b=1+2r, (39) | | Moz
3 R
which gives 20 ]
40 ......
r du OapOcdB alct (9aclpat Saddbc) lap i
U(r)=4 , E N .
02u+1 M ; AR .
(t2=r2+x)2\/ [ (1+2Tr+T2x) Tl
e=1 RN
04F el 1
bu? 40 e
X= . e, e
2u+1 % 0.5 1 15 2
The Egs.(35) and(40) together with Eq(37), (38) form our ¢
final result for the correlation functio®[S,,,Si](t) [it is FIG. 1. The exact result35) for the autocorrelation function

understood, to replace by bu®/(2u+1) wherever it oc-  C[a ](t) divided by T2 While k=0.1 is kept fixed, the number
curs]. One may readily use these formulas for numerical calof channels is variedV = 2 (solid line), M =3 (long dashed ling

culations. All problematic singularities have been removeadv =10 (short dashed line M =20 (dotted ling, andM =40 (long
from the integration region. Our result if followed by a fast dotted line.
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03 T T T . t2 1
M= C[Sab1S:d](t)~_f do(1—e)U(te)
025 F O 1 4Jo
20 -
‘:\é‘ N Lem el 40 - | 111 ~
= 0.2 e =2J’0 de(1-¢)U(e), (41)
§:§ 0.15 ,/I . ] 5
5 whereU(g)=t?U(tp). Hence setting =tp in Eq. (40) the
% 0L F [ ] following limits can by takenb~1, 2u+1~1, andx~u?.
' Then substitutingi=tv we get
0.05 ~-
________________ ~ 4 (1
"""""""""""""""""""" r U(Q)"’ ?JO dv[aab5chaAc+ (5ac5bd+ 5ad5bc)nab]

FIG. 2. As in Fig. 1, but for the cross correlation function X

Clo3,,0%,](t) divided by T2,

k
(1-@2+0v?)? \/e];[l (1+2Teto+T2t%?)

. . v
transformed auto and cross correlation functions of the total tJo (1—02+0v?)?

cross section, calculated with the help of E85), etc. The (42)
coupling strength for all channels was fixed to the vake

=0.1, while the number of channeld was varied. The 7o |owest order(37) and (38) simplify also,

gualitative features of the C functions are almost the same

4J1d 5ab5chaAc+(5ac5bd+ 5ad5bc)Hab

for any M. In the first placeM determines the falloff at large Ag~2T V1-Tot(1+Tatvd)~2T 1Tt (43
times. Note, however, that in the case of extremely small
total transmission, we would obtain a “true” correlation hole o~ 2T, Tpt[1+(Ta+ Ty— Dtw?]~2T,Tot. (44

att=0 (i.e., a positive slope See also the related discussion

below Eq.(27)] which is concerned with the rescaled Breit- This shows, that if the C function contains theterm only,

Wigner result. In all, it permits us to restrict the numerical we get a linear increase startingtat 0, whereas if it con-

studies(Sec. VI to the caseM =2. tains thell term also, we get a finite value &t 0, but no
Figure 1 shows the autocorrelation function divided byvalid value for the slope. The slope in the first case and the

T2, which starts at=0 with the value 2, independent of the finite value in the second are both determined by the same

number of channels. It decays with time, the larger the numintegrall ,

ber of channels, the faster. This is very reasonable, as the

decay must be related to the total transmissigif ,=MT. ClSab Skl () ~[48ap0caTaTc V(1= To) (1= To)t
Note that there is no qualitative signat sitive slope at
a gnatife P +2(8a0Ona Bagdod TaTolly,  (45)

t=0) of the correlation hole.

In Fig. 2 the cross correlation function is shown, which
starts at =0 with zero. It increases linearly with time, and it = Jldg(l— Q)jl dv
seems that now the slope is independent of the number of 0 0(1—p2%+v?)?
channels. At large times, the cross C function must go to zero
in the same way as the auto C function shown in Fig. 1. _fl { 1 ’E

. . = [ do(l—p)| —=arctan—

Hence, after reaching a maximum that decreases and moves 0 2p3 p
to the left with increasingM, the cross C function decays to
zero. Therefore, we see a clear signature of the correlatiowherep?=1— g?2. Splitting| ; into two parts and substituting
hole. x=arctanp/p) in the first one, we can evaluate analyti-

To conclude this section we will consider two different cally,
asymptotic limits: First we will prove, that fot—0 the

+i , (46)

asymptotic behavior of the various C functions is indepen- | 1 led X 1 ld e

dent of M. Second we will show with very high numerical 1= Efo X 1T sinx +§fo Qm
precision, that for small transmission coefficientg: T,

—0, the cross C functions coincid#é properly normalized In2 1-In2 1

with the two-level form factob,(t) for the GOE. =5 Tt T (47)

o _ In order to contain thél term only, the C function must be
A. The limit of small imes of the form:C[ S,,,S5,] with a#b. Then its asymptotic be-
In the limit t— 0, the Eq.(35) can be approximated by  havior is
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ClSaa,Sip]~2TaTpV(1—To)(1-Tp)t. (48)

If the C function is of the formC[S,y.S 1= ClSan.Stal,
then it contains thél term also. In this case we get

PHYSICAL REVIEW E65 026214

U(r)~8{25ab5chaTct2| 2+ ( é\acébd"' 5ad5bc)
XToT[(r2+2tr +t—t2)1,—bl]}.

(54

In order to keep the discussion short, we shall consider C

functions of the typé:[saa,sgb] only. Then we only need to

ClSab,SEp](0)=(1+ 82p) T Ty (49)

written as follows:

These results confirm our observations in Fig. 1 and Fig. 2.
The cross correlation function of two total cross sections
vanishes at=0. This holds for all values of the transmission
coefficient. Moreover, the slope only depends on the trans-
mission coefficients of the entrance and exit channels, and
thus does not change if the number of channels is changed.
In contrast to that, for the autocorrelation function of a total
cross section we geC[¢{@](0)=2T2. Again this value
does not depend on the number of channels.

Comparing the asymptotic resultd8) and (49) to the
rescaled Breit-Wigner approximati@g@7) we find agreement
in lowest order—for the slope in the case of cross correlation
functions, and for the value &&0 in the case of auto cor-

|2:

=~ 2"R

du

1 Jf
__(? e —
2p PJobu+2p2u+ p?

1

RZ_ p2
2p°R3

RZ_ p2

= ———arcta
2p°R3

arctan———— arctanﬁ

br+ p?

arctan————— arctanﬁ

PR

br+ p? p

PR

rR Jrr(r+1)
n .
(r+1)p  2t>p?R?

P

r(r+1)

N 2t2p?R?

calculatel ,. Defining p?=t2—r2 andR*>=b—p?, |, can be

(59

relation functions.

B. The limit of small transmission coefficients

In the caseV a: T,—0, the Eq.(35 and Eq.(40) sim-
plify to

N 1t
ElSw Sl 10U,

max(0t—1)
(50
where
rodu
U(I’)"‘4 Om[aabachaAc'l'(éacabd'l' 5ad5bc)Hab]
bu2 -2
2_ 2
x| =Pt oy (51

In the same limit, the expressions far, (37) and forIl,,
(38) become

Ay~2T,t

2
u
HabNZTaTb (t—r)(r+1—t)—l—r(2r+1)— 2U—+l .

Defining the two integrals

| —frdu aurl (52)
2 Jo o [(2-r?)(2u+1)+bu??’

r u?
's= fodu[(tz—rz)(2u+1)+bu2]2' ®3

the asymptotic limit ofU(r) can be written as

Inserting Eq.(54) into (50), we get the following result for
C[Saais;b]:

t dr(t—r)(r+1-1t)l,,

(56)

1 .
——C[Saa, S 1(1) ~4t2 f
TaTb [ aa Sbb]( ) max(0f—1)

wherel, is given in Eq.(55). We have evaluated E@56)
numerically and compared to the expected resuttbi(t),

for the discrete GOE spectrum. The difference is of the order
of the machine precision~10" 1) for any value oft.

VI. TEST OF THE RESCALED BREIT-WIGNER
APPROXIMATION

The aim of the present paper is actually twofold. In the
first place, we analyze correlation functions of total and par-
tial cross sections, to search for signatures of the correlation
hole, in particular in the regime of overlapping resonances.
In the second place we wish to establish the rescaled Breit-
Wigner approximation as a simple and general tool for the
analysis of correlations in different scattering situations. This
section is devoted to the latter, whereas the the correlation
hole will be studied in Sec. VII.

We use the rescaled Breit-Wigner approximation in those
cases, where no exact theory is available, i.e., for C functions
of partial cross section@vhere we need the additional diag-
onal approximationand for C functions of total cross sec-
tions, in the POE case. In this section we use the C functions
of total cross sections in the GOE ca$er which we have
exact analytic resulisto check the validity of the rescaled
Breit-Wigner approximation.

The Figs. 3—6 show the difference between the rescaled
Breit-Wigner approximation27) and the exact resul{35)
for C functions of the total cross section in the GOE case.
This is done for different numbers of channéisg. 3 and
Fig. 5, and for different coupling strength&ig. 4 and Fig.
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0.05 T T T T T T T
] M=3 — ~
&~ I &~
~ 10 =
s 2 s
= w0 5
% i ©
OF]
4 5
QD
7 <
_0.2 1 1 1 1 1 1 1 _0.w75 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4
t t

FIG. 3. Difference between the rescaled Breit-Wigner approxi- FIG. 5. As in Fig. 3, but for the cross correlation function
mation (27) and the exact resulB5) for the autocorrelation func- [ 42 ,,0%,](t) divided by T2.
tion C[ o o(t) divided by T2. The coupling strength is kept fixed
x«=0.1, and the number of channels is variédi=3 (solid line),  tion still behaves qualitatively well except for the cross C
M =10 (long dashed ling M =20 (short dashed ling andM =40 function for k=1.
(dotted ling. In Fig. 7, we compare the rescaled and the ordinary Breit-
Wigner approximation. The latter is obtained by undoing the
6). As the error of the rescaled Breit-Wigner approximationresca"ng and replacing by 4« in Eq. (27). As we have no
is zero fort=0 (see Sec. V A all curves for the auto and gxact theory in the POE ca$Big. 7(b)], we use numerical
cross C functions begin at zero. In the case of the auto Gqonte Carlo data insteattf. Sec. VI). The data may be
function the rescaled Breit-Wigner approximation mostly un-considered as exact up to the small fluctuations, seen in the
derestimates the exact result. In particular at small times, wggatg points. Though the resonances are well separatee for
get maximal deviations, which decrease agairt-asc. In =0 1 which is used here, the pure Breit-Wigner approxima-
the case of cross C functions the error curves depend in fion s already far off the exact result, in particular at small
more irregular way on the number of channels or on th&jmes. This is true for the GOE case shown in Fia)7as
coupling strength. Though the error is of comparable size ijye|| as for the POE case in Fig(l). In fact, the rescaled
all cases, the error curvestat-0 seem to behave linearly in grejt-Wigner prediction in the GOE case is much closer to
the case of the auto C functions and quadratically in the casgye POE case, which makes it practically impossible to dis-
of the cross C-functionsin agreement with our theoretical tinguish between correlated and uncorrelated spectra. Note
expectations; see Sec. V) Avet the cross C function van- that the auto C function shown here, is monotonously de-
ishes fork=1, while the approximation does not and must, creasing without showing any qualitative sign of the correla-
therefore, be considered with great reservations. In genergion hole.
the error is rather an absolute then a relative one. We may The rescaled Breit-Wigner approximation by contrast, re-
say that the rescaled Breit-Wigner approximation worksproduces the exact values of the C functiortat0 in the
quite well up tox=0.1, and that for largex the approxima-  GOE and apparently also in the POE case. This allows to
detect the correlation hole if present, at least in principle

0-05 T T T T T T T
0.06 = T T T T T T
£, ., oot
= &
= ~ ;
=~ ) P
K = oo
Q Y
q ~
o0
QD
-0.02
2 1 1 1 1 1 1 1
025 0.5 1 15 2 2.5 3 3.5 4
1 1 1 1 1 1 1
t 0045 0.5 1 15 2 25 3 35 4
FIG. 4. As in Fig. 3, but here, the number of channdis-2 is t

kept fixed, and the coupling strength is varigd: 0.01(solid line),
x=0.03 (long dashed ling «=0.1 (medium dashed linge k=0.3 A
(short dashed lingandx=1 (dotted ling. Clo%, 0% (t) divided by T2,

FIG. 6. As in Fig. 4, but for the cross correlation function
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' ' ' ' ' distinguish the situations, where the internal Hamiltonian has
4t 1 a purely random spectruPOB), from those where it has a
L @ _ spectrum with correlation€&SOE). We restrict the analysis to
coupling strengths € «<1 that covers the whole range for
. the transmission coefficient. As discussed amongst others in
iy Refs.[7,39,4( the scattering ensemble may show quite a
h different behavior whemnx>1. The results are presented for
two open channels. Calculations for larger channel numbers
have been performed, but they show no significantly differ-
ent behavior. In the case of total cross sections and GOE, this
can be seen from the results for the VWZ integral obtained in
Sec. V(see for example Fig.)1In the other cases, i.e., POE
[ ' ' ' ' ' or partial cross sections, the rescaled Breit-Wigner approxi-
4 . mation gives the same answeee Eq(31)]. In all cases the
i (®) ] number of channels merely enters as a scale factor.
The numerical data are obtained using E9j, i.e., we
| 7Y calculate the Fourier transforms of the two cross sections in
RPN 7 guestion and then take the ensemble ave(dgé rung over
ok X - their (complex conjugatedproduct. Finally the product of
SN 1 the average cross sections is subtracted to eliminate the peak
o att=0. The dimension of the effective Hamiltoni&h[see
A Eqg. (1)] is N=300. Where the resulting data are smoothed,
* 1 this is done using a2 fit to a natural cubic spline. The
0 s s s MMM sa s s length of its curve segments was 28 points that corresponds
0 05 1 L5 2 25 3 to At=0.26[41]. From the spline, 150 equidistant pointstin
are finally plotted. Note, that there is no free fit parameter,
FIG. 7. The auto C functio] o ](t) divided by T2 for M and the curves are not normalized. The fadérby which

=2 andkx=0.1. The long dashed line is the rescaled Breit-WignerWe divide, is directly determined from the input parameter

approximation(27), and the short dashed line is the ordinary Breit- using Eq.(6).
Wigner approximatior(details see text In (a) we show the GOE

Clo.)()/T?

and in(b) the POE case. The solid line {g) shows the exact result A. Total cross sections
(35), whereas the crosses (h) show numerical Monte Carlo cal- . . .
culations. We start the numerical analysis with auto and cross cor-

relation functions of total cross sections. While this case is
(absolute cross sections must be available with sufficient agelatively easy to handle in theory, it is usually very difficult
curacy. Though the rescaled Breit-Wigner approximationto obtain total cross sections from an experiment, in particu-
underestimates the auto C function at intermediate times |[hr if two independent total cross sections are needed.
the GOE cas¢Fig. 7(a)], it agrees very nicely with the nu-
merical data in the POE cagEig. 7(b)]. Autocorrelation functions

It seems that the rescaled Breit-Wigner accounts very well ) ) ) ) )

for uncorrelated resonances that diffuse independently into AS & Starting point consider the correlation hi¢in the
the complex plandsimilar to what one would expect from Fourier transform of a discrete energy spectr@ft)~1
an effective mean field theoryFor resonances which are —b,(t), that distinguishes the GOE from a purely random
strongly correlated from the very beginning, the dynamics ofspectrum(POBE). In the limit of vanishing coupling«—0,

the resonances is more complicated, and the rescaling procgie auto C functiorC[ o ] (t) divided by T2 converges not

dure cannot fully account for that. However, in cases where - - .
deviations of a few percent®f the maximal C-function efo (F(t)’ but toC(t) + 2. The reason Is tha_t the resonances are
‘weighted by Porter-Thomas distributed intensifiespartial

value are still acceptable, the rescaled Breit-Wigner ap-". . i
proximation can be applied up to quite large couplingW'dthS) [4,8], which leads to a reduced correlation hole of

strengths, which reach well into the strong absorption re 3. R
gime. While it is convenient to consider the absolute error at Figure 8 showsC[ o ](t)/ T2, for the GOE and the POE
small times(in the correlation hole regignthe relative error case. We find the behavior described above, but with the
is more appropriate at large times, i.e., in the tails of the Gyjtference, that due to the finite coupli(t) must be mul-
fgnctio“;l. The latter apparently scales with the total transmisgiplied with roughly an exponential decaying function. In the
sion>;_,T, (we have checked this separalelin line with oy panels(a)—(d), the the coupling parameter is increased
earlier theoretical work34]. from k=0.03 tox=1. In the GOE case the numerical results
VII. NUMERICAL ANALYSIS: GOE VERSUS POE are compared with the exact theory, E85), bgt in'the POE '
case we are dependent on the rescaled Breit-Wigner approxi-
Here we perform Monte Carlo simulations for correlation mation, Eq.(27). We find perfect agreement for the GOE
functions of partial and total cross sections. The aim is tavhich shows that the numerical Monte-Carlo calculation is
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3 T T T T T T T ] T T T
L (a) k=0.03|} (b) «k=0.1
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S~
S 0 1 1 1 1 1 1 1
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(c) k=0.3
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t

FIG. 8. The autocorrelation function of the total cross section dividedbyThe GOE versus the POE case, for coupling strengths:
k=0.03(a), k=0.1(b), k=0.3(c), andx=1. (d). The circles show the smoothed numerical GOE data; the crosses the equally treated POE
data. In all case&), ... (d) the exact VWZ integral is used for the GOE thedsplid line) and the rescaled Breit-Wigner approximation

for the POE(dashed ling

reliable. Interestingly the rescaled Breit-Wigner approxima-panels(a) and (b), which correspond to the weak coupling
tion describes the POE data almost as well. Only #er1 case, the theory agrees very well with the numerical data. For
we find minor deviations at intermediate times. This reaf-x=0.3 (c), however, we find first systematic deviations. The
firms, that the rescaled Breit-Wigner approximation is bestescaled Breit-Wigner approximation begins to overestimate
suited for cases where the correlations are relatively weak.the true C function, which becomes even worsexferl (d).
_ _ Possibly the deviations fot=0.3 may be due to the ap-
Cross correlation functions pearance of correlations when the resonances begin to over-
Let us again think of a discrete stick spectrum where thdap. The fact that the deviations are more pronounced here,
levels are weighted by intensitiésr partial widthg. In order  than in the case of auto C functions can be explained in a
to calculate the C function between two spectra related tmatural way by the higher sensitivity of the cross C function
different channels, it is reasonable to assume that the posie correlations. Moreover, it has been proven in Héf]
tions of the resonances are the same, but the correspondingough only for the one channel cagbat the coupling to
intensities are uncorrelated. Then this cross C function bedecay channels may indeed induce correlations even in the

comesC(t)~1—b,(t), i.e., we obtain the full correlation regimex<1.

hole[42] (see also the Eq$23)—(27) and the following dis- In the GOE case, we know from Sec. V A that the res-
cussion. For the GOE case, this has been shown numericallgaled Breit-Wigner approximation reproduces the exact
in Sec. V B. value of auto and cross C functions &t 0 for arbitrary

In Fig. 9 we show numerical and theoretical results for thecoupling strengths. This can also be proved for the POE in
cross C function. In the GOE case we plot the numericathe one channel cagd3]. Here, Fig. 8 and Fig. 9 give nu-
results together with the exact theory, E85), and we find merical evidence, that the same is true in the many channel
again perfect agreement well within the statistical ermte ~ case as well. Thus the relative size of the correlation hole
that for k=1, the cross correlation function vanishes identi-seems to be independent of the coupling strengths, which
cally). In the POE case we compare our numerical data witlurns the correlation hole into a persisting signature of chaos
the rescaled Breit-Wigner approximation, EQ7). In the  even in the limit of strong transmissio# a: T,—1. This
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FIG. 9. As in Fig. 8 but for the cross correlation function dividedTy Note, however, that in paftl), the C function in the GOE case
is exactly zero, and not plotted.

may be contrasted to the behavior in the energy domaimome even larger than one, which implies that the corre-
where the correlation hole fo€[o®),o(®)](w) gradually  sponding C function for the GOE becomes negative at small
disappears with increasing number of channels or total trangimes.

mission. Note, however, that in the time domain, the corre-

lation hole becomes compressed to short times. One would Autocorrelation functions

then need very long spectra with many resonances to resolve
the correlation hole. The generality of this invariance prop-,,
erty and its implications will be the subject of future studies.

According to Eq.(31) we have to distinguish between the
to C function of an elastic or inelastic cross section. In the
elastic caseB/A=3/35 so that the relative siz® of the
) ) correlation hole varies fronQ=3/35~0.0857 forM—oo,
B. Partial cross sections and 9/35-0.257 forM=2. In the inelastic caseB/A=1/9
In this section we show results of Monte Carlo calcula-so thatQ varies fromQ=1/9~0.111 for M—c, and Q
tions for C functions of partial cross sections. Though we=1/3~0.333 forM=2.
obtained a closed formula even hétsing the diagonal ap- In Fig. 10(elastic caseand Fig. 11(inelastic casgwe set
proximation for the partial cross sections and the rescalethe coupling parameter ta@=0.1. The numerical data is
Breit-Wigner approximation for the correlation functipwe  shown together with our approximate result, Eg§1). In
must be prepared for the approximation to deviate relativelyooth figures, the approximation clearly deviates from the nu-
early from the true result. The main advantage of partiaimerical result(which we may consider to be exaciThe
cross sections, is their easy experimental accessibility. Acdeviations are more pronounced in the GOE case, which is in
cording to our approximation, the relative size of the corre-ine with earlier observations in the context of total cross
lation hole is given by sections. The deviations occur just in the region of the cor-
relation hole, and thus diminish the difference between GOE
_ B (1+6/M)(1+4/M) and POE considerably. In Fig. 10 it seems, that the theoreti-
“A 2 &) calval = il qui i
(1+2/M) cal values at=0 are still quite accurate, so that the corre
lation hole could be detected there. However, the curves for
[see EQ.(31) and the list belok Note that for particular the GOE and POE merge very rapidbtt~0.5). In Fig. 11
choices of the partial cross sections, this quotient may bewe see that our approximation fails eventat0. The nu-
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25 : : : : : pling strength is increased from=0.03 up tox=1. The
f correlation hole is so bigg=3), that the GOE curve be-
2 { . comes indeed negative at smglvith the only exception of
o panel (d). The rescaled Breit-Wigner approximation works

quite well in (a) and(b), begins to fail in(c), and fails com-
pletely in (d). Surprisingly the error becomes large in the
POE case first, while the agreement in the GOE case is still
reasonable. This contradicts to some extent, what we have
found and partially explained in the case of total cross sec-
. tions. Further studies are probably necessary to clarify this
point.

. . . Figure 13 shows the cross C function of an elastic and an
0 0.5 1 15 2 25 3 inelastic cross section. Not only is the correlation hole
smaller, the deviations between our approximation and the
numerical data are also larger than in the previous @aise

FIG. 10. The autocorrelation function for the elastic cross sec-12). In panel(b) for k=0.1 we find already noticeable de-
tion divided byT? with the coupling strengtik=0.1. The numeri-  viations in the POE case, and the correlation hole has prac-
cal data are shown by circlé§OE) and crosse$POB). The theo- tically disappeared fok=0.3, in panel(c). In panel(d) fi-
retical curves are the rescaled Breit-Wigner approximation, Ednally, the numerical data practically coincide for the POE
(31), for the GOE(solid line) and the POHdashed ling and the GOE case. It seems that the C function in this case is

negative for any value of. Again this is an aspect, which
merical curves for POE and GOE lie so close together, that ijeserves further studies.
is praCtica”y impOSSible to |dent|fy the correlation hole. In this Section, we saw that the Va||d|'[y of our approxima_
Similar investigationg8] gave essentially the same results. tion for partial cross sections is restricted to coupling
_ _ strengths that are typically much smaller than in the case of
Cross correlation functions total cross sections. Moreover we can no longer obtain the

As the number of channels M =2, we need to consider €xact value of the C functions &t0. However, we found
only two different types of cross C functions: the C function here the largest effects of the correlation hole. In particular,
of two elastic cross sections, and of an elastic and an inelaghe case of two elastic cross sections is very promising in
tic cross sectiorisharing the same entrance chamnkl the  view of a possible realization in an experiment.
list below Eq.(31) we find thatB/A=1 in the first case, and
B/A=1/5 in the latter. Hence we may expect to obtain con-
siderably larger correlation holes. For the case of two elastic
cross sections the relative siggof the correlation hole is By introducing an appropriate rescaling of the coupling
Q=1 forM—o andQ=3 for M=2. This means, that the C strengths in the conventional theory of multichannel scatter-
function in the GOE case becomes negative at small timesng for weak absorption, we have been able to extend its
For the case of one elastic and one inelastic cross sectiodpmain of validity far into the region of overlapping reso-
Q=1/5 for M—~ andQ=23/5 for M=2. This is the most nances. We have used this meth@dich we call the res-
natural constellation in experiments. Unfortunately the corcaled Breit-Wigner approximationto calculate auto and
responding correlation hole is not very large. cross correlation functions for total and partial cross sections

Figure 12 shows the cross C function of two elastic crosshoth for the POE and the GOE case, i.e., in situations we
sections divided byT2. In the four panelga)—(d) the cou-  consider as “integrable” and “chaotic.”

Starting from the VWZ integral9], which describes the
0.2 ' ' ' ' ' GOE case, we have performed exact calculations for the cor-
r relation functions of total cross sections in the time domain.
By comparison with these results and numerics, we deter-
015 5 &, | mined the domain of validity of the rescaled Breit-Wigner
y approximation. It turned out, that it works particularly well
in the case of weak correlations.

We showed the differences between POE and GOE all the
way up to the domain of strong transmission in all channels,
and we found that autocorrelation functions are a poor means
of determining the chaoticity or integrability of a scattering
system in strong absorption, whereas certain cross correla-
A tashansas tion functions are quite sensitive. A particularly strong effect
0 0.5 1 15 2 25 3 is seen in cross correlation functions of two different total
cross sections. Unfortunately total cross sections are usually
very hard to measure and, therefore, this observation may be
FIG. 11. As in Fig. 10 but for inelastic cross sections. of little practical value. As far as partial cross sections are

Cloul(t)/T?

VIll. SUMMARY

0.1

Clowl()/T?

0.05 -
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FIG. 12. Cross correlation functio® o1 ,0,,](t) divided by T2. The coupling strength is variegt=0.03(a), k=0.1 (b), x=0.3 (),
andx=1 (d). The numerical data is shown with circl&8OE) and crossefPOB). The rescaled Breit-Wigner approximati¢i) is plotted
for the GOE(solid line) and for the POEdashed ling

concerned, we find that cross correlations of two elastic cross 1—iK ;

sections are also very sensitive, far more than either the ones S=1mxe KE)=5Vie V. (A1)
between an elastic and an inelastic cross section or between nt

two inelastic ones. As we will see below, the averagg@matrix can be obtained

For systems where two asymptotic channels are stable theysily from the averagil matrix. This offers a convenient
cross correlation of two elastic cross sections is a very attraGyay to define the openness of the system, i.e., the coupling
tive means of analyzing the reaction. Also at least for intersrengths to the decay channels.
mediate coupling, i.e., overlapping resonances with moderate | the eigenbasis dfi;,,, we get the following expression
coupling in each channel we have a theoretical result withy, the elements of th& matrix (A1):
which to compare. This is particularly important for the in-

tegrable case where we know that nongeneric behavior might 1 N ViaVip
be quite common. First experiments on microwave billiards Kap(E)= > Z E . (A2)
to check our results are on their way. =1 ei

where{e;} are the eigenvalues of the closed systel .
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which holds for anyi. Here( .. .), stands for the average
over the level density. Using that(V;,V,)= 5i,-5ab<Viza ,

The S matrix given in Eqg.(1) may equivalently be ex- which again holds for the scattering ensembles considered
pressed in terms of the so-calle& ‘matrix” [14], here(see Sec. )| we get

APPENDIX: AVERAGE S MATRIX
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FIG. 13. Same as in Fig. 12, but for the cross correlation function between an elastic and an inelastic croﬁ[mqﬂe@ﬂ(t) divided
by T2

N ple) . It can be showii21] that due to the analytic properties of the
(Kap(E))= San7 (Via J/ dec—_—imp(E)|, (A4)  Smatrix its average is directly related to the aver&gma-
trix
where we split the integral used to average over the level
density, into its principle value part and the residue. Note, . n
that the averag& matrix is diagonal. We define the center (S(E))= 1-i(K(E )>. (A7)
Eo,=0 of the spectrum as that point where the principle value 1+i(K(E™))

integral vanishes. Then we obtain

. i 5 The averageS matrix is also diagonal. In the center of the
(Kaa(07))=— 5 N(Viz)p(0). (A5)  spectrum the averagé matrix is purely imaginary, so that
(S(E)) is real. Its elements are then given by
Finally we define the “coupling parameter®’, as follows:

S i(Ka(07)) = o (V2 d—i A6 (Saa(0))= Lt (A8)
ka=1(Kaa(07)) = 2d< ia/ = Np(0) (AB) aa 1+ K,
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