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Sequential fragmentation: The origin of columnar quasihexagonal patterns
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We present a model that explains the origin and predicts the statistical properties of columnar quasihexago-
nal crack patterns, as observed in the columnar jointing of basaltic lava flows. Induced by temperature gradi-
ents during cooling, irregular fractures appear at the surface of the material. At later times fractures penetrate
into the material, and tend to form polygonal patterns. We show that this ordering can be described as a
tendency to minimize an energy functional. Atomistic simulations confirm this interpretation. Numerical simu-
lations based on a phenomenological implementation of this principle generate patterns that have remarkably
good statistical agreement with real ones.
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I. INTRODUCTION

Columnar jointing in some kinds of volcanic rocks—
especially basaltic lava flows—is one spectacular exampl
geometrical order in nature, where cracks split the rock i
set of parallel columns@1,2#. Perpendicular to the columns
the fractures show a distinctive pattern of mostly pentago
and hexagonal polygons whose sizes vary from a few ce
meters to about 2 m~see Fig. 1!. It has been realized fo
more than a century that columns result from the contrac
of the cooling lava after solidification. There is consensus
now that fractures start at the surfaces of the igneous b
and propagate to the interior as the rock cools down. Frac
patterns at the surface are rather disordered, but the frac
progressively order as they penetrate the sample, reachin
almost stable polygonal configuration after some depth.
fundamental reason of this ordering process is unknow
present. Further evidence for these facts comes from the
production of columnar cracking in samples of dessicat
starches@3#. In this case the columns have diameters in
range of millimeters, and the ordering process is appare

Ryan and Sammis@4# collected evidence suggesting th
the vertical advance of the fracturing front is not continuo
but a discrete process that we callsequential fragmentation:
at each step, and when some maximum tensile stress is
ceeded, a layer of material is fractured. The existence of
punctuated advance of the fracturing front can be seen in
lateral faces of the columns, which usually have typi
marks called striae, or chisel marks@4#. Further work@5,6#
has clarified the form in which fractures propagate with
each horizontal layer. A fracture appears at some point
propagates under the combination of mode I and mode
fracturing, guided by the upper part of the rock, which w
fractured previously. This is a justification for the prisma
form of the columns and the striae on their faces. Howeve
assumes that the polygonal pattern is already formed in
upper parts of the rock. Aydin and DeGraff@6# tried to give a
justification for the evolution of superficial fractures, whic
usually meet in the form of aT, towards theY triple junc-
tions typical of well developed columns. But, as they po
out, the prediction of the overall polygonal pattern of fra
tures would require a three-dimensional mechanical anal
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of the interaction among many neighbor triple junction
This is an extremely difficult task if pursued from a micr
scopic point of view. They conclude that probably energe
arguments~involving fracture energy and elastic energ!
may dictate the way in which the final polygonal pattern
formed.

Energetic arguments have been invoked since quite a
time to justify the polygonal structure of columnar basa
@7#, and it is known that the perfect hexagonal pattern
lieves the maximum amount of elastic energy for a giv
total length of fractures@8#. We argue in the following sec
tion that for the problem of sequential fragmentation~in
which new parts of the rock are sequentially fractured un
the influence of both the previously fractured parts and
still intact rock underneath! a minimum principle can be in-
voked to describe the evolution in depth of the fracture p
tern. In the following section we actually show in a nume
cal simulation~which assumes only the sequential nature

FIG. 1. Polygonal pattern seen perpendicular to some of
columns of the Giant’s Causeway, a tertiary lava flow in Antri
Northern Ireland, from Ref.@20# ~originally from a map by O’Reilly
@21#!.
©2002 The American Physical Society03-1
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the fragmentation process and no otherad hocassumption!
that the fracture pattern starts being disordered at the sur
and progressively orders as it penetrates the sample,
proaching the ideal pattern we expect on an energetic b
The minimum principle is used in Sec. III in phenomenolo
cal simulations, to evolve superficially disordered patte
into stable polygonal configurations. The statistical prop
ties of the final patterns agree with the available experim
tal data in basalts and also in starches. In Sec. IV we s
marize our results, and point out some open problems
columnar jointing, mainly associated with realistic cond
tions of cooling.

II. ENERGETIC DESCRIPTION OF THE ORDERING
PROCESS

We will concentrate on the problem of a semi-infini
solid body ~the rock! cooling down through a~horizontal!
free surface@9#. Since this is a situation of inhomogeneo
cooling, there will be thermal gradients within the rock. T
thermal gradient will point vertically at every point, and the
temperature will be constant in any horizontal plane. Un
the stresses generated by the thermal gradient, the rock
fracture.

There are two qualitatively different stages in the fract
ing process. One is the appearance of fractures at the su
of the rock. Here, the first fracture appears when some m
mum stress is exceeded at some point of the sample. Th
propagates horizontally under the influence of the inhomo
neities of the rock. When new fractures nucleate at the
face, they propagate until they meet older ones, usuall
right angles, giving rise to typical surface fragmentation p
terns that have been extensively studied, both experimen
@10,11# and theoretically@12,13#. For our purposes, we onl
mention that this stage is governed, to a large extent, by
random disorder present in the system, since fractures nu
ate at points where the body can resist the lowest strain.
pattern at the surface is usually quite disordered.

In this paper we study the second stage of the fractu
process of the rock, namely, the way in which the superfic
disordered pattern of fractures penetrates the body and
ders. We will assume that the temperature distribution wit
the rock is a given function of coordinates and time, ind
pendent of the actual arrangement of fractures, and hom
neous at each horizontal plane. The last fact, however, is
enough to assure that the fracture front~i.e, the vertical co-
ordinate up to which fractures have penetrated, as a func
of the horizontal coordinate! will be horizontal. In fact, in a
standard situation of fracture mechanics@14#, it would occur
that as soon as a fracture penetrates slightly more than
rest, stresses accumulate onto that fracture, the result b
that typically a single fracture advances. For our case, h
ever, and under realistic cooling conditions, the tempera
gradient decreases ahead of the fractures, so if a frac
advances, it rapidly reaches regions where the lower t
perature gradient precludes the further advance of that f
ture. This is the reason for the sequential advance of
fracture front as is schematically illustrated in Fig. 2. At ea
‘‘time step,’’ a horizontal slab of material right below th
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fracture front is fractured under the influence of the alrea
fractured material above, and the still unfractured mate
below. We will always assume that the conditions for s
quential fragmentation apply.

From now on we will treat the rock as a collection
particles, elastically joined to their nearest neighbors, in
presence of a constant temperature gradient in the ver
direction. Changes in temperature are interpreted as cha
in the equilibrium distance between particles. Fractures w
be modeled by the saturation of the elastic energy betw
neighbor particles as they are taken apart a distance la
than some prefixed valuedcr(T) ~see Fig. 3!. Note that, in
this way, for any given temperature distribution, and for a
arrangement of particles, we can define a total energyE for
the system without ambiguity.

It is useful to divide the total energyE in two parts,E
5E11E2. TheE1 term, which we call elastic energy, come
from those particles being at a relative distance lower th
dcr . This is an elastic energy since is quadratic in the relat
distance between particles. The second partE2 is the contri-
bution from particles at a relative distance larger thandcr ,
and then it can be associated with broken links~since in this
case force vanishes!, and identified with the fracture energ
Actually, whenever we talk of the existence of a fracture a
given position of the sample, we mean that neighbor p

FIG. 2. Schematic representation of sequential fragmentatio
a two-dimensional geometry. Continuous lines represent the
vancing fractures. At each time step a layer of material of thickn
dz fractures. New fractures appear below those already present
slight modifications in their positions are possible, and, in fa
crucial to the ordering process.

FIG. 3. Schematic energy vs distance curve for neighbor p
ticles in the discrete model of the rock. There is an equilibriu
distance between particles that depends on temperatured0(T). De-
viations from this distance cost an elastic energy that is quadrat
the displacement. If the distance becomes greater than some cr
distancedcr(T) then energy saturates. In this way we model fra
tures, since in this range there is no force between particles.
3-2
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SEQUENTIAL FRAGMENTATION: THE ORIGIN OF . . . PHYSICAL REVIEW E 65 026203
ticles are separated by a distance larger thandcr across that
‘‘fracture.’’

Having defined the degrees of freedom of the system
the total energy, we can think of the system as a pointP in
the configuration space of all particle coordinates. The
quential evolution we have described~Fig. 2! corresponds to
the sequential mechanical relaxation of all particles wit
the slab betweenzi and zi 11, with dz5zi 112zi being the
thickness of the slab being fractured at stepi. This sequential
process corresponds to the movement ofP in the energy
landscape. Assuming that the mechanical relaxation oc
by some kind of ‘‘viscous’’ dynamics, the present descripti
becomes complete and deterministic, and then we can s
in principle, all the~nonlinear! mechanical equations for th
problem, and obtain in all detail the way in which fractur
penetrate the sample. The qualitative features of this
vance, however, can be inferred from general arguments
fact, with the fracture front at a givenz position, we can
calculate the stress field ahead of the fractures, and deter
the directions along which this stress is maximized. Th
are the directions that fractures have the tendency to fol
as they advance. The system releases the maximum am
of energy when fractures advance along these directi
compared to any other. In other words, at each step the
figuration pointP moves following a steepest descende
path in the potential energy landscape. Note that due to
particular conditions of sequential advance, this movemen
‘‘quasistatic,’’ in the sense that it does not involve the ru
away of fractures ahead the fracture front.

The kind of argument we are using is equivalent to tho
used in surface fragmentation to justify the fact that n
fractures meet older ones at right angles@2#. This is a con-
sequence of the tendency of fractures to advance perpen
larly to the direction of maximum stress, and is equivalen
say that the configuration pointP moves down in energy
following the steepest descendent path. We are just sa
that for sequential fragmentation the advance ofall fractures
is governed by this kind of principle. Then, our minimu
principle, central to all this work, states that under sequen
fragmentation conditions the advance of the fracture fr
occurs with a tendency to reduce as much as possible
total energy of the system. Note that during this order
process, the existence of small inhomogeneities in the m
rial plays no significant role, as energy will be mostly depe
dent only on the geometrical configuration of fractures.

Our principle then justifies qualitatively the observed te
dency to produce polygonal arrangements. It is importan
note that the system finds the most convenient pattern
modifying the one at the surface~which usually is quite dis-
ordered! through small steps as fractures penetrate
sample. In Secs. II A and II B we present results that confi
the validity of our interpretation.

A. A stress calculation

First of all we want to show that standard stresses ca
lations are consistent with the minimum principle. We ha
calculated the stress field surrounding a system of unev
spaced fractures in two dimensions. More specifically,
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want to calculate the stress field for a set of fractures
depicted in the inset of Fig. 4, namely, there are pairs
fractures separated by a distanced1, and the pairs themselve
are separated by some other distanced2.

We start with lattice points joined by springs to form
triangular lattice, then modeling a homogeneous and iso
pic material with Poisson ratio@15# equal to 1/3. We simulate
a piece of sizel x3 l z in the x andz directions, respectively
taking periodic boundary conditions in thex direction and
open boundary conditions in thez direction. The springs
have a rest lengthd0 that depends on its vertical coordinatez
according to

d0~z!5d00S 12b
z

l z
D . ~1!

In this way we model a constant temperature gradient in
z direction ~in the simulations we will useb50.01!. The
periodic boundary conditions in thex direction are taken in
such a way that the particles atz50 are nominally at zero
strain, whereas all planes on top of that are strained w
respect to the preferred distanced0. The two fractures are
introduced in the system by eliminating all springs that
across the fractures.

We have solved numerically the problem, by relaxi
~with a viscous dynamics! the coordinates of the particles i
order to obtain the equilibrium configuration. Then the stre
tensor@15# was calculated and diagonalized at each positi
In Fig. 4 we show the results. At each point, the tangen
the line shown in that figure is the direction perpendicular
the eigenvector corresponding to the maximum eigenvalu
the stress tensor, and then it is the direction that fractures
tend to follow as they advance. Starting at the tips of
fractures, we see that these directions go away from e
other, as indicated by the arrows. This indicates that, if
quential fragmentation occurs, the close fractures will a
vance with a tendency to separate from each other, and e

FIG. 4. Stresses ahead of an uneven set of fractures as dep
in the inset. In the main figure we plot the stress field in the nei
borhood of a couple of close fractures~see text for details!. Direc-
tions of maximum stress at the tips of the fractures are indicated
the arrows. The simulated box is marked in gray in the inset. P
odic boundary conditions are used alongx, and free boundary con
ditions alongz. The dotted box in the inset is the region plotted
the main figure. We have usedd2 /d154.
3-3
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E. A. JAGLA AND A. G. ROJO PHYSICAL REVIEW E65 026203
tually to produce a set of evenly spaced fractures. In f
only when the evenly spaced configuration is reached,
maximum stress direction will coincide with the vertical d
rection, and from here the pattern is not modified. This st
dard calculation coincides qualitatively with that expect
from the minimum principle, since a set of evenly spac
fractures is the configuration that releases the maxim
amount of energy~this is the equivalent of the honeycom
lattice in three dimensions@16#!. Then we see that the con
clusions from our minimum principle do not contradict tho
obtained from more standard analysis. The advantage, h
ever, is that the minimum principle is much easier to imp
ment in cases where a calculation of stresses is not feas

B. Atomistic simulations of ordering

The second result presented to validate the minimum p
ciple is an atomistic numerical simulation in thre
dimensional systems. We implement sequential fragme
tion in the following way. We use a generalization of th
procedure extensively used to study surface fragmenta
@12#. In that case a layer of material shrinks while it is a
tached to a fixed underlying layer. We take a hexagonal pl
of particles, with particles attached to their neighbors by g
eralized springs~with an energy-displacement relation as th
of Fig. 3! of spring constantK and initial natural lengthd0.
Their positions are the dynamical variables. They are
tached to an underlying hexagonal plane of particles~which
are kept fixed to their original positions during the simu
tions! by vertical springs of constantk. The vertical springs
do not break. Simulation proceeds by reducing the equi
rium distance of the horizontal springs of the layer be
simulated. The first fracture appears when the equilibri
distance between two particles becomes grater than the
responding critical distancedcr of the spring that joins them

For our simulations of sequential fragmentation, the o
difference is that we consider also the simulated plane to
joined to an upper plane of fixed particles by spring of co
stantk, and that we simulate the fracturing of the system a
sequence of independent two-dimensional fragmenta
processes. In the simulation of the successive layers the
sition of particles in the upper plane are taken equal to
final positions of the simulation of the previous layer. In t
simulation of the first layer, we do not have an upper pla
However, to avoid introducing disorder into the system~and
in order to break the homogeneity that would occur for
absolutely perfect system! we take an upper plane consistin
of particles located at the hexagonal lattice and some ran
displacement, independent for each particle. We took
displacement to be 0.5 of the lattice parameter. We wan
mention that other simulations in which disorder was
cluded, and the first layer was simulated without any up
plane producing qualitatively the same results. The equi
rium distance between particlesd0 within the layer being
simulated is quasistatically reduced from some initial va
d00 to pd00. We usep50.89. In the energy of the horizonta
springs ~Fig. 3! we use dcr5d010.1d00. We also take
K/k5100.

In Fig. 5 we see the final pattern of fractures for progr
sively deeper layersn, for a system of 1600 particles. As w
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see, the fracture pattern that appears is highly disordered
the first few planes, with many fractures ending in the mid
of the sample. When we go inside the material, there i
clear tendency to order, forming a polygonal pattern remin
cent of the experimental observations in basalts. Although
Fig. 5 some influence of the hexagonal structure chosen
the underlying lattice is observable, we have verified that
same qualitative process of ordering is found also for ot
underlying geometries, namely square. We have also loo
at the final energy the pattern gets after fracturing, and
quantity is plotted in Fig. 6 as a function ofn. As we see, this
quantity has a tendency to be minimized as successive la
are fragmented, which is the right tendency predicted by
arguments. Moreover, in Fig. 6 we also plot the energy
pected for a perfect hexagonal pattern, with the size of
hexagons chosen precisely in order to minimize the ene
We see that the solution that was found by the system

FIG. 5. Final patterns of fractures for progressively deeper l
ers n in a sequential fragmentation process for layers with 16
particles. For clarity reasons, in the plots the system has been
plicated both in the horizontal and vertical directions~periodic
boundary conditions are used!. In the plots, each thick fracture i
formed by small lines mostly perpendicular to the fracture that jo
the ends of springs that have failed after a contraction up to 0.8
the original distance between lattice points.

FIG. 6. Energy per particle of the pattern obtained in the sim
lations shown in the preceding figure, as a function of the la
index. The ideal minimum of a size-optimized honeycomb lattice
also shown. Energy is given in units of 1023Kd00

2 .
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SEQUENTIAL FRAGMENTATION: THE ORIGIN OF . . . PHYSICAL REVIEW E 65 026203
not the perfect one, but very close in energy to that one. T
is a further confirmation that the tendency to minimize t
final energy is in fact the driving force for the formation
the polygonal pattern.

III. PHENOMENOLOGICAL CALCULATION

Having identified the reason why a superficially diso
dered pattern shows a tendency to order as it penetrate
material does not exhaust the interesting features of the p
lem. Here we will address the observation that patterns
usually seen to be polygonal, but not perfectly hexagona
it would be preferred by purely energetic reasons. We w
show that this is a consequence of the minimization proc
since the system is usually not able to reach the abso
minimum of the energy potential, but gets trapped in a re
tive minimum. Since the problem becomes computationa
too costly to be tackled by the methods of the preced
section, we look for a phenomenological approach. We w
need to calculate in some approximate manner the energ
the system as fractures advance, in order to search for
fracture patterns that tend to minimize the energy.

A realistic calculation is rather complicated and it will b
presented elsewhere. Here we will restrict to an heuri
analysis that, however, is able to show many of the kno
physical properties of fracture patterns.

Let us suppose that fractures divide the system in sec
of well defined areasAi . We are interested in the elast
energyE1 of the system after a vertical advancedz of the
fractures. To lowest order this energy must be a function
the Ai , of the elastic constants, and of the precise ther
state of the material. We will use the following expressio

E15E01g(
i

Ai
ndz, ~2!

whereg.0 andn.1 are constants, and we have collect
within E0 all possible terms that do not depend onAi . Three
main facts have been used in constructing expression~2!.
First, the energy is an independent sum over different c
umns of terms that depend onAi . This is the lowest order
contribution we expect, in which we disregard contributio
proportional to the particular form of the columns, and int
action terms between neighbor columns. Second, the
energyE1 increases ifAi increases~i.e., g.0!. This is the
right tendency, since the final elastic energy becomes lo
if new fractures are introduced in the system, and this
plies a reduction of the typicalAi . Third, the exponentn
must be greater than 1. This condition implies the tende
of the system to make the distribution ofAi as uniform as
possible in order to reduceE1. With illustrative purposes, in
the rest of this paper we will usen52. We have repeated th
simulations withn in the 1.5–2.5 range with no significan
change. The precise properties of the material and the t
mal state of the system are contained in the value ofg.

Expression~2! for the final elastic energy has to be add
with the change in the fracture energyE2 during the vertical
advance. This is simply given in terms of the energy nee
to create the new fractures as
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dE25hLdz, ~3!

whereh is the fracture energy per unit area, andL is the total
length of fractures perpendicular to the propagation dir
tion. Collecting the elastic~2! and fracture~3! energy terms,
we can rephrase the minimum principle in the followin
form. Upon fracture advance, the energy functional

E5g(
i

Ai
21hL ~4!

tends to be minimized. The absolute minimum of Eq.~4! is
attained by a perfect pattern of hexagons of side

l min5~2h/9g!1/3. ~5!

Now, we will use functional~4! to evolve irregular pat-
terns ~representing superficial fractures! up to the point in
which they stabilize, and then compare their statistical pr
erties with real ones. Since we are not able to manag
completely general case, we chose a simple possibility
turns out to produce quite interesting results. We generate
pattern at the surface by a process of nucleation of lin
fractures: from randomly chosen points within the plane
propagated two opposite, straight fractures. The process
repeated many times, with new fractures stopping as soo
they reached an older fracture. In Fig. 7~a! we show a typical
pattern generated by this process@18#. We simulate the modi-

FIG. 7. Numerically evolved patterns of fractures. We see
original pattern~a!, the final~stable! one ~c!, and one intermediate
configuration~b!. To avoid spurious edge effects, only the cent
region of a simulation performed on a larger sample is shown.
numerical algorithm is described in the text. Below the final patt
~c!, the side of hexagonsl min in the expected ideal honeycom
lattice is indicated. In~d! we see the kinds of processes that allo
for a change in the number of sides of adjacent polygons.
3-5
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E. A. JAGLA AND A. G. ROJO PHYSICAL REVIEW E65 026203
fication of the pattern with an algorithm that makes sm
changes to the positions of the nodes at which fractures j
Each step in the modification of the pattern correspond
the fracture pattern developing into the rock. The new po
tion for a node was accepted if the new value of the ene
as given by Eq.~4!, was lower than the previous value.
addition, at each step of the simulation the configuration w
checked for the existence of very close nodes that can a
a change in the topology of the pattern according to
sketch of Fig. 7~d!. Again, the changes were accepted only
they reduce the value ofE. These processes are importa
since they change the number of sides of the polygons
allow for a progress towards more stable patterns.

An intermediate pattern in the evolution process is sho
in Fig. 7~b!, and the final one~after which all proposed
changes of the positions of the nodes increase the energ! is
shown in Fig. 7~c!. Since ‘‘time’’ on our simulations corre-
sponds to ‘‘depth’’ in the rock, the ordering of our patter
represents the progressive order of the real lava fract
deeper into the rock@19#. The final pattern of Fig. 7~c! is not
perfectly hexagonal, and thus it is only a relative minimu
of Eq. ~4!. There is one single effective parameter in t
simulation, that can be taken to be the side of the per
hexagonal pattern of minimum energyl min . For our simula-
tions this value, as given by Eq.~5!, is indicated in Fig. 7.
The qualitative similarity of the final pattern with that of th
Giant’s Causeway shown in Fig. 1, is apparent. This poly
nal pattern is now exposed at the surface of the rock,
there is evidence that this is not the original surface. In F
8 we show two quantities that are a measure of the statis
similarity between our patterns and the real ones. In Fig. 8~a!
we see the results for the frequency of the appearanc
polygons with a given number of sides~in this case we also
include the results on cornstarch by Mu¨ller @3#!, and in Fig.
8~b! the corresponding values for the mean area of polyg
with a given number of sides, both in our simulations and
the real patterns. The configurations generated by our m
are remarkably realistic. We see that, both in real cases
in our simulations, the fractures never reach a perfect h
agonal pattern. Instead, a reproducible distribution of po
gons, most of them with five, six, and seven sides is
tained, with a minor contribution of polygons with four an
eight sides. Also, polygons with higher number of sides h
larger area as Fig. 8~b! shows.

IV. SUMMARY AND PERSPECTIVES

In this paper we have given a first approach to a con
tent model for the existence of columnar polygonal patte
in lava flows and some dessicating materials. We have sh
in numerical simulations on a discrete model that fractu
appear as irregular cracks at the free surface of the mat
and become ordered as they penetrate into the interior.
have argued that this effect is a consequence of a tenden
minimize an energy functional. The process of minimizati
follows a rough landscape, and is always towards a lo
minimun. This process is, therefore, monotonically decre
ing with the thermal fluctuations playing no role. Relying o
this principle, we showed that the statistical properties
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experimental polygonal patterns can be reproduced.
There are still some problems that deserve further con

eration, and we plan to discuss them in a forthcoming p
lication. They have to do mainly with the realistic condition
of cooling. As discussed in Sec. II, it is precisely the decre
ing of the temperature gradient ahead of the fractures
makes possible the sequential advance of the fracture fr
in a coordinated way all across the sample. The deta
study of this problem provides predictions for the width
chisel marks on the columns.

We also have to determine in a realistic situation the va
of the constantg andn in expression~2!. This will allow us
to calculate, in particular, the typical sizes of the polygons
basalts and starches. Under realistic cooling conditions
also have to face the problem that temperature changes
time, and the effect of this on the advance of the fract
front has to be discussed.
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FIG. 8. ~a! Histogram for the relative frequency~normalized to
one! of appearance of polygons with different number of sides
the Giant’s Causeway, columns in cornstarch@3#, and from our
simulations@an average over ten final configurations as that of F
7~c! is shown#. ~b! Areas of the polygons normalized to the avera
area for polygons with different number of sides~data on cornstarch
are not available!.
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