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Self-induced slow-fast dynamics and swept bifurcation diagrams in weakly desynchronized systems
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In systems close to the state of phase synchronization, the fast timescale of oscillations interacts with the
slow timescale of the phase drift. As a result, “fast” dynamics is subjected to a slow modulation, due to which
an autonomous system under fixed parameter values can imitate repeated bifurcational transitions. We dem-
onstrate the action of this general mechanism for a set of two coupled autonomous chaotic oscillators and for
a chaotic system perturbed by a periodic external force. In both cases, the Psextivas of phase portraits
resemble bifurcation diagram of a logistic mapping with time-dependent parameter.
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In real physical problems, external parameters can onljargely uncorrelated, whereas their phases synchronize; the
approximately be viewed as constant. A gradual variation ofnean frequencies of chaotic motions in subsystems become
parameters remains harmless as long as it does not produeemmensurate. Phase synchronization precedes the “com-
qualitative changes in the behavior of the system. Howeveiplete synchronization” observed under very strong coupling,
it may happen that a time-dependent parameter crossesV{ien subsystems display identical dynami&-11]. For
critical value beyond which the attracting state changes. Théimplicity, here we restrict ourselves to the “main reso-
interaction of the slow parameter variation with the fast ratenance” when the mean frequencies of subsystems are locked
of motions in the phase space is the cause of phenomeria the 1:1 ratio. In the synchronized state, the difference be-
known under the name of “dynamic bifurcationélee, e.g., tween the phases of the subsystems remains confined within
[1]). One of its peculiarities is the bifurcation delay: the sys-a finite range. Just outside the domain of phase synchroniza-
tem fails to “notice” the onset of instability and tracks for a tion in the parameter space, a certain intermittency is ob-
long time the unstable branch of states, before exhibiting &erved: long-time intervals at which the phase difference is
swift transition to another state. The influence of a slowconfined, alternate with intervals of phase dfif2,13.
monotonic parameter Variatidﬁsweep") on the sequence Although the phase itself is a “fast” variable, variations
of period-doubling bifurcations was described [i2] and  of phase difference occur on a slow timescale and slowly
later investigated in detail ifi3]. Although the obtained bi- modulate the amplitude. Until now, no attention seems to be
furcation diagrams resemble the familiar diagram of a logisPaid to the fact that this modulation may result in dynamic
tic mapping[4,5], some differences arise, due to the inevi- bifurcations and, since the phase is a cyclic variable, imitate
table presence of transients. With respect to the usual periodiepetitive sweeps back and forth through bifurcation se-
doubling scenario, a certain similarity between the sweegluences even in the completely time-independent setup. This
and the action of noise has been established: under a nonzegiect should be especially well visible when one of the sub-
sweep rate, only a finite number of doubling bifurcations issystems, if considered alone, is close to the accumulation
observable. Theoretical predictions were confirmed by expoint of a bifurcation scenario, whereas the state of the sec-
periments on electronic circuits and lasers with monotoni-ond one is qualitatively robust against minor parameter per-
cally varied characteristids,7]. turbations. Below, we illustrate this phenomenon with the

Existing examples of dynamic bifurcations employ thehelp of two coupled autonomous oscillators, a periodically
explicit slow variation of parameter. In this paper, we reportforced chaotic system and a two-dimensional map.
on a mechanism which enables sequences of dynamic bifur- Our test objects are the textbook examples of chaotic dy-
cations in autonomous systems with fixed parameters and iamics. We start with two coupled nonidenticalsRter os-
systems which are forced at fast timescales. For the attractogdlators
of such systems, the Poincasections look similar to bifur-

cation diagrams. X1,2= ~ Y12~ Z12FH &(Xo,1— X1,9),
We consider dynamics close to the regime of phase syn- )
chronization. The notion of phase synchronization for cha- Y12,=X12FAY1 2, (&N
otic systems extends the idea of synchronization in coupled
periodic oscillators: it is based on the decomposition of a '21’2= B1 o+ 21 X1~ C).

chaotic signal into the slowly varying amplitude and rapidly

rotating phase. As shown ii8], in weakly coupled chaotic Following the original work of Resler[14], we fix B=0.2

systems the onset of a certain partial order is possible: an&ndC= 10; the valueA; =0.11 ensures chaotic motion of the

plitudes of oscillations in individual subsystems remainseparate oscillator whereds=0.05 corresponds to a peri-
odic state. The parametercharacterizes the strength of the
coupling. Since projection of the chaotic motion onto ¥ye

*Present address: Krasnow Institute for Advanced Study, Georgplane of each subsystem looks similar to counterclockwise
Mason University, Fairfax, VA 22030. rotations around the origin with fluctuating amplitude and
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the strong delay of the bifurcation in the period-2 branch.
Slowly traversing the segment with local contraction, the or-
bits track this branch so closely, that later, when the branch is
no more attracting, they remain in its vicinity rather long; by
the time when they finally depart, the bifurcation diagram
already reaches a chaotic stage.

Imitated bifurcation scenarios can be also recovered in
oscillators in which intrinsic chaotic dynamics interacts with
an external periodic force. Analysis of phase synchronization

in driven chaotic systems showed that under forcing with
period close to the mean period of chaotic oscillations, the
phase of chaotic motion could be captured by the phase of
the force[16]. To enable this, for a given amplitude of the
force, the driving frequency should lie within a certain range.
f]ust outside this range, long-time intervals in which the
phase of the system follows the phase of the force, alternate
with epochs where two phases drift apart. The latter drift can
be rather slow: it may take hundreds of periods of external
Sorce in order to increase the phase difference-8xr. Fast
oscillations of the system on the background of this slow
drift can provide conditions for dynamic bifurcations.

As an example, consider the periodically driven Lorenz
equations;

FIG. 1. Two coupled Rssler oscillators: Eq(l) with A;
=0.11, A,=0.05, B=0.2, C=10, £¢=0.01660.(a) Time evolu-
tion of the phase differencéb) Poincaresection of a trajectory on
the planey,=0.

period, it is convenient to introduce two phases as lifts o
angular coordinates¥ ,=arctany; »/X; o) + 7/2 sign; ,)
[8].

Under a very weak coupling, both the amplitudes and th
phases of nonidentical interacting $&ter oscillators are un-
locked. An increase of the coupling coefficienbeyond the
small threshold value s leads to the onset of phase synchro-
nization[8]. In the following, we adjust slightly below this
threshold, which for the chosen set Af ,,B,C equalse g
=0.016 637 516.

Isosurfaces of either of the phases are natural candidates
for Poincaresurfaces; we take for this aim the hyperplane
y;=0 and sample the points in which the orbit intersects this

plane “from above” (/,<0). The dynamics of a phase dif- Here, ¢=10 andb=8/3 are the values from the original
ference between two subsystems_ is repre_senteq by valugs ﬁiper of LorenZ17], E and Q are, respectively, amplitude
v, compute_d at the moments of intersection with the Poin4yng frequency of the external force. The value of fixed at
careplane[Fig. 1a)]. In accordance with the theo[§2,13, 215 25; in the autonomous system, this corresponds to the
long (~900 iterations plateaus are interrupted by epochs of chaotic state and lies close to the accumulation point of the
phase drift; typical length of the latter is70 iterations. The period-doubling sequence gt 215.364[5].
Poincaresection of the orbit projected onto the cylinder In the absence of forcingS=0), the mean frequency of
x1,W,(mod 27) is shown in Fig. 1b) [15]. As time goes on,  chaotic motion in Eq(2) equals 25.2555pt]~* in dimen-
the cylindrical surface is traversed from right to the left; 5ionjess units. An external periodic action at close values of
when the left border is reached, the imaging point reappearg can entrain the phase of the system. Onset of phase syn-
on the right side, etc. _ chronization in Eq.2) and the analysis of this state were

_ At first sight, the set in Fig. (b) reminds a part of the gescribed in[18]; in contrast, our current interest lies in
b|fu_rcat|on O!|agram_ for the Iog|st|<_: map. At a closer look, we slightly desynchronizedhotions. ForE = 1.5, phase synchro-
notice the fmgerprmt; of dy.namlc bifurcatioh®,3]: com-  Li-otion occurs in the interval), =25.240 04 Q< Qp
pared to the conventional diagrams[@{5], the forks near  _ 55 57308, we take the values &f outside this interval.
the bifurcation points are deformed, and only several bifur1:or the Poincareection, we choose the plaae-r —1 and
cations can be resolved. The motion is chaotic, however, iy, the places where an orbit intersects this plane from
the segments which remind periodic windows of the bifurca-5;,, e The coordinatesandy of the intersection point char-
tion diagram, local Lyapunov exponents are negative. Strongarize the amplitude of the motion: due to the strong con-
local contraction makes the corresponding part of the set saction, either of these coordinates suffices for practical rea-
squeezed that its transverse structure remains below the levgl s The remaining information is provided by the phases of
of numerical resqlutio_n(The equations were integrated by o system and the driving force. At the momenof the jth
recurrent expansions into the Taylor series of the 725th ord§hersection of the orbit with the Poincapdane, the former
with variable time step and relative error per step 10The phase, by definition, is set tord (for the discussion on the

width of }Qe “stripes” in the periodic windows does not ex- etimation of phase in the Lorenz equations[d&e18), and
ceed 10 _; thl_s stror)g contracpon is a characteristic featurgthe phasay of external force equal®t; .

of dynamic bifurcations, provided the parameter sweep is Typical examples of the evolution of the phase difference
slow enough{1,3]). Imitated bifurcations corr_espond to the between the force and the system just outside the region of
“backward sweep” of the parameter: ... period-8 period phase synchronization are shown in Fig&) 2nd Zc). The

4 — period 2. In the part of the set which corresponds to theespective Poincargections in coordinates ¢(mod 21) are
forward sweep, sequence of doublings is not observed due fgotted in Figs. 2b) and 2d). Since for(<(}, , the average

X:a(y—x), y=rX—y—Xz,

z=xy—bz+E cogQt). 2
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FIG. 2. Forced Lorenz equation®) at o=10, b=8/3, r The value of phase,, ., equalsi,+ wr,, wherew is the
=215.25,E=1.5; (8),(b) 21=25.2396;(c),(d) 2=25.2735.a),(0)  forcing frequency, and the return time is the interval be-
Time evolution of the phase differenci),(d) Poincaresection on yveen thenth and then+ 1-th intersection of the Poincare
the planez=r—1. surface. For the attractors of both the Lorenz equations at

) ) ) large r and the Resler equations, the return time very
frequency of driven chaotic motion exceeds the frequency O\f/veakly depends on the position on the surface. Approximat-

the force, the plot in Fig. @) is traversed from left to the g this dependence by a linear function with a small slope,
right. For(Q1>Qg, the force turns out to be faster, therefore y,o |owest order ire yields

Fig. 2(d) is traversed from right to the left.

Again, the Poincaresections resemble dynamic bifurca- Yns1= o+ w[a+bu,+ ed sin( g+ o) 1. (4)
tion diagrams. Along with the main doubling sequence, the
“window” of period 6 is distinctly seen in Fig. @). Increase Herea, b, d, andy, are parameters. To ensure proximity
of the forcing leads to the growth of the modulation depthy, phase synchronizatioma should be close to 2. The
which, in its turn, results in the imitation of a larger piece Ofmapping(3,4) combines a quadratic map with a circle map
the bifurcation diagram: cf. Fig. 3 where not only the piecesynhose rotation number is close to 1.
of “stable period 4 and 8” but also pieces of “period 2" are 4, the mapunﬂ=,u,—u§, the accumulation point of a

recognizable._ . - . period-doubling scenario lies at=1.401 155 189. At close
To get a simple but still efficient model of dynamics on values ofu and a moderate it is possible to have in Egs.

the Poich’replane, ponsider a two-dimensional mapping.(g) and (4) chaotic attractors with values @f(mod 27) lo-
The participating variables are the amplitude of the motion ... 0 4 i1side the narrow strip; this corresponds to the state

[analog forx or y from Eq. (2)] and the phase) of the o - _
. i ..~ .. of phase synchronization. By fixing, e.gu=1.41, €
external force at the moment of intersection of the orbit Wlthzolzs’ a=6.29, b=0.025, d=0.1 and yo= /2 we ob-

the plane. The intrinsic dynamics afis governed by a qua-
dratic map; the contribution of the weak force is proportional
to its amplitudee:

serve that this state exists undef =0.992 89K w<wg
=1.000801. As seen in Fig. 4, a plot of a typical orbit at a
value of w just outside this “synchronization range,” dis-
) i plays apparent similarity to Fig. [@9].
Un+1=p—Upt+esing,. ©) Let us have a closer look at the details of the evolution in
the phase space. For H®) at E=1.5, the motion is chaotic
in the left part of the intervaf)| <Q <y and periodic near
its right boundary. On both borders, phase desynchronization
is caused by tangent bifurcations of periodic orbits which
intersect the Poincarsurface four times. A€}, , two un-
stable periodic orbits coalesce, provoking an attractor-
repeller collision[12,13. At Qg, the stable limit cycle is
destroyed by a saddle-node bifurcation. In both cases, a kind
of “channel” is formed in the phase space, allowing the or-
bits to escape from the phase-synchronized state. The motion
along this channel is slow: basing on the mappi8gh and
the pattern from Fig. 4, duratiofy of the drift stage can be
roughly estimated a3 ~27/|w(a+b/2)— 2| iterations.
Notably, the drift velocity cannot be made arbitrarily small
FIG. 3. Poincaresection atE=3, =25.222 (parameters by tuning the force: both fow— wg and w—w_, Ty re-
o,b,r asin Fig. 2. mains finite. On the contrary, the average lengthof a

0

v (mod 2x)
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synchronized epoch grows unboundedly on approaching ehowever, most of the time the low-frequency component is
ther of the endpoints from outside. The scaling laws whichvirtually absent: its modulating action is recognizable only

characterize this growth can be of two kinds: near the endduring the epochs of phase drift. Having reached a chaotic
point w,, at which an attractor-repeller collision happefig, ~ state with nearly synchronized phases of individual oscilla-
diverges as exp(constfo — w,]) [12], whereas the saddle- tOrS and coinciding individual frequencies, a system wanders

node bifurcation at, imposes the usual scaling law of the along this state for a I_ong time, until finally it finds itself in
type-I intermittency T~ | w— ws| ~ Y2[20]. In fact, the same the opening of the “drift channel.” In the course of the sub-
'S snl . )

scaling holds for the plateaus in Fig(al since for the em- sequent phase drift, the frequen_cies of both subsystems di-
ployed values ofA, ,, B, andC the transition in Eq(1) at verge, a low-frequency modulation sets on and gveqtually
e=epis @ saddle-h(,)de,bifurcation. prlngs the system through the sequence of Qynamlc bifurca-
Increase of the distance in the parameter space from th%oc?;ug ?g; tic; ttf; %sz?gm Or!\fv?t?:hsggt%ﬁﬁ;mz mgmcer:lé Siilf
borders of region of phase synchronization affects Onlyrepeated P y ’ y
weakly the durgtlon of the drift stage, but th_e lifetime: of A natural question arises on the generality of the dynamic
nearly synchronized states becomes substantially shorter. (kﬂfurcation diagrams in this context. Just outside the state of
the course of this increase, saddle-saddle bifurcations destr ase svnchronization the phase drift is alwavs slow. there-
unstable periodic orbits and create further channels for th h y dulati Hect E Id b . |_3|/ ’ id

phase drift. As a result, the whole dynamical diagram on the{Ore € modulating ettect should be generic. However, iden-

S . g . ification of dynamic bifurcations caused by this modulation
Poincaresection becomes fuzzy, but its contours remain well . . - . .
recognizable. can, in general, be a difficult task: if the interacting sub-

A similar effect is produced by adding noise to the pro_systgms.are n the state of.weII—dev‘(‘anped chaos“, the dy-
namic bifurcations are restricted to “chaos-chaos” transi-

cess: such as in the case of explicitly imposed parametetr o ; : . .
. . o lons. If such transitions include crises associated with the
sweep[3], minor details of the pattern become less distinct, ; o .
and less dynamic bifurcations can be resolved. However, i?erpt chan_g_e of the attractor size, the dy”?‘m'c bifurcations
should be visible. If, on the other hand, transitions result only

the noise is not too strong, the typical outline of the diagram . : )
e ; o ” in subtle changes in the geometry of chaotic attractors, it

with its merging curves, “windows” and dense clusters at the o )
ay be very difficult to recover these changes in the rela-

places of “attractor crises” persists. Therefore, we expec ivelv short seaments of phase drift
that this unusual sort of slow-fast dynamics under weak de- y sho 9 P ' o
As a final remark, we note that weak desynchronization

synchronization of phases can be observed experimentall(yi,nd dynamic bifurcations may sometimes stand behind non-

e.g., by yveakly disturbing the phase-synchronized reglmegtationarity which manifests itself in the alternation of peri-
reported in[21].

The descrbed phenamenon can b iewed as a kind A 219 (SOTETe0 benaer i B pfen ercauniered
intermittency. The slow component which modulates the fas . per gm. Y, ity
scribed to variation of external conditions and action of

processes, is created by interaction of close frequencie%oise_ our first example shows that alternating regimes ma
those of nonidentical Rssler oscillators in the first example, ’ P g reg y

and those of the Lorenz system and the driving force in thebe observed in a completely deterministic stationary setup.

second one. This reminds us of the classical example, the Fruitful discussions with U. Feudel, A. Pikovsky, and M.
generation of a beating frequency which slowly modulatesRosenblum are gratefully acknowledged. Research of J.K.
the amplitude of fast quasiperiodic oscillations. In our casewas supported by EC RTN 158.
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