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Interface depinning versus absorbing-state phase transitions
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According to recent numerical results from lattice models, the critical exponents of systems with many
absorbing states and order parameter coupled to a nondiffusive conserved field coincide with those of the linear
interface depinning model within computational accuracy. In this paper the connection between absorbing-state
phase transitions and interface pinning in quenched disordered media is investigated. For that, we present an
heuristic mapping of the interface dynamics in a disordered medium into a Langevin equation for the active-
site density and show that a Reggeon-field-theory-like description, in which the order parameter appears
coupled to an additional nondiffusive conserved field, emerges rather naturally. Reciprocally, we construct a
mapping from a discrete model belonging in the absorbing state with a conserved-field class to a discrete
interface equation, and show how a quenched disorder, typical of the interface representation is originated. We
discuss the character of the possible noise terms in both representations, and overview the critical exponent
relations. Evidence is provided that, at least for dimensions larger that one, both universality classes are just
two different representations of the same underlying physics.
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I. INTRODUCTION

Phase transitions separating a nontrivial from a froz
phase, in which the dynamics is completely arrested, ap
in a large variety of situations in physics, as well as in ma
other disciplines@1–3#. A central problem from a theoretica
viewpoint is to understand how the symmetries and con
vation laws of the dynamics are reflected in the categor
tion of models into universality classes. There are two m
general contexts in which this type of frozen states appe

~i! Lattice models with discrete particles; typically pa
ticles originate ‘‘activity’’ and the frozen state without activ
ity is referred to as ‘‘absorbing state’’@1–3#. This group ap-
pears in various disguises as cellular automata@4#, reaction-
diffusion systems@1,3#, directed-percolation-type models@3#,
or the fixed energy ensemble of sandpile cellular autom
@5#, among many other examples.

~ii ! Elastic interfaces in random environments. In th
group, the dynamics is frozen whenever the interface
pinnedby the quenched disorder, while the nontrivial pha
is the moving or depinned one@6,7#.

The number of physical realizations of both of these t
generic families of phase transitions is huge@1–3,6,7#.

The most prototypical universality class in the first gro
is that embracing, among many other models and syste
directed percolation~DP! @1–4#. At a continuous level the
DP class is represented by the Reggeon field theory~RFT!
@8#, which can be written in terms of the following Langev
equation:

] tr~x,t !5ar2br21¹2r1sArh~x,t !, ~1!

wherer is an activity field,a, b, ands are constants andh is
a d-correlated Gaussian white noise. The RFT is the minim
field theory capturing the relevant ingredients of the DP u
versality class. It can be renormalized using standard fi
theoretical methods and the associated critical exponents
1063-651X/2002/65~2!/026145~8!/$20.00 65 0261
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be computed ine expansion@8#. Other universality classes o
absorbing-state phase transitions have been identified; a
them owe their existence to the presence of some additi
symmetry or conservation law with respect to the broad
class. Among them some example are the conserved p
class, in which there are twoZ2-symmetric equivalent ab
sorbing states@9,3#, dynamical percolation@10#, and the dif-
ferent classes of transitions with extra conservation la
@11–13#.

In the group of pinned interfaces, the simplest continuo
model for depinning is the quenched Edwards-Wilkins
equation, also called, ‘‘linear interface model’’~LIM ! @6,7#,

] th~x,t !5n¹2h~x,t !1F1h„x,h~x,t !…, ~2!

which describes an elastic interface~the Laplacian! at the
reference heighth(x,t), with surface tensionn, under the
influence of a constant external driving termF, and a
quenched noiseh„x,h(x,t)…. Equation~2! exhibits adepin-
ning transitionat a critical forceFc ; the interface configu-
ration and dynamics develop critical correlations in the
cinity of the critical point. The standard approach for
theoretical analysis of the LIM is the functional renormaliz
tion group method. One-loop expressions for the minimal
of exponents have been computed by Nattermannet al. @14#
on one hand, and by Narayan and Fisher@15# ~see also the
more recent work by Le Doussal and collaborators@16#!.
Here one enters technically and conceptually difficult terr
due to the renormalization of the whole disorder correla
The outcome is that for noise fieldsh, which do not exhibit
extra translational symmetries, the expected depinning
havior follows, very generally, that resulting from a random
field uncorrelated noise term: the LIM universality cla
@14,15,17,18#. Other universality classes in the interfaces-
random-media realm are the quenched Kardar-Parisi-Zh
~KPZ! equation@6,7,19# and the Edwards-Wilkinson equa
tion with columnar noise@7,20#.
©2002 The American Physical Society45-1
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TABLE I. Critical exponents for steady-state experiments ind52 andd53. Models: CTTP, conserved
threshold transfer process; CRD, conserved reaction-diffusion model; Manna, Abelian Manna sandpile
linear interface model. See the Appendix for exponent definitions.

b n' b/n' z

Steady-state exponentsd52
CTTP 0.64~1! 0.82~3! 0.78~3! 1.55~5!

CRD 0.65~1! 0.83~3! 0.78~2! 1.55~5!

Manna 0.64~1! 0.82~3! 0.78~2! 1.57~4!

LIM 0.64~2! 0.80~1! 0.80~3! 1.56~6!

Steady-state exponentsd53
CRD 0.86~2! 0.63~5! 1.39~4! 1.80~5!

Manna 0.84~2! 0.60~3! 1.40~2! 1.80~5!

LIM 0.84~2! 0.606~4! 1.38~2! 1.75~15!
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Recent investigations~motivated by the analysis of sand
pile models@21,22#, the archetype of systems exhibiting se
organized criticality~SOC! @23#! have demonstrated that di
ferent models showing a continuous transition into
absorbing phase and with an order parameter coupled
early to an extra, nondiffusive conserved field~NDCF! be-
long to a unique universality class@13,24,25# that we will
refer to as NDCF class. This class differs from the extrem
robust DP class owing to the presence of an additional c
servation law@12#. Moreover, the critical exponents of th
class seem, within numerical accuracy, equal to those of
LIM class @5,13,24,25#. In Table I we present a compariso
of numerical results obtained for:~1! two different models
with a nondiffusive conserved field and many absorb
states, namely the conserved threshold transfer pro
~CTTR! @13,24#, and a conserved reaction-diffusion mod
~CRD! @13,24#, ~2! the fixed energy version of the Mann
sandpile model and,~3! the LIM model. Observe that all the
reported exponents coincide within numerical accuracy
both d52 andd53. This might be surprising at first sigh
as in CTTP and CRD models there is no quenched disor
as there is in LIM, and quenched disorder is usually a
evant perturbation when it comes to universality issues.

From a different perspective this observation is not
surprising, as different tentatives have been reported in
literature in order to relate the dynamics of sandpiles to t
of elastic manifolds in random media, i.e., to the LIM mod
@26,27#, and also the same sandpiles have been argue
belong to the NDCF class@5,25#. Furthermore, there is an
other viewpoint from which the coincidence between bo
types of models is not so striking, namely, that provided
the ‘‘run-time statistics’’ theory@28#. This theory establishe
that quenched disorder can be mapped rather generically
long-range temporal correlations~i.e., a long-term memory!
in the activity field,~note this relation works also the othe
way around! @30#, and has been recently applied with succe
to the Bak-Sneppen model among others@29#. In the NDCF
class the presence of a conserved field plays the role
long-term memory@5,25# and, therefore, it is not a very bi
surprise that it is equivalent to some sort of quenched di
der.

In this article we discuss in detail the relation between
two presented groups of transitions, i.e., absorbing st
02614
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with a conserved field and pinned interfaces in random m
dia, including annealed~or thermal! noise and quenched dis
order, respectively. We will present heuristic arguments p
viding a theoretical explanation for so different system
sharing the same universal critical behavior. The connec
between absorbing-state models in the DP class~without a
conserved field! and their interface representation has a
been recently considered in the literature@31#. In particular
the RFT was mapped into rather unusual interface equat
not resembling any known interfacial problem.

The paper is structured as follows: We start in Sec. II
presenting the RFT-like Langevin equation for the recen
introduced NDCF class. In Sec. III we present a prototypi
interface model in the LIM class, in particular, the cellul
automaton by Leschhorn@17# ~see also@18#! and work out a
derivation of a Langevin equation for the activity densityr,
paying particular attention to the way by which the noise c
be found. In Sec. IV we proceed conversely: we emplo
discrete mapping of a model with absorbing states in
NDCF class into a continuous interface representation.
end up with an interface equation, with several quench
noise terms that reflect the microscopic rules and the ther
noise applied in them. We discuss at this point the no
correlations that arise and their relevance, with the aid of
renormalization group~RG! literature. Finally, we present a
discussion and an Appendix in which we outline the relatio
between the exponents in the two different pictures.

II. THE NDCF FIELD THEORY

One particular system in the NDCF class~out of the many
studied@13,24#! is a two-species reaction-diffusion model,
which one of the species is immobile@11# ~see Sec. IV for a
detailed definition!. It has the great advantage of allowing fo
a rigorous derivation of a coarse-grained field theory~or,
equivalently, a Langevin equation! via a Fock space repre
sentation of the dynamics@11,24,32#. The result is in the
form of a Reggeon field theory coupled to an extra conser
nondiffusive field, or what is equivalent, a RFT equati
with an extra non-Markovian term@5,24,25#. Quite remark-
ably this Langevin equation coincides~up to irrelevant
terms! with the one proposed previously, based only on sy
metry and relevancy arguments, as the minimal Lange
5-2
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INTERFACE DEPINNING VERSUS ABSORBING-STATE . . . PHYSICAL REVIEW E 65 026145
equation capturing the physics of NDCF, namely@5,24#,

]r~x,t !

]t
5ar~x!2br~x!21¹2r~x,t !2mc~x,t !r~x,t !

1sAr~x,t !h~x,t !,

]c~x,t !

]t
5D¹2r~x,t !, ~3!

plus higher-order terms, irrelevant from naive power cou
ing analysis@33#. Note that the second equation, describi
the evolution of the background conserved field~coarse-
grained representation of the total number of particles, wh
is conserved in the microscopic model!, represents an stati
nondiffusive field: in the absence of activity its dynamics
frozen. Observe also that the second equation, being lin
can be integrated out, and a closed equation for the act
written down. More concretely,

c~x,t !5c~x,0!1DE
0

t

dt8¹2r~x,t8!. ~4!

The first contribution in Eq.~4!, a quenched~columnar! dis-
order, represents the initial condition, while the second i
non-Markovian term. The Langevin equation~3!, even
though it looks rather similar to the RFT, has resisted
renormalization attempts; therefore, predictions about crit
exponents coming from an epsilon expansion calculation
not available so far. This might be an indication that so
type of functional renormalization group calculation is re
quired, as is the case for the LIM equation, but this iss
needs certainly further insights to be clarified.

III. PHENOMENOLOGICAL ACTIVITY DESCRIPTION
OF LIM MODELS

We consider a representative of the LIM class, nam
the Leschhorn-Tang~LT! cellular automation@17#. In order
to study its relation with standard systems with absorb
states, we intend to cast it into a Langevin equation desc
ing the evolution of a coarse-grained activity field@2#.

The LT automation is defined as follows. The interfa
field h(x) satisfies at each discrete time stept i the following
equation:

h~x,t i 11!5H h~x,t i !11, f ~x,t i !.0

h~x,t i !, f ~x,t i !<0,
~5!

where the forcef is given by the combination of elasticit
and a random quenched pinning force as

f ~x,t i !5¹2h~x,t i !1h~x,h!. ~6!

¹2h(x) is the discrete Laplacian, i.e.,(NNh~NN!22Dh(x)
and NN denotes the nearest neighbors on a hypercubic
tice. A reasonable choice for the noise is

h~x,h!5H 11, p

21, 12p
~7!
02614
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when p is a random number uniformly distributed betwe
zero and unity. This choice implies that the average driv
force isF5^ f &52p21. F plays the role of a control param
eter. The critical point is estimated to be atpc;0.800@17#.

Now, at every time step, and at each site where the t
driving force exceeds its threshold value, i.e., at ea
interface-site advance, we define an activity variable and
it equal to one. On the other hand, in the remaining latt
sites the corresponding activity takes a zero value. Additi
ally, we also define at each site and time, a continu
‘‘background’’ variable, equal to¹2h(x,t)1F. This controls
the probability of each interface site to advance at each ti
regardless of whether it actually slips or not. Let us emp
size that this background variable is a conserved magnitu
i.e., it takes a constant value, equal toF, when integrated
~summed! over the whole lattice. However, locally, it favor
or inhibits the generation of new activity. We now build up
couple of equations for the evolution of the two fields: t
activity, r(x,t), and the background field,c(x,t), which are
the coarse-grained field analogous of the previously defi
site variables. Using the identification between activity a
ready-to-advance sites:h(x,t)5*0

t dt8r(x,t8)1h(x,0). Let
us write down a couple ofmean-fieldequations for the two
defined fields:

]r~x,t !

]t
52r~x,t !1r~x,t !G@c~x,t !#¹2r~x,t !, ~8!

c~x,t ![¹2h~x,t !1F5E
0

t

dt¹2r~x,t !1¹2h~x,0!1F,

~9!

whereG is an unknown functional of the background fiel
The justification of the different terms is as follows:

~i! The term—r(x,t) describes the decay of active site
that after the corresponding interface advance become
general, nonactive. At a coarse-grained level higher-or
corrections, as2br2(x,t) may also appear. In particula
they might play an important role in order to prevent t
activity from growing unboundedly, i.e., in stabilizing th
theory.

~ii ! 1r(x,t)G@c(x,t)# represents the fact that activity i
created in regions where some activity is already present,
the rate of creation at each point is a function of the lo
background field,c(x,t). Observe that the total contributio
of this term when integrated over the whole space has to
zero, but locally it fosters or inhibits the creation of furth
activity. Again, higher-order powers ofr(x,t) might also be
included.

~iii ! ¹2r(x,t) describes the diffusion of activity. This
terms appears generically for diffusive systems at a coa
grained scale.

~iv! In what respects thec(x,t) field, Eq. ~9!, we have
just written its definition by equatingh(x,t) to the number of
‘‘topplings’’ ~or activity events! at that point in all the pre-
ceding history, plus its initial value.

ExpandingG@c(x,t)# in power series, and keeping onl
the leading contribution, we are left with a term
1lr(x,t)c(x,t) ~wherel is a constant! on the right-hand
side of Eq.~8! ~observe that the constant term in the Tay
5-3
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expansion has to be zero as its integral has to be conse
as argued before!. A posteriori, we shall show that the omit
ted terms, as well as higher-order corrections to the Lap
ian term, are irrelevant in what respects large sc
asymptotic, properties.

In order to account for the system fluctuations~com-
pletely ignored so far! we now introduce a noise field con
tribution to Eq.~8!. For that, as it is well known in theoret
ical field descriptions of systems with absorbing states@2,3#,
a RFT noise term:sAr(x,t)h(x,t) is needed, wheres is a
constant andh a Gaussian white noise. This just reflects t
fact that, asr is a local coarse-grained variable its loc
fluctuations are proportional to its square root~see@1–3# and
references therein!. It also captures the physical key ingred
ent: wherever activity vanishes locally, fluctuations are c
celed@2#.

Before proceeding further, let us now discuss why
quenched disorder of the microscopic model can be re
sented by an annealed noise in the derivation shown be
The key point is the observation that in active regions, i
where the interface advances, a new noise variable is
lected at every time step and, as the interface does not re
to already passed regions, there is no need to store the
croscopic noise history, and the noise can be freshly
tracted from its probability distribution after every interfa
advance. In this way, it becomes rather obvious that in
pinned ~active! regions, quenched and annealed noises
fully equivalent at the microscopic level. Upon coarse gra
ing, the noise can be expected to acquire a RFT-like cha
ter as the correlations in the integrated activity, or numbe
simultaneously active sites vanish on large enough sca
More subtle is the connection between the two types
noises with respect to pinned~absorbing! regions. While the
annealed noise,h changes in time even if there is no activi
in a given region, its variations are completely irrelevant
the noise amplitude appears multiplied byAr50. Noise~in-
cluding its activity dependent amplitude! at a given spatial
point changes only whenever activity arrives to it, mimicki
perfectly what happens in the microscopic interface mod
where regions pinned under the influence of an unfavora
quenched noise can be depinned only under the presen
neighboring moving regions. Therefore, the considered tim
dependent noise, reproduces properly~at least qualitatively!
all the properties of the original quenched disorder.

The previous considerations lead finally to the followi
Langevin equation for the activity field:

]r~x,t !

]t
5@211lF1l¹2h~x,0!#r~x,t !1¹2r~x,t !

1lr~x,t !E
0

t

dt8¹2r~x,t8!1sAr~x,t !h~x,t !,

~10!

where we have substitutedc by its expression coming from
Eq. ~9!. In general, the system is expected to lose memor
the initial state for long enough times, therefore, the dep
dence on¹2h(x,0) is expected to be washed out. Howev
in some cases, as for instance one-dimensional~1D! systems,
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due to the meager phase space, and the slow relaxation o
initial condition, this might not be the case@34#.

Performing a perturbative, diagrammatic study of the p
vious Langevin equation it is easy to see~already at one-loop
level! that a new nonlinearity~vertex!, with the same degree
of relevancy as the nonlinear terms already present in
theory~i.e., the nonlocal-in-time vertex and the noise one! is
perturbatively generated:r2(x,t). In fact, this term could
have been introduced also at a mean-field level, as poin
out before, as a stabilizing term for the activity equation.

Including all the discussed terms into the equation forr,
and integrating the equation forc, we finally obtain

]r~x,t !

]t
52ar~x,t !2br~x,t !21lr~x,t !E

0

t

dt8r~x,t8!

1l¹2h~x,0!1¹2r~x,t !1sAr~x,t !h~x,t !,

~11!

wherea5211Fl andb.0 are constants. At this point, i
is a rather straightforward exercise to verify that no furth
relevant terms are generated when including perturba
~diagrammatic! corrections to the bare theory. Therefore, t
resulting Langevin equation is identical to the one propo
for systems with an infinite number of absorbing states a
an activity field coupled to a static conserved field Eq.~3!
@5,13,24#.

Summing up, we have mapped a microscopic model
longing in the LIM class to the Langevin equation charact
izing the NDCF class. Though our derivation is not rigorou
we believe it provides a strong evidence that in fact LIM a
NDCF define the same universality class.

IV. MAPPING A REACTION-DIFFUSION MODEL
TO DEPINNING

In this section we proceed conversely to the previous o
starting from a microscopic model in the NDCF class w
map it onto the LIM continuous equation, Eq.~2!. To that
end we follow a recipe already applied to many sandp
models exhibiting SOC@27#. Following @24# we consider a
two-species reaction-diffusion process on aLd lattice, with
particles of typesA and B involved. At each sitei, and at
each~discrete! time step the following reactions take place

Bi→BNN , r d[1, ~12!

Ai1Bi→2Bi , r 1 , ~13!

Bi→Ai , r 2 . ~14!

TheAi , Bi denote particles of each kind at sitei. Ther’s are
the probabilities for the microscopic processes to occur:
fusion r d , activationr 1 , and passivationr 2 . Without loss of
generality we will fix r d51, implying that, after having the
chance to react,B particles diffuse with probability one. Thu
one can define a phase boundary between the active
absorbing phases in terms of ther 1 , r 2 probabilities, with a
phase transition in between. We assign occupation num
nA,i , nB,i to each site. As theA particles are nondiffusive
5-4
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INTERFACE DEPINNING VERSUS ABSORBING-STATE . . . PHYSICAL REVIEW E 65 026145
this system has an infinite amount of absorbing states defi
by nB,i50 for all i, with nA,i arbitrary.

Now we define~analogously to what is done for sandpil
@5,27#! a height fieldH(x,t) which increases by one un
every time a site gives one~or more than one! active, diffus-
ing B particle to one~or more than one! of its neighbors.
When this happens, we say, using the sandpile terminol
that the site ‘‘topples.’’ In this way, theH field measures the
integrated activity atx up to timet.

The mapping to an interface automaton with quench
noise is based on the fact that both, the reactions betwee
A and B species, and the diffusion of particles can be
counted for by looking at their net effects at every timeB
particles leave the sitex. One just has to look atnA andnB
when the site becomes active and a particle diffuses out.
dynamics ofH can be written as

H~x,t11!5H H~x,t !11, f ~x,H !.0

H~x,t !, f ~x,H !<0,
~15!

which is formally identical to the Leschhorn automaton
the LIM class, with a local ‘‘force’’ defined as

f ~x,H !5ntot~x,H !2j~x,H !, ~16!

wherentot(x,H)5nA(x,H)1nB(x,H) is the total number of
particles atx, andj is a local random threshold that resu
from the microscopic processes. More concretely, the noij
is defined as follows: Consider the sitex after theHth top-
pling, eithernB(x,H)50 or nB(x,H).0 ~this last can be the
case if and only if particles have arrived from the near
neighbors at the same time step!. In the first case, it will
remain zero until a particle arrives from a nearest neigh
site; then one is free to choose a value forj(x,H) such that
it makes the forcef negative in the time interval betwee
topplingsH and H11. In the second case,nB(x) will fluc-
tuate owing to the microscopic passivation and activat
processes, either going tonB(x)50 or inducing a toppling at
the next time step. The relative probabilities of these t
alternatives, as derived from the microscopic dynamics,
captured in thej(x,H) probability distribution.

Observe thatj depends solely upon the total number
particles after the preceding toppling and the microsco
dynamical rules. In particular, the largerntot the larger the
probability to have manyB particles and the larger the prob
ability to topple. Let us also remark that the immobile gra
nA constitute a ‘‘pinning force’’~the larger their relative
number, the lesser the probability to topple!. The point-wise
noise fieldj(x,H) should have two-point weak correlation
in x since, in particular, it depends on the number of gra
received from the NN’s at the interface locationH(x) which
induces weak site-site correlations. The fact thatnA changes
slowly will make the H part of the noise correlato
^j(x,H)j(x8,H8)& less trivial than a simple delta functio
d(H2H8).

Equation ~15! can be considered as a discrete interfa
equation
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Dt
5u„f ~x,t !…. ~17!

It can be rewritten with the help of two particle fluxes:nx
in

andnx
out, are the number of grains added to or removed fr

a given sitex up to timet, respectively. Let us also defineg
as the average number of particles given to the nearest ne
bors at each toppling event. It is clear that for long enou
timesnx

out'gH(x); relative deviations from this equality be
ing negligible asymptotically. Defining also the avera
value ofnx

in , n̄x
in , as n̄x

in5g/2d(xNN
H(xNN ,t), we can com-

pute a noiset(x,H) as the deviation ofnx
in with respect to its

average value,

t~x,t !5nx
in2

g

2d (
xNN

H~xNN ,t !. ~18!

In other words,t(x,t) counts the relative proportion of par
ticles diffused out from the neighbors that actually arrive
the site under consideration, compared with its aver
value. A site to which particles have toppled in excess w
take a positive value oft, and, therefore, will be more likely
to topple in the following time steps. Notice that the co
struction that yieldst is exact.

Plugging this into Eq.~16!, and using thatntot(x,t)
5ntot(x,0)1nx

in2nx
out, we can write@27#

f 5
g

2d
¹2H1F~x,0!2j~x,H !1t~x,H !, ~19!

whereF(x,0)[ntot(x,t50).
The discretization in Eq.~17! can be understood so tha

the rules result in aneffectiveforce f 8 that is exactly unity
when the interface fieldH advances. ThusDH/Dt[ f 8u( f )
5 f 8u( f 8) @27#. This construction can be achieved by pic
ing j to have exactly the right value in order to make t
force driving the interface equal to unity, if it is larger tha
zero. One arrives finally at the discretized interface equat

DH

Dt
5

g

2d
¹2H1F~x,0!2j~x,H !1t~x,H !. ~20!

Let us stress the presence of three different noise terms
~1! F(x,0) represents the original configuration of tot

number of particle att50, and is, therefore, acolumnar
noise term @20#. It induces an initial transient regime unt
eventually, the dynamics washes out the dependence o
original configuration. In general, columnar disorder is irr
evant in the renormalization group sense as compare
quenched noise; therefore, using relevancy arguments
could be eliminated, at least in high enough dimensio
close or above the critical onedc54. Notice that this state-
ment is equivalent to the LIM symmetry, by which stat
force fieldsF(x,0) ~independent ofH! is completely equiva-
lent to the existence of a nontrivial initial interface profi
H(x,t50). However, in low-dimensional systems, and
particular ind51, due to the meager phase space, relaxa
5-5
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times might be huge, and the time needed to eliminate
dependence on the initial particle distribution divergen
large @34#.

~2! The noise termj(x,H) represents the local threshol
determining whether a site with someB particles topples at a
given time or, alternatively, they are transformed intoA par-
ticles by microscopic processes. It captures the in-site mi
scopic dynamics, and depends essentially onntot , and on the
microscopic probabilities. In a nutshell, it says how many
thentot particles are of typeA after the microscopic dynamic
has operated in the corresponding time step: if allntot are of
type A then j.ntot , and f ,0; conversely, if any of the
particles is of typeB thenj,ntot and f .0. Observe that if
the diffusion probability was smaller than unity, then w
should substitutej(x,H) by a ‘‘thermal noise’’j(x,t), i.e.,j
would change its value after every time step instead
changing only after each toppling: this is due to the fact t
if r d,1 then a sitex including B-type particles could no
topple at timet @j(x,t) below threshold#, and do so at a
future time t8 @j(x,t8) above threshold#. This ‘‘thermal
noise’’ would generate a transition rounding off, but the cr
cal exponents should not be affected by this irrelevant p
turbation @14#. Therefore, we stick to the simplest caser d
51.

~3! The noise termt keeps track of the Brownian motio
of particles; i.e., it takes into account the fact that partic
are not homogeneously distributed among the NN, but on
them is picked up randomly for each toppling event.
changes slowly since the effect of the random choices~direc-
tions! on the configuration is slow. This is in particular tru
since the noiset is conserving, as the number of particles
conserved@and as can be seen by integrating Eq.~18!#. A key
point is that, analogously to what discussed in the preced
section, the choice to give a particle to a certain neighbor
be taken to be ‘‘quenched,’’ i.e., chosen in advance att50,
or ‘‘annealed,’’ i.e., decided on the spot. The correlator ot
can be generically written as

^t~x8,H8!t~x,H !&; f i~x82x! f'~H82H !. ~21!

The ~so far unknown! correlatorsf i and f' reflect the dis-
crete nature of the choices in the dynamics. Two microsco
reasons lead immediately to nontrivial correlations int:

~a! The noisest at the NN’s of sitex are correlated due to
an exclusion effect: If a site gives out a diffusingB particle
to a neighbor, then all the other neighbors are excluded.
actual coarse-grained noise correlations are harder to as
since the fluctuations in the particle flux thatt measures
make the interface to fluctuate, and thus a separable n
correlator as Eq.~21! is hard to compute. The easiest way
analyze the correlations among the different sites is, th
fore, to compute the noise correlator from numerics of
microscopic model, using the noise definition Eq.~18!. This
program has been pursued for sandpiles@27#.

~b! At each site the noise follows the dynamics of a ra
dom walker. In fact, every time a nearest neighbor topp
the choice~give the particle tox or to a different site! makes
it so that f';(H82H)1/2 since at every stept can go ‘‘up’’
or ‘‘down’’ with respect to the average.
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Therefore, reciprocally to what was done in the preced
section, we have mapped the reaction-diffusion process
an interface equation. The dynamics of this interface eq
tion follows exactly the history of a reaction diffusion pro
cess, the details of which are mapped into the quenc
noisesj andt, and a columnar noiseF(x,0). Let us remark
that the existence of a conservation law has played a key
in order to obtain a Laplacian in Eq.~20!.

Finally, using standard renormalization group argume
about the relevancy of different operators, we can elimin
higher-order irrelevant terms and noise correlations, and t
we are left with the LIM equation for point disorder@14,16#
~see also the Appendix!.

It must be emphasized, that the mapping works in b
ways, it is evident that the noise construction can be inver
to yield a reaction diffusion process, that corresponds to
interface model, assuming that the original noise terms h
the right correlation and conservation properties. The in
face model Eq.~20! resembles very much the one that co
responds to the Manna sandpile automaton, with the addi
of thej-noise term that is more point disorder like than thet
term.

Summing up, reciprocally to what was done in the p
ceding section, in this one, we have constructed a mapp
between a microscopic model in th NDCF class into t
Langevin equation for the LIM class.

V. DISCUSSION

We have presented strong heuristic evidence that, ra
generically, the universality class of systems with many
sorbing states and order parameter coupled to a nondiffu
conserved field, the NDCF class, and that of the linear in
face model with point-disorder coincide. This fact, alrea
pointed out from numerical simulations@5,13,24# is true at
least nearby the critical dimensiondc54, where relevancy
arguments are reliable. In low-dimensional systems (d51)
this equivalence could break down owing to the existen
for example, of slow decaying initial conditions@34#. For the
frozen configurations in the point-disorder LIM it is know
that the correlations of the forcesh(x,H) acting on the in-
terface vanish. In the case of NDCF models, like the Man
sandpile, such correlations~now computed from the particle
configuration in frozen configurations! may become nonzero
this is a future avenue for numerical studies, but hopefu
this would be a irrelevant feature.

Likewise, if one considers a noise field for the LIM@Eq.
~7!# with nontrivial ~power law! bare correlations inx or H, it
is unclear at this point how these should be reflected in
construction of a Langevin equation for the correspond
activity field, like Eq. ~10!. Correlations in the local forces
~or ‘‘activity thresholds’’! will affect the way the coarse
graining works. For instance, due to the noise structure
pinned and still-active regions will be correlated.

In order to establish the connection between the t
classes we have mapped a discrete interface model into
Langevin equation characteristic of the NDCF class, a
conversely mapped a discrete model in the NDCF into
well-known Langevin equation describing the LIM class.
5-6
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order to have a more rigorous proof, one should be abl
map one Langevin equation into the other, but this, being
Langevin equations coarse-grained representations of the
croscopic models, is not an easy task to fulfill, and rema
an open challenge.

Let us remark that a similar problem remains also op
namely, the rigorous connection between the quenched K
@6,19# depinning transition and directed percolation dep
ning @7,36# in two-dimensional systems,~and to directed sur-
faces in higher dimensions@37#!. It is clear from numerics,
that indeed these two universality classes coincide, but a
isfactory proof of this fact is, to the best of our knowledg
still lacking.

It was the hope, that the possibility of renormalizing t
NDCF Langevin equation using standard RG techniques
problem from the RFT-like equation approach, could sh
some light on the~in principle, technically more difficult and
obscure! functional renormalization group analysis requir
for the interface equation with quenched noise. However,
difficulties encountered in renormalizing, using standard p
turbative schemes, the Langevin equation for NDCF@24,25#
are considerable; and have made all the attempts to re
malize the theory to fall through. It is rather likely that th
failure of standard RG attempts implies that a functional R
scheme is needed in order to properly renormalize the the
analogously to what happens for the LIM equation. Ren
malizing the NDCF Langevin equation and relating the d
rived critical exponents to those obtained using functio
RG for LIM remains an open and very challenging proble

Finally let us also point out that all the discussions p
sented in this work deal with the ‘‘constant force’’~in the
interface language! or ‘‘fixed energy’’ ~in the absorbing-state
terminology! ensemble. They can be easily extended to
‘‘constant force’’ or ‘‘slow driving’’ ensemble@5,27#, in
which the system self-organizes into its critical state. T
point is, however, not essential since all evidence points
the fact that if two models belong to the the universal
class, they continue to share the same set of critical ex
nents upon changing ensemble.
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APPENDIX

The scaling of the phase transition in the absorbing-s
representation is characterized by the exponentsn' , n i , z,
andb. These describe the correlations in the activityr in the
spatial and time directions, the development of the corre
tions in time, and the behavior ofr above the critical point,
respectively. One has the scaling relation

r̄~D,L !5L2b/n'R~L1/n'D!, ~A1!

where D is the distance to the critical point, andR is a
scaling function with R(x);xb for large x. For L@j
;Dn' we expectra;Db ~herej is the correlation length!.
When D50 we have thatra(0,L);L2b/n'. For D.0, by
contrast,ra approaches a stationary value, while forD,0 it
falls off asL2d. These can be used to establish the numer
values of the exponents.

In the interface representation the relevant exponents
n, z as above, with the convention thatn[n i . Usually it is
assumed that the dynamics is self-affine, which implies t
n'5xn i @6,7#. This defines the roughness exponentx that
characterizes the spatial correlations of the interface
‘‘simple scaling’’ @35,7# holds, then one has a unique roug
ness exponent and we can write for the interface widthw

W2~ t,L !;H t2bw t!tx

L2a, t@tx
, ~A2!

using also the early-time exponentbw . If simple scaling
holds, we have the exponent relationbwz5a @35#. If only
one timescale is present, the growth exponent is relate
the activity time-decay exponent,u, via u1bW51 @31#.

For point-like disorder the first-loop functional renorma
ization group result readsx5(42d)/3, and z522(4
2d)/9 @14#; see the extension to second order in@16#. From
these, using the exponent relations, the other exponents
low. For rather generic bare disorder correlators the impli
tion is that the full correlator flows in the renormalization
this ‘‘random field’’ ~or point-disorder! fixed point function,
and thus the exponents are the same. However, numeri
particular in 1D implies that the real exponents are differ
from the one-loop results. This has recently been explai
in terms of two-loop corrections, but the traditional interpr
tation has been in terms of ‘‘anomalous scaling’’@17,38#,
meaning that ast→`, the typical height difference betwee
neighboring sites increases without limit.
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