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Choice of dynamical variables for global reconstruction of model equations from time series
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The success of modeling from an experimental time series is determined to a significant extent by the choice
of dynamical variables. We propose a method for preliminary investigation of a time series whose purpose is
to find out whether a global dynamical model with smooth functions can be constructed for the chosen
variables. The method consists in the estimation of single valuedness and continuity of relations between
dynamical variables and variables to enter left-hand sides of model equations. The method is explained with
numerical examples. Its efficiency is demonstrated by modeling a real nonlinear electric circuit.
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I. INTRODUCTION

Dynamical modeling implies the specification of a sta
vector x5(x1 ,x2 , . . . ,xD)PRD, where xk are dynamical
variables andD is a model dimension, and of an evolutio
operator which provides unique prediction of future sta
starting from an initial one. A model which describes t
behavior of an object in a broad region of the phase sp
(x1 ,x2 , . . . ,xD) is called global. A relevant approach to o
taining such a model is the reconstruction of equations fr
a time series, i.e., from a discrete sequence of experime
data$h(t i)%, wheret i5 iDt, i 51,2, . . . ,N, Dt is a sampling
interval. Different methods of constructing ordinary differe
tial equations~ODE’s! @1–6#, discrete maps@7–9#, and delay
differential equations~DDE’s! @10,11# have already been
suggested. Such phenomenological models have shown
efficiency for short-term prediction@7#, estimation of some
characteristics of an observed process~such as fractal dimen
sions@3# and Lyapunov exponents@2,12#!, and signal classi-
fication @13#.

In general, a procedure of constructing model equati
y(t)5f @x(t)# from a time series$h(t i)%

1 is as follows. First,
a time series of state vectors$x(t i)% is formed from the origi-
nal series$h(t i)%.

2 Second, a series$y(t i)% is obtained from
$x(t i)% according to the chosen model type; either by n
merical differentiation of the series$x(t i)% $for ODE’s
dx/dt5f @x(t)#%, or just by the shift of the series$x(t i)%
along the time axis$for discrete mapsx(t i 11)5f @x(t i)#%.
Third, the forms of the approximating functionsf k ~compo-
nents of the vector-valued functionf) are specified and thei
coefficients are calculated. The latter is often performed

1Its lengthN and the dimension of its vectors are limited by t
conditions of the experiment.

2Coordinates of a vectorx can be obtained by using the metho
of successive derivatives@3,5,6#, time delays@1,4,7–9#, integration
@6#, or weighted summation@4#. Besides, they may just coincid
with the observables. The length of the series$x(t i)% can be less
than N, but the difference is usually small. To avoid addition
notations, we assume the length of$x(t i)% to be equal toN.
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the least-squares routine@5,8,9#, i.e., so as to minimize the
values

(
i 51

N

@yk~ t i !2 f k„x~ t i !…#
25min, k51, . . . ,D.

But we should note that the least-squares routine gives
ficiently accurate estimates only if the noise level is low~say,
less than5%). An advanced routine has recently been su
gested@14# which utilizes a more general form of the max
mum likelihood principle and provides more accurate e
mates of the coefficients. That routine should be alwa
preferred when the number of coefficients to be calculate
quite small and the noise level is high. The most import
and difficult steps of the described procedure are the ch
of the dynamical variablesxk and the specification of the
forms of the functionsf k . An inappropriate choice of the
variables can make approximation of the dependenciesyk(x)
with smooth functions extremely problematic~see, e.g.,@15#!
or even make these dependencies nonunique.

In this paper we propose a method of estimating the s
ability and ‘‘convenience’’ of the chosen variablesxk for
constructing aglobal dynamical model. It is based on testin
the series$y(t i)% and$x(t i)% for single valuedness and con
tinuity of each dependencyyk(x) in the entire region of an
observed motion. A somewhat similar idea is considered
@10# where the value of a delay time~for reconstruction of
DDE’s! is selected so as to minimize the ‘‘filling factor.’’ Th
latter characteristic is convenient and easy to calculate bu
general, it achieves a minimum even if the dependency is
single valued. Our method employs, to a certain extent,
idea of thed-« method which has been suggested in@16# for
detecting determinism in an observed process. However,
research addresses a different problem, namely, the prob
of the global reconstruction of model equations.

According to our approach, relative variations of a va
ableyk inside small volumesDV in the space of the selecte
variablesx1 ,x2 , . . . ,xD are found. Then, one finds out ho
these variations behave whenDV→0. We note that the main
role is played by the local characteristics that is differe
from @15,16# where the averaged~integral! estimates are
©2002 The American Physical Society05-1
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FIG. 1. ~a! Maps for time series of the variablesu andv formed from a chaotic solution of the system~1!. There is a region of steep slop
of the graph forv ~see its right-hand side!. ~b! The graphs«max(d) for observablesv ~white circles! and u ~filled circles! when noise is
absent. The presence of the region of steep slope for the observablev @Fig. 1~a!# reveals itself in appearing a ‘‘breakpoint’’ atd'0.005. The

graphs«̄(d) coincide for both variables and are shown with the dashed line.~c! The graphs«max(d) when noise is present. The grap
indicates nonsingle valuedness for the variablev, while for the variableu it is situated just a little higher than in Fig. 1~b!.
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used. Namely, we suggest to select the dynamical varia
so as to provide for each of the model dependenciesyk(x)
minimal local variation and its tending to zero forDV→0.
The latter is evidence for single valuedness, continuity,
the absence of very steep ‘‘slopes’’ of a dependency. Ot
wise, sufficiently accurate approximations of those dep
dencies with the usually employed smooth functions~e.g.,
with standard polynomials! become too difficult or even im
possible.

The proposed method is described in Sec. II. It is illu
trated with examples of the reconstruction of difference a
differential equations from their ‘‘clean’’ and noisy numer
cal solutions in Sec. III. Its efficiency is demonstrated
modeling a real nonlinear electric circuit in Sec. IV. Limit
tions and prospects of the approach are discussed in Se

II. DESCRIPTION OF THE METHOD

Let us consider the following problem setup:$h(t i)% is an
observable time series, the type of model equations is
lected, and time series$x(t i)% and $y(t i)% are formed. It is
necessary to assess single valuedness and continuity o
dependenciesyk(x) ~for k51,2, . . . ,D) and to find a crite-
rion for selecting a set of variables which is the most suita
for the construction of a global model.

If a dependencyy(x) is single valued and continuous in
domain V, then the differenceuy(x)2y(x0)u tends to zero
when uux2x0uu→0 for eachx0PV. In practice, violation of
this condition may be viewed as a sign of nonsing
valuedness or discontinuity of the dependencyy(x). Since
the observable time series has a finite length, the abo
mentioned limit, strictly speaking, cannot be found. Ho
ever, it is possible to trace a tendency of the variation of
value uy(t i)2y(t j )u when the vectorsx(t i) and x(t j ) are
made closer and closer, down to a certainfinite distance. For
a sufficiently large amount of dataN, high accuracy of mea
surements, and low noise level, this distance can be m
sufficiently small for each region of the observed motion

The method of testing the selected variables consist
the following. Let us assume~without any loss of generality!
02620
es

d
r-
-

-
d

V.

e-

the

e

-

e-
-
e

de

of

that the difference between the maximal and minimal val
for each of the variablesx1 , . . . ,xD , andy is equal to unity.3

In other words, the investigated set of vectors$x(t i)% is con-
tained inside a hypercubeVPRD with the side of the unit
length. Let us partitionV into identical hypercubic boxes o
the sized, select all boxes containing at least two vecto
and denote them ass1 ,s2 , . . . ,sM . We call the difference
between maximal and minimal values ofy inside a boxsk a
‘‘local variation’’ «k : «k5maxxPsk

y(x)2minxPsk
y(x). The

maximal local variation«max5max1<k<M «k and its graph
«max(d) are used as the main characteristics of the inve
gated dependency. The suitability of the considered varia
x and y for global modeling is assessed with the aid of t
following ideas.

~1! If a dependencyy(x) is single valued and continuous
the value of«max is sufficiently small for smalld and tends
to zero whend→0. It is not hard to show that a grap
«max(d) is a straight line for sufficiently smalld.

~2! If a single valued and continuous dependency ha
region of very steep slope~a ‘‘jump’’ !, then «max remains
rather big for sufficiently smalld, since that region is con
tained inside one box. However, the further decrease od
leads to the decrease of«max because the region of a jum
becomes divided into several boxes. The graph«max(d) ex-
hibits a ‘‘breakpoint’’ at the value ofd equal to the size of the
region of steep slope@e.g., Fig. 1~b!, white circles#. In such a
case, the dependencyy(x) is also difficult to approximate
with a smooth function. Therefore, dynamical variabl
should be selected so that the graph«max(d) tends to the
origin gradually, without breakpoints.

~3! In practice, an achievable value ofd is bounded from
below because of the finite amount of dataN. For example, if
vectorsx(t i) are distributed uniformly in the hypercubeV,
this boundary can be estimated asN21/D. If N is very small,
there are no sufficiently close vectorsx(t i) andx(t j ) in many

3This condition may be easily provided by an appropriate norm
ization of the variables.
5-2
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CHOICE OF DYNAMICAL VARIABLES FOR GLOBAL . . . PHYSICAL REVIEW E 65 026205
FIG. 2. ~a! Maps for time series formed from a chaotic solution of the system~1! by recording every iteration~the graph 1!, every second
iteration~the graph 2!, and every third iteration~the graph 3!. ~b! The graphs«max(d). A steeper graph corresponds to a dependency wh
oscillates more intensively.~c! Noise is present and the graphs are situated higher than in~b!. A dependency, which oscillates mor
intensively, is distorted more significantly~and the corresponding graph is situated higher!.
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regions. Hence, our approach is not applicable since the
no possibility of investigating the local properties of the d
pendencyy(x).4

~4! In a physical experiment there are unavoidable m
surement errors~e.g., determined by the number of bits of a
ADC! and noise~the influence of numerous factors th
could not be described in a deterministic way!. Let us denote
their common effect onx andy assnoise. Whend becomes
less thansnoise, the value of«max no longer decreases eve
if there is a certain law relatingy to x, e.g., if the value of
snoise is more than the size of a region of steep slope
graph«max(d) indicates nonsingle-valuedness of the inves
gated dependency@Fig. 1~c!, white circles#. So, the consid-
ered variables are assumed inappropriate for global mode
according to our criterion.

As an additional characteristic, the value of an avera
local variation «̄ may be employed:«̄51/M(k51

M «k . If «̄

→0 for d→0 and the slope of the graph«̄(d) is small, it
could sometimes point to a ‘‘gradual’’~in average! depen-
dency y(x) which can be better~under equal other condi
tions! approximated with a smooth function. We illustra
further that the value«̄ does not contain by itself all the
information on the properties ofy(x) which is necessary fo
global modeling, e.g., ify(x) has a localized region o
nonsingle-valuedness or discontinuity, it could affect the
erage value«̄ only slightly and a graph«̄(d) would look like
a graph for a smooth single-valued dependency@Fig. 3~b!,
the dashed line#.

III. DEMONSTRATIVE NUMERICAL EXAMPLES

A. Reconstruction of difference equations

Let us illustrate the described ideas with an example
the reconstruction of difference equations from a chao
time series generated by the quadratic map

4There are no similar limitations in@16# because the purpose o
that work is different: to find at least ‘‘traces of determinism
Therefore, it is sufficient to find at least some domains of sin
valuedness~‘‘exceptional events’’! while large, but rarely popu-
lated, regions may be ignored.
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at r 54.0 for two situations. First, an observable ish(t i)
5ui , whereui are the successive iterations of the syst
~1!. Second,h(t i)5v i , where the variablev is related tou
in a one-to-one way—via a piecewise-linear functionh:

v5h~u!5H 5u, 0<u<0.18,

0.91~u20.18!/8.2, 0.18,u<1,
~2!

which can be interpreted as a transformation of the signa
a measurement device. Analyzing time series of these
variables~their length isN5104) with the aid of the pro-
posed method, we assess the possibility of constructin
global model in the form of a one-dimensional ma
x(t i 11)5 f @x(t i)#, the dynamical variablex coinciding with
the observableh. For all cases, models are constructed
cording to the procedure described briefly in Sec. I.

In the first situation, constructing a global model is no
hard problem. It is sufficient to employ a polynomial of th
second order as a functionf. The model obtained provide
one-step prediction practically with a machine precision.
the second situation, modeling is rather difficult, e.g., usin
polynomial of the 11th~!! order allows for reducing a rela
tive root-mean-squared one-step prediction error only
30%.

We apply the proposed method to test a dependenc
x(t i 11) on x(t i) both for an observableu and for an observ-
ablev @see Fig. 1~a!#. Both graphs«max(d) @Fig. 1~b!# indi-
cate single valuedness and continuity. But in the first c
«max tends to zero ‘‘gradually’’ whend→0, while in the
second case the graph«max(d) exhibits a breakpoint at sma
d. The breakpoint reflects the presence of a region of v
steep slope of the investigated dependency@see Fig. 1~a!, the
region x(t i)'1]. The graphs«̄(d) practically coincide for
both variables@Fig. 1~b!, the dashed line#.

Advantages of using one of these variables for glo
modeling are even more obvious if observed series are no
Let h(t i) be equal toh(t i)5ui1j i and h(t i)5v i1j i , re-
spectively@where$j i% is a sequence of independent rando
values distributed uniformly in the interval (20.005,0.005)
that corresponds approximately to 1% of the signal level#. It

e
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SMIRNOV, BEZRUCHKO, AND SELEZNEV PHYSICAL REVIEW E65 026205
is yet possible to obtain an efficient global model with
second-order polynomial from the series$ui1j i% ~relative
one-step prediction error is comparatively small, about 3!.
However, the series$v i1j i% appears completely irrelevan
for modeling. The graphs«max(d) warn about such result
@Fig. 1~c!#; the graph foru is situated just a little ‘‘higher’’
than in Fig. 1~b!, while the graph forv indicates nonsingle-
valuedness.

Another illustrative example is the estimation of the su
ability of variables and the reconstruction of a model in t
form x(t i 11)5 f @x(t i)# from a series$h(t i)%5$ui% for the
following three cases:~1! x(t i)5h(t i), ~2! x(t i)5h(t2i),
and~3! x(t i)5h(t3i). They correspond to recording the firs
the second, and the third iteration of the logistic map~1!,
respectively. For a bigger number of the iteration, a dep
dency x(t i 11)5 f @x(t i)# is more difficult to approximate
@Fig. 2~a!# that reveals itself in a bigger slope of the gra
«max(d) @Fig. 2~b!#. Similarly to the previous example, th
influence of noise is more dramatic for a more complica
dependency@Fig. 2~c!#.

B. Reconstruction of ODE’s

Let us consider the Rossler system

u̇52v2w,

v̇5u1av, ~3!

ẇ5b1w~u2c!,

at the parameters valuesa50.398,b52.0 andc54.0 which
correspond to a chaotic regime. We present preliminary e
mates provided by the criterion«max(d) and results of the
reconstruction of model equations in the standard form@3#

ẋ15x2 ,

ẋ25x3 , ~4!

ẋ35 f ~x1 ,x2 ,x3!,

wherex1 coincides with an observableh, its time series is
formed from a time realization of the variablev. The values
v(t i) are derived via numerical integration of the Eqs.~3!
using the fourth-order Runge-Kutta routine with the st
Dt50.01 ~the length of the series isN5105). The proposed
method is applied for the investigation of a dependen
ẋ3(x1 ,x2 ,x3) in all cases. The values of thex1 coordinate are
formed from the time series$v(t i)% in different ways. Time
series ofx2 , x3 , andẋ3 are obtained via numerical differen
tiation of the series$x1(t i)% with the aid of different tech-
niques. Coefficients of model equations are calculated
using the linear least-squares technique~see Sec. I!. The
maximum likelihood principle@14# is difficult to employ
here because the number of coefficients to be estimated i
~about 10!. But the noise level is small or can be reduced,
both routines should give approximately the same res
@14#. After estimating the coefficients, efficiency of the o
02620
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tained model is assessed via comparison of the original
model phase portraits and calculation of the prediction ti
@7#, that is the time interval on which the model provid
sufficiently accurate forecast~namely, the relative prediction
error remains less than a certain threshold value—we use
value of 0.05!.

~1! $x1(t i)%5$v(t i)%, noise is absent, derivatives are ca
culated using simple finite-difference formulas of the for
ẋ1(t i)5@x1(t i1Dt)2x1(t i2Dt)#/(2Dt). A graph «max(d)
@Fig. 3~a!, white circles# indicates single valuedness and co
tinuity of the dependencyẋ3(x1 ,x2 ,x3) that just confirms a
previously known result@3#. Quite an efficient model~4! is
obtained using a polynomial of the second order as a fu
tion f. It provides an accurate forecast approximately 1T
ahead, whereT is a basic period containing about 600 poin

~2! $x1(t i)%5$v(t i)1j i%, where$j i% is a sequence of in-
dependent random values uniformly distributed in the int
val (20.0005,0.0005) that corresponds approximately
0.01% of the signal level. Without filtration of the serie
reconstructed models have nothing in common with
original system. The failure is predicted by the gra
«max(d) @Fig. 3~a!, filled circles# and occurs due to essenti
amplification of the noise during differentiation. The resu
become better if one employs a smoothing polynom
~Savitsky-Golay filter@17#! and a sufficient width of a win-
dow on the time series for its construction. In the case p
sented with filled squares in Fig. 3~a!, a window consisting
of 21 points is used that appears insufficient; the gra
«max(d) points to nonsingle valuedness. A reconstruc
model ~4! with a polynomial of the second order is esse
tially worse than in the case of ‘‘clean’’ data, it provide
prediction time about 3T. However, if a wider window~e.g.,
41 points! is used, the graph«max(d) practically coincides
with the graph for the ‘‘clean’’ series@Fig. 3~a!#. A model
becomes significantly more efficient and provides an ac
rate forecast 7T ahead.

FIG. 3. Employing the graphs«(d) to assess different variant
of the choice of variables for the Rossler system~3!. ~a! The graphs
«max(d) for x15v in the following cases:~1! without noise—the
graph 1~white circles!, ~2! with noise, derivatives are calculated i
different ways: without filtering—the graph 2~filled circles!, using
a 21-point smoothing polynomial—the graph 28 ~filled squares!,
and using a 41-point smoothing polynomial—the graph 29 ~practi-
cally coincides with the graph 1!. ~b! The graph«max(d) in the case
3: x15v2, without noise—the graph 3~white circles!. The depen-

dency is not single valued, but the graph«̄(d) looks like the graph
for a single-valued dependency~the dashed line!.
5-4
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FIG. 4. ~a! The scheme for the circuit with switched capacitors:R510 V, L514 mH, C150.1 mF, C254.4 mF, U052.3 V,
v/(2p)52.98 kHz, Uthr520.2 V, and the sampling frequency is 250 kHz.~b! The graphs«max(d) for different variants of the mode

structure~for the dynamical variablex15I ): ~1! for a dependencyẋ3(x1 ,x2 ,x3) of a model ~5!—filled squares,~2! for a dependency

ẋ3(x1 ,x2 ,x3) of a model ~4!—white circles, ~3! for a dependencyẋ2(x1 ,x2 ,w) of a model ~6!—filled circles. The graphs«̄(d) are
approximately the same for all examples~the graph for the case 1 is shown with the dashed line!. ~c! The graphs«max(d) for different

variants of the model structure~when the dynamical variablex1 is an integral of the currentI ): ~1! for a dependencyẋ3(x1 ,x2 ,x3) of a model

~4!—filled squares,~2! for a dependencyẋ3(x1 ,x2 ,x3) of a model~5!—white circles, and~3! for a dependencyẋ2(x1 ,x2 ,w) of a model
~6!—filled circles.
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~3! $x1(t i)%5$v2(t i)%, noise is absent. The graph«max(d)
clearly indicates nonsingle valuedness of the depende
ẋ3(x1 ,x2 ,x3) @Fig. 3~b!, white circles#. An effective model
~4! can not be obtained.5 We note that the graph«̄(d) @Fig.
3~b!, the dashed line# looks similar to the graph for a single
valued continuous dependency, i.e., it does not allow for
tecting the inappropriateness of the variables for global m
eling.

IV. MODELING A NONLINEAR ELECTRIC CIRCUIT

The scheme of a nonlinear electric circuit~harmonically
driven LCR circuit with switched capacitors! is shown in
Fig. 4~a!. The elementK is an electronic key, a microschem
comprising dozens of transistors and other passive elem
which is fed from a special source of dc potential. At sm
values of voltageU on the capacityC1, the resistance of the
key is very large and linear oscillations occur in the circ
LC1R. When the voltageU achieves a threshold valueUthr ,
the resistance of the key decreases abruptly and the cap
C2 becomes connected to the circuit. Back switching occ
approximately at the same value ofU. As a result, the system
is nonlinear and exhibits complex dynamics~in particular,
chaotic oscillations! at big values of the driving amplitud
@18,19#.

Let us consider the effect of the choice of dynamical va
ables and model equations structure on the results of mo
ing. We employ a chaotic time realization of the currenI
through the resistorR as an observable time series$h(t i)%.
The data are recorded with the aid of a 12-bit ADC, t
sampling interval isDt54 ms, the driving period isT
584Dt, and the length of the series isN530 000. Six ex-
amples are considered below~three variants of the mode
ODEs structure for two different observables!. The results of

5By analytic transformations of the system~3!, it is not hard to
show that the investigated dependency is not single valued.
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the application of the proposed method@Figs. 4~b! and 4~c!#
and of the model construction are presented. Model OD
are constructed and their efficiency is assessed exactly a
Sec. III B. The graphs in Fig. 4 are numbered correspond
to the numbers of the following examples.

~1! A popular model structure

ẋ15 f 1~x1 ,x2 ,x3!,

ẋ25 f 2~x1 ,x2 ,x3!, ~5!

ẋ35 f 3~x1 ,x2 ,x3!,

where x1(t i)5h(t i), x2(t i)5h(t i1t), and x3(t i)5h(t i
12t) are time delay coordinates,t521Dt is the first zero of
the autocorrelation function. A smoothing polynomial is co
structed for numerical differentiation. All three dependenc
ẋk(x1 ,x2 ,x3) are analyzed. The value of«max does not tend
to zero whend decreases for allk. All graphs«max(d) look
similar, one of them is presented in Fig. 4~b! with filled
squares~for k53). It indicates the impossibility of con
structing an efficient global model that is completely co
firmed in practice.

~2! A standard model~4! with x1(t i)5h(t i). The depen-
dencyẋ3(x1 ,x2 ,x3) is tested.«max(d) decreases whend de-
creases@Fig. 4~b!, white circles# that points to the possible
single valuedness. But an efficient model, where right-ha
sides are algebraic polynomials, cannot be obtained. O
ously, a polynomial is not appropriate for approximation
the dependencyẋ3(x1 ,x2 ,x3). Another form of the approxi-
mating function is necessary here. Its choice is a diffic
problem which is not a subject of the present paper.

~3! Following the recommendations on the reconstruct
of nonautonomous systems@20,21#, we construct a model in
the form
5-5
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SMIRNOV, BEZRUCHKO, AND SELEZNEV PHYSICAL REVIEW E65 026205
ẋ15x2 ,

ẋ25 f ~x1 ,x2 ,w!, ~6!

wherex1(t i)5h(t i) and w is the phase of driving. The de

pendencyẋ2(x1 ,x2 ,w) is tested. The time series of the pha
w is obtained asw(t i)5vt i(mod 2p ), the angular frequency
v is assumed to be known. The graph«max(d) ~Fig. 4~b!,
filled circles! shows that the dependency is, possibly, sin
valued. However, an efficient model with harmonic drivin
and polynomial approximation cannot be obtained. Aga
one needs to select a special form of the functionf.

~4! A standard model~4! with x1(t i)5* t1

t i h(t)dt. This

variable makes physical sense, it is the summed charg
the capacitiesC1 andC2. The time series$x1(t i)% is obtained
via the numerical integration of the measured time serie
the currentI ~e.g., using the method of trapeziums!. The
value of«max for the dependencyẋ3(x1 ,x2 ,x3) does not de-
crease whend decreases@Fig. 4~c!, white circles# and re-
mains large. An effective model cannot be constructed.

~5! A model ~5! with x1(t i)5* t1

t i h(t)dt and delayed coor-

dinatesx3(t i)5x1(t i1t) andx2(t i)5x1(t i12t), wheret is
again the first zero of the ACF. All three dependenc
ẋk(x1 ,x2 ,x3) are tested. The graphs«max(d) do not tend to
the origin whend decreases in all three cases. One of th
~for k51) is shown in Fig. 4~c! with filled squares. An ef-
fective model cannot be constructed.

~6! A model ~6! with x1(t i)5* t1

t i h(t)dt. A graph«max(d)

shows that the dependencyẋ2(x1 ,x2 ,w) is single valued and
moreover, varies ‘‘gradually’’@Fig. 4~c!, filled circles#. A re-
constructed model~6! with an additive harmonic driving and
a bivariate polynomial of the 11th order demonstrates a c
otic attractor qualitatively similar to the experimental o
and provides an accurate forecast 5T ahead@22#.

It is significant that an optimistic estimate according
the criterion«max(d) and good results of the global reco
struction are achieved only in the last~the sixth! case. The
graphs«̄(d) are, however, practically the same for all abov
mentioned choices of variables@one of them is shown in Fig
4~b! with the dashed line#. This fact confirms that the aver
age characteristic«̄ does not, in general, allow to assess t
suitability of variables for global modeling.
ev
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V. CONCLUSIONS

While performing global reconstruction of a dynamic
model from a time series, two very important steps are
selection of dynamical variables and the specification of
forms of functions which approximate dependencies to en
model equations. If the choice of the variables is unsucce
ful, these dependencies can appear too difficult for appro
mation or even nonunique.

The proposed method of testing time series$x(t i)% and
$y(t i)% derived from observable data allows to estima
whether the dependenciesyk(x) are single valued, continu
ous and do not have the regions of steep ‘‘slope.’’ Hence,
method indicates whether the selected variables are appr
ate for the construction of a global dynamical model. It
based on the analysis of the local properties of the inve
gated dependencies, which are much more relevant for
global reconstruction than averaged characteristics. The
ter can, in general, be exploited only as additional inform
tion about the selected variables. Efficiency of the propo
method is shown with different numerical and experimen
examples.

The method can be applied to the reconstruction of de
differential equations and partial differential equations, sin
in these cases one of the steps of a modeling procedu
also an approximation of some dependencies from exp
mental data@10,23#. As was illustrated by the examples o
Sec. IV, single valuedness of a dependency does not
guarantee obtaining an effective global model. A sing
valued dependency can appear too difficult for global
proximation~especially with standard polynomials!, e.g., if it
oscillates intensively. However, a local approach@7,8# might
appear efficient for the latter case. Some recommendat
on selecting the forms of approximating functions are giv
in @24#.

In conclusion, we should note that the proposed meth
states only the results of the choice of variables, but it d
not say in what way the set of variables should be change
the case of failure. It may appear necessary to add new v
ables, exclude or transform some of the selected variab
and so on. However, this is, obviously, the theme of a diff
ent discussion.
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