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Sequential fragmentation: The origin of columnar quasihexagonal patterns
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We present a model that explains the origin and predicts the statistical properties of columnar quasihexago-
nal crack patterns, as observed in the columnar jointing of basaltic lava flows. Induced by temperature gradi-
ents during cooling, irregular fractures appear at the surface of the material. At later times fractures penetrate
into the material, and tend to form polygonal patterns. We show that this ordering can be described as a
tendency to minimize an energy functional. Atomistic simulations confirm this interpretation. Numerical simu-
lations based on a phenomenological implementation of this principle generate patterns that have remarkably
good statistical agreement with real ones.
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[. INTRODUCTION of the interaction among many neighbor triple junctions.
This is an extremely difficult task if pursued from a micro-
Columnar jointing in some kinds of volcanic rocks— scopic point of view. They conclude that probably energetic
especially basaltic lava flows—is one spectacular example agirguments(involving fracture energy and elastic energy
geometrical order in nature, where cracks split the rock in anay dictate the way in which the final polygonal pattern is
set of parallel column§l,2]. Perpendicular to the columns, formed.
the fractures show a distinctive pattern of mostly pentagonal Energetic arguments have been invoked since quite a long
and hexagonal polygons whose sizes vary from a few centiime to justify the polygonal structure of columnar basalts
meters to about 2 nfsee Fig. 1 It has been realized for [7], and it is known that the perfect hexagonal pattern re-
more than a century that columns result from the contractiofieves the maximum amount of elastic energy for a given
of the cooling lava after solidification. There is consensus byotal length of fracture$8]. We argue in the following sec-
now that fractures start at the surfaces of the igneous bodjion that for the problem of sequential fragmentation
and propagate to the interior as the rock cools down. Fracturéhich new parts of the rock are sequentially fractured under
patterns at the surface are rather disordered, but the fracturéi¥e influence of both the previously fractured parts and the
progressively order as they penetrate the sample, reaching &kl intact rock underneajha minimum principle can be in-
almost stable polygonal configuration after some depth. Th&oked to describe the evolution in depth of the fracture pat-
fundamental reason of this ordering process is unknown dern. In the following section we actually show in a numeri-
present. Further evidence for these facts comes from the r&al simulation(which assumes only the sequential nature of
production of columnar cracking in samples of dessicating
starcheq3]. In this case the columns have diameters in the
range of millimeters, and the ordering process is apparent.
Ryan and Sammif4] collected evidence suggesting that
the vertical advance of the fracturing front is not continuous,
but a discrete process that we csdiquential fragmentation
at each step, and when some maximum tensile stress is ex-
ceeded, a layer of material is fractured. The existence of this
punctuated advance of the fracturing front can be seen in the
lateral faces of the columns, which usually have typical
marks called striae, or chisel mark4]. Further work[5,6]
has clarified the form in which fractures propagate within
each horizontal layer. A fracture appears at some point and
propagates under the combination of mode | and mode llI
fracturing, guided by the upper part of the rock, which was
fractured previously. This is a justification for the prismatic
form of the columns and the striae on their faces. However, it
assumes that the polygonal pattern is already formed in the
upper parts of the rock. Aydin and DeGrff| tried to give a
justification for the evolution of superficial fractures, which
usually meet in the form of &, towards theY triple junc- FIG. 1. Polygonal pattern seen perpendicular to some of the
tions typical of well developed columns. But, as they pointcolumns of the Giant's Causeway, a tertiary lava flow in Antrim,
out, the prediction of the overall polygonal pattern of frac- Northern Ireland, from Ref20] (originally from a map by O'Reilly
tures would require a three-dimensional mechanical analysi21]).
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that the fracture pattern starts being disordered at the surface,
and progressively orders as it penetrates the sample, ap- i z b Ad N Ly

. . . . 17 S S A dZ
proaching the ideal pattern we expect on an energetic basis. Zy §
The minimum principle is used in Sec. Il in phenomenologi-
cal simulations, to evolve superficially disordered patterns t=t, t>t, t,>t,
into stable polygonal configurations. The statistical proper-
ties of the final patterns agree with the available experimen- FIG. 2. Schematic representation of sequential fragmentation in
tal data in basalts and also in starches. In Sec. IV we sung two-dimensional geometry. Continuous lines represent the ad-
marize our results, and point out some open problems iiancing fractures. At each time step a layer of material of thickness

columnar jointing, mainly associated with realistic condi- dz fractures. New fractures appear below those already present, but
tions of cooling. slight modifications in their positions are possible, and, in fact,

crucial to the ordering process.

the fragmentation process and no otherhocassumption \ J \ 1 S
[/ ARSSSNN ROV R NOR R N N

II. ENERGETIC DESCRIPTION OF THE ORDERING

fracture front is fractured under the influence of the already
PROCESS

fractured material above, and the still unfractured material

We will concentrate on the problem of a semi-infinite below. We will always assume that the conditions for se-
solid body (the rock cooling down through dhorizonta)  quential fragmentation apply.
free surfacq9]. Since this is a situation of inhomogeneous From now on we will treat the rock as a collection of
cooling, there will be thermal gradients within the rock. The particles, elastically joined to their nearest neighbors, in the
thermal gradient will point vertically at every point, and then presence of a constant temperature gradient in the vertical
temperature will be constant in any horizontal plane. Undedirection. Changes in temperature are interpreted as changes
the stresses generated by the thermal gradient, the rock wilh the equilibrium distance between particles. Fractures will
fracture. be modeled by the saturation of the elastic energy between
There are two qualitatively different stages in the fractur-neighbor particles as they are taken apart a distance larger
ing process. One is the appearance of fractures at the surfattean some prefixed valug,(T) (see Fig. 3. Note that, in
of the rock. Here, the first fracture appears when some maxihis way, for any given temperature distribution, and for any
mum stress is exceeded at some point of the sample. Thenadtrangement of particles, we can define a total ené&rdyr
propagates horizontally under the influence of the inhomogethe system without ambiguity.
neities of the rock. When new fractures nucleate at the sur- It is useful to divide the total energl in two parts,E
face, they propagate until they meet older ones, usually at E;+E,. TheE; term, which we call elastic energy, comes
right angles, giving rise to typical surface fragmentation patfrom those particles being at a relative distance lower than
terns that have been extensively studied, both experimentally,, . This is an elastic energy since is quadratic in the relative
[10,17 and theoreticallff12,13. For our purposes, we only distance between particles. The second Earis the contri-
mention that this stage is governed, to a large extent, by theution from particles at a relative distance larger tiaap,
random disorder present in the system, since fractures nuclend then it can be associated with broken ligisce in this
ate at points where the body can resist the lowest strain. Thease force vanishgsand identified with the fracture energy.
pattern at the surface is usually quite disordered. Actually, whenever we talk of the existence of a fracture at a
In this paper we study the second stage of the fracturingjiven position of the sample, we mean that neighbor par-
process of the rock, namely, the way in which the superficial,
disordered pattern of fractures penetrates the body and or-
ders. We will assume that the temperature distribution within
the rock is a given function of coordinates and time, inde- \' (T>T)
pendent of the actual arrangement of fractures, and homoge-
neous at each horizontal plane. The last fact, however, is not
enough to assure that the fracture fréing, the vertical co-
ordinate up to which fractures have penetrated, as a function
of the horizontal coordinajewill be horizontal. In fact, in a
standard situation of fracture mechanijiég], it would occur
that as soon as a fracture penetrates slightly more than the
rest, stresses accumulate onto that fracture, the result being ;
that typically a single fracture advances. For our case, how- distance
ever, and under realistic cooling conditions, the temperature g, 3. schematic energy vs distance curve for neighbor par-
gradient decreases ahead of the fractures, so if a fractuiles in the discrete model of the rock. There is an equilibrium
advances, it rapidly reaches regions where the lower temyistance between particles that depends on temperag(ig. De-
perature gradient precludes the further advance of that fraGqations from this distance cost an elastic energy that is quadratic in
ture. This is the reason for the sequential advance of théhe displacement. If the distance becomes greater than some critical
fracture front as is schematically illustrated in Fig. 2. At eachdistanced,,(T) then energy saturates. In this way we model frac-
“time step,” a horizontal slab of material right below the tures, since in this range there is no force between particles.

Energy

.‘.‘..". dcr(Tl) dCI(TZ)

d(T,) dy(T,)
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ticles are separated by a distance larger tthanacross that d
“fracture.” L
Having defined the degrees of freedom of the system and
the total energy, we can think of the system as a p@ii
the configuration space of all particle coordinates. The se-
quential evolution we have describéeig. 2) corresponds to
the sequential mechanical relaxation of all particles within
the slab between; andz, 4, with dz=z,,—z being the
thickness of the slab being fractured at stephis sequential
process corresponds to the movement/oin the energy
landscape. Assuming that the mechanical relaxation occurs
by some kind of “viscous” dynamics, the present description
becomes complete and deterministic, and then we can solve,
in principle, all the(nonlineay mechanical equations for the  F|G. 4. Stresses ahead of an uneven set of fractures as depicted
problem, and obtain in all detail the way in which fracturesin the inset. In the main figure we plot the stress field in the neigh-
penetrate the sample. The qualitative features of this adsorhood of a couple of close fracturésee text for details Direc-
vance, however, can be inferred from general arguments. ltions of maximum stress at the tips of the fractures are indicated by
fact, with the fracture front at a given position, we can the arrows. The simulated box is marked in gray in the inset. Peri-
calculate the stress field ahead of the fractures, and determiigic boundary conditions are used aloggnd free boundary con-
the directions along which this stress is maximized. Thesdlitions alongz. The dotted box in the inset is the region plotted in
are the directions that fractures have the tendency to follovthe main figure. We have usetj/d;=4.
as they advance. The system releases the maximum amount
of energy when fractures advance along these directionsyant to calculate the stress field for a set of fractures as
compared to any other. In other words, at each step the comlepicted in the inset of Fig. 4, namely, there are pairs of
figuration point’? moves following a steepest descendentfractures separated by a distamige and the pairs themselves
path in the potential energy landscape. Note that due to thare separated by some other distadge
particular conditions of sequential advance, this movement is We start with lattice points joined by springs to form a
“quasistatic,” in the sense that it does not involve the run-triangular lattice, then modeling a homogeneous and isotro-
away of fractures ahead the fracture front. pic material with Poisson ratid 5] equal to 1/3. We simulate
The kind of argument we are using is equivalent to thosea piece of sizd, X1, in the x andz directions, respectively,
used in surface fragmentation to justify the fact that newtaking periodic boundary conditions in thedirection and
fractures meet older ones at right anglgs This is a con- open boundary conditions in the direction. The springs
sequence of the tendency of fractures to advance perpendichave a rest lengttl, that depends on its vertical coordinate
larly to the direction of maximum stress, and is equivalent toaccording to
say that the configuration poir® moves down in energy
following the steepest descendent path. We are just saying dy(2)=d l—,BE
that for sequential fragmentation the advancelbfractures 0 0o 1,/
is governed by this kind of principle. Then, our minimum
principle, central to all this work, states that under sequentiajn this way we model a constant temperature gradient in the
fragmentation conditions the advance of the fracture front direction (in the simulations we will usg3=0.01). The
occurs with a tendency to reduce as much as possible theariodic boundary conditions in thedirection are taken in
total energy of the system. Note that during this orderingsych a way that the particles z&0 are nominally at zero
process, the existence of small inhomogeneities in the materain, whereas all planes on top of that are strained with
rial plays no significant role, as energy will be mostly depen-respect to the preferred distandg. The two fractures are
dent only on the geometrical configuration of fractures. introduced in the system by eliminating all springs that go
Our principle then justifies qualitatively the observed ten-3cross the fractures.
dency to produce polygonal arrangements. It is important o we have solved numerically the problem, by relaxing
note that the system finds the most convenient pattern byyith a viscous dynamigshe coordinates of the particles in
modifying the one at the surfacevhich usually is quite dis- order to obtain the equilibrium configuration. Then the stress
ordered through small steps as fractures penetrate thgensoff15] was calculated and diagonalized at each position.
sample. In Secs. Il A and Il B we present results that confirmn Fig. 4 we show the results. At each point, the tangent to
the validity of our interpretation. the line shown in that figure is the direction perpendicular to
the eigenvector corresponding to the maximum eigenvalue of
the stress tensor, and then it is the direction that fractures will
tend to follow as they advance. Starting at the tips of the
First of all we want to show that standard stresses calcufractures, we see that these directions go away from each
lations are consistent with the minimum principle. We haveother, as indicated by the arrows. This indicates that, if se-
calculated the stress field surrounding a system of unevenlguential fragmentation occurs, the close fractures will ad-
spaced fractures in two dimensions. More specifically, wevance with a tendency to separate from each other, and even-

()

A. A stress calculation
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tually to produce a set of evenly spaced fractures. In fact,
only when the evenly spaced configuration is reached, the
maximum stress direction will coincide with the vertical di-
rection, and from here the pattern is not modified. This stan-
dard calculation coincides qualitatively with that expected
from the minimum principle, since a set of evenly spaced
fractures is the configuration that releases the maximum
amount of energythis is the equivalent of the honeycomb
lattice in three dimensiongl6]). Then we see that the con-
clusions from our minimum principle do not contradict those
obtained from more standard analysis. The advantage, how-
ever, is that the minimum principle is much easier to imple-
ment in cases where a calculation of stresses is not feasible.

B. Atomistic simulations of ordering

The second result presented to validate the minimum prin-
ciple is an atomistic numerical simulation in three- F|G. 5. Final patterns of fractures for progressively deeper lay-
dimensional systems. We implement sequential fragmentars n in a sequential fragmentation process for layers with 1600
tion in the following way. We use a generalization of the particles. For clarity reasons, in the plots the system has been du-
procedure extensively used to study surface fragmentatioplicated both in the horizontal and vertical directioferiodic
[12]. In that case a layer of material shrinks while it is at- boundary conditions are usedn the plots, each thick fracture is
tached to a fixed underlying layer. We take a hexagonal plant®rmed by small lines mostly perpendicular to the fracture that joins
of particles, with particles attached to their neighbors by genthe ends of springs that have failed after a contraction up to 0.89 of
eralized spring$with an energy-displacement relation as thatthe original distance between lattice points.
of Fig. 3) of spring constanK and initial natural lengtfd,.

Their positions are the dynamical variables. They are atsee, the fracture pattern that appears is highly disordered for
tached to an underlying hexagonal plane of parti¢iesich  the first few planes, with many fractures ending in the middle
are kept fixed to their original positions during the simula-of the sample. When we go inside the material, there is a
tiong) by vertical springs of constaht The vertical springs clear tendency to order, forming a polygonal pattern reminis-
do not break. Simulation proceeds by reducing the equilibcent of the experimental observations in basalts. Although in
rium distance of the horizontal springs of the layer beingFig. 5 some influence of the hexagonal structure chosen for
simulated. The first fracture appears when the equilibriunthe underlying lattice is observable, we have verified that the
distance between two particles becomes grater than the casame qualitative process of ordering is found also for other
responding critical distanag,, of the spring that joins them. underlying geometries, namely square. We have also looked

For our simulations of sequential fragmentation, the onlyat the final energy the pattern gets after fracturing, and this
difference is that we consider also the simulated plane to bguantity is plotted in Fig. 6 as a function nfAs we see, this
joined to an upper plane of fixed particles by spring of con-quantity has a tendency to be minimized as successive layers
stantk, and that we simulate the fracturing of the system as are fragmented, which is the right tendency predicted by our
sequence of independent two-dimensional fragmentatioarguments. Moreover, in Fig. 6 we also plot the energy ex-
processes. In the simulation of the successive layers the ppected for a perfect hexagonal pattern, with the size of the
sition of particles in the upper plane are taken equal to théhexagons chosen precisely in order to minimize the energy.
final positions of the simulation of the previous layer. In theWe see that the solution that was found by the system was
simulation of the first layer, we do not have an upper plane.

However, to avoid introducing disorder into the syst@and 32 T T T T
in order to break the homogeneity that would occur for an 3.0F .
absolutely perfect systemve take an upper plane consisting 28F -
of particles located at the hexagonal lattice and some random Eﬁ 26F -
displacement, independent for each particle. We took this & 24l -
displacement to be 0.5 of the lattice parameter. We want to ® ool ]
mention that other simulations in which disorder was in- .0 | ideal minimum ]
cluded, and the first layer was simulated without any upper 1.8} ]
plane producing qualitatively the same results. The equilib- 16k ]
rium distance between particle, within the layer being 0 5 10 15 20 25
simulated is quasistatically reduced from some initial value laver ind
. yer index
dgo to pdgg. We usep=0.89. In the energy of the horizontal
springs (Fig. 3) we used; =dy+0.1dgg. We also take FIG. 6. Energy per particle of the pattern obtained in the simu-
K/k=100. lations shown in the preceding figure, as a function of the layer

In Fig. 5 we see the final pattern of fractures for progres-index. The ideal minimum of a size-optimized honeycomb lattice is
sively deeper layers, for a system of 1600 particles. As we also shown. Energy is given in units of 13K d3,.

026203-4



SEQUENTIAL FRAGMENTATION: THE ORIGIN CF. .. PHYSICAL REVIEW E 65 026203

not the perfect one, but very close in energy to that one. This
is a further confirmation that the tendency to minimize the
final energy is in fact the driving force for the formation of
the polygonal pattern.

IIl. PHENOMENOLOGICAL CALCULATION

Having identified the reason why a superficially disor- (a)
dered pattern shows a tendency to order as it penetrates the
material does not exhaust the interesting features of the prob-
lem. Here we will address the observation that patterns are
usually seen to be polygonal, but not perfectly hexagonal, as
it would be preferred by purely energetic reasons. We will
show that this is a consequence of the minimization process,
since the system is usually not able to reach the absolute
minimum of the energy potential, but gets trapped in a rela-
tive minimum. Since the problem becomes computationally ) 1. (d)

min

too costly to be tackled by the methods of the preceding i

section, we look fpr a phenomenploglcal approach. We will FIG. 7. Numerically evolved patterns of fractures. We see the
need to calculate in some approxmate manner the energy %ginal pattern(a), the final(stable one(c), and one intermediate
the system as fractures adVa”,Cey ',n order to search for tIl%nfiguration(b). To avoid spurious edge effects, only the central
fracture patterns that tend to minimize the energy. region of a simulation performed on a larger sample is shown. The

A realistic calculation is rather complicated and it will be \ymerical algorithm is described in the text. Below the final pattern
presented elsewhere. Here we will restrict to an heuristige), the side of hexagonk,;, in the expected ideal honeycomb
analysis that, however, is able to show many of the knownattice is indicated. In(d) we see the kinds of processes that allow
physical properties of fracture patterns. for a change in the number of sides of adjacent polygons.

Let us suppose that fractures divide the system in sectors
of well defined areas\;. We are interested in the elastic
energyE, of the system after a vertical advande of the
fractures. To lowest order this energy must be a function of

the A;, of the elastic constants, and of the precise thermalnere is the fracture energy per unit area, dnis the total
state of the material. We will use the following expression: length of fractures perpendicular to the propagation direc-
tion. Collecting the elasti¢2) and fracturg3) energy terms,
E.—E.+ Adz, 2 we can rephrase the minimum principle in the following
e 72 ' @ form. Upon fracture advance, the energy functional

~

SE,= yLdz, 3)

where y>0 and v>1 are constants, and we have collected

within E, all possible terms thgt do not depend/&qn Three E= 72 AZ+ gL (4)

main facts have been used in constructing expres&on i

First, the energy is an independent sum over different col-

umns of terms that depend &g . This is the lowest order

contribution we expect, in which we disregard contributions

proportional to the particular form of the columns, and inter-

action terms between neighbor columns. Second, the final

energyEl increages ifA, in.creases(i:e., v>0). This is the | in=(27/97) ¥, (5)

right tendency, since the final elastic energy becomes lower

if new fractures are introduced in the system, and this im-

plies a reduction of the typicad;. Third, the exponenw Now, we will use functionak4) to evolve irregular pat-

must be greater than 1. This condition implies the tendencyerns (representing superficial fractujesp to the point in

of the system to make the distribution Af as uniform as which they stabilize, and then compare their statistical prop-

possible in order to redude;. With illustrative purposes, in erties with real ones. Since we are not able to manage a

the rest of this paper we will use=2. We have repeated the completely general case, we chose a simple possibility that

simulations withv in the 1.5—-2.5 range with no significant turns out to produce quite interesting results. We generate the

change. The precise properties of the material and the thepattern at the surface by a process of nucleation of linear

mal state of the system are contained in the value.of fractures: from randomly chosen points within the plane we
Expression(2) for the final elastic energy has to be addedpropagated two opposite, straight fractures. The process was

with the change in the fracture enerBy during the vertical repeated many times, with new fractures stopping as soon as

advance. This is simply given in terms of the energy needethey reached an older fracture. In Figajfwe show a typical

to create the new fractures as pattern generated by this proc¢&8]. We simulate the modi-

tends to be minimized. The absolute minimum of E4.is
attained by a perfect pattern of hexagons of side
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fication of the pattern with an algorithm that makes small L L

changes to the positions of the nodes at which fractures join. ©—@ This work |
Each step in the modification of the pattern corresponds to (a) E‘Gc_ﬁiﬁﬁiy
the fracture pattern developing into the rock. The new posi- > 04} g
tion for a node was accepted if the new value of the energy, g

as given by Eq(4), was lower than the previous value. In =2

addition, at each step of the simulation the configuration was & o2 b i

checked for the existence of very close nodes that can allow
a change in the topology of the pattern according to the
sketch of Fig. 7d). Again, the changes were accepted only if
they reduce the value &f. These processes are important
since they change the number of sides of the polygons and
allow for a progress towards more stable patterns. 4 b o |
An intermediate pattern in the evolution process is shown
in Fig. 7(b), and the final onegafter which all proposed
changes of the positions of the nodes increase the enisrgy
shown in Fig. 7c). Since “time” on our simulations corre-
sponds to “depth” in the rock, the ordering of our patterns
represents the progressive order of the real lava fractures
deeper into the rockl9]. The final pattern of Fig. (€) is not
perfectly hexagonal, and thus it is only a relative minimum 0.2 —r L
of Eg. (4). There is one single effective parameter in the 2 4 6 8 10
simulation, that can be taken to be the side of the perfect Number of polygon sides
hexago_nal pattern of minimum e”e%n- _For our S'mUIa' FIG. 8. (a) Histogram for the relative frequendpormalized to
tions th|s_ vglue, as given by Eq_5)’ IS |nd|cate_d in Fig. 7. one of appearance of polygons with different number of sides for
The qualitative similarity of thg fmall pattern with thfat of the he Giant's Causeway, columns in cornstaf@, and from our
Giant's Causeway shown in Fig. 1, is apparent. This polygogimyiationsan average over ten final configurations as that of Fig.
nal pattern is now exposed at the surface of the rock, buf(c) is showr. (b) Areas of the polygons normalized to the average

there is evidence that this is not the original surface. In Figarea for polygons with different number of sidesta on cornstarch
8 we show two quantities that are a measure of the statisticgle not available

similarity between our patterns and the real ones. In Fig. 8

we see the results for the frequency of the appearance of
polygons with a given number of sidéis this case we also .
include the results on cornstarch by N [3]), and in Fig. experimental polygonal patterns can be reproduced.

. There are still some problems that deserve further consid-
8(b) the corresponding values for the mean area of polygons__.. ; . )
. . . . . . . eration, and we plan to discuss them in a forthcoming pub-
with a given number of sides, both in our simulations and in

the real patterns. The configurations generated by our modgFat'on' They have to do mainly with the realistic conditions

are remarkably realistic. We see that, both in real cases anlcg C%cf)“trr]]% ';Sn?'zcr;tsjreed I?azie:ﬁtlIélrfézgrgflfﬁ;yftgitﬂfggetisat
in our simulations, the fractures never reach a perfect hex- 9 °Mp gradi
X NP makes possible the sequential advance of the fracture front,

agonal pattern. Instead, a reproducible distribution of poly- ; .
S . . . in a coordinated way all across the sample. The detailed

gons, most of them with five, six, and seven sides is ob-

tained, with a minor contribution of polygons with four and sthu_dyl of thlls probrllem ;?rowdes predictions for the width of
eight sides. Also, polygons with higher number of sides havé 'S¢ Marks on the co umns.. o
larger area as Fig.(B) shows. We also have to det_ermlne ina reallstlc_snu_atlon the value
of the constanty and v in expressior(2). This will allow us
to calculate, in particular, the typical sizes of the polygons in
IV. SUMMARY AND PERSPECTIVES basalts and starches. Under realistic cooling conditions we
also have to face the problem that temperature changes with

In this paper we have given a first approach to a consistime, and the effect of this on the advance of the fracture
tent model for the existence of columnar polygonal patterngront has to be discussed.

in lava flows and some dessicating materials. We have shown

in numerical simulations on a discrete model that fractures
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