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Self-induced slow-fast dynamics and swept bifurcation diagrams in weakly desynchronized system
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In systems close to the state of phase synchronization, the fast timescale of oscillations interacts with the
slow timescale of the phase drift. As a result, ‘‘fast’’ dynamics is subjected to a slow modulation, due to which
an autonomous system under fixed parameter values can imitate repeated bifurcational transitions. We dem-
onstrate the action of this general mechanism for a set of two coupled autonomous chaotic oscillators and for
a chaotic system perturbed by a periodic external force. In both cases, the Poincare´ sections of phase portraits
resemble bifurcation diagram of a logistic mapping with time-dependent parameter.
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In real physical problems, external parameters can o
approximately be viewed as constant. A gradual variation
parameters remains harmless as long as it does not pro
qualitative changes in the behavior of the system. Howe
it may happen that a time-dependent parameter cross
critical value beyond which the attracting state changes.
interaction of the slow parameter variation with the fast r
of motions in the phase space is the cause of phenom
known under the name of ‘‘dynamic bifurcations’’~see, e.g.,
@1#!. One of its peculiarities is the bifurcation delay: the sy
tem fails to ‘‘notice’’ the onset of instability and tracks for
long time the unstable branch of states, before exhibitin
swift transition to another state. The influence of a sl
monotonic parameter variation~‘‘sweep’’! on the sequence
of period-doubling bifurcations was described in@2# and
later investigated in detail in@3#. Although the obtained bi-
furcation diagrams resemble the familiar diagram of a log
tic mapping@4,5#, some differences arise, due to the ine
table presence of transients. With respect to the usual pe
doubling scenario, a certain similarity between the swe
and the action of noise has been established: under a non
sweep rate, only a finite number of doubling bifurcations
observable. Theoretical predictions were confirmed by
periments on electronic circuits and lasers with monoto
cally varied characteristics@6,7#.

Existing examples of dynamic bifurcations employ t
explicit slow variation of parameter. In this paper, we rep
on a mechanism which enables sequences of dynamic b
cations in autonomous systems with fixed parameters an
systems which are forced at fast timescales. For the attrac
of such systems, the Poincare´ sections look similar to bifur-
cation diagrams.

We consider dynamics close to the regime of phase s
chronization. The notion of phase synchronization for c
otic systems extends the idea of synchronization in coup
periodic oscillators: it is based on the decomposition o
chaotic signal into the slowly varying amplitude and rapid
rotating phase. As shown in@8#, in weakly coupled chaotic
systems the onset of a certain partial order is possible:
plitudes of oscillations in individual subsystems rema
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largely uncorrelated, whereas their phases synchronize;
mean frequencies of chaotic motions in subsystems bec
commensurate. Phase synchronization precedes the ‘‘c
plete synchronization’’ observed under very strong coupli
when subsystems display identical dynamics@9–11#. For
simplicity, here we restrict ourselves to the ‘‘main res
nance’’ when the mean frequencies of subsystems are loc
in the 1:1 ratio. In the synchronized state, the difference
tween the phases of the subsystems remains confined w
a finite range. Just outside the domain of phase synchron
tion in the parameter space, a certain intermittency is
served: long-time intervals at which the phase difference
confined, alternate with intervals of phase drift@12,13#.

Although the phase itself is a ‘‘fast’’ variable, variation
of phase difference occur on a slow timescale and slo
modulate the amplitude. Until now, no attention seems to
paid to the fact that this modulation may result in dynam
bifurcations and, since the phase is a cyclic variable, imit
repetitive sweeps back and forth through bifurcation
quences even in the completely time-independent setup.
effect should be especially well visible when one of the su
systems, if considered alone, is close to the accumula
point of a bifurcation scenario, whereas the state of the s
ond one is qualitatively robust against minor parameter p
turbations. Below, we illustrate this phenomenon with t
help of two coupled autonomous oscillators, a periodica
forced chaotic system and a two-dimensional map.

Our test objects are the textbook examples of chaotic
namics. We start with two coupled nonidentical Ro¨ssler os-
cillators

ẋ1,252y1,22z1,21«~x2,12x1,2!,

ẏ1,25x1,21Ay1,2, ~1!

ż1,25B1,21z1,2~x1,22C!.

Following the original work of Ro¨ssler@14#, we fix B50.2
andC510; the valueA150.11 ensures chaotic motion of th
separate oscillator whereasA250.05 corresponds to a per
odic state. The parameter« characterizes the strength of th
coupling. Since projection of the chaotic motion onto thexy
plane of each subsystem looks similar to counterclockw
rotations around the origin with fluctuating amplitude a

ge
©2002 The American Physical Society12-1



o

th
-

o

a
ne
hi
f-
es
in

o

er

ft;
a

e

ur
,
ca
on
t
le
y

rd

-
re

e

th
e

h.
or-
h is
y
m

in
ith
ion
ith
the
e of
e
e.
he
ate
an
nal

ow

nz

l

the
the

f

of
syn-
re
n
-

om
-
on-
ea-
s of

ce
n of

MICHAEL A. ZAKS, EUN-HYOUNG PARK, AND JÜRGEN KURTHS PHYSICAL REVIEW E65 026212
period, it is convenient to introduce two phases as lifts
angular coordinates:C1,25arctan(y1,2/x1,2)1p/2 sign(x1,2)
@8#.

Under a very weak coupling, both the amplitudes and
phases of nonidentical interacting Ro¨ssler oscillators are un
locked. An increase of the coupling coefficient« beyond the
small threshold value«ps leads to the onset of phase synchr
nization@8#. In the following, we adjust« slightly below this
threshold, which for the chosen set ofA1,2,B,C equals«ps
50.016 637 516.

Isosurfaces of either of the phases are natural candid
for Poincare´ surfaces; we take for this aim the hyperpla
y150 and sample the points in which the orbit intersects t
plane ‘‘from above’’ (ẏ1,0). The dynamics of a phase di
ference between two subsystems is represented by valu
C2 computed at the moments of intersection with the Po
caréplane@Fig. 1~a!#. In accordance with the theory@12,13#,
long (;900 iterations! plateaus are interrupted by epochs
phase drift; typical length of the latter is;70 iterations. The
Poincare´ section of the orbit projected onto the cylind
x1 ,C2(mod 2p) is shown in Fig. 1~b! @15#. As time goes on,
the cylindrical surface is traversed from right to the le
when the left border is reached, the imaging point reappe
on the right side, etc.

At first sight, the set in Fig. 1~b! reminds a part of the
bifurcation diagram for the logistic map. At a closer look, w
notice the fingerprints of dynamic bifurcations@2,3#: com-
pared to the conventional diagrams of@4,5#, the forks near
the bifurcation points are deformed, and only several bif
cations can be resolved. The motion is chaotic; however
the segments which remind periodic windows of the bifur
tion diagram, local Lyapunov exponents are negative. Str
local contraction makes the corresponding part of the se
squeezed that its transverse structure remains below the
of numerical resolution.~The equations were integrated b
recurrent expansions into the Taylor series of the 25th o
with variable time step and relative error per step 10217. The
width of the ‘‘stripes’’ in the periodic windows does not ex
ceed 10213; this strong contraction is a characteristic featu
of dynamic bifurcations, provided the parameter sweep
slow enough@1,3#!. Imitated bifurcations correspond to th
‘‘backward sweep’’ of the parameter: . . . period 8→ period

4 → period 2. In the part of the set which corresponds to
forward sweep, sequence of doublings is not observed du

FIG. 1. Two coupled Ro¨ssler oscillators: Eq.~1! with A1

50.11, A250.05, B50.2, C510, «50.01 660.~a! Time evolu-
tion of the phase difference;~b! Poincare´ section of a trajectory on
the planey150.
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the strong delay of the bifurcation in the period-2 branc
Slowly traversing the segment with local contraction, the
bits track this branch so closely, that later, when the branc
no more attracting, they remain in its vicinity rather long; b
the time when they finally depart, the bifurcation diagra
already reaches a chaotic stage.

Imitated bifurcation scenarios can be also recovered
oscillators in which intrinsic chaotic dynamics interacts w
an external periodic force. Analysis of phase synchronizat
in driven chaotic systems showed that under forcing w
period close to the mean period of chaotic oscillations,
phase of chaotic motion could be captured by the phas
the force@16#. To enable this, for a given amplitude of th
force, the driving frequency should lie within a certain rang
Just outside this range, long-time intervals in which t
phase of the system follows the phase of the force, altern
with epochs where two phases drift apart. The latter drift c
be rather slow: it may take hundreds of periods of exter
force in order to increase the phase difference by;2p. Fast
oscillations of the system on the background of this sl
drift can provide conditions for dynamic bifurcations.

As an example, consider the periodically driven Lore
equations;

ẋ5s~y2x!, ẏ5rx2y2xz,

ż5xy2bz1E cos~Vt !. ~2!

Here, s510 and b58/3 are the values from the origina
paper of Lorenz@17#, E and V are, respectively, amplitude
and frequency of the external force. The value ofr is fixed at
215.25; in the autonomous system, this corresponds to
chaotic state and lies close to the accumulation point of
period-doubling sequence atr 5215.364@5#.

In the absence of forcing (E50), the mean frequency o
chaotic motion in Eq.~2! equals 25.255 52@ t#21 in dimen-
sionless units. An external periodic action at close values
V can entrain the phase of the system. Onset of phase
chronization in Eq.~2! and the analysis of this state we
described in@18#; in contrast, our current interest lies i
slightly desynchronizedmotions. ForE51.5, phase synchro
nization occurs in the intervalVL525.240 04,V,VR
525.273 08. We take the values ofV outside this interval.
For the Poincare´ section, we choose the planez5r 21 and
mark the places where an orbit intersects this plane fr
above. The coordinatesx andy of the intersection point char
acterize the amplitude of the motion; due to the strong c
traction, either of these coordinates suffices for practical r
sons. The remaining information is provided by the phase
the system and the driving force. At the momentt j of the j th
intersection of the orbit with the Poincare´ plane, the former
phase, by definition, is set to 2p j ~for the discussion on the
estimation of phase in the Lorenz equations see@16,18#!, and
the phasec of external force equalsVt j .

Typical examples of the evolution of the phase differen
between the force and the system just outside the regio
phase synchronization are shown in Figs. 2~a! and 2~c!. The
respective Poincare´ sections in coordinatesx,c(mod 2p) are
plotted in Figs. 2~b! and 2~d!. Since forV,VL , the average
2-2
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frequency of driven chaotic motion exceeds the frequenc
the force, the plot in Fig. 2~b! is traversed from left to the
right. ForV.VR , the force turns out to be faster, therefo
Fig. 2~d! is traversed from right to the left.

Again, the Poincare´ sections resemble dynamic bifurc
tion diagrams. Along with the main doubling sequence,
‘‘window’’ of period 6 is distinctly seen in Fig. 2~b!. Increase
of the forcing leads to the growth of the modulation dep
which, in its turn, results in the imitation of a larger piece
the bifurcation diagram: cf. Fig. 3 where not only the piec
of ‘‘stable period 4 and 8’’ but also pieces of ‘‘period 2’’ ar
recognizable.

To get a simple but still efficient model of dynamics o
the Poincare´ plane, consider a two-dimensional mappin
The participating variables are the amplitude of the motiou
@analog for x or y from Eq. ~2!# and the phasec of the
external force at the moment of intersection of the orbit w
the plane. The intrinsic dynamics ofu is governed by a qua
dratic map; the contribution of the weak force is proportion
to its amplitudee:

un115m2un
21e sincn . ~3!

FIG. 2. Forced Lorenz equations~2! at s510, b58/3, r
5215.25, E51.5; ~a!,~b! V525.2396;~c!,~d! V525.2735.~a!,~c!
Time evolution of the phase difference;~b!,~d! Poincare´ section on
the planez5r 21.

FIG. 3. Poincare´ section at E53, V525.222 ~parameters
s,b,r as in Fig. 2!.
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The value of phasecn11 equalscn1vtn , wherev is the
forcing frequency, and the return timetn is the interval be-
tween thenth and then11-th intersection of the Poincar´
surface. For the attractors of both the Lorenz equations
large r and the Ro¨ssler equations, the return time ve
weakly depends on the position on the surface. Approxim
ing this dependence by a linear function with a small slo
the lowest order ine yields

cn115cn1v@a1bun1ed sin~cn1c0!#. ~4!

Herea, b, d, andc0 are parameters. To ensure proximi
to phase synchronization,va should be close to 2p. The
mapping~3,4! combines a quadratic map with a circle ma
whose rotation number is close to 1.

For the mapun115m2un
2 , the accumulation point of a

period-doubling scenario lies atm51.401 155 189. At close
values ofm and a moderatee it is possible to have in Eqs
~3! and ~4! chaotic attractors with values ofc(mod 2p) lo-
calized inside the narrow strip; this corresponds to the s
of phase synchronization. By fixing, e.g.,m51.41, e
50.25, a56.29, b50.025, d50.1 and c05p/2 we ob-
serve that this state exists undervL50.992 891,v,vR
51.000 801. As seen in Fig. 4, a plot of a typical orbit a
value of v just outside this ‘‘synchronization range,’’ dis
plays apparent similarity to Fig. 3@19#.

Let us have a closer look at the details of the evolution
the phase space. For Eq.~2! at E51.5, the motion is chaotic
in the left part of the intervalVL,V,VR and periodic near
its right boundary. On both borders, phase desynchroniza
is caused by tangent bifurcations of periodic orbits wh
intersect the Poincare´ surface four times. AtVL , two un-
stable periodic orbits coalesce, provoking an attrac
repeller collision@12,13#. At VR , the stable limit cycle is
destroyed by a saddle-node bifurcation. In both cases, a
of ‘‘channel’’ is formed in the phase space, allowing the o
bits to escape from the phase-synchronized state. The mo
along this channel is slow: basing on the mapping~3,4! and
the pattern from Fig. 4, durationTd of the drift stage can be
roughly estimated asTd;2p/uv(a1b/2)22pu iterations.
Notably, the drift velocity cannot be made arbitrarily sma
by tuning the force: both forv→vR and v→vL , Td re-
mains finite. On the contrary, the average lengthTs of a

FIG. 4. Mapping ~3,4!: m51.41, e50.25, a56.29, b
50.025, d50.08, c05p/2,v51.001.
2-3
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synchronized epoch grows unboundedly on approaching
ther of the endpoints from outside. The scaling laws wh
characterize this growth can be of two kinds: near the e
point var at which an attractor-repeller collision happens,Ts

diverges as exp(const/Auv2varu) @12#, whereas the saddle
node bifurcation atvsn imposes the usual scaling law of th
type-I intermittency:Ts;uv2vsnu21/2 @20#. In fact, the same
scaling holds for the plateaus in Fig. 1~a!, since for the em-
ployed values ofA1,2, B, andC the transition in Eq.~1! at
«5«ps is a saddle-node bifurcation.

Increase of the distance in the parameter space from
borders of region of phase synchronization affects o
weakly the duration of the drift stage, but the lifetime
nearly synchronized states becomes substantially shorte
the course of this increase, saddle-saddle bifurcations des
unstable periodic orbits and create further channels for
phase drift. As a result, the whole dynamical diagram on
Poincare´ section becomes fuzzy, but its contours remain w
recognizable.

A similar effect is produced by adding noise to the pr
cess: such as in the case of explicitly imposed param
sweep@3#, minor details of the pattern become less distin
and less dynamic bifurcations can be resolved. Howeve
the noise is not too strong, the typical outline of the diagra
with its merging curves, ‘‘windows’’ and dense clusters at t
places of ‘‘attractor crises’’ persists. Therefore, we exp
that this unusual sort of slow-fast dynamics under weak
synchronization of phases can be observed experimen
e.g., by weakly disturbing the phase-synchronized regim
reported in@21#.

The described phenomenon can be viewed as a kin
intermittency. The slow component which modulates the f
processes, is created by interaction of close frequenc
those of nonidentical Ro¨ssler oscillators in the first example
and those of the Lorenz system and the driving force in
second one. This reminds us of the classical example,
generation of a beating frequency which slowly modula
the amplitude of fast quasiperiodic oscillations. In our ca
,

ev
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however, most of the time the low-frequency componen
virtually absent: its modulating action is recognizable on
during the epochs of phase drift. Having reached a cha
state with nearly synchronized phases of individual osci
tors and coinciding individual frequencies, a system wand
along this state for a long time, until finally it finds itself i
the opening of the ‘‘drift channel.’’ In the course of the su
sequent phase drift, the frequencies of both subsystems
verge, a low-frequency modulation sets on and eventu
brings the system through the sequence of dynamic bifu
tions back to the synchronized state. At this moment, s
modulation is temporarily switched off,—and the cycle
repeated.

A natural question arises on the generality of the dynam
bifurcation diagrams in this context. Just outside the state
phase synchronization the phase drift is always slow, the
fore the modulating effect should be generic. However, id
tification of dynamic bifurcations caused by this modulati
can, in general, be a difficult task: if the interacting su
systems are in the state of well-developed chaos, the
namic bifurcations are restricted to ‘‘chaos-chaos’’ tran
tions. If such transitions include crises associated with
abrupt change of the attractor size, the dynamic bifurcati
should be visible. If, on the other hand, transitions result o
in subtle changes in the geometry of chaotic attractors
may be very difficult to recover these changes in the re
tively short segments of phase drift.

As a final remark, we note that weak desynchronizat
and dynamic bifurcations may sometimes stand behind n
stationarity which manifests itself in the alternation of pe
odic and disordered behavior and is often encountered
datasets of experimental origin. Usually, nonstationarity
ascribed to variation of external conditions and action
noise; our first example shows that alternating regimes m
be observed in a completely deterministic stationary setu

Fruitful discussions with U. Feudel, A. Pikovsky, and M
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