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Choice of dynamical variables for global reconstruction of model equations from time series
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The success of modeling from an experimental time series is determined to a significant extent by the choice
of dynamical variables. We propose a method for preliminary investigation of a time series whose purpose is
to find out whether a global dynamical model with smooth functions can be constructed for the chosen
variables. The method consists in the estimation of single valuedness and continuity of relations between
dynamical variables and variables to enter left-hand sides of model equations. The method is explained with
numerical examples. Its efficiency is demonstrated by modeling a real nonlinear electric circuit.
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I. INTRODUCTION the least-squares routijg,8,9, i.e., so as to minimize the
values
Dynamical modeling implies the specification of a state
vector Xx=(Xy,X,, . . . Xp) € RP, where x, are dynamical N
variables and is a model dimension, and of an evolution IEl [yi(t)—fr(x(t))]?=min, k=1,...D.

operator which provides unique prediction of future states

starting from an initial one. A model which describes the . )
behavior of an object in a broad region of the phase spac@}!t we should note _that the Ieagt—squargs routine gives suf-
(X1, Xz, - . . Xp) is called global. A relevant approach to ob- ficiently accurate estimates only |_f the noise level is I@ay,
taining such a model is the reconstruction of equations fror‘r#esS thar15%)._ An aq_vanced routine has recently been sug-
a time series, i.e., from a discrete sequence of experiment, Pstec{14] which qt|l|;es amore ggneral form of the maxi-
data{ 7(t;)}, wheret,=iAt, i=1,2, ... N, At is a sampling mum likelihood principle and provides more accurate esti-

interval. Different methods of constructing ordinary differen- mates of the coefficients. That routine should be always
tial equationgODE’s) [1—6], discrete mapk7—9], and delay preferred when the number of coefficients to be calculated is

i ial . i h | quite small and the noise level is high. The most important
differential equations(DDE's) [10,11] have already been .4 gifficuit steps of the described procedure are the choice

SUQQeSted- Such phenomeno!oglcal modgls have shown th%f the dynamical variableg, and the specification of the
efﬁmency' fqr short-term predictiofi7], estimation of SOMEe  forms of the functionsf,. An inappropriate choice of the
c_haracterlstlcs of an observed procéssch as frgctal dlmer_1- variables can make approximation of the dependengie
sions[3] and Lyapunov exponen{g,12)), and signal classi- jth smooth functions extremely problematiee, e.g[15])
fication [13]. or even make these dependencies nonunique.

In general, a procedure of constructing model equations |n this paper we propose a method of estimating the suit-
y(t)=f[x(t)] from a time serie§#(t;)}'is as follows. First, ability and “convenience” of the chosen variablag for
a time series of state vectops(t;)} is formed from the origi-  constructing aglobal dynamical model. It is based on testing
nal serieq 7(t;)}.? Second, a serigly/(t;)} is obtained from the seriedy(t;)} and{x(t;)} for single valuedness and con-
{x(t;)} according to the chosen model type; either by nu-tinuity of each dependency,(x) in the entire region of an
merical differentiation of the serie$x(t;)} {for ODE's  observed motion. A somewhat similar idea is considered in
dx/dt=f[x(t)]}, or just by the shift of the serie&(t;)} [10] where the value of a delay timgor reconstruction of
a|0ng the time axiqfor discrete maps((ti+1) =f [X(ti)]}- DDE’S) is Selectec_J S.O asto m_inimize the “fl”lng factor.” The .
Third, the forms of the approximating functiofig (compo-  atter characteristic is convenient and easy to calculate but, in
nents of the vector-valued functid are specified and their 9€neral, it achieves a minimum even if the dependency is not

coefficients are calculated. The latter is often performed vigndle valued. Our method employs, to a certain extent, the
idea of thes-e method which has been suggested1f] for

detecting determinism in an observed process. However, our

Yits lengthN and the dimension of its vectors are limited by the research addresses a d|fferent problem, na.mely, the problem
conditions of the experiment. of the glopal reconstruction of modgl equa.'uo.ns. .

2Coordinates of a vector can be obtained by using the methods ~ According to our approach, relative variations of a vari-
of successive derivativd8,5,6], time delayq1,4,7—9, integration ablgyk inside small volumedV in the space of_the selected
[6], or weighted summatiof4]. Besides, they may just coincide varlables>_(l X2, ... Xp are found. Then, one finds out hQW
with the observables. The length of the sefiegt;)} can be less these variations behave wha— 0. We note that the main
than N, but the difference is usually small. To avoid additional role is played by the local characteristics that is different
notations, we assume the length{a{t;)} to be equal to\. from [15,16 where the averagedintegra) estimates are
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FIG. 1. (a) Maps for time series of the variablesandv formed from a chaotic solution of the systéi). There is a region of steep slope
of the graph forv (see its right-hand side(b) The graphse,,.{5) for observables (white circles andu (filled circles when noise is
absent. The presence of the region of steep slope for the obsewvEkife 1(a)] reveals itself in appearing a “breakpoint” &=0.005. The
graphse(8) coincide for both variables and are shown with the dashed (z)eThe graphse . ) when noise is present. The graph
indicates nonsingle valuedness for the variahlevhile for the variableu it is situated just a little higher than in Fig(k.

used. Namely, we suggest to select the dynamical variablabat the difference between the maximal and minimal values
so as to provide for each of the model dependengi€x) for each of the variables, , . . . xp, andy is equal to unity®
minimal local variation and its tending to zero fAV—0.  In other words, the investigated set of vectfxét;)} is con-
The latter is evidence for single valuedness, continuity, andained inside a hypercubé e RP with the side of the unit
the absence of very steep “slopes” of a dependency. Othettength. Let us partitiorV into identical hypercubic boxes of
wise, sufficiently accurate approximations of those depenthe sizes, select all boxes containing at least two vectors,
dencies with the usually employed smooth functi®es.,  and denote them as, s, . .. ,sy. We call the difference
W(l)tsh;g?endard polynomiajshecome too difficult or even im-  poyyeen maximal and minimal values yfnside a boxs, a

P The proposed method is described in Sec. II. It is illus- |0CE.1| variation Ek fk—ma&esky(x)—mlansky-(x). The
trated with examples of the reconstruction of difference andnaximal local variations na=max<i<w e« and its graph
differential equations from their “clean” and noisy numeri- €max(9) are used as the main characteristics of the investi-
cal solutions in Sec. IlI. Its efficiency is demonstrated bydated dependency. The suitability of the considered variables
modeling a real nonlinear electric circuit in Sec. IV. Limita- X andy for global modeling is assessed with the aid of the

tions and prospects of the approach are discussed in Sec. f@llowing ideas.
(1) If a dependency(x) is single valued and continuous,

the value ofe,,x IS sufficiently small for smalb and tends
to zero whené—0. It is not hard to show that a graph

Let us consider the following problem setypp(t;)} isan  emax6) is a straight line for sufficiently smals.
observable time series, the type of model equations is se- (2) If a single valued and continuous dependency has a
lected, and time seriex(t;)} and{y(t;)} are formed. It is region of very steep slop@ “jump”), then e, remains
necessary to assess single valuedness and continuity of thather big for sufficiently smalb, since that region is con-
dependenciey,(x) (for k=1,2,...D) and to find a crite- tained inside one box. However, the further decreasé of
rion for selecting a set of variables which is the most suitabldeads to the decrease ef,,, because the region of a jump
for the construction of a global model. becomes divided into several boxes. The graph,() ex-

If a dependency(x) is single valued and continuous in a hibits a “breakpoint” at the value of equal to the size of the
domainV, then the differencey(x) —y(xy)| tends to zero region of steep slope.qg., Fig. 1b), white circled. In such a
when||x—x,||—0 for eachxye V. In practice, violation of case, the dependengyx) is also difficult to approximate
this condition may be viewed as a sign of nonsingle-with a smooth function. Therefore, dynamical variables
valuedness or discontinuity of the depender¢y). Since  should be selected so that the gragh,{J) tends to the
the observable time series has a finite length, the abovesrigin gradually, without breakpoints.
mentioned limit, strictly speaking, cannot be found. How- (3) In practice, an achievable value éfis bounded from
ever, it is possible to trace a tendency of the variation of thévelow because of the finite amount of dataFor example, if
value |y(ti)—y(tj)| when the vectors(t;) and x(t;) are  vectorsx(t;) are distributed uniformly in the hypercubé
made closer and closer, down to a cerfiite distance. For  this boundary can be estimateds*P. If N is very small,

a sufficiently large amount of datd, high accuracy of mea- there are no sufficiently close vectord;) andx(t;) in many
surements, and low noise level, this distance can be made
sufficiently small for each region of the observed motion.

The method of testing the selected variables consists of3This condition may be easily provided by an appropriate normal-

the following. Let us assum@vithout any loss of generalify ization of the variables.

II. DESCRIPTION OF THE METHOD
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FIG. 2. (a) Maps for time series formed from a chaotic solution of the sygtBroy recording every iteratiotthe graph 1, every second
iteration (the graph 2, and every third iteratiofthe graph 3 (b) The graphs,,,{9). A steeper graph corresponds to a dependency which
oscillates more intensivelyc) Noise is present and the graphs are situated higher thah).inmA dependency, which oscillates more
intensively, is distorted more significant{gnd the corresponding graph is situated higher

regions. Hence, our approach is not applicable since there is un+1=run(1—uﬁ) )
no possibility of investigating the local properties of the de-

4
pendencyy(X). at r=4.0 for two situations. First, an observable 7t;)

(4) In a physical experiment there are unavoidable mea= ;. whereu; are the successive iterations of the system
surement errorée.g., determined by the number of bits of an (1) 'Second,(t;)=v;, where the variable is related tou
ADC) and n0|se(t'he mfluence of. numerous factors that i, 5 one-to-one way—via a piecewise-linear function
could not be described in a deterministic wayet us denote
their common effect o andy aso,4ise- When s becomes 5u. 0<=u<0.18
less tharo,,ise, the value ofe ., NO longer decreases even v=h(u)= ’ ’ 2
if there is a certain law relating to x, e.g., if the value of 0.9+(u—0.18/8.2, 0.18u<1,

Ohoise IS More than the size of a region of steep slope, a . . . ]
graphe . 8) indicates nonsingle-valuedness of the investi-Which can be mterprt_ated as a trgnsfqrmatmq of the signal by
gated dependendyig. 1(c), white circled. So, the consid- & measurement device. Analyzing time series of these two
ered variables are assumed inappropriate for global modelingariables(their length isN=10") with the aid of the pro-
according to our criterion. posed method, we assess the possibility of constructing a

As an additional characteristic, the value of an average 9lobal model in the form of a one-dimensional map

local variations may be employeds=1MSY e, . If & X(ti+1) =f[x(t;)], the dynamical variabl& coinciding with
— K ] the observable;. For all cases, models are constructed ac-

—0 for 6—0 and the slope of the grapi() is small, it cording to the procedure described briefly in Sec. .
could sometimes point to a “gradualin average depen- In the first situation, constructing a global model is not a
dencyy(x) which can be bettefunder equal other condi- parg problem. It is sufficient to employ a polynomial of the
tions) approximated vEth a smooth function. We illustrate second order as a functidn The model obtained provides
further that the values does not contain by itself all the one-step prediction practically with a machine precision. In
information on the properties gf(x) which is necessary for the second situation, modeling is rather difficult, e.g., using a
global modeling, e.g., ify(x) has a localized region of polynomial of the 11th!) order allows for reducing a rela-
nonsingle-valuedness or discontinuity, it could affect the avtive root-mean-squared one-step prediction error only to

erage value only slightly and a grapl () would look like ~ 30%.

a graph for a smooth single-valued dependeffég. 3b), We apply the proposed method to test a dependency of
the dashed ling X(ti+1) onx(t;) both for an observabla and for an observ-

ablev [see Fig. 1a)]. Both graphse .4 8) [Fig. 1(b)] indi-
cate single valuedness and continuity. But in the first case
emax tends to zero “gradually” whené—0, while in the
A. Reconstruction of difference equations second case the graph,,{ 6) exhibits a breakpoint at small
Let us illustrate the described ideas with an example of- The breakpoint reflects the presence of a region of very
the reconstruction of difference equations from a chaotiGteep slope of the investigated dependejseg Fig. 1a), the
time series generated by the quadratic map region x(t)~1]. The graphsz(6) practically coincide for
both variablegFig. 1(b), the dashed line
Advantages of using one of these variables for global
“There are no similar limitations ifiL6] because the purpose of Modeling are even more obvious if observed series are noisy.
that work is different: to find at least “traces of determinism.” L€t 7(t;) be equal ton(t)=u;+& and 5(t)=v;+ &, re-
Therefore, it is sufficient to find at least some domains of singleSpectively[where{&;} is a sequence of independent random

valuedness(“exceptional eventsj while large, but rarely popu- Vvalues distributed uniformly in the interval{0.005,0.005)
lated, regions may be ignored. that corresponds approximately to 1% of the signal [puel

IIl. DEMONSTRATIVE NUMERICAL EXAMPLES
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is yet possible to obtain an efficient global model with a 1.0 xS 1.0]
second-order polynomial from the serifs;+ &} (relative i . :
one-step prediction error is comparatively small, abou}.3% I R
However, the serie$v;+ &} appears completely irrelevant S R - — I ° Epey
. [ |_ 1] l " d ta | coonce® _

for modeling. The graphs,,(8) warn about such results gy, & | ° ¢l oa £ 1 3 %
[Fig. 1(c)]; the graph foru is situated just a little “higher” £ “9:1515’ dtat?filt T e
than in Fig. 1b), while the graph fow indicates nonsingle- ¥e o (o °“d 1) |

luedness [§7 ! - nowy data .
va ; . . . . . %1 I (21-point filter) 1.

Another illustrative example is the estimation of the suit- o0 b, + ., . | ook, .,
ability of variables and the reconstruction of a model in the 0.0 3 1.0 0.0 & 1.0
form x(tj,1)=f[x(t;)] from a series{ 5(t;)}={u;} for the a) b)

following three cases(l) x(t;)=#(t;), (2) x(t;)= n(ty),

and(3) x(t;) = n(t3;). They correspond to recording the first,  FIG. 3. Employing the graphs(5) to assess different variants
the second, and the third iteration of the logistic m@ap of the choice of variables for the Rossler syst@n (a) The graphs
respectively. For a bigger number of the iteration, a depenen.{8) for x;=v in the following cases(1) without noise—the
dency x(t; ;) =f[x(t;)] is more difficult to approximate graph L(white circles, (2) with noise, derivatives are calculated in
[Fig. 2(@)] that reveals itself in a bigger slope of the graphdifferent ways: without filtering—the graph (@lled circles, using
emax 8) [Fig. 2(b)]. Similarly to the previous example, the @ 21-point smoothing polynomial—the grapt Hilled squares
influence of noise is more dramatic for a more complicatec®"d using a 41-point smoothing polynomial—the gragh(@acti-
dependencyFig. 2c)]. cally connmd_es with the graph)1(b) The gr_aphs_maxa) in the case
3: x;=v2, without noise—the graph @white circles. The depen-
dency is not single valued, but the gragtﬁ) looks like the graph
for a single-valued dependenéhe dashed line

B. Reconstruction of ODE’s

Let us consider the Rossler system ) ) . ) o
tained model is assessed via comparison of the original and

u=—v—Ww, model phase portraits and calculation of the prediction time
[7], that is the time interval on which the model provides
&) sufficiently accurate forecaghamely, the relative prediction
error remains less than a certain threshold value—we use the
value of 0.05.
(1) {x1(t))}={v(t;)}, noise is absent, derivatives are cal-
culated using simple finite-difference formulas of the form

i)=u+av,

w=b+w(u—c),

at the parameters valuas-0.398,b=2.0 andc=4.0 which
correspond to a chaotic regime. We present preliminary estXa(t) =[x (ti + At =Xy (t; = A1) ]/(2A1). A graph &may9)
mates provided by the criterios,,,,(8) and results of the .F|g.. 3(a), white circleg |nQ|cates single valu.edness gnd con-
reconstruction of model equations in the standard figin ~ tinuity of the dependencys(xy,x;,X3) that just confirms a
previously known resulf3]. Quite an efficient model4) is
)'(1:)(2, obtained using a polynomial of the second order as a func-
tion f. It provides an accurate forecast approximatelyf 15
ahead, wherd is a basic period containing about 600 points.
(2) {x1(t) }={v(t;) + &}, where{&} is a sequence of in-
. dependent random values uniformly distributed in the inter-
X3=F(X1,X2,X3), val (—0.0005,0.0005) that corresponds approximately to
0.01% of the signal level. Without filtration of the series,
reconstructed models have nothing in common with the
original system. The failure is predicted by the graph
emax(0) [Fig. 3(@), filled circleg and occurs due to essential
amplification of the noise during differentiation. The results

Xo=X3, (4)

wherex; coincides with an observablg, its time series is
formed from a time realization of the variahle The values
v(t;) are derived via numerical integration of the E¢g)
using the fourth-order Runge-Kutta routine with the step

At=0.01(the length of the series N=10"). The proposed become better if one employs a smoothing polynomial

T"ethOd IS applled for the investigation of a c?lependency(Savitsky—GoIay filte{17]) and a sufficient width of a win-
X3(X1.,X2,X3) in all cases. The values of tixg coordinate are  gow on the time series for its construction. In the case pre-
formed from the time seriefy (;)} in different ways. Time  sented with filled squares in Fig(s, a window consisting
series ofX,, X3, andxz are obtained via numerical differen- of 21 points is used that appears insufficient; the graph
tiation of the seriedx4(t;)} with the aid of different tech- &,,,{(6) points to nonsingle valuedness. A reconstructed
niques. Coefficients of model equations are calculated bynodel (4) with a polynomial of the second order is essen-
using the linear least-squares technigsee Sec.)l The tially worse than in the case of “clean” data, it provides
maximum likelihood principle[14] is difficult to employ prediction time about 8. However, if a wider windowe.g.,
here because the number of coefficients to be estimated is biffl points is used, the grapl,.{5) practically coincides
(about 10. But the noise level is small or can be reduced, sowith the graph for the “clean” seriefFig. 3(@]. A model
both routines should give approximately the same resultbecomes significantly more efficient and provides an accu-
[14]. After estimating the coefficients, efficiency of the ob- rate forecast 7 ahead.
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FIG. 4. (a8 The scheme for the circuit with switched capacitoRs=10 Q, L=14 mH, C;=0.1 uF, C,=4.4 uF, Uy=2.3 V,
wl/(27)=2.98 kHz,U,,,=—0.2 V, and the sampling frequency is 250 kHl) The graphse,,{d) for different variants of the model
structure(for the dynamical variables;=1): (1) for a dependencys(X;,X,,Xs) of a model(5)—filled squares,(2) for a dependency
Xa(X1,X5,X3) Of a model (4)—white circles, (3) for a dependenc,(X;,X,,¢) of a model (6)—filled circles. The graph$_(5) are
approximately the same for all exampléke graph for the case 1 is shown with the dashed.lit@ The graphss,,{ ) for different
variants of the model structuteshen the dynamical variableg is an integral of the currer): (1) for a dependencys(x;,X,,X3) of a model
(4)—filled squares(2) for a dependencys(X;,X,,Xs) of @ model(5)—white circles, and3) for a dependency,(X;,X,,¢) of a model
(6)—filled circles.

(3) {x1(t))}={v?(t;)}, noise is absent. The graph, ,5) the application of the proposed methidéigs. 4b) and 4c)]
clearly indicates nonsingle valuedness of the dependencgnd of the model construction are presented. Model ODE'’s

5<3(X1,X2,X3) [Fig. 3(b), white circled. An effective model are constructed and their efficiency is assessed exactly as in

(4) can not be obtaineWe note that the grapE(é) [Fig. Sec. llIB. The graphs in Fig._ 4 are numbered corresponding
3(b), the dashed linglooks similar to the graph for a single- to the numbers of the following examples.

valued continuous dependency, i.e., it does not allow for de- (1) A popular model structure

tecting the inappropriateness of the variables for global mod-

eling. ).(1:f1(x11X2aX3)y

IV. MODELING A NONLINEAR ELECTRIC CIRCUIT -

Xo=fo(X1,X2,X3), 5)
The scheme of a nonlinear electric circtfiiarmonically

driven LCR circuit with switched capacitoysis shown in

Fig. 4@). The elemenkK is an electronic key, a microscheme

comprising dozens of transistors and other passive elements

which is fed from a special source of dc potential. At small, , .. x1(t) = n(t), Xo(t)=n(t+7), and xa(t)=n(t,

values of voltagJ on the capacitfC,, the resistance of the +27) are time delay coordinates= 21At is the first zero of

X3=f3(X1,X2,X3),

key is very large and linear oscillations occur in the circuit
LC;R. When the voltagé) achieves a threshold valugy,, ,
the resistance of the key decreases abruptly and the capac

C, becomes connected to the circuit. Back switching occurs

approximately at the same valueldf As a result, the system
is nonlinear and exhibits complex dynami@e particular,
chaotic oscillationsat big values of the driving amplitude
[18,19.

Let us consider the effect of the choice of dynamical vari-

ables and model equations structure on the results of model-

ing. We employ a chaotic time realization of the currént
through the resistoR as an observable time serigs(t;)}.

the autocorrelation function. A smoothing polynomial is con-

structed for numerical differentiation. All three dependencies

H
i’(xl,xz,xg) are analyzed. The value ef,,, does not tend

to zero whend decreases for all. All graphse,,,( ) look
similar, one of them is presented in Fig(b% with filled
squares(for k=3). It indicates the impossibility of con-
structing an efficient global model that is completely con-
firmed in practice.

(2) A standard mode{4) with x,(t;)= »(t;). The depen-
dency>'<3(x1 X2,X3) IS testede,,,( 0) decreases whef de-
creasegFig. 4(b), white circled that points to the possible

The data are recorded with the aid of a 12-bit ADC, thesingle valuedness. But an efficient model, where right-hand

sampling interval isAt=4 us, the driving period isT

=84At, and the length of the series ié=30000. Six ex-
amples are considered beloithree variants of the model
ODEs structure for two different observableghe results of

By analytic transformations of the systef®), it is not hard to
show that the investigated dependency is not single valued.

sides are algebraic polynomials, cannot be obtained. Obvi-
ously, a polynomial is not appropriate for approximation of

the dependencyg(xl,xz,x3). Another form of the approxi-
mating function is necessary here. Its choice is a difficult
problem which is not a subject of the present paper.

(3) Following the recommendations on the reconstruction
of nonautonomous systerfiz0,21], we construct a model in
the form
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V. CONCLUSIONS

)-(l:XZ!
While performing global reconstruction of a dynamical
model from a time series, two very important steps are the
Lo selection of dynamical variables and the specification of the
X2_f(X11X2!(p)1 (6)

forms of functions which approximate dependencies to enter
model equations. If the choice of the variables is unsuccess-
, . ful, these dependencies can appear too difficult for approxi-
Wherexl('_[i)= n(t;) and ¢ is the phase of driving. The de- ation or even nonunique.
pendency,(Xq,X,,¢) is tested. The time series of the phase The proposed method of testing time serfesét;)} and
¢ is obtained a(t;) = wt;(mod 27), the angular frequency {y(t;)} derived from observable data allows to estimate
o is assumed to be known. The graph.(d) (Fig. 4b),  whether the dependencigg(x) are single valued, continu-
filled circles shows that the dependency is, possibly, singleous and do not have the regions of steep “slope.” Hence, the
valued. However, an efficient model with harmonic driving method indicates whether the selected variables are appropri-
and polynomial approximation cannot be obtained. Again@t€ for the construction of a global dynamical model. It is
one needs to select a special form of the funcfion 'batseéd é)” thed analysis ?]f tEe local prr?pertles Olf the ;r}vestﬂ'
. ot . gated dependencies, which are much more relevant for the
(4) A standard model4) with Xl(t‘)_ftln(t)dt' This global reconstruction than averaged characteristics. The lat-
variable makes physical sense, it is the summed charge a@r can, in general, be exploited only as additional informa-
the capacitie€, andC,. The time serie$x,(t;)} is obtained tion about the selected variables. Efficiency of the proposed
via the numerical integration of the measured time series ofethod is shown with different numerical and experimental
the currentl (e.g., using the method of trapezium3he examples.

value ofe ., for the dependencys(x;,X,,xs) does not de- . The method can be applied_ to t_he recpnstructi(_)n of d_elay
crease whens decrease§Fig. 4(c), white circleg and re- differential equations and partial differential equations, since
mains large. An effective model cannot be constructed. in these cases one of the steps of a modeling procedure is

. e also an approximation of some dependencies from experi-
(5) Amodel (5) with x,(t;) = J | #(t)dt and delayed coor-  onta| datg10,23. As was illustrated by the examples of
dinatesxs(t;) =x4(t; + 7) andx,(t;) =x,(tj+27), whereris  Sec. IV, single valuedness of a dependency does not yet
again the first zero of the ACF. All three dependenciesguarantee obtaining an effective global model. A single-

X (X1 ,X2,X3) are tested. The graphs, .(8) do not tend to valued dependency can appear too difficult for global ap-

the origin whens decreases in all three cases. One of thenfProXimation(especially with standard polynomigl®.g., if it
(for k=1) is shown in Fig. 4) with filled squares. An ef- oscillates |_nt_en5|vely. However, a local approgetg] might .
fective model cannot be constructed appear efficient for the latter case. Some recommendations

(6) A model (6) with Xl(ti):f?ln(t)dt- A graphe,.() icr)1n[gtleé.ectmg the forms of approximating functions are given

shows that the dependengy(x; ,X,,¢) is single valued and, In conclusion, we should note that the proposed method

moreover, varies “graduallyfFig. 4(c), filled circleg. Are-  states only the results of the choice of variables, but it does

constructed mode€b) with an additive harmonic driving and not say in what way the set of variables should be changed in

a bivariate polynomial of the 11th order demonstrates a chathe case of failure. It may appear necessary to add new vari-

otic attractor qualitatively similar to the experimental oneables, exclude or transform some of the selected variables,

and provides an accurate forecast 5T ahe. and so on. However, this is, obviously, the theme of a differ-
It is significant that an optimistic estimate according toent discussion.

the criterione ,,,(8) and good results of the global recon-

struction are achieved only in the laghe sixth case. The ACKNOWLEDGMENTS
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